JFP 15 (2): 249-291, 2005. (© 2005 Cambridge University Press 249
DOI: 10.1017/S0956796804005441 Printed in the United Kingdom

A monadic analysis of information flow security
with mutable state

KARL CRARY, ALEKSEY KLIGER and FRANK PFENNING

Carnegie Mellon University, 5000 Forbes Avenue Pittsburgh, PA 15213 USA
(e-mail: {crary,aleksey,fp}@cs.cmu.edu)

Abstract

We explore the logical underpinnings of higher-order, security-typed languages with mutable
state. Our analysis is based on a logic of information flow derived from lax logic and the
monadic metalanguage. Thus, our logic deals with mutation explicitly, with impurity reflected
in the types, in contrast to most higher-order security-typed languages, which deal with
mutation implicitly via side-effects. More importantly, we also take a store-oriented view
of security, wherein security levels are associated with elements of the mutable store. This
view matches closely with the operational semantics of low-level imperative languages where
information flow is expressed by operations on the store. An interesting feature of our analysis
lies in its treatment of upcalls (low-security computations that include high-security ones),
employing an “informativeness” judgment indicating under what circumstances a type carries
useful information.

Capsule Review

Type-based information flow analyses enrich the traditional structure of types with security
levels, so that a type tells not only how a value may be used, but also how much information
its use may reveal. In Heintze and Riecke’s SLam Calculus, every node in a type, be it an
arrow, a product, or a sum, carries a security level. This makes things simple: to “taint” a
type at level /, one simply joins / to the annotation found at its root. This convention is,
however, verbose and redundant. In Abadi et al’s Dependency Core Calculus, on the other
hand, the standard type constructors carry no annotation: instead, a new type constructor, the
“monad,” is added for this purpose. This design is more orthogonal, but makes things more
subtle: to taint a type at level /, one must traverse it until places where an annotation can be
attached are found. This process is defined by a “protectedness” predicate. The present paper
proposes yet another way of attaching security annotations to types. Again, the standard
type constructors carry no annotation: instead, only reference types carry an annotation.
An “informativeness” predicate defines how types are tainted. This leads to a store-oriented
view of information flow, which seems to make the most sense in the context of low-level
languages, such as typed assembly language, where the store is everything. This original
paper also provides a nice occasion to think about the many ways to design a type-based
information flow analysis.

1 Introduction

Security-typed languages use type systems to track the flow of information within
a program to provide properties such as secrecy and integrity. Secrecy states that

250 K. Crary et al.

high-security information does not flow to low-security agents, and integrity dually
states that low-security agents cannot corrupt high-security information. In this
paper, we will restrict our attention to secrecy properties. A variety of security-
typed languages have been proposed, and several of them are both higher-order (i.c.
support first-class functions) and provide mutable state (Heintze & Riecke, 1998;
Myers, 1999; Pottier & Simonet, 2003; Zdancewic & Myers, 2002).

However, when adopting one of these languages to the Typed Assembly Language
(Morrisett et al., 1999) setting, one faces a tension between the high-level view of
information flowing from the values of sub-terms to the result value of a complete
term and the assembly-language imperative view of instructions operating on a
mutable store. What is needed is a typed calculus in which values have structure
(i.e. like in high level languages) but information flows through the store (i.e. like in
a low-level language).

In this paper, we explore this store-oriented view of information flow: one of the
steps towards a TAL with information flow, we look at a language with a clean
separation between values and computations. A suitable starting point is Moggi’s
monadic metalanguage (Moggi, 1989; Moggi, 1991) and its corresponding logic (via
a Curry-Howard isomorphism).

Our presentation of lax logic is based on that of Pfenning and Davies (2001).
The principal distinctive feature of Pfenning and Davies’s account is a syntactic
distinction between terms and expressions, where terms are pure and expressions
are (possibly) effectful. They show that this distinction allows the logic to possess
some desirable properties (local soundness and local completeness) that state in
essence that the logic’s presentation is canonical. Although our work inherits these
properties, they are not particularly important here. However the term/expression
distinction also provides a clean separation between the pure and effectful parts of
our analysis, which greatly simplifies our system.

Our system bears some resemblance to the work of Abadi et al. (1999), who also
use a monadic structure to reason about information flow. However whereas we use
monads in a conventional manner to separate values from computations, they use
a monad to endow values with a security level. It is not clear how to adopt their
work to a low-level setting where the values and operations ought to correspond to
those of a real machine.

A natural question is whether this store-oriented security discipline limits the
expressive power of our account relative to ones based on a value-oriented discipline,
but we show (in Section 6) that it does not.

Overview The static semantics of our analysis is based on two typing judgments,
one for terms (M) and one for expressions (E). Recall that terms are pure and
that security is associated with effects, so the typing judgment for terms makes no
mention of security levels. Thus, the typing judgment takes the form X; ' M : 4
(where A is a type, I' is the usual context and X assigns a type to the store).
Expressions, on the other hand, may have effects and therefore may interact with
the security discipline. Each location in the store has a security level associated with
it indicating the least security level that is authorized to read that location. Thus,

A monadic analysis of information flow security with mutable state 251

the typing judgment for expressions tracks the security levels of all locations an
expression reads or writes. Only the reads are of direct importance to the security
discipline (recall that we do not address integrity), but writes must also be tracked
since they provide a means of information flow. The judgment takes the form:
2;I'F E <) A indicating that r is an upper bound to the levels of E’s reads, and
w is a lower bound to the levels of its writes, and also that E has type 4. Naturally
we require that » C w, or else E could manifestly be leaking information.

Our language can be seen as a conservative extension to purely functional lan-
guages such as Haskell. Existing terms continue to be type-safe. On the other hand
new effectful code that makes use of the security discipline can be cleanly separated.

In lax logic, expressions are internalized as terms using the monadic type OA.
Terms of type (OA are suspended expressions of type 4. Thus, the introduction form
for the monadic type is a term construct, and the elimination form (which releases
the suspended expression) is an expression construct. Similarly, our expressions are
internalized as terms using a monadic type written O(,,W)A. Since the effects of the
suspended expression will be released when the monad is eliminated, the levels of
those effects must be recorded in the monad type.

Most of the rules in our account follow from the intuitions above. One remaining
novelty deals with the information content of types. Ordinarily, an expression would
be deemed to be leaking information if it were to read from a high-security location,
use the result of the read to form a value, and pass that value to a low-security
computation. However, that expression would not be leaking information if one
could show that the type of that value contained no information, or contained
information usable only by a high-security computation (who could have performed
the read anyway). Thus the type system contains a judgment - A4 ~ a stating that
the type 4 contains information only for computations at the level a at least. This
notion of informativeness is essential to accounting for the key issue of upcalls
(low-security computations that include high-security computations).

The rest of this paper is organized as follows. In section 2 we present our basic
logical account, including static and dynamic semantics, but omitting the key issue
of upcalls. In section 3 we extend our account to deal with upcalls. In section 5 we
state and prove a non-interference theorem. In section 6 we show that our store-
oriented account provides at least the expressive power of value-oriented accounts
by embedding one value-oriented language into our language. Section 7 discusses
some related work, section 8 offers some concluding remarks.

2 Secure monadic calculus

We now describe the syntax, typing rules and operational semantics of our language.
As in other work on information flow, we have in mind an arbitrary lattice
(Z,C,u,n, L, T) of security levels.

Operation levels To track the flow of information, we classify expressions not only
by the value that they return, but also by the security levels of their effects. In
particular, we keep track of an operation level o = (r,w), for each expression. The

252 K. Crary et al.

A,B,C € types 1| bool | A— B

| ref, A | refr, A | refw, A
‘ OUA
M,N € terms = X variables
| * unit
| true | false boolean values
| if M then N; else N, conditional
| Ax : AM abstraction
| MN application
| £ store location
| val E suspended expression
E,F € expressions = [M] return

| letvalx=Min E sequencing
| ref, (M : A) store allocation
| M store read
| M =N store write

I' € contexts = |Ix:4

X € store types = {}|Z{r 4}

* | true | false
| Ax :A.M |/ | val E

V € values

H € stores = {J|H{/—V}
S € comp. states = (H,X,E)
letx=EinF letval x =val Ein F

run M letval x = M in [x]

Fig. 1. Syntax.

security level r is an upper bound on the security levels of the store locations that
the expression reads, while w is a lower bound on the security level of the store
locations to which it writes.

Since expressions that write at a security level below their read level may obviously
be insecure, henceforth we restrict our attention only to operation levels (r, w) with
rCow.

The operation levels have a natural ordering (r,w) < (’/,w’). Given some expres-
sion E, if it reads from level at most r, then it surely reads from level at most r/,
provided that r C . Similarly, if it writes at level at least w, then it writes at level
at least w’, provided that w' C w. That is, operation levels are covariant in the reads
and contravariant in the writes: (r,w) < (¢, w) iff (r T and w' C w).

2.1 Syntax

The full syntax of our language is given in Figure 1. The language is split into two
syntactic categories: pure terms M that are evaluated to values V' and expressions
E that are executed for effect as part of compuation states S.

A monadic analysis of information flow security with mutable state 253

Terms At the term level, we have variables, unit, booleans and conditional terms,
function abstractions and applications. For simplicity, we did not include a mecha-
nism for defining recursive terms, although the inclusion of such a facility would not
pose a problem. Store locations are also terms, with each location # having a fixed
security level Level(/). The store associates locations with the values they contain.
A subtyping relation, allows us to treat store cells as either read-write, read-only, or
write-only. The term val E allows expressions to be included at the term level as an
element of the monadic type (O,A4. Since terms are pure, a val E does not execute
the expression E, but rather represents a suspended computation.

Expressions The expressions include a trivial return expression [M]. The return
expression has no effect, and simply returns the value to which M evaluates. In
general, when an expression has no read effects, we say its read level is L, and if an
expression has no write effects, we say its write level is T. Accordingly, the operation
level of [M] is (L, T). Note that (L, T) is the least element in the < ordering, so our
subsumption principle will let us weaken the operation level of [M] to any operation
level.

The sequencing expression let val x = M in F evaluates M down to some val E,
and executes E followed by F. The return value of expression E is bound to the
variable x in F. If E and F both have operation level o, then so does the sequencing
expression.

We will often write let x = E in F as syntactic sugar for let val x = val E in F,
and run M for letval y = M in [y].

In addition, there are expressions that allocate, read from, and write to the
store. A read expression !M has operation level (a, T), where a is the security level
of the store location being read, and returns the contents of the store location.
Dually, a write expression M := N has operation level (_L,a) and updates the store
location with the value of N; it does not return an interesting value (i.e. it returns
unit).

Store allocation ref, (M : A) specifies the security level a and type 4 of the new
store location.

Allocation cannot leak information in our setting. Evidently, it is not a read
operation. Less obviously, it is not a write operation either. With a write, another
expression may learn something about the current computation by observing a
change in the value stored at a particular store location. However, the key to this
scenario is that the same location is mentioned by more than one expression. On the
other hand, allocation creates a new location that is not aliased. Thus, there can be
no implicit flow of information via an allocation expression. As a result, allocation
has operation level (L, T). Of course if there were a primitive mechanism in place to
distinguish locations (for example by comparing locations for equality), allocation
would once again be observable.

Although there is not a primitive mechanism for recursion at the level of
expressions, recursion can be encoded at the level of expressions using back-patching,
see an example in section 3.3.

254 K. Crary et al.

Table 1. Typing judgments

Judgment Meaning
5 THEM:A Term M has type 4
S, THFE=+, A Expression E has type A
and operation level o
FA<B Type A is a subtype of B
FH:X Store H has type X
FS+,4 Computation state S is well-typed

States A computation state is a partially executed program, and consists of a triple
(H,%,E) of a store H, a store type X and a closed expression E. The store maps
locations to values, and the store type maps locations to the types of those values.

We assume that in a state (H, X, E), the store binds occurrences of store locations
¢ in H and E, and we identify computation states up to level-preserving renaming
of store locations. In addition, as usual, we identify all constructs up to renaming of
bound variables.

2.2 Static semantics

The type system of our language consists of two main mutually recursive judgments
for typing terms and expressions, and some judgments for typechecking stores, and
computation statesthat are summarized in Table 1. The first judgment Z;I' - M : 4
says that the term M has type A4 in the context I', where the store has type Z. The
jugment for expressions X;I" - E +—, 4 says that E returns a value of type 4 and
performs only operations within level o. Each rule is given with its rule number, and
the full set of rules appears in Appendix A.2.

We assume that contexts I are well-formed, that is, they contain at most one
occurrence of each variable x. We tacitly rename bound variables prior to adding
them to a context to maintain well-formedness. Similarly, we assume that store
types are well-formed, that is, they contain at most one occurrence of each store
location /.

Terms The typing rules for terms are unsurprising for a simply-typed lambda
calculus with unit, bool and function types. A store location / (provided that it
is in dom(X)) has type refieveir)Z(/). A computation term val E has the type O,A4,
provided the expression E has type A and operation level o. The rules are given in
Appendix A.2.

Expressions The typing rules for expressions (given in Figure 2) follow our informal
description. Trivial computations have the type of their return value, and operation
level (L, T) (rule 29). By rule (30), the sequencing expression let val x = M in E
is well-typed provided both of the sub-computations have the same operation level

A monadic analysis of information flow security with mutable state 255

S THFE+, A

X 'EM:A 29) S TEM:OpA Z:T,x :AFE -+, A (30)
T E[M]+0)4 Z;T'kletvalx=MinE +, A

2 T'EM A 1) ;I'EM :refr, A (32)
T krefg(M :A) = T)refa A T IM 1) A
;M :refw, 4 Z;TEN:A (33)
ZTEM:=N-+qgl
S;TFE+,A 0<0 L TFE+,A FALB

34 36
TTHE=+yA (34) S.THE=,B (36)

Fig. 2. Typing rules (expressions).

FA<B aCbh FB<A bCa

_— — (17) ——— (18
Frefr, A < refr, B) F refw, A < refw, B (18)
FA<B Cbh FB<A bC FALB o0<0
1= (15 =9 (16) =22 229 (14
Fref, A < refr, B Fref, A < refw, B FO,A< Oy B

Fig. 3. Selected subtyping rules.

(which may require using rule (34) to weaken the operation level of the sub-
computations). Allocation (rule 31) returns a new read/write store location. For
read and write expressions (rules 32 and 33) we only require that the corresponding
store location is readable or writable, respectively.

Subtyping Subsumption (rules 28, 36) allows us to weaken the type A of a term M
or an expression E, provided A4 is a subtype of B. Selected subtyping rules are given
in Figure 3.

Stores and states A store H is well-typed with store type Z, provided that each value
Vi in the store is well typed under £ and the empty context, where X has the same
domain as H. A computation state (H,X, E) is well-typed provided that the store
and the expression are each well-typed with the same store type:

dom(X) = {/1,....0n} Z; Vi 2Z(4) forléién(37) FH:Y X;-FE=, 4 ”
F o Vil Vi) o2 FHTE oA Y

2.3 Operational semantics

A computation state is called terminal if it is of the form (H,Z, [V]). An evaluation
relation S — S’ gives the small-step operational semantics for computation states.

256 K. Crary et al.

We write S | if for some terminal state S’, S —" §’. Since terms are pure and do
not have an effect on the store, their evaluation rules may be given simply by the
relation M — M’ (no store is required). The entire set of evaluation rules is given in
Appendix B.

We write M[N/x] and E[N/x] for the capture-avoiding substitution of N for x
in the term M or expression E. We write H{/ + V} for finite map that extends H
with V at /7.

It is instructive to consider how a computation in state
So = (H,Z,letval x = M in F) would evaluate. There are three stages:

1. LervaLl is repeatedly applied until M is evaluated down to a value val E,
S =(H,Z,letval x =val E in F)

2. LETVALVAL is then applied until the subcomputation (H,X, E) is evaluated to
a terminal state (H',X/, [V]),
S, =(H',Y,letval x =val [V]in F)

3. LETVAL substitutes the value V for x in F and computation continues in state
S, =(H,Z,F[V/x]).

For the proof of non-interference (specifically for the proof of the Hexagon
Lemma), it will be useful to have the following lemma. It says that if a term
evaluates to a value (or if a computation state evaluates to a terminal state) then the
syntactic subterms (or subexpressions) of the given term (or computation state) will
likewise evaluate to values (or terminal states). That is, our account is call-by-value.

Lemma 2.1 (Subterm/Subexpression Termination)

e If (H,Z,E) | in n steps, then
1. if E =[M] then M ="V
2. if E =letval x = M in F then M —* val E/, (H,%,E’) | in m steps and

k+m<n

3. if E=ref,(M : A) then M —* V and k <n
4. if E=!M then M =K V and k < n
5.ff E=M:=Nthen M 5K Vi, N>"Vyandk+m<n

o If M —" V then

1. If M = N|N,, then N; = V; and Vi{N, >" V|V, and k+m <n
2. If M = if N then N, else N5 then Ny —* V; and k <n

Proof
by induction on the number of steps in the evaluation relation, by cases on the last
rule. [

Our operational semantics are deterministic up to renaming of store locations:
recall that we consider store locations to be bound by the store in a computation
state. We allow a bound store location / to be renamed 7/, as long as Level(/) =
Level(?'). (Alternately, think of each security level as determining a collection of
store locations; each bound store location may be renamed only to a location within
the same collection.) Determinacy is used in the proof of non-interference.

A monadic analysis of information flow security with mutable state 257

Lemma 2.2 (Determinacy)
If M > My and M — M, then M| = M,. If S — S; and S — S, then S; = S, (upto
renaming of store locations).

Proof
by induction on the evaluation relations. By cases on M — M (or S — S).

In each case, by the structure of M (resp., S), there is a single evaluation rule for
M — M,; (resp., S — S3), then by IH. [

Since allocation extends the store, the following lemma shows that in any sequence
of evaluation steps (of a not necessarily well-typed state), the store type only grows.
We use this fact in the HSS Lemma.

Lemma 2.3 (Store Size)
If (H,XZ,E) »" (H,X,E’) then ¥’ = X.

Proof

Suffices to show for one step: if (H,X, E) — (H', Y, E’) then ¥’ 2 X. The multi-step
result follows because = is reflexive and transitive. We proceed by induction on
the evaluation derivation (H,X,E) — (H', X', E’), by cases on the last rule in the
derivation. []

3 Upcalls

Although the approach discussed so far is secure, it falls short of a practical language.
There is no way to include a computation that reads from the high-security store
in a larger low security computation. In any program with a high security read, the
read level of the entire program is pushed up. However, many programs that contain
upcalls to high security computations followed by low security code are secure.

Consider the program let z = P in E where P <7 1)1 and E has operation level
(L, L). P does not leak information because 1 carries no useful information, and P’s
writes are above E’s reading level. Thus we would like to give the entire program
the operation level (L, 1). However the type system we have presented so far would
instead promote the operation level of E and the entire program to (T, T).

In order to have a logic of information flow, we must offer an account of
upcalls. Indeed, the power to perform high security computations interspersed in a
larger low-security computation is the sine qua non of useful secure programming
languages. We offer a detailed analysis of two cases where upcalls do not violate our
intuitive notion of security. From these examples, we develop a general principle for
treating upcalls — our notion of informativeness — discussed in section 3.3. We take
up the question of non-interference in section 5.

3.1 An example with unit

Let E be some expression with type A and operation level (r,w) (recall that this
implies that » C w). In general, E may read values from store locations with security

258 K. Crary et al.

level below r, write values to store locations with security level at least w, and return
some value of type 4.

Suppose that 4 = 1. In that case, no matter what E does, if it terminates, it must
return *. The return value is not informative.! Any other computation F that may
gain information through the execution of E must be able to read store locations
at security level at least w. But since r C w, F could just directly read any store
locations that E reads. On the other hand, any computation with operation level
(r',w') where w [Z ¥’ can neither observe E’s effects nor gain any information from
its (uninformative) return value.

As a result, in either case, we can say that E has an effective read level of L just
as if it had no reads:

2, THE ~(r.w) 1
. I'HE —(Lw) 1

Note that the read level now refers only to informative reads, not all reads.

The new rule allows us to have some high-security computations prior to low
security ones. Suppose X;- F E =t 1)1, and X;x : 1 - F+(1) A4 for some A. That is,
E is a high-security computation, and F is a low-security one. With the new rule, the
upcall to E, followed by the low-security computation F, can be type checked using
the new rule (*), E has operation level (L, T), which can be weakened to (L, L) by
rule (34), and thus:

2;- "E.+(L,L)1 27)
;- FvalE : Ol Ex:1lEF+ A
X;-Fletvalx=valEinF -+)A

(30)

Note that the rule (*) does not alter the write level of the expression (that is, the
operation level in the conclusion is not (L, T)). Such a rule would allow programs
to leak information.

3.2 A more general example

Now consider an expression E with operation level (r, w), but this time, suppose that
E has type ref, B for some type B. Are there any situations where E may be given
a different operation level?

Suppose that r C a. In that case, any computation that may read the ref, B is
also able to read any store locations that E may read. Again, any computation can
either do what E does itself, or it cannot gain information from E’s return value.

On the other hand, consider the case where r [Z a. The particular value of type
ref, B that E returns may carry information from store locations at security level r.
For example, E may return one of two such store locations /; or 7, from level a
based on some boolean value V' from a store location at security level r. In that

1 We are dealing here with weak non-interference: the knowledge that E terminated at all is deemed not
to carry any information.

A monadic analysis of information flow security with mutable state 259

FA/7a bCa FA~ ra FA D

1 10) ————— (11

FA/‘J_() FA b (19) FA ~alUb (1D

FB ~a FA 7~a

2 3 4

I—l/‘a() I—A—»B/‘a() I—O(W)A/'wﬂa()

FA 2 a FA 2 a))
Fref, A 7 a FrefpAd 7 a Frefr,bA ~ a Frefr,bA 2 b Frefw,4 7~ a

Fig. 4. Informativeness judgment.

case, a computation that reads at security level a may learn something about E’s
reads (at level r) by reading from E’s return value. Since r [Z a, this represents a
violation of secure information flow.

So if E returns a ref, B, we can demote its reading level whenever r C a, because
any computation that wishes to make use of that return value would need a read
level of at least r. In other words, a ref, B is informative only to computations that
may read at least at some security level (namely a) above r.

This observation suggests a new subsumption rule for expressions that alters the
operation level:

S TFE+enwd FA v
Z;F FE —(Lw) A

where the new informativeness judgment - A4 ~ r formalizes the idea that values of
type A, if they are informative at all, are informative only at level r or above.’

In terms of this new judgment, our earlier observations are that - 1 ~ r for any
r,and - ref, A ~ r whenever r C a.

(35)

3.3 Informativeness

We now consider some properties of the new judgment - 4 ~ a (see Figure 4).
Several structural rules (1,10,11) for the judgment are immediate. If 4 is informative
at all, then it’s informative only at L or above. Also, if A is informative only at
or above a and if b C a, then A4 is informative only at or above b. That is, we
may choose to discard some knowledge about when a type is informative. Finally,
suppose A is informative only above a, and A4 is informative only above b. Then for
any r if values of type A are informative to computations that read at r, we know
that both a C r and b C r. Therefore, for any such r, alLlb C r. So, A is informative
only above aUb.

With the structural rules in place, we may consider each of the types in our
language. We should keep in mind, that by adding rules to the judgment - 4 7 a
we increase the expressive power of the language by allowing more programs to be
well-typed. It is always safe to add more restrictive rules in place of more liberal

2 Informativeness is closely related to protectedness in DCC (Abadi et al., 1999) and to the tampering
levels of Honda & Yoshida (2002). We discuss the relationship in section 7.

260 K. Crary et al.

ones. Below we take the most permissive rules that still maintain non-interference,
although it is not clear in all cases that such flexibility is needed in practice.

A value of type bool is informative for any computation at all, since it may be
trivially analyzed with a conditional. So aside from the structural axiom -4 ~ L,
there should be no other rules for bool. We would give a similar account of other
types that may be analyzed by branching (e.g. sum types A + B or integers int).

Since functions are used by application, a value of type 4 — B is useful exactly
when B is.

One straightforward rule (5) for references says that a store location is only
informative if we can get at the value within it. There is an additional rule for
references. Even if a computation can read from a store location of type ref, A (i.e.
its read level is above b), only if A is informative at its operation level, can ref, A
be informative.

Read-only store locations are useful only to computations that may read from
them. Consequently, by an argument similar to the one for read-write store cells,
they have analogous rules.

For write-only store cells refw, A, we have to consider aliasing. One way that a
computation may learn whether two store locations are aliases is by writing a known
value to one of them, and then reading out the value from the other. Because of
subtyping, if a lower-security computation has a store location # of type refr, 4, a
value of type refw, 4 may be informative if the computation can read from (the
seemingly unrelated) /.

It is instructive to consider in detail the problem with write-only store locations
refw, A. Suppose that instead of the rule (9), we had the following rule

Frew. A 7 b (incorrect)
That is, the same as the rule for unit: a value of type refw, 4 is only informative
above some security level b, for any b, i.e. not informative.

The following computation shows that with the incorrect rule, it is possible to
leak high security information (whether the value of secret, a T-security bool, is
true) to a low security computation®:

let x = ref | (false : bool) in
let y = ref (false : bool) in
let z = (let ¢ = !secret in

[if g then x else y]) in
let .=z :=truein
run !x

The program lets z alias either x or y depending on the value of secret. The
computation whose value is assigned to z may be subsumed to type refw, bool, and
by the incorrect rule, F refw, bool » T, so the operation level of that computation
can be dropped to (L, T) (and subsumed to (L, 1)). Then by writing a known value

3 Recall that let x = E in F is syntactic sugar for let val x = val E in F.

A monadic analysis of information flow security with mutable state 261

Ac: Q(T,T)bool.

val let wref = refr (val [¥] : O.1)1) in
let w = [val (let b = run c in run (if b then val (et w' = !wref'in run w’) else val [#]))] in
let - = wref :=w in
run w

Fig. 5. Using rule (35), untilFalse has type O bool = O 1.

to z, whether we can observe a change in another alias of the same location is
sufficient to learn about secret. We can give the entire computation the operation
level (L, T) while it demonstrably returns the high-security value.

Finally, consider the type O 4. A value of this type is informative both to
computations that may read at least security level w (that is, the level the suspended
expression writes to), and to computations for which the type A4 is informative.

With informativeness in hand, many more useful terms become well-typed.
Consider, for example, the term in Figure 5. The function untilFalse takes as
argument a computation that reads and writes high before returning a boolean, and
runs that computation repeatedly until it returns false. Recursion is accomplished
using backpatching: a store location with a dummy value is allocated and is bound
to wref, recursive calls in the body of the loop dereference wref and run the contents.
The recursive knot is tied by overwriting the contents of wref with the real loop
body w.

Interestingly, although untilFalse takes a high-security computation as an argu-
ment, our type system is able to give it the type O)bool — O 11, that is its
return type is a low-security computation. Intuitively, even if ¢ is a high-security
computation, untilFalse ¢ does not leak any information to low-security since any
information gained from c¢’s return value is used only within the loop. To show that
untilFalse is well-typed, observe that I' - letb = run cinrun(...) +11) 1, and since
F 1 ~ T, it can be given operation level (L, T). The rest of the typing derivation is
straightforward.

4 Type safety

Our language enjoys the usual type safety property: well-typed computations do not
become stuck. We may show type safety in the usual manner using Preservation and
Progress lemmas.

Lemma 4.1 (Preservation)
If-S=,4and S — S then+S" —, 4

Proof by induction on the evaluation relation. Proof is given in Appendix C.1.4.

Lemma 4.2 (Progress)
If = S +, A then either S is terminal, or there exists an S’ such that § — §’

262 K. Crary et al.

Table 2. Equivalence judgments

Judgment Meaning

ST My~ Myt A Term Equivalence
Y THE ~ Ey+, A4 Expression Equivalence
F(H X)) =f (Hy : 2) Store Equivalence

FSi i~ S +,A State Equivalence

Proof by induction on the typing derivation. Proof is given in Appendix C.1.4.

Theorem 4.3 (Type Safety)
If S and S —* §’ then S’ is not stuck.

Proof

By induction on the number of evaluation steps. If S takes zero steps, then by
Progress, it is not stuck. If S takes n 4 1 steps, then by Preservation it takes a step
to some well-typed state, and so by the induction hypothesis, S’ is not stuck. [

5 Non-interference

Fix a security level {. We say that a security level is low if it is below {, and high
otherwise. Informally, non-interference says that computations that have a low read
level do not depend on values in high security store locations.

The proof is structured similarly to that of others (Zdancewic & Myers, 2002;
Zdancewic & Myers, 2001b), and other proofs of non-intereference based on relating
the operational behavior of pairs of computations, such as Pottier & Simonet (2003).
However, by taking advantage of our informativeness judgment (see below), we can
give a concise definition of the relation between computation states.

Operationally, the low security sub-computations of a program should behave
identically irrespective of the values in the high security store locations. On the
other hand, high security sub-computations may behave differently based on values
in high security store locations. However once a high security sub-computation
completes, the low security behavior should again be identical modulo the parts of
the computation state that are “out of view” of the low security part of the program.

Formally, we define an equivalence property of computation states such that two
states are equivalent whenever they agree on the “in view” parts of the computation
state. Then, in the style of a confluence proof modulo an equivalence relation (Huet,
1980), we show that this property is preserved under evaluation.

5.1 Egquivalence relation

We axiomatize the desired property as a collection of equivalence judgments (on
states, stores, terms and expressions) that are summarized in Table 2.

A monadic analysis of information flow security with mutable state 263

Stores and States Certainly values in high security store locations are out of view.
Less obviously, some values in the low security locations are out of view as well:
if a low security store location appears only out of view, its value is also out of
view. We parametrize the store equivalence judgment by a set U of in-view store
locations. Two (well-typed) stores are equivalent only if their in view values are
equivalent:

I—H1:21 I—HQIZQ

PIEDILIE ~r > f
S U=%,10U 13205 F Hi(4) m¢ Hy(4) : Z1({) for £ € U

58
F(Hp :Z0) = (Hy 1 X)) oY

Where the notation £ ' X is the restriction of X to just the locations in the set X.

For a pair of computation states, only low security locations that are common
to both computations are in-view. Since allocation does not leak information, it is
possible for two programs to allocate different low security locations while executing
high security sub-computations. However such locations are out of view for the low
security sub-computation.

Pairs of computation states are equivalent if their stores are equivalent on the
in-view locations, and if they have equivalent expressions:

F(Hy 2 Zp) agomindomtiInG (g 55) 435 - Ey ~p B+, A
F(Hy,21,Ey) ¢ (Hy, X5, E7) +0 A

(59)
Where [({) = {/ | Level(/) C {} is the set of all low security locations.

Terms and Expressions High security sub-computations of a program may return
different values to the low security sub-computations. However, by the upcall rule
(35), the type of those values must be informative only at high security.

Values of a type that is informative only at high security are out of view. As a
result, any two values of such a type are equivalent since two such values vacuously
agree on their in view parts:

TV A4 20 TEV,:A FA 7 a aEC
Zl;ZQ;FI—VlzC VQIA

(39)

The remaining rules for term and expression equivalence are congruence rules that
merely require corresponding sub-terms or sub-expressions to be equivalent. They
are listed in Appendix A.3. Some useful structural properties (transitivity, inversion,
functionality, etc) of the equivalence judgment are proved in Appendix C.2.

5.2 Hexagon lemmas

Non-interference will follow as a consequence of a pair of Hexagon Lemmas: one
for terms and one for expressions. We show that by starting with some two related
terms (or expressions) that both take a step, we can find zero or more steps that each
of them could take so that we get back to related states (respectively, expression).

264 K. Crary et al.

F M1 = Mz A

M; M;

« »

I— My =~ M) A4

&

Fig. 6. Informal statement of the Term Hexagon Lemma.

The lemma for terms is summarized in Figure 6, the name “Hexagon Lemma” is
motivated by the shape of this diagram.

Lemma 5.1 (Term Hexagon Lemma)

For all {, if ;% W My = M, : A and M; — M{ and M, — M} and
M{ | and M} |, then there exist M{, M}, such that M| —* M{, M) —" M/,
21;22;' [Mi, NC Mé/ A

The proof is by induction on the given derivation. Most cases are vacuous. In the
cases of function application and if-then-else, proceed by subcases on M; — Mj.
The full proof is given in Appendix C.3.

Roughly speaking, the proof of the Hexagon Lemma for expressions is divided
into two cases depending on whether the sub-expressions of the current pair of
states depend on in-view (C () or out-of-view (IZ {) locations. In the former case,
the two states execute in lock-step and after each computation step we can show
the resulting states are equivalent. In the latter case, each computation state may
execture arbitrarily many high security steps before continuing on with low-security
computation that is in view of the observer. The following High Security Step lemma
shows that starting with two equivalent stores and executing arbitrary high-security
expressions, the resulting stores are still equivalent for the low-security observer.

One complication in this lemma is that evaluation of two distinct computation
states S1, S, may inadvertently allocate the same store location / for distinct purposes.
However we will show that for each such /, we may choose an element of the
a-equivalence class of S; or S, such that all such accidental sharing is eliminated.

Lemma 5.2 (High Security Step (HSS))
Given (Hy, Xy, Ey) and (H,, X, E») such that

e F(Hy : X)) =Y (H; : %) where U = dom(Z;) N dom(Z,) N [({),
e X;;-F E; +,, C; for some o; = (r;,w;),C; with w; IL { fori=1,2,

and if (Hy,Zy, Eq) =" (H{,Z{, E) and (H,,Z,, E;) —" (H}, X5, E}) then

o F(H{ : X)) =Y (H) : Z))
e and moreover U = dom(Z}) N dom(Z)) N [({)

A monadic analysis of information flow security with mutable state 265

Proof
1. By Regularity of Equivalence, - (H; : ¥;) for i = 1,2
2. By Lemma C.21, for i = 1,2:
o H(H;: X)) zf] (H] : Z!) where U; = dom(Z;) N [({)
. By Regularity, - H] : X! for i =1,2
4. Note also that U = U; fori = 1,2
5. Consider an arbitrary 7/ € U
(a) Since F (H; : X¢) z(U (Hy 1)), 213205 F Hi(4) = Hy(/) : A,
(b) Evidently, also / € U;
(c) And since, fori= 1,2, (H; : %)) zf] (H : X)), we have X;; X5 - = Hi(/) ~¢
H((/) : A.
(d) Therefore, by symmetry and transitivity, X{;Z%;- = H{(/) = Hy(/) : A
. So, by rule (58), - (H{ : =) ={ (Hj : Z)
. Now consider a new set U’ = dom(XZ}) N dom(Z5) N [({)
. Since X 2%,s0 U 2U
. Suppose / € U'\ U
(a) Since / € U’, / € dom(Z}) for i = 1,2
(b) Since / ¢ U, then / ¢ dom(Z;) for at least one of i=1o0ri=2
(c) Suppose ¢ ¢ dom(Z) (the other case is similar)
(d) Choose a fresh store location /' ¢ dom(X}) U dom(X)) with Level(/’) =
Level(/), and systematically rename ¢ with /' in (H{, X}, E}).
(e) Evidently we have an element of the o-equivalence class of (Hj, X, E})
where / ¢ dom(H])
10. So U’ = U, and the conclusion of the lemma follows.

O

We may now show a hexagon lemma for expressions.

[99)

O 0 3 &

Lemma 5.3 (Hexagon Lemma)
For all {, if o = (r,w) with r C {, and if

o |- S1 ¢ S2 o C

¢S —-S.5%—-85

eS8
then there exist S{, S5 such that

o 5| S), 8o S

o 8"~ 8+, C
Proof
By Inversion on F S; ~; S, +, C, we have

o Si = (H,Z1,E1), S = (H, 20, Es)

o H(H:X)) zfj (H; : Z;) where U = dom(Z1) N dom(Z,) N [({)

° 21;22;‘ |—E1 524 E2+0C

Now we proceeed, by induction on the derivation of X1;X5;- F Ey &~ E; +, C,

by cases on the last rule in the derivation. In each case we exhibit the appropriate
S/ = (H{,Z!,E{), Sy = (HY,X%, EY). We show several representative cases below.

266 K. Crary et al.

e Case
X5 THE ~ Ey+pwC HC A Y
X2 FE =t Ey+1w C
By pattern matching, r = L
Consider two subcases: either ' C { or ¥’ IZ {. The former case follows by the
induction hypothesis. In the latter case, we appeal to the HSS lemma:
1. Since ¥' C w, then w [Z {
2. Since S/ |, (H;,Zi, E;) -1 (H/,Z!,[Vi]) for some S = (H/,Z/,[V]) for
i=1,2
3. Therefore we can apply HSS to get
— F(H{ : ZY) ng (Hy : Z%)
— U =dom(H{)Nndom(HY) N |({)
4. By repeatedly applying Preservation, X/ ;- F [Vj] = w C fori=1,2
5. And by various typing rules, X{;Z7;- + [Vi] =¢ [V2] +, C

e Case

(51)

21;22;' I—Ml %C M2 ZA
2120 Foref, (Ml : A) 24 ref, (M2 . A) —(LT) ref, A
By pattern matching, E; = ref,(M; : A), o = (L, T), C =ref, 4
There are two possible evaluation rules for (Hy, X4, Eq) — (H{, X1, E})

(55)

— Subcase Rer1 follows eventually from the Term Hexagon Lemma.
— Subcase REF: M; value, H{ = H{{/1 — M}, | = Z{/1 : A}, E| = [/1],
where /; ¢ dom(H,), Level(/;) = a
1. By Equivalent Values (Lemma C.19), M, is a value since M| is
2. Only REF rule is applicable to (H», X5, E;) — (H,, X5, EY): H) =
Hy{(, — My}, T = E3{/» : A}, E5 = [/2], where /, ¢ dom(H,),
Level(/;) =a
3. Consider two subcases now, either a C { or a [Z {. In the former case
we want both states to allocate the same fresh location (that will be
in-view to the observer), in the latter case we want the locations to be
distinct (and thus out of view):

— Subcase a C (
(a) Since in both S| and Sj, /1 and /, are freshly allocated, we may
o-vary S{,S; such that /; =/, = ¢ for an appropriate /
(b) Then Level(/) =a, / ¢ dom(H;) U dom(H3)
(c) Let S/ = (Hi{/ — M;},Z;{/ : A},[/]) fori=1,2
(d) The result follows since the freshly allocated location is (by

construction) in the set U” = U U {/} of common locations
between S{’ and S5, and it contains equivalent values.

— Subcase a [Z {
In this case the newly allocated locations /1,/, are not in the
common set of S;' and S since they have high security levels.

A monadic analysis of information flow security with mutable state 267

Furthermore 2,{/1 : A};Z2{(>» : A};- b 41 =~¢

¢ /> @ refg A, since
Fref,A » aand a [Z {. The result follows.

e Case

21;22;' = Ml ¢ M2 . refraC
21;22;' |‘!M1 %g!Mz ~(a,T) C

(56)

By pattern matching, E; =!M;, o = (r,w) = (a, T). Recall that a =r C {
There are two applicable rules for (Hy, Xy, Ey) — (Hj, 21, Ef)

— Subcase BaNG1 follows by the Term Hexagon Lemma
— Subcase BANG: My = /4, H| = Hy, | = X4, E| = [Hi(¢1)]

1. By Equivalent Values (Lemma C.19), M, is a value since M is.

2. The single applicable evaluation rule for (H», X5, E;) — (H}, Z), ES) is
BANG: M, = ¢, H) = Hy, X, = %, E), = [Ha(/2)]

3. Let S = (H;, Z;, [Hi(¢})]) fori=1,2

4. So it only remains to show that X;X,;- - Hi(¢1) = Hy(/2) : C

5. By Equivalent Term Inversion on Xi;Xs;- £y ~¢ £/, : refr, C, there
are two possibilities:

— Either ¥;;-+/;:Band F B<refr,Cand B ~ band b £ {
It follows by a series of inversions that B is either refry B’ or
refy B’ and in either case - B’ ~ ¢ for some ¢ [Z {. That is, the
computations are dereferencing locations whose contents are not
informative to a {-observer. The result follows.

— Or/y ={¢,=1{ where Level(/) =bLC (,
and F ref, Xi(/) < refr, C and Z((4) = X,(/). This case follows
since / is in the common set of X{,X, and since the stores are
equivalent.

e Case

XX My My irefw, A X525 F Ny~ Ny e

A
57
21;22;'|—M1 = N, R M, ::N2+(L,a)1 ()

By pattern matching, E; = M; := N;, 0 = (r,w) =(L,a), C =1

There are three applicable rules for (Hy, X4, Ey) — (H{, X}, E}). If the rule was
AssN1 or AssN2, the result follows from the Term Hexagon Lemma.
Otherwise, the rule was AssN, and we have: M| =/, N; value, H| = H{{/| —
Ni}, Zf =%y, Ef = [#]

1.
2.

By Equivalent Values (Lemma C.19), M,, N, are values since My, N; are.
The only applicable evaluation rule for (Ha, X5, E2) — (H}, X}, E}) is ASSN,
and we have: My = /3, H), = Hy{/, — Ny},) = %, E} = [#]

Let S = (H;{/; — N}, %, [*]). It suffices to show that the updated stores
are still equivalent.

By Equivalent Term Inversion on X;X5;- F /1 ~¢ ¢/, : refw, A, there are
two possibilities:

— Either ¥;;-+H/; :Band F B<refw,A,F- B ~band b £ {

268 K. Crary et al.

By Subtyping Inversion, either B = refwy B’ or B = refy B’ and in
eithercase FA < B andaC V/

— If B = refwy B’, then it eventually follows from inversions that
Level(Z;) IZ {, and so the /; are not in the common set U of
locations, and the result follows.

— If B=refy B’

(a) By Subtyping Inversion, B" = X;(¢;) and b’ = Level(/;) fori = 1,2

(b) By Informativeness Inversion, b C b’ Lic and + B’ ~ ¢ for some ¢

(c) Since b IZ {, either b' L { or ¢ L {

(d) If o' I£ {, we can use the same argument as the previous subcase:
B = refwy, B'.

(e) So instead suppose b’ C {; it must be the case that ¢ IZ (.

(f) Consider 7; (the argument for /, is symmetric)

(g) Evidently Level(/y) = b’ C {, so suppose /1 € U (if not, same

argument as previous subcase)

(h) If /; = /, then the situation is the same as the next subcase

(/1 =1¢2=1,...) below; so suppose /; differs from ¢/,
(i) So /1 € dom(X,) = dom(H>)
(j) By heap typing inversion, X5;- = Hy(/1) : (/1)
(k) Since /1 € U, 25(/1) = Z1(/1) = B’
(1) By rule (39), Z1;XZ2;- = Ny =¢ Ha(/1) - Z1(/1)

(m) Therefore for all / € U, Z7;X5;- + H{(/) = H}(/) : Z{(¢)

(n) So by rule (58), - (H{ : Z{) =Y (Hy : Z5)

— Or ¢/ = ¢, = ¢ and Level(/) C { and X(/) = Z(/), and
F refleveiy) Z1(4) < refw, 4
We can show that 7 is in the common set U of locations; the result
follows by a straightforward derivation.

5.3 Non-interference theorem

By repeatedly applying the Hexagon Lemma, we can prove a non-interference result.
We show that starting with some initial store H (well-typed with store type X) and
an expression to execute E with a free variable x, if we plug in different values
V1, V, for x, then provided that the in-view parts of V7, V, are equivalent, we expect
that if the resulting programs (H,X, E[Vi/x]), (H,Z, E[V,/x]) run to termination,
the resulting terminal states will be equivalent on their in view parts.

Theorem 5.4 (Non-interference)

If - H :Xand ;x : A+ E <+, B and if Z;%;- - V| =, V5 : A then if
(H,X,E[Vi/x]) =" S and (H,X%,E[V;,/x]) =" S, and both Sy, S, are terminal, then
- S] iy Sz ~(rw) B

A monadic analysis of information flow security with mutable state 269

Proof
By reflexivity and Functionality (see Appendix C.2), we can show that

2% FE[Vi/x] = E[V2/X] +¢w) B

By repeated application of the Hexagon Lemma, the two computations evaluate to
equivalent terminal states. Since the operational semantics are deterministic, those
terminal states are S; and S, respectively. [

6 Encoding value-oriented secure languages

Our account differs substantially from prior secure programming languages where
each value has a security level. In such languages, terms are classified by security
types: pairs of an ordinary type and a security level. The type system ensures that
each term is assigned a security level at least as high as the security level of the
terms contributing to it. In our account only the store provides security. A natural
question is whether we sacrifice expressive power in comparison to value-oriented
secure languages.

We will show that our language is at least as expressive by showing how to embed
several value-oriented secure languages in our account. The embeddings are not
only type correct, but also preserve security properties of the source languages.

When a computation analyzes a value of a datatype by cases, each arm — by virtue
of control flow — gains information about the subject of the case expression. In a
purely functional setting, that additional information may only be used to compute
the return value of the expression. Thus it suffices to require the return type of each
arm (and thus the entire case expression) to be at least as secure as the case subject.

On the other hand, in an imperative setting, information gained via control-flow
may leave an expression non-locally (e.g. via a write to the store). As a result, it
becomes necessary to track such implicit flows of information. Secure imperative
languages use a so-called program counter security level, pc, as a lower bound on the
information that a computation may gain via control flow. Consequently, the results
and effects of each expression must be at least as secure as any information gained
via control flow.

In contrast to value-oriented secure programming languages, in our account we
expect that case analysis is at the term level, and thus the arms of the case term
do not have side-effects. We show that our approach is at least as expressive as
imperative value-oriented secure languages.

We consider the language AREE (summarized in Figure 7) of Zdancewic (2002). In
addition to unit and boolean types, it has function types that are annotated with a
lower bound on the write effects of the function body, and store locations. The base

values of A8EE are annotated with a security level inside expressions.

The typing rules for A8EE are given by a pair of mutually recursive judgments for
base values and expressions, given in Figures 8§ and 9.

The following key property is maintained by the 285 typing judgment. Intuitively,
it captures the idea that the value of an expression is at least as secure as the

information that the expression gains via implicit information flow.

270 K. Crary et al.

t € types = 1|boo|\slﬁ>s2\refs
s € security types = (t,a)
bv € base values =+ |true | false | /| A[pc]x :s.e
e € expressions = x| bv, |ife thene,elsee; |eer|ref(e:s))|le|e:=¢
Fig. 7. J8EL syntax.
X;'k-bo it
2;'kE=:1 X;TFtrue :bool X;T Ffalse :bool X;T'F/:%(¢)
;L x :s[pe] e s SThbo:d F{<t
T F Afpelx ise 155 =T Fbv:t
Fig. 8. AREY base value typing.
Z:T'[pc]Fe:s
S;Tkbv:t ;I[pclFe:s Fs<s
2T, x :s[pe] F x :sUpe 2;T'[pc] F bv, : (t,a U pc) X;T[pc]Fe:s

X:T[pcUal ey :s
:T'[pcUaltes:s

X;T'[pc] - if e; then ey else e3 : s 2 T[pc] Fejer :sUa

T;I[pcl ke : s

. . /pC,
Z:illpel Fer 1 (8" —s.a) 0 [0 € po

2;T'[pc] F eq : (bool,a)

2 T[pc]l e :s 2;T'[pc] e : (ref s,a)
X;T[pc] - (ref (e : 5)) : (ref s, pc) X:T[pc] Fle :suUa

2 T[pc] - eq : (ref (t,b),a) Z;T[pclbFer :(t,b) al b
Z;T[pc] F ey :=e3 : (1,pc)

Fig. 9. A8EL expression typing.

Lemma 6.1
If Z;T'[pc] F e : (t,a) then pc C a.

The proof of this fact appears as Lemma 3.2.1 in Zdancewic (2002).

Encoding To emulate the sealing behavior of value-oriented languages in our store-
oriented discipline, we embed source-language values of security type s = (¢, a) into
read-only refs in our language 5 = refr, t.

A slight complication arises in the translation of ref types ref s since our language
associates a security level with ref cells, but A8EE does not. In value-oriented security
languages, the contents of ref cells have a security level, however. So we use the
security level a of the contents ¢ as the security level of the ref cell itself in our

translation: ref (t,a) = ref, (t, a).

A monadic analysis of information flow security with mutable state 271

Z:'kFbv:it=M

Y;T'k=*:1==* X,I'ktrue :bool=true X;I | false : bool = false

;T x :silpclFe:sp =E
TR/ :2(0)=¢ Z;T'FAlpclx :sq.e: sy E>sz=>).x :51.val E

ST =E FHt <t
2:I'kbv:t=E

Fig. 10. Z8EE base value encoding.

2:T'[pc]Fe:s=E

;T x :s[pe] F x :sUpec = [x]

S;T'Fbv:t=M
2;T[pc] F bog = (t,all pc) = refqpe (M @ 1)

2;T[pc] Fep : (bool,a)=E; Z:;T[pclUalte :s=E, ZX:;I'[pcUalte;:s= E;

lety =E;in
;T [pc] - if ey then e, else e :s = let)y’ = lyin
run(if y’ then val E; else val E3)

Z;I“[pc]l—elz(s’&s,a)zEl T:I'[pcl ey :s = E, pcualC pc

let y; = Eqin

Z:T[pc] Fejer :sUa= let y; = Ej i_n

’) let y; = !y in
run (y1y2)

2:T'[pc]Fe:s=E

lety=Ein

;T [pc] & ref (e : (t,a)) : (ref (t,a), pc) = ref, (y : (L.d))

2;I[pc] Fe : (refs,a) = E
S;T[pc] Fle:sua=-lety=Einlety =lyin!y

2. T[pc] - eq : (ref (t,b),a) = E{y Z;T[pclte; :(t,b)=E; alCbh

lety; =Ejin
lety, =Eyin

3;T[pc] Fep :=ey : (1,pc) = lety; =ly;in
let_=y] =y in
refpc (* : 1)

Z:T'[pcl]Fe:sy=E ks <s
X;I[pclte:s, =E

Fig. 11. AREE expression encoding.

In a REF function of type s —» s the program counter annotation pc is a
conservative approximation of the information gained by the body of the function.
Therefore, values written by the body must have security level at least pc. Thus,
the corresponding writes in the translation must have write level at least pc.
Consequently, the corresponding translated type for a function is § — O p) 5

The encoding for ASEE expressions is given by a pair of judgments ;T F bv :
t = M and Z;I'[pc] F e : s = E, shown in Figures 10 and 11. We assume that

272 K. Crary et al.

the metavariable y stands for variables in our calculus that do not appear in A8
programs.

Type-correctness To show that our proposed encoding preserves typing, we first
have to establish the following facts. The first shows that our encoding judgments
agree with Z8EE typing judgments; the second shows that the encoding preserves

subtyping.

Lemma 6.2
1. If ;T Fbv :t= M then ;' Fbv : ¢t
2.IfX;TFe:s=EthenX;T'Fe:s

Proof
By induction on the given derivations. Observe that in each case, the rules of the
encoding judgment have the same premises as the corresponding typing rules. [

Lemma 6.3 (Subtyping Translation)
.IfFY <tthenk{ <t
2. IfFs <sthenk s <53

Proof
Both parts simultaneously, by induction on the given derivation. []

Finally, we need to extend our type-translation to store types

>/ :s=2x,/:53
We are now ready to show type-correctness.

Theorem 6.4 (Well-typed Translation)
.IfX;TFby:t=MthenZ;T M :¢t
2. If Z;T[pc] Fe:s=E then ;T F E +(1p) S

The proof is by simultaneous induction on the given derivations. The full proof
is available in Appendix D.

Non-interference Of course a type correct (but insecure) embedding could be con-
structed by ignoring the security levels of the source and placing everything at level
1. We wish to show that the embedding is actually secure. To do so, we show that

an instance of non-interference for AR is preserved by our translation.

Theorem 6.5 (AREY non-interference)
Suppose Zo;x : (t,a)[b] - f : (bool,b) = F where a [Z b, and suppose that H,X are
such that X 2 Xy, and F H : . If ;- F ¢; : refr,t for i = 1,2 and if there exist
Hy,H,%1,%,, Vi, V> such that

(H',X,F[¢i/x]) =" (Hi, Zi, [Vi])

for i = 1,2, then V; = ¢} and H;(/}) = Ha(/%) as booleans.

A monadic analysis of information flow security with mutable state 273

Proof

1. From the type-correctness of the translation, and since the argument loca-
tions /; are out of view, by the non-interference theorem we conclude that
F (H,Z, [V1]) ~p (H2, 20, [Va]) <@ refry bool

2. By inversion and by Regularity (Lemma C.14) and Canonical Forms (Lemma
C.5), each V; must be some store location /; € dom(X;) and furthermore
21:20; Vi &~y V5 i refr, bool

3. By inversion on the latter equivalence(Lemma C.15), each X;(/}) must either be
out of view, or /| =/, with Level(¢}) C b. But since X;(/}) must be a subtype
of refr, bool, it cannot be out of view for a b-observer.

4. Therefore, /| = /4 are in the set of in-view locations U = dom(Z;)Ndom(Z;)N
l(b), and by inversion on the store equivalence - (H; : X;) zf (Hy : Zy), the
values in the respective stores must, in turn, be equivalent Xq;2,;- F Hi(4)) =
H(7%) : bool

5. Since bool is informative at any security level, by inversion, it must be the case
that Hi(¢)) = Ha(Z5).

Ol

7 Related work

There is a large body of existing work on type systems for secure information flow.
Volpano et al. (1996) first showed how to formulate an information flow analysis
as a type system. An excellent survey by Sabelfeld & Myers (2003) outlines the key
ideas in the design of secure programming languages.

Our account is most related to the Dependency Core Calculus (Abadi et al., 1999).
Like our language, DCC uses a family of monads to reason about information flow.
However in DCC, terms of monadic type are used to seal up values at a security
level. In our account, monads are used in a more traditional role as a means of
threading state through a program. Central to DCC is the notion of protectedness
of a type at a security level. If T is protected at a then T is at least as secure as a.
This is closely related to our notion of informativeness.

When viewed through the lens of the encoding of (a pure subset of) ASEE, the
two relations serve the same purpose, ensuring that a computation’s output is at
least as secure as its inputs. In DCC, this is done directly. In our account, this
occurs indirectly: to access a value carrying information only at a particular level,
a computation must adopt a read level at least as high. (However, our account
also offers the facility — not employed in the Z§EL embedding — not to seal all
computations’ return values in order to obtain a L effective read level).

The definitions of protectedness and informativeness are the same on the standard
type operators, but do not include the idiosyncratic cases: our language has no
analog of DCC’s monad, nor does DCC contain references or a traditional (i.e.
effects-oriented) monad. Moreover, if it did, we conjecture that DCC’s definition for
these would be somewhat different from ours. Nevertheless, the similarity between
the two suggests that our account might be profitably combined with DCC to

274 K. Crary et al.

produce a language capable of expressing security in both value-oriented and store-
oriented fashions.

A further similarity exists between the tampering levels of Honda and Yoshida
(2002) and informativeness. They work in a concurrent setting of a typed n-calculus,
and the tampering level of a process represents the least security level that may
observe the effects of a process of a given type. They present a calculus in the
style of Smith & Volpano (1998) extended with local variables, reference types and
higher-order procedures and a translation of it into their typed process calculus.
Much of the complexity of their language stems from tracking the action set
of a command, that is, the references (conflated with program variables) that a
command may read or write. Our language may be seen as a restatement of their
language in a more conventional monadic style. In the setting of Honda & Yoshida
(2002), our upcall rule (exploiting the informativeness judgment) would correspond
to leaving out the information that a command read from some variables from
its action set whenever the command does not tamper below a certain security
level.

Harrison et al. (2003) observed that monads and monad transformers may be used
to separate pieces of the state with different security levels, thus ensuring a kind
of non-interference via properties of the state monad transformer. However their
system does not statically rule out insecure flows when computations at different
security levels are combined. Instead, the system dynamically prevents security leaks
by channeling communication between computations at different security levels
through a trusted kernel.

8 Conclusion

We give an account of secure information flow in the context of a higher-order
language with mutable state. Moreover, motivated by a low-level store-oriented view
of computation, we arrive at a view of security based on lax logic. Rather than
sealing values at a security level, we instead associate security with the store. A
family of monadic types is used to keep track of the effects of computations. To
account for upcalls, we classify the informativeness of types at particular security
levels.

Since we treat terms apart from the effectful expressions, our approach can
straightforwardly encompass additional type constructors. The question of how to
account for additional effects requires further work. From the point of view of non-
interference, effects introduce the possibility of different behavior from seemingly
related expressions. We expect that by further refining the monadic type to restrict
the behavior of related terms, we may be able to account for effects such as I/O or
non-local control transfers.

Certain complications beyond those discussed in this paper remain in developing
a typed assembly language that tracks information flow. One problem to be dealt
with is the re-use of registers between low-security and high-security computations.
Any mutation of a register by a high security computation could potentially be
observed once it returns to a low-security caller. As a result it is necessary to exploit

A monadic analysis of information flow security with mutable state 275

informativeness to ensure that the contents of registers are not informative to the
caller. We conjecture that informativeness in conjunction with linear continuations
(2002) will prove invaluable to the design of a secure TAL.

Our formulation of the monadic language is in the style of Pfenning & Davies
(2001). One avenue of future work is to study whether there is a formulation of
information flow in a modal logic that decomposed our monad into the possibility
and necessity modalities.

Incorporating concurrency is another direction for future work. Smith et al. (1998)
show that in a language with parallel composition, allowing loops to depend on
high-security locations leads to security leaks. Their solution is to disallow such
loops outright. Since looping can be simulated in our account via back-patching in
combination with informativeness (see section 3.3), it is not clear how to adopt their
solution to (a concurrent extension of) our approach. Zdancewic (2002) observes
that insecure concurrent programs exhibit race conditions on low-security locations.
He shows that if alias information is used to disallow such data races, a non-
interference result can be established. We expect that his approach may be adopted
to our setting.

A general open problem in the area of secure programming languages is how to
devise a type system for a language with declassification operations. Declassification
occurs when a low-security computation makes use of a high-security value, but in
a way such that the information gained from the high-security value is deemed an
acceptable leak. Recently, Zdancewic & Myers (2001a) showed how to characterize
so-called robust declassification in programs such that an attacker may observe
the declassified values, but may not exploit them to gain additional high-security
information. Zdancewic (2003) then gives a type system for robust declassification.
Since declassification is fundamentally an operation, we conjecture that our store-
oriented viewpoint could be meshed with Zdancewic and Myers to provide a logic
of declassification.

A Judgments

A.1 Informativeness judgment rules

\ . FB 7a
FAJL(I’H/a(Z’FA_)B/am

FOpwA #wna Fref,bA 2 b Fref,A 7 a
FA /7 a \ \
Frefr,A 7 a (‘Frefr,Ad 2 b (8’|— refw,A / a ©)

FA/7a bEa A4 ,a FAD
(10)

FA b FA ~aUb (1

276 K. Crary et al.

A.2 Typing judgment rules

FA<LB
|—A<A(12)
FA<A I—B’<B() FA<SB 0<0 (14)
FA >B' <A—B FO,A < OyB
FA<B alb FB<A bCa
I—refaAgrefrbB() I—refaAgrefth()
FA<B aCb FB<A bLCua
l—refraAgrefrbB() l—refwaA<refbi()
2 TFx:T(x) (19) ;7 refleveir) 2(7) (20)

;=1 (21 2; I F true : bool (22) 2;I' |- false : bool (23)

2;'HFM :bool 2;T'HN;:A Z;FI—NZ'A(24)
2;I'Hif Mthen Ny else N, : A

2;I'+-M:A—-> B
>:I''x:A+M :B 5) S 'EN:A 2)
;THFAx :AM :A— B >;TFMN:B (

2, THFE=+, A S I'FM:A HFALB
27 2
>;TFvalE: 0,4 (27) >THFM:B (28)
STFE+, A
>;I'FM:A

>:T+M:0,4A Z;Ix:A+E+,B (30)
;I'kletvalx=MinE+,B

Z,Fl— [M] +(L,T)A ()

>;I'EFM:A (31)
Z;IFref,(M : A) ~myref, 4
;' M :refr, A

2;'-M :refw,A Z;TFN A

ST FIM =1 A 32) STEM =N +1gl (33)
2, 'HFE-=+y A 0/50() Z;F}_E+(V’W)A I—A/'r(35)
STFE=, A STFE tumA
>, T'FE+-,B FB<C
>, T'HFE =+, C (36)
FH:X
dom(X) = {/y,....0n} Z;-FVi:Z() forl <i<n (37)
F{/]'—)Vl,...,/nl—) Vn}IZ

FH:X X,-FE=+,A
F(H,ZE)+, A (38)

A monadic analysis of information flow security with mutable state 277

Derived typing rules for syntactic sugar
2, TFE+-,A X;Ix:A+-F+,C
2;I'kletx=EinF+,C

>T=M:0O,C
2;'Frun M+, C

A.3 Equivalent view judgments rules

21:5: T F My ~; M, :A‘

FA 7 a (,l;t_{ 2 T'ETV A Zz,FI—VzA(39)
Zl;ZQ;Fi—Vl 224 VQIA

IR N ol T | (40) Ty x = x 1 T(x)

(41)

(43)

(42) X121 - false = false : bool

X1; 22T = true = true : bool

21;22;F|—M1 ¢ M2 : bool
21;22;F|—NINCN21A
Zl;ZZ;Fl—PlszziA
f M then N, else P “4)
- . if My then N else P; =~
ZEEETE 0 then Ny else Py : A

2 Lx tAFEMy =, M, : B 45
X2 TFAx AM =; Ix :AM> :A— B (43)

21;22;1—‘|_M1 74 M2 :A— B
21;22;F|—N1 274 N2 1A
(46)

21;22;1 = M N; 24 M> N, :B
1 2 1 S 2 o (|8)

;2T Fval Ey ~; val E; : O,A4

Level(/) T { Zi(4) = Za(/)
X120 T H O =p £ refieveiy) Z1(7)
XM= My:A FALB (49)
2 I'EMy~; M, : B

Zl;ZQ;FFEl ¢ E2 +0C|

21;22;F|—E1 224 E2+U/C 0’50 50
21;22;F|—E1 ¢ E2+0C ()

> THE =~ Ey+4C FC /7
1522 1~ B2 +(w) (51)

21,21,1 El ~“; EZ—:(’W)C
X 'EMy =~ M, : C
1 2 1 ~(2 (53)

X D [M] ~; [My] 1) C

21;22;F|—E1NCE2+{,B FB<C 5
21;22;F'—E1 %§E2+OC ()
ZI;EZ;FI—MI zg MziooA
Zl;ZZ;F,XZAl—El k’zCE2+0C
I I M E 4
etvalx=M; inE; =
TEnTF ‘
e letval x = M in E; +,C

278 K. Crary et al.

21;22;F|_M1 ¢ Mz 1A
ref,(M; : A) =~

(55) 24;%;TF My ~; M, :refr, A

(56)

12T Y1:2; T H! ~¢ M, = A
12T F refy (M - A) = myrefa 4 1522, T FIMy =0 My —4.T)
Zl;ZZ;F H M1 ¢ M2 . refwaA

21;22;1—"—]\]1 ngzlA 57
Zl;ZQ;FI— M1 = Nl 24 Mz = N2 ~(La) 1 ()
= (H] 221) zg (H2 222)
FH :Zifori=1,2
L 1U=%1U
21205 F Hl(/) 74 HQ(/) : 21(/) forall/ e U (58)
F(H; : %) zf’ (Hy : X»)
S~ 8+, C|
F(H; : 21) z?om(zl)ﬁdom(iz)ﬂué) (Hs : %))
21;22;'|—E1 %§E2+0C 59
S0 E) ~; (Ho S B = € O
B Evaluation rules
M — M’ Ir1
if M then N; else N, — if M’ then N; else N,
if true then N else N, —» N; IFTRUE if false then N else N, —» N, IFFALSE
M- M N — N’
MN S M'N Apprl VN S VN App2
Ux AM)V = M[V/x] 27F
M — M RET1
(H,Z,[M]) — (H,Z,[M])
M-’M/ (H,Z,E)—)(H/,Z/,E/)

- LETvVALl - LETVALVAL
(H,Z,letval x =M inE) — (H,XZ,letval x=val Ein F) —
(H,%,letval x = M’ in E) (H',X,letval x =val E" in F)

LETVAL

(H,X,letval x =val [V]in E)—> (H,%,E[V/x])
M — M . ¢ ¢ dom(H) Level(/)=a

(H,Z,ref, (M : A)) — (H,Z,ref,(V : A)) —
(H,Z,ref, (M : A)) (H{¢— V},Z{¢ : A},[/])

REF

A monadic analysis of information flow security with mutable state 279

M- M

(H.Z.'M) - (H.z. M) 2N s S m He)) BaNe
M- M N —- N’
HEIM=N) > HIM =N SN GV =N > (HLy =N 255N
/ € dom(H)

5.0 = V) > (H/ V35,) AN

C Proofs
C.1 Type safety proof

C.1.1 Properties of informativeness and subtyping

Before we go on to prove type safety and non-interference, we take the time to prove

several (standard) lemmas.

Lemma C.1 (Informativeness Inversion)
If-A ~ aandif

A = bool then a = L

A=B —>Cthen+-C ~a
A=0OywBthenaCwnband B ~ b
A=refyBthen+-B ~candaC cUb
A=refr,Bthen+B ~candalC clLb
A=refw,BthenaC b

Proof
by induction on the given derivation. By cases on the last rule used.

Lemma C.2 (Subtyping Inversion)
If - A"< A and if

A=1then A =1

A = bool then A’ = bool
A=B—>CthenA =B —-C and-B<B and-C'<C
A =ref, B then A’ = ref, B

A = refr, B then

— either A’ =refry, B with - B'<Band d C a
— or A ' =refy, B with-B'<Bandd Ca

A = refw, B then

— either A’ = refw, B’ with - B< B and a C ¢
— or A =refy, B with-B< B andalCd

e A=0O,Bthen A ' = OyB and B ' <Band o <o

and moreover, all the result derivations are subderivations of the given derivation.

Proof

by cases on the last rule used in the given derivation. Each case follows immediately

from the rules. []

280 K. Crary et al.

C.1.2 Typing judgment properties

Lemma C.3 (Substitution)
IfZ;I,I"-M : A and

1.ifZ;Ix:AT"F N :Bthen ;I\ T" - N[M/x] : B
2. ifZ;I,x :A,T"FE +,Bthen Z;I, "+ E[M/x] =, B

Proof
Parts (1) and (2) simultaneously by induction on X;I,x : A, I" - N : B (or
2;T,x : A,T' + E +, B). By cases on the last rule used. [J

Lemma C.4 (Inversion)
Two parts:

o IfX;I'FM : A and

l.Lif M=xthenFI(x)<4

fM==thenk1<A4

if M = true or M = false then F bool < 4

if M = if Ny then N, else N3 then X;I" - Ny : bool, ;" - N, : B,
;TEN3:B,and-B <A FB <A

if M=J)x:BNthenXZ;I''x:BFN:Cand-B—->C<A4

if M=NP thenX;,TFN:B—>Cand ;P :Band-C<4

if M =/ then F refievei) 2(£) < A4

if M=valE thenX;TFE+~,Band - O,B< A4

o IfX;TFE +,A and

1.ifE=[M]thenZ;TFM : A4

2.ifE=letvalx=MinFthenX;TFM : OyBand :I'.x : BF-F ~, C,
FC < Aando = (,w) with either o’ <oor+-C ~ ¢ and (L,w') <o

3.if E=ref,(M :B) thentref,B<Aand ;M :B

4. if E ='M then ;' V M : refr,B and F B < C, - C < A4 and either
(a,T)y<oor+-C /a

5$.f E=M =N then ;T - M :refw,B, ;' VW N : B, -1 < A4, and
(La)<o

o

N o @

o

Proof
by induction on the given derivation. By cases on the last rule used.

For part (1), in cases of rules (21) — —(27) the result is immediate, by rule (12). In
case of rule (28), the result follows by IH, and transitivity of subtyping (which can
be shown to be admissible).

For part (2), the cases for rules (29), (30), (31), (32), (33) are immediate. The cases
for rules (34), (35) and (36) follow by IH, by subcases on E. []

Lemma C.5 (Canonical Forms)
IfX;-FV :A4and

1. if A=1then V = =
2. if A = bool then V = true or V = false

A monadic analysis of information flow security with mutable state 281

ifA=B — Cthen V =Jx:B.M

. if A =ref, B then V =/ and / € dom(X)

. if A =refr, B then V =/ and / € dom(X)
. if A =refw, B then VV =/ and / € dom(X)
if A= O,B then V =val E

Proof
by induction on the typing derivation; by inspection of the last typing rule used.
O

- NV NV

C.1.3 Store properties

Lemma C.6 (Store Weakening)
If ¥ 2 X and Y’ well-formed, and

o if X;THFM :AthenX;T+-M: A
o ifX;THFE=+,CthenY;T+HE+,C

Proof
by simultaneous induction on the given derivations. By cases on the last rule used.

e Case

20
;T4 refieveis) 2(4) (20)

1. Since Y’ is well-formed, there is at most one occurrence of / in X'
2. Evidently / € dom(X), therefore / € dom(X').

3. Since ¥ 2 X, X'(/) = Z(¢).

4. By rule (20), Z';T F ¢ : refLeveir) Z'(4).

e All the remaining cases are straightforward by IH.

d

Corollary C.7 (Allocation Safety)
IfX; -V :A FH:Xandif / ¢ dom(H) then - H{/+— V} : Z{/ : A}

Proof
Directly. Using the Store Weakening lemma. [

Lemma C.8 (Store Update)
If-H:Xand if/€edom(Z) and Z;- - V : Z(/) then - H{/— V} : Z

Proof
Directly. [

C.1.4 Preservation, progress and type safety

Lemma C.9 (Term Preservation)
IfX;-F-M:Aand M - M' thenX;- - M' : A

Proof
by induction on the evaluation relation. By cases on the last rule used. Since terms
are pure, the proof is particularly straightforward. []

282 K. Crary et al.

Preservation If S -, Aand S — S’ then S’ +, 4

Proof

by induction on the evaluation relation.
By pattern matching, S = (H,X,E), S’ = (H',X,E’), 0o = (r,w)
By Inversion,

e FH : X
e X,-FE=+, A
Now proceed by cases on the last rule used in S — S’. The proofis straightforward,

using Inversion, Term Preservation, Store Weakening, Allocation Safety, and Store
Update. [

Lemma C.10 (Term Progress)
If ;- M : A then either M is a value, or 3M’ such that M — M’

Proof
by induction on the given derivation. By cases on the last rule used. The proof is
straightforward, using the Canonical Forms lemma. []

Progress If - S +, A then either S is terminal, or 38’ such that § — §’

Proof
By pattern matching, S = (H,Z, E).

By Inversion, - H : £, and X;- F E +, 4.

Proceed by induction on the typing derivation, by cases on the last rule used.
In each case the result is either immediate by IH, or follows from Term Progress,
Canonical Forms and the IH. [

C.2 Structural properties of equivalence

We show that the judgments for ~; admit reflexivity (for well-typed computations),
symmetry, and transitivity rules, that is they are equivalence relations on well-typed
computation states.

Lemma C.11 (Reflexivity)
. fZ;TFM :Athen ;5T M~ M : A
2. 5,5 THFE +,Cthen ;5T HFE~ E+,C
3. IfFH : X then - (H :) =Y (H :) for all U = dom(H)
4 IfFS+,CthenFS~;S+,C

Proof

Parts (1) and (2) simultaneously by induction on the given derivation, by cases on
the last rule used. Parts (3) and (4) follow by inversion on the single rule for the
given derivation, and then using parts (1) and (2).

In part (1), the case of store locations ! is not immediate. There are two cases
depending on whether Level(¢) is below { or not. When / is low-security, the result
is straightforward. Otherwise, note that store locations are values and that since
Level(¢) Z {, F refieveir) (/) 7 Level(/), and the result follows using rule (39).
The remaining cases follow by induction. [J

A monadic analysis of information flow security with mutable state 283

Lemma C.12 (Symmetry)
1 If 2,2 My = My : A then Z5;2;T' - My =; M, : A.
2. If21;22;r FE, 524 E,=,C then 202+ Ey 524 E =+, C
3. If F (Hy : Zy) =f (Hy : Z) then - (H, : Z) =Y (H; : %))
4. Ifl—Sl 24 Sz+octh€1’1|—52 74 S1 +0C

Proof
by induction on derivations. Evident as all the judgments are symmetric. []

Lemma C.13 (Transitivity)
Four parts:

L If 252 F My ~¢ My : A and Z5;%3;T - My =~ M3 : A then Z,;Z3;T

M1 ¢ M3 tA

2. Ile;ZQ;F = E1 24 E2 -0 C and 22;23;F = E2 ¢ E3 +0C then 21;21;F F
E1 ¢ E3 +0C

3. If - (Hy - Zy) =Y (Hy 1 Zy) and & (Hy : Zp) =7 (H3 : Z3) then + (H; 1) =
(H; : X3)

4. If = §; z5S2+0Candl—Szz§S3+0Cthenl—& ~r 83+, C

Proof
Parts (1) and (2) follow by simultaneous induction on derivations.
Part (3):

1. By Inversion on each given derivation, - H; : X; for i = 1,2,3, £y | U =
%, U=2Z3| U, and foreach / € U, X1;%,;- F Hi(/) = Hx(/) : (/) and
225235 F Ha(4) =¢ H3(Z) : Za(4)

2. By Part (1), for each / € U, X1;X3;- F Hi(/) = H3(¢) : Z1(¢)

3. By rule (58), F (H : Zy) =~ (Hj : Z3)

Part (4):

1. By pattern matching, S; = (H;,Z;, E;) fori=1,2,3

2. By Inversion, - (H; : X)) zg" (Hy : X2), 215205 F Ey =¢ E; +, C where
Ui, = dom(Z;) ndom(X,) N [(£)

3. By Inversion, - (H; : X)) zg” (H3 : X3), 225235 F Ey =¢ E3 +, C where
Uz = dom(Z3) N dom(Z3) N [({)

4. Let Ujz = dom(Z{) Nndom(XZ3) N [({)

5. Suppose / € Uz \ (dom(Z;) N [({))
(a) Evidently, / € Uy, and / ¢ Uy
(b) Choose /' ¢ Uz Udom(Z;) such that Level(/’) = Level(¢)
(¢) a-vary (Hs, X3, E3) with ¢/ for /

6. So for all / € Uys, £ € dom(%,) N [({)

7. Evidently, Uz = Uy; and Uy € Uys

8. By Store Equivalence Coarsening, - (H; : X4) zg” (Hy : Z5), and + (H; :
%) &% (Hs : 3)

9. By Part (3), - (H; : £y) ~{® (H; : X3)

284

10.
11.

O

K. Crary et al.

By Part (2), X1;23;- F E; =¢ E3+, C
By rule (59), F S ~ S3;+,C

Lemma C.14 (Regularity of Equivalence)
Four parts:

1.
2.
3.
4.

22 -M = My:Athen Z;;T'FM; : A
IfX;%;TFE ~ E;+,Cthen X;T FE; +,C
If - (H; : X)) z? (H : Z,) then - H; : %;

IfF S; ~; S»+, C then k- 8; +, C

Proof
by induction on the derivations. []

Next, we establish inversion and functionality. Inversion will let us reason by cases
in subsequent proof. Functionality is the analog of a substitution for the equivalence
judgment.

Lemma C.15 (Equivalent Term Inversion)
If £1;%,;' - My = M, : A then either

there exists a B, such that - B<Aand +B ~ a and a [Z { and M; and M, are

values and X;;T' - M; : B fori= 1,2,

or

1. if My = x then - I'(x) < A and M; = x.

2. if M ==thenk 1< A4 and M, = =,

3. if My = true then F bool < 4 and M, = true.

4. if M, = false then I bool < A and M, = false.

5. if My = if Ny then Py; else Py, then M, = if N, then P,; else Py and
21;20; = Ny m¢ Ny :bool and Zy;Z; ' F Py &= Py : B and Zy;Z5;T F
Pyy=~;Pp:B and-B<A+FB <A

6. if M =/ thenkref,B<Aand M, =/and bC { and XZ;(/) =B fori=1,2
and Level(/) =b

7. if M{ = Ax : BNy then B > C <A and M, = Ax : B.N; and X{;%,;I,x :
BEN; ~ N, :C

8. if M = val E; then - O,B < A and M, = val E; and X;;X;T F E; =~
Ez +0B

9. if My = NPy then My = NP, and X;%,;I' F Ny = N, : B —» C and
;2 I'FPi~ P,:BandFC <A

Proof

by induction on the derivation. []

Lemma C.16 (Equivalent Expression Inversion)
If%2;%; '+ E| = E; +, A then

1.

if E; = [M{] then E; = [M>] and Z{;Z,;T F M, =~ M, : A

A monadic analysis of information flow security with mutable state 285

Proof
by induction on the given derivation. By cases on the last rule used. The proof is
straightforward. [

Lemma C.17 (Functionality)
If ;25; 1,1 = My =; M, : A then

Lif 2;Z5;0,x : A" F Ny = Ny : C then Z;;%5;,I" + N{[M;/x] ~¢
N2[My/x] : C

2. if 21200 x A,F’ F E; 224 E, -, C then Zl;ZQ;F,F/ = El[Ml/X] 24
E>[M>/x] +, C.

Proof
by induction on the TD. []

Although we established Functionality for arbitrary terms to be substituted for
x, as befits a call by value language, we only substitute values in the proof of
non-interference.

Lemma C.18 (Store Equivalence Coarsening)
If+(H; : %) zé// (H, : %) and U = U’ then + (H; : Xy) z}f (Hy : X5)

Proof
1. By Inversion, - H; : X; for i = 1,2, £, | U = %, | U/, for each / € U/,
213205 F Hi() = Hy(Z) = Z4(7)
2. Evidently, 21 U =2, U
3. Evidently, for each 7/ € U, Z;;Zs;- F H(({) =¢ Ha(/) : Z1(¢)
4. By rule (38), - (H; : Z)) =¢ (H; : Xy)
O

Lemma C.19 (Equivalent Values)
If 21;25;- F My = M, : A then M, is a value if and only if M, is a value.

Proof

by induction on the equivalence derivation. By cases on the last rule used. The
proof is straightforward. The restriction to values in rule (39) greatly simplifies
matters. O

With the Equivalent Values lemma in hand, we can establish the Hexagon Lemma
for terms.

C.3 Term Hexagon lemma proof

Term Hexagon Lemma For all {, if £1;Z5;- - My ~ M, : A and M; — M| and
M, — M) and M| | and M) |, then there exist M{, M, such that M| —* M{,
M, -" M, Z;2; - F M =~ MJ 1 4

286 K. Crary et al.

Proof
by induction on the given derivation. By cases on the last rule used.

e Cases rules (39), (40), (42), (43), (45), (47), (48). Vacuous, My, M, are values,
no applicable evaluation rules.
e Case rule (41). Vacuous, I' = -
e Case rule (49). By IH.
e Case rule (44):
21;22; 'I_Nl 24 N2 :bool 21;22; '|—P11 ~ P21 A 21;22; 'I—Plz ¢ P22 1A
21;22; - if N1 then P11 else P12 ¢ if N2 then le else Pzz (A

(44)

By pattern matching, M; = if N; then P;; else P, fori=1,2
There are three possible evaluation rules for M; — M;
— Case IFl: M| = if N{ then Py; else Pj5, N — Nj

1. By Equivalent Values, N, is not a value

2. The only applicable evaluation rule for M, — M} is IFl: M) =
if N, then Py else Py, N» — N}
3. By Subterm Termination, Nj |, N} |
4. By IH, there exist Ni,NJ such that N/ —" N/ for i = 1,2, and
X1;2Z;- F N =~; NJ : bool
5. By repeated application of Irl, M} —»* M/ fori=1,2
6. By rule (44), Z1;Zy;- - M{ =~ M} : A
— Case IFTRUE: N; = true, M| = Py
1. By Equivalent Values, N, is a value
2. By Equivalent Term Inversion, there are two subcases:
— Either there exists a B such that - B < bool, F B # a, a [Z { and
2i;FN;:B
By subtyping inversion, B = bool. By Informativeness Inversion,
a = 1, for a contradiction (since L C ()

— Or N, = true
(a) There is a single applicable evaluation rule for M, — M}, IFTRUE:
M} = Py.

(b) Let M/ = M| for i =1,2.
(c) Evidently, Z;;%s;- - M{ ~; M} : A
— Case IFFALSE: N| = false, M} = P,
Similar to previous case.
e Case rule (46):
;X FENimNy:B—>A X1:20-FPr =~ Py
;2 NPy = NoPy 1 A

B
(46)

Similar to the previous case.

O

A monadic analysis of information flow security with mutable state 287

C.4 High security step

To show the HSS Lemma 5.2, we need to show that after executing a high security
expression, the resulting store is equivalent to the original store. We first show this
for one evaluation step, and then extend to multiple steps.

Lemma C.20 (Single High Security Step)
If - (HXE)=, A o= (r,w) and w [Z {, and (H,2Z,E) — (H',X,E’) then
F(H :3) &0 @y,

Proof
By induction on (H,X,E) — (H', X, E’)
By inversion on F (H, X, E) <+, A, we have

e -H: X
e X FE+,A

Now consider cases on the evaluation rule used:

e Case RETI: E=[M],H =H,Y =%, E'=[N], M > N
By Reflexivity, - (H : Z) ~ (H' : ¥') where U = dom(Z) N |({)
Cases for LETvAL1, REF1, BANG1, AssN1, AssN2, BANG, and LETVAL are similar.
e Case LETVALVAL: E = letval x = val E; in F, E' = let val x = val E, in F,
(H,Z,E|) » (H,XEp)

1. By Inversion, for some o' = (¥',w'), ;- Fval E{ : OyB,Z;x : BF-F+,C,

F C < A, where either o' <o or both=C ~ ¥ and (L,w') <o

Either way, w C w', so w' [

By Inversion, ;- F E{ = B and - OB < OB

By rule (38), - (H,X,E{) ~, B’

By IH, - (H : Z) =Y (H' : ') where U = dom(Z) N [({)

e Case Rer: E =ref,(V : B), H = H{{ — V}, ¥ = XZ{/ : B}, E' =/,
¢/ ¢ dom(H), Level(/) =a

1. By Inversion, ;- V : B, Fref,B< A4
2. By rule (37),F H' : ¥
3. Consider /' € U, by construction, H'(/') = H(/') and X'(/') = Z(/")
4. By rule (58) - (H :) =Y (H' : X))
e Case ASSNt E=/:=V,H =H{/— V}, T =%, E = [#]
By Inversion, Z;- -/ :refw, B, Z;-FV : B, (L,a) <o, F1< 4
By Inversion, - refieyei) 2(¢) < refw, B
By Subtyping Inversion, F B < X(¢), a C Level(/)
Since (L,a) <o, w C a C Level(/)
Since w IZ {, Level(/) £ {, so / ¢ U where U = dom(XZ) N [({)
By rule (37),F H' : ¥
By rule (58), - (H :) ~Y (H' : ¥)

AR

RO e

288 K. Crary et al.

Corollary C.21
If-(H,ZE)+, A4, 0= (r,w)and w [Z {, and (H,X,E) »" (H,X,E’) then - (H
Z) zgom(z)ﬁl(() (H/ : Z/)

Proof
By induction on n, the number of steps.
By inversion,
e -H:X
e X, -FE=+, A

If n = 0, the result follows by Reflexivity.

If n > 0, then (H,X,E) — (H",X",E") ="~ (H',X,E'). The result follows by
IH, Single High Security Step, Preservation, Store Equivalence Coarsening and
transitivity of the store equivalence judgment. [

D /&EE well-typed translation proof

Well-typed Translation
LIfX:Tkby:t=MthenZ;THM :1
2. If Z;T[pc] Fe:s=E then X;I'F E +(p¢) S
Proof
Both parts simultaneously, by induction on the given derivations. By cases on the

last rule used.
Part (1)

e The cases for unit and boolean values, and store locations are immediate.
e Case
2;I,x :si[pc]Fe:s, =E

;T F Alpc]x : sy.e @ sq LA s, = Jx :s;.val E
1. By IH,

M
=
=

ST E -+ (Lpc) 52

™M
)1

(STFE -+ (L,pc) 2
Z FX EF—V6|E Q(ch)SQ

S TFix:svalE 51 S s,

e The case for subsumption follows by well-typed type translation

Part (2)
e Case
2;T'[pc]teg :(bool,a)=E; Z;T[pcUalle:s=E, X;T[pcUalles;:s=Ej
lety = E;in
lety’ = lyin
2;T'[pc] Fif ey theney else ez :s= run ify’
then val E,

else val E3

A monadic analysis of information flow security with mutable state 289

1. By IH, ;T F E{ <1 po) refrybool, and ;T F E; <1 peua) S for i = 2,3
2. Let Ty =T,y : refr, bool
3. By rule (32), ;T Fly +(,T) bool
4. Let I', =T,y : bool
5.
(19 = 27)
;I Fy :bool 2 Fval Ei O peua)s fori=273

= 24
2, Fif y' then val E; else val E3 : O peuia)S @4

3T, Frunif y' then val E; else val E3 (1 pouia) S
6. We can promote the operation levels of !y and run ... to (a,pc U a), such
that
;T klety =lyinrun ... +poua) S

7. Let (t,b) = s, and note that 5 = refr, 7.
. By lemma 6.1, a C b. Hence -5 / a.
9. Therefore,

o]

S;Tiklety =lyinrun ... +upeayS F5 7 a

(35)

STy kFlety =lyinrun ... = 5
- 1 y y (L,pctia) (34)

;I let y/ =lyinrun ... “(Lpc) S
10. Therefore,

T;THlety=Ejinlety =lyinrun ... +(1pg5s

e Case
>, T[pc] Feq : (ref (t,b),a) = E; X;T[pc]ter:(t,b)=E, aLlCbh
let Y1 = Eqin
let Y2 = E, in
;T [pcl ey :=e; :(1,pc) = lety| =ly;in

let _=y| =y in
refpc (* : 1)

1. By IH, ;T & Ej <1 po refryref, refry t and ;T F Ey <1 pe) refry ¢

2. By Lemma 6.1, pc C b

3. Let I'y =T, y; :refryrefyrefryt,y, @ refryt

4,

5T Flyy =1 refprefryt (a,T) < (a,b)
f; F1 |—'y1 ~(a,b) refb refrbf

Note that (a,b) is a well-formed operation level since a C b
5. Let Iy =Ty, y; :refyrefryt

f;rz = y,1 =Y2(Lb) 1 i;rz = refpc (* : 1) —(LT) refrpc 1
Z;Taklet - =y = yyinrefy(* : 1) =y refrp 1 (L,b) < (a,b)

SiTaklet o=y =y inrefpe (* : 1) +(up) refrpe 1

290 K. Crary et al.

6.
;T Flyy ap) refprefry
;o b let =) == yyinrefpe (* 1 1) () refroe 1
. F1 7a

_ r_ _Fl a
Ty b eti=huin Frefryel / a

let _=y] == yrinrefyc (¥ : 1) +(up) refrpc 1

ST F let yj = ly; in

let - =y == yrinrefpe (* 1 1) +(1p) refree 1
7. Since pc C b,
;T klety; =Ejinlety, = Eyinlet yj = lyg in ... +(1pc) refrpe 1
e Other cases are similar.

O

Acknowledgements

This material is based on work supported in part by NSF grants CCR-9984812 and
CCR-0121633. Any opinions, findings, and conclusions or recommendations in this
publication are those of the authors and do not reflect the views of this agency.

References

Abadi, M., Banerjee, A., Heintze, N. and Riecke, J. G. (1999) A core calculus of dependency.
Twenty-sixth ACM Symposium on Principles of Programming Languages, pp. 147-160.

Harrison, W., Tullsen, M. and Hook, J. (2003) Domain separation by construction. Foundations
of Computer Security Workshop (FCS’03).

Heintze, N. and Riecke, J. G. (199) The SLam calculus: Programming with secerecy and
integrity. Twenty-fifth ACM Symposium on Principles of Programming Languages, pp. 365—
3717.

Honda, K. and Yoshida, N. (2002) A uniform type structure for secure information flow.
Twenty-ninth ACM Symposium on Principles of Programming Languages, pp. 81-92.

Huet, G. (1980) Confluent reductions: Abstract properties and applications to term rewriting
systems. J. ACM, 27(4), 797-821.

Moggi, E. (1989) Computational lambda-calculus and monads. Fourth IEEE Symposium on
Logic in Computer Science, pp. 14-23.

Moggi, E. (1991) Notions of computation and monads. Infor. & Computation, 93, 55-92.

Morrisett, G., Walker, D., Crary, K. and Glew, N. (1999) From System F to typed assembly
language. ACM Trans. Program. Lang. & Syst. 21(3), 527-568.

Myers, A. C. (1999) JFlow: Practical mostly-static information flow control. Twenty-sixth
ACM Symposium on Principles of Programming Languages, pp. 228-241.

Pfenning, F. and Davies, R. (2001) A judgmental reconstruction of modal logic. Mathematical
Struct. in Comput. Sci. 11(4), 511-540.

Pottier, F. and Simonet, V. (2003) Information flow inference for ML. ACM Trans. Program.
Lang. & Syst. 25(1), 117-158.

Sabelfeld, A. and Myers, A. C. (2003) Language-based information-flow security. IEEE J.
Selected Areas in Comm. 21(1), 5-19.

A monadic analysis of information flow security with mutable state 291

Smith, G. and Volpano, D. (1998) Secure information flow in a multi-threaded imperative
language. Twenty-fifth ACM Symposium on Principles of Programming Languages, pp. 355—
364.

Volpano, D., Smith, G. and Irvine, C. (1996) A sound type system for secure flow analysis.
J. Comput. Security, 4(3), 167-187.

Zdancewic, S. (2002) Programming languages for information security. PhD thesis, Department
of Computer Science, Cornell University, Ithaca, New York.

Zdancewic, S. (2003) A type system for robust declassification. Nineteenth Mathematical
Foundations of Programming Semantics. Electronic Notes in Theoretical Computer Science.

Zdancewic, S. and Myers, A. C. (2001a) Robust declassification. Fourteenth IEEE Computer
Security Foundations Workshop, pp. 15-23.

Zdancewic, S. and Myers, A. C. (2001b) Secure information flow and CPS. Tenth European
Symposium on Programming: Lecture Notes in Computer Science 2028, pp. 46—61. Springer-
Verlag.

Zdancewic, S. and Myers, A. C. (2002) Secure information flow via linear continuations.
Higher Order & symbolic Computation, 15(2-3), 209-234.

