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Abstract

We show how to interpret classical proofs as programs
in a way that agrees with the well-known treatment of
constructive proofs as programs and moreover eztends
it to give a computational meaning to proofs claiming
the ezistence of a value satlisfying a recursive predi-
cate. Our method turns out to be equivalent to H.
Friedman’s proof by ”A-translation” of the conserva-
tive extension of classical over constructive arithmetic
for NI sentences. We show that Friedman’s result
is a proof-theoretic version of a semantics-preserving
CPS-translation from a nonfunctional programming
language (with the “control” (C, a relative of call/cc)
operator) back to a functional programming language.
We present a sound evaluation semantics for proofs
in classical number theory (PA) of such sentences, as
a modification of the standard semantics for proofs in
constructive number theory (HA). Our results soundly
eztend the proofs-as-programs paradigm to classical
logics and to programs with C.

1 Introduction

It is well-known that there is an intimate relation
between functional programming languages and con-
structive logical systems. To wit, a natural theory
of typing for a functional programming language is
usually constructive; equally, the natural computation
system associated with a constructive mathematical
system is functional. In this paper we extend this
correspondence, showing that the same relationship
holds between a functional programming language
augmented with imperative control operators (A + C)
and classical number theory. We demonstrate that one
can augment the natural programming language asso-
ciated with constructive (Heyting) arithmetic (HA),

*Supported in part by an NSF graduate fellowship and NSF
grant CCR-8616552 and ONR grant N00014-88-K-0409

with the nonlocal control operator C [1] !, and ar-
rive at the natural programming language for classi-
cal (Peano) arithmetic (PA). The method of proof in-
volves appeal to a classical result of Friedman [2] and
Kreisel [3], showing the conservativity of PA over HA
for £9 sentences (and, by consideration of free inte-
ger variables, I1) 2. We demonstrate that Friedman’s
A-translation can be viewed as a continuation-passing-
style translation.

It is by now folklore [4,5,6] that one can view the values
of a simple functional language as specifying evidence
for propositions in a constructive logic, in the following
manner:

e Evidence for ¢ = b, where a,b contain no free vari-
ables, would be completely axiomatic, consisting in
the computation of a,b down to numerals (they could
be, for instance, 2 x 5 = 5 + 5, which would need to
be computed down to 10 = 10).

e Evidence for A A B would be evidence for A and for
B. This could be given as a pair, (u, v), where u is
evidence for A, and v is evidence for B.

e Evidence for A = B would be a function which, when
given evidence for A, would compute evidence for B.

¢ Evidence for AV B would be evidence for A, or for B,
and a tag telling us which disjunct we were getting ev-
idence for. This could be represented as inl(u) (inject-
left), where u is evidence for A, or inr(v), where v is
evidence for B.

¢ Evidence for 3z € N.R(z) would be an integer, n, and
evidence for R(n). This, again, could be represented
as a pair.

¢ Evidence for Vz € N.R(z) would be a function which,
given n € N, would compute evidence for R(n).

IThere are now two different operators with the appella-
tion “control,” both introduced by Felleisen. We will use the
version introduced in [1], whose evaluation semantics can be
summarized (informally) as E[CM]— M (X z.A(E[x])), where
AM =CX ().M.

2¥z. Jy. R(z,y), where R is a decidable proposition



Equally, one can view this definition as specifying a
method of assigning types to program values. One
can then extend this definition to encompass program
ezpressions which are not values, such as (A z.b)(N),
by defining a type system which is sound with respect
to the evaluation system. That is, if M is given type
T, then M evaluates to a value b, and b has type T (is
evidence for T'). We could call such program expres-
sions indirect evidence. In Nuprl[7], as well as other
constructive systems, these program expressions are
purely functional.

Griffin [8] extended this work to classical propositional
logic by showing that one could assign the operator
“control” (C) as the algorithmic extract of the clas-
sical rule of double-negation elimination. He gave a
weak type preservation theorem which allowed one to
prove that, except for nonlocal exits (due to invok-
ing continuations), classical logic could be viewed as
a typed programming language. But this interpre-
tation excluded a semantics of evidence for classical
proofs. Here we find that in fact his program extrac-
tion method works, with some simply modifications,
for total-correctness logics, and that one can give a
total-correctness typing to the nonlocal control opera-
tor C, again, in such a way that when expression M is
assigned type T (a L9 type), M evaluates to a value
b, again with type T'.

Griffin’s result hinged on the fact that continuation-
passing-style (CPS) translation [9] on programs in
the simply-typed lambda-calculus induces a double-
negation translation [10] on their types. He used this
to prove that, except for type errors caused by “escap-
ing” from deep within an expression to the top-level,
reduction preserves typing. But this ignores the fact
that it is exactly at the top-level of a program that it is
most important that reduction preserves typing, since
otherwise we cannot hope to arrive at a semantics of
evidence:

The types of “classical programs” cannot be
given the same operational interpretation as the
types of “constructive programs.” ... In the type
system presented here, the distinction between a
“returning expression” and a “jumping expres-
sion cannot be made by inspecting an expres-
sion’s type. Thus, if M is a classical program of
type @ —  and N is a classical program of type
a, we know only that if the application of M to
N returns to the current control context, then it
will return with a (classical) value of type 3.

Moreover, the “classical” conjuction is defined as
aAB = ~(a— —(B)), and so even if a program of

type a A B does return to its invoking context (if it
does not “goto”), the value computed bears no clear
relation to evidence for A and for B, in the sense
that we understand it constructively. Thus for com-
plete programs, there is no criterion for determining
whether (and how) a program actually produces evi-
dence in the constructive sense.

Our work (specifically Theorem 5) addresses this prob-
lem, and augments double-negation translation with
A-translation [2] to give the desired evidence seman-
tics for £9 and I19 sentences. Thus, in the same sense
as HA proofs stand as evidence for the propositions
the prove, so do PA proofs of £ and II sentences.
Moreover, when considering a sentence ¢ of greater
complexity, we can determine what sorts of types a
program M will exit nonlocally with.

In addition, our work addresses the problem of total-
correctness reasoning for call-by-name or partially lazy
languages with explicit control; in fact, the program-
ming language we associate with classical proofs is a
call-by-name one. The amazing thing about this result
is that (as will be made clear) much of the machinery
we use was discovered by Friedman [2] and Kreisel [3]
in the context of classical logical systems.

2 Background

Consider a functional programming language with in-
tegers (and iteration combinator), binary pairing, and
binary disjoint unions. Call this language Prog;. We
give the syntax of this language in Figure 1. 3 It is de-
rived from the programming language of Nuprl [7], and
hence some of the notation will be unfamiliar to the
reader. The notation spread(Ezp;; Vary, Vary. Exps)
is prefix notation for

let (Var,, Vary) = Ezp; in
Ezp,
end

and the notation
decide( Ezpo; Vary.Expy; Vary. Exzp,) similarly  ex-
pands to

case Fzpy of

inl(Var,) => Ezp;
| inr(Varz) => Ezp;
end.

The form ind(Ezp;; Ezps; Vary, Vary.Exps) is an it-
eration form, where Fzp; is the iteration counter,

3k, is syntax for the integer n



Var,

AVar, . Fzp,

Ezp: (Ezpz)

kn (n € N; integer constants)
S(Ezp1)

Ezp, + Fzp,

Ezp, x Ezp,

ind(Ezp,; Ezpa;Vary,Vars . Exzps)
(Ezp1, Ezps)
spread(Ezp,;Var,,Vars.Ezps)
inl(Ezp,)

inr(Ezp,)

decide(Ezpo; Var,.Ezp:; Vars.Ezps)

azxiom

ind(0;b;z,y.u) —1 b
ind(kn;b;z,y.u) —
ulkn, ind(kn-1; b; z,y.u)/z,y]
(n>0)

decide(inl(t);z.l;y.r) —1  I[t/z]

decide(inr(t);z.l;y.r) —1  rt/y]
spread({t1, t2);u,v.t) —1  t1,t2/u,v]

(A z.b)(t) —1 b[t/z]

S(kn) —1 ka1

kn + km -1 kn+m

kn * km - kntm

Figure 1: The Syntax and Reduction Rules of Progy

Ezp, is the base case, and Ezps computes the in-
ductive case. At various times it will be neces-
sary to distinguish those expressions which are in-
tegers. We do this by annotating them with e?,
e.g., ind(EzplD; Ezxpo; Varln, Vary.Exps). As an
aside, one of the important properties of both HA and
PA is that integer expressions have only integer sub-
expressions, and the reduction rules preserve this.

It is well-known that we can give a specifica-
tion/correctness logic for this language by thinking of
the programs as proofs of sentences in HA. In fact,
we can view a sentence of constructive number the-
ory as a specification of a program, and a proof of
that sentence as a program which meets said specifi-
cation. Alternatively, we can think of the specification
as the type of a program in a particularly rich theory
of program typing. Here, for example, we reproduce
some of the rules of HA, and the corresponding pro-
gram fragments. One reads each sequent of the form
I' W M:® as saying that under the typing assump-
tions T', fragment M has type ®; equivalently, under
the assumptions that I' are true, ® is true, and has
constructive witness M. The refinement calculus tells

us how to inductively construct a witnessing term for
a proposition as we prove it; alternatively, it allows us
to construct a proof of well-typed-ness for a program.

Modus Ponens

HF M(N):T
BY modus ponens A
F N:A
F M:A=T

Symmetry of =

n:N, m:N, u:n=m F aziom:m=n
Transitivity of =

a,bc:N, u:a=>b, v:b=c F aziom:a=c
Monotonicity of S(e)

n:N, u:S(n)=0F aziom:L

The meaning of the above typing rule is that aziom
has type L exactly when u has type S(z) = 0.

Injectivity of S(e)

z,y:N, u:z0 =yP + aziom:S(z)P = S(y)?
Surjectivity of S(e)

z,y:N, u:5()? =S)° F aziom:z0 = 4P
Induction

nP:N F ind(n?; B;i,nP.F(n —1P)({)):T
BY induction
b B:T[0P/2P]
F F:¥mP € N.T[mP /aP] = T[S(m)? /nP]

On this interpretation, we view a proof M in HA of
Vz. Jy. R(z,y) as being a program which, given X,
will compute a suitable ¥ such that R(X,Y’) holds.
We can think of the sentence Vz. Jy. R(z,y) as be-
ing a proposition of which M is a proof, of being a
specification which M meets, or a type, which M is a
member of, and we will use these terms interchange-
ably. We can view program evaluation as just a proof-
reduction operation. For instance, for HA and Progy,
every reduction rule on well-typed Prog; programs
is mirrored in proof-reduction steps on HA proofs
(the so-called subject reduction property). Also, it
is known [11] that any reduction strategy will com-
pute well-formed, well-typed terms to the same normal
forms. Hence for the natural programming language
associated with HA, one reduction strategy is as good
as another. When we add the C operator, this ceases
to be true, and we are forced to either pick a partic-
ular deterministic evaluator, or restrict the reduction
rules in such a manner that we can retain soundness.
We will choose the former, and define



Definition 1 (Canonical Forms) Integers, aziom,
and closed A-terms, injections, and pairs are all canon-
ical terms. All other closed expressions are noncanon-
ical.

Definition 2 (Principal Arguments)

For each left-hand-side of a reduction rule, we can de-
fine the principal argument of the term. E.g., the first
subterm of each of the decide, spread, ind, S, and ap-
plication terms. For the + and x terms, the principal
arguments are both subterms.

Definition 3 (Evaluation to Canonical Form)
The process of evaluation to canonical form is as fol-
lows: If a term is a canonical form, do nothing. Other-
wise, evaluate its principal arguments, in left-to-right
order, to canonical form, and then apply one of the
reduction rules. If none of the reduction rules apply,
terminate the entire process with an error. Otherwise,
repeat.

Fact 1 (Termination of Evaluation)
Evaluating closed, well-typed programs to canonical
form terminates, successfully, in a canonical form.

Finally, we define complete evaluation:

Definition 4 (Complete Evaluation)

Complete evaluation of a closed expression consists
in evaluating to canonical form, and then completely
evaluating every binding-free immediate subterm (e.g.
M, N in (M, N), but not bin X z.b). We denote that
a term M completely evaluates to a term N by writ-
ing M =~ N, and that we are working in the purely
functional fragment defined so far by M »; N.

Felleisen [12] pointed out that such a deterministic
evaluator can be understood as an algorithm for di-
viding up a program P into an evaluation context E[ ]
and aredex M such that E[M] = P, and F[] binds no
variables in M. We assume that such has been done
for our evaluator, and simply note that this is made
precise in [13]. Notice that our evaluator is lazy, but
that programs are evaluated completely.

While (for various technical reasons) HA is unsuit-
able as a programming logic, we feel there are many
proper extensions of HA, Martin-Lof type theories [14]
among them, which are much more amenable to use
as programming logics. The paradigm of proofs-as-
programs applies to these logics also, and allows us to
view a proof of a sentence ® in Nuprl [7], for instance,
as a program which meets specification ®.

While this explanation is satisfying for functional
programs and constructive reasoning systems, one
wonders if one can find similar reasoning systems
for almost-functional programming languages with
nonlocal control operators such as call-with-current-
continuation (call/cc) [15] and C [1]. Dually, one won-
ders what sort of programming language (if any) arises
from viewing classical number theory, Peano Arith-
metic (PA), as a specification logic in the same man-
ner as HA. The remainder of this paper will answer
these questions.

3 PA as a Specification Logic

To use PA as a specification logic in the same man-
ner as H A, we need a way to extract, from a classical
proof of a sentence ®, evidence for ®. Clearly, this
is not always possible, since (M; halts) V ~(M; halts)
is one proposition for which there could be no such
evidence (in general). Kreisel and Friedman identified
one class of sentences whose classical proofs contained
such evidence - the II sentences. Such a sentence is
of the form Vz. 3y. R(z,y), where R(z,y) is a decid-
able proposition. Moreover, R can always be writ-
ten as fr(z,y) = 0, where fg is a primitive recursive
function. Friedman’s method of proof was a purely
syntactic argument, an extension of the Kolmogorov
translation [16], called the A-translation. We repro-
duce here a version due to Leivant [17].

Definition 5 (The Kolmogorov Translation)
Given a sentence ¢ in number theory, define ¢°, the
Kolmogorov double-negation translation of ¢, as be-
ing the simultaneous double-negation of every propo-
sitional position in ¢:

(AVB)® +— =—(A°V B
(AAB)® +— =—=(A°A B
(3z € A.B)* — -—-(3z€ A.B°)
(Vz € A.B)° +—— -—(Vz € A.B°)
(A = B)° — —v—|(A° = B°)
pP° — -—(P) (P prime)
Theorem 1. (Double-Negation Embedding) If

Fpa ¢, then k4 0°.

Proof: By structural induction on the classical proof.
We will do the three rules which concern L - the clas-
sical axiom, L-elimination, and monotonicity of S(e),
since the other rules translate relatively trivially.
Classical Axiom: The classical axiom
(P= 1) = L Fpy P is translated as

== (==(P° = ==(L)) = ==(L)) Faa P°.



We observe that ——(L) is equivalent to L,
and this allows to reduce the hypothesis to
—=(==(=—(P?))), which is equivalent to P°, since
P° is outermost negated. We can also observe
that we never use the rule of l-elimination in
this derivation.

Monotocity of S(e): The  classical rule is
S(z) =0Fpy L. The translation is

—(S(z) = 0) Faa ~=(1)

and is easily provable. We can note that we do not
use the rule of L-elimination in this derivation.

1-elimination: The classical rule is L +p4 T, and
the translation is == (L) kg4 T°. By observing
that, again -—(L) is equivalent to L, and T°
is outermost negated, we see that this sequent
is again easily provable. Again, we can observe
that we never use the rule of L-elimination in the
translated derivation.

As we have noted, the translated proof does not use
the rule of L-elimination. One way of looking at
A-translation is that it simply notices this fact, and
replaces | systematically throughout the proof with
some new proposition, A. When we do this, we must
justify that each rule of H A is still provable when we
replace all instances of L with A. For every rule except
those which explicitly mention L, this is easy (since
1 is just a proposition). And since L-elimination is
not used in a Kolmogorov-translated proof (given as
above), the only rule we must consider is monotonicity

of S(e):

Theorem 2 (Friedman’s A-Translation) If
Fpa ¢, then Fpa ¢°[A/L], for some fresh proposi-
tional symbol A.

Proof: By Theorem 1, we have Fg4 ¢°. Given
a proof of S(z) =0Fg4 L, we can trivially show
S(z) = 0+Fpa A, by employing L-elimination. ¢ ll

Theorem 3 (Conservative Extension) If we have
a proof Fpa ¢, where ¢ is 9, then we can construct
a proof kg, ¢.

4From an arbitrary classical proof, we double-negate to ar-
rive at a constructive proof without instances of L-elimination,
and then A-translate to arrive at a constructive proof which
might have instances of L-elim.

Proof: Suppose ¢ = Iy € N.f(y) =0, and let A = ¢.
Let ;(T) =T = ¢. Then from a classical proof of ¢,

we obtain a constructive proof of
-~(3 € N.— =0)).
2oCv EN(f(y) =0))
To recover a proof of ¢, it suffices to prove
(3 N.—— =0 s
~(3y € N-o(f(y) = 0))

which we refer to as “Friedman’s top-level trick.” This
is trivial, and is discussed in subsection 4.1. Il

Interestingly, the A-translation step does nothing to
the computational content of a constructive proof, if
that proof was obtained via the Kolmogorov-translation
we outlined above.  That is, A-translation af-
ter Kolmogorov-translation does nothing more to
the computational content than just Kolmogorov-
translation. The only effect of the A-translation
is to “change the names,” and render the proof
in a form to which we can apply Friedman’s top-
level trick; all the real work is done by the
double-negation translation. The reader might note
that in A-translating the monotonicity rule, we in-
serted an instance of L-elimination. But going
from the inference M :S(z) =0kg4 aziom: L to
M :S(z) =0tpg4 aziom : A

(via aziom : L g4 aziom : A) does not change the
computational content at all.

Friedman’s original theorem is stated for IIJ sentences,
and is a corollary of the previous theorem, where free
integer variables are allowed, and is stated:

Corollary 1 (Conservative Extension for 119)
If we have a proof Fp4 ¢, where ¢ is 119, then we
can construct a proof Fgya ¢.

In the work to follow, as with Friedman’s work, the
result for 119 sentences follows trivially from the result
for X9 sentences, by allowing free numeric variables.

4 Directly Extracting Programs from
PA Proofs

Since we can extract evidence from H A proofs, we
can extract the evidence for ¢ by translating a classi-
cal proof into a constructive one and then extracting
from that. Hence, by a roundabout, but completely
mechanizable, translation we have succeeded in ex-
tracting evidence for a £9 sentence from its classical
proof. But this method produces a program whose
structure bears little superficial resemblance to that



of the original classical proof. One wonders if there is
a more direct way of getting at this evidence. Since PA
is a “simple” extension of HA, one wonders if perhaps
one could augment (or modify) slightly the extraction
procedure for HA to arrive at one for PA. This is in-
deed possible:

e In the same sense that HA proofs can be viewed
directly as functional programs in Prog;, PA
proofs can be viewed directly as programs in
Progx = Progj + C + XY, a functional language
augmented with the nonlocal control operator C
and by-value A-abstractions.

e In the same sense that an HA proof M of
Jz € N.®(z) computes a numeral X such that
®(X), a PA proof M of 3z € N.®(z), when ® is
primitive-recursive, computes a numeral X such
that ®(X) holds.

Thus, classical proofs of £ (and by a simple extension,
I19) sentences are programs. A X9 sentence ® is a
specification, and a proof M of such a sentence is a
program which meets this specification.

Let us now define the programming language Progg,
as an extension of Progy;, as follows: add the following
four operators to the inductive definition of expres-
sions:

Ezp = X Vary.Ezpy | Ezp1(,Ezps) |CEzp | AEzp

The first two expressions are by-value lambda-
abstraction and application, respectively. The -
abstraction is a canonical form; the application is non-
canonical when closed, and both its subterms are prin-
cipal arguments (hence during evaluation, both sub-
terms are evaluated, left-to-right, to canonical form
before the application is contracted). We can define
evaluation contexts as before. The latter two terms
are the “control” operator and the “abort” operator,
as defined in [1]. Given the evaluation context defi-
nitions metioned, one can express the operational se-
mantics of A and C informally as

E[CM] =1 M() z.A(E[z]))

E[AM] >, M.

where E[ ] is an evaluation context. (AM is syntac-
tic sugar for C(A ().M). For the purposes of typing,
though, we will ignore the presence of 4.) We will
write > g for complete evaluation in the extended lan-
guage, and > for one step of evaluation (in the termi-
nology of evaluation contexts). These two operators

are related to call/cc [15], Landin’s J-operator [18],
Reynold’s escape operator [19], PAL [20].

It should be clear that we have defined a deterministic
evaluator. We now present an extraction algorithm
which will directly extract the program from a classical
proof. It turns out that the extraction algorithm is a
slight modification and extension of the standard one
for HA (part of which has already been presented).
The original versions of all the modified rules have
been presented earlier. The modified versions are:

Symmetry
n:N, m:N, u:n=m

F (A v'.aziom)(vu):m=n
Transitivity
a,b,c:N, u:a=b, v:b=c

F (XY u',v'.aziom)(vu)(vv)ia=c
Monotonicity of S(e)
n:N, u:S(n)=0F (A* u'.aziom)(vu): Ll
Injectivity of S(e)
z,y:N, u:z0 =¢P

F (XY u'.aziom)(vu):S(z)? = S(y)P
Surjectivity of S(e)
z,y:N, u:5(z)? =S(y)°

F (A u'.aziom)(vu):zP = yP
The extension consists of a single rule, that of double-
negation elimination, and is taken directly from Griffin [8]:
Double Negation Elimination
HVFCM:P

BY double negation elim
F M:-~(P)

The idea here is simple. A single step of evaluation of
well-typed PA programs does not always preserve well-
typed-ness (the so-called “subject reduction” prop-
erty). The reason is as follows: a closed term of type
a = b could contain unevaluated continuations. Such
a term, when actually evaluated to a value, could dis-
card its evaluation context. (It is possible to recover
subject reduction properties, but this requires a pre-A-
translation which would complicate the presentation,
and which is technically not necessary for our result.)
Thus to simply assume that u in the rule of symmetry
of equality will indeed compute to aziom is unsound.
Rather, we must evaluate u to a value, at which point
we know that the value will be aziom. This is exactly
what (AY u'.aziom)(yu) does.

Now that we have defined a method of extracting
programs, we must show that this method, applied
to complete PA proofs of £ sentences, extracts ter-
minating, well-typed programs. Let us first define
the following translations on types and program frag-
ments:



Definition 6 (CPS-Translation on Types)
Define the CPS-translation of a type T in a proof of a
X9 proposition ¢ by (T[¢/L])°[¢/L]. We denote this
translation by T. Define also the “star-translation” of
a type to be the CPS-translation with the outermost
double-¢-ation removed. That is, ;;(T*) =T.

Definition 7 (CPS-Translation on Programs)

z = z (z a variable)
MN = MkM(XAmmNk)
M(NP?) = XkMQA mm(NP)K)
AzM = Xkk(Az.M)
AvPM = X kk(A0P.M)
(LN) = XEk(M, V)
(MP/NY = XEk((MP, N))
inl(M) = X k.k(inl(M))
inr(M) = X kk(inr(M))
aziom = X\ k.k(aziom)
M(N) = XkMA m.N nm(n)(k)))
AzM = Akk()z.M)
AM = X k.(M(ry))
CM = AkMA mm(Agg(A v, ho(k)))re).

spread(M;u,v.N) =
A k.M(X p.spread(p; u,v.N(k)))
spread(M;uP,v.N) =
A k.M(X p.spread(p; uP,v.N(k)))
decide(M;u.N;v.R) =
A k.M() d.decide(d;u.N(k); v.R(k)))
ind(M; B;n,i.I(n —1)(3)) =
ind(M; B;n,i.I(n — 1)(1))
(Again, terms annotated e are integer expressions.

The annotation is statically inferrable from the proof
which generated the program)

The idea is to replace all instances of L in the type
T with ¢, Kolmogorov-translate, and then again re-
place all instances of 1 with ¢. Since ¢ is assumed to
be L-free (¢ = Jz. f(z) = 0 contains no instances of
1), CPS-translating any type results in one with no
instances of L. We can easily show

Theorem 4 (CPS is Well-Typed) Given a proof
T'kpga M:T, we can show Thys M : T, where T
CPS-translates every proposition in I', but leaves type
assumptions (e.g. n: N) as is.

Proof: By induction on the typing derivation for M.
We omit the proof, since it is entirely routine, given
the CPS-translations on terms and types. il

Now we can map out our strategy to show that our
extraction method is sound:

o Exhibit a term T$ of
type -;(By € N.;;(f(y) = 0)) (the type of Fried-

man’s top-level trick). Notice that M7y has type
é. (subsection 4.1.) The reader will note that we
have already used this term in our presentation of
the translations of C and A above. The term is de-
fined independently of CPS-translation, though,
we are not caught in any circular definitions.

e Show that M7y =5 b < M >k b (Theorem 6.)
Given these facts, we can easily show:

Theorem 5 (X Classical Type-Soundness)
Given a PA proof of a £9 sentence ¢, Fps M : ¢,
M>gband Fpyb:o.

Proof: Since M1y has type ¢ in HA, evaluation of
My will terminate, say, in b. Then Fpg b:¢. And
since M1y =3 b M =g b, M =k b. [ |

It is a trivial extension to show

Corollary 2 (II Classical Type-Soundness)
Given a PA proof of a II sentence Vz. Jy. ¢(z,y),
Fpa M :Vz. Jy. ¥(z,y), for all n € N, M(n) =k b,
hence Fpy b:3y. ¥(n,y). Thus PA proofs of X9 and
I19 sentences stand as evidence for the propositions
they prove.

In the rest of this section, we give proofs of the two
facts mentioned above, at widely varying levels of de-
tail.

4.1 Top-Level Continuations

As we mentioned above, from a proof I' Fps M : T, we
can construct a proof T kg4 M : T. Thus, from a clas-
sical proof of a £9 sentence ¢ = Iz € N.f(z) = 0 (any
39 sentence in PA can be written in this form ), we get
a constructive proof of ;;(3: € N.;;(f(r) =0)). To

recover a proof of ¢, we need only give a constructive
proof of

;(31: € N;;(f(:c) =0)). (1)

¢ then follows by modus ponens. The constructive
witness for (1) is simply:

7o = A p.spread(p; n,v.v(A m.(n, m))).  (2)
It should be clear that if we CPS-translate a program

M, to get a program M, and if M had type ¢, then
M has type ¢, and that M7y has type ¢.



Since every primitive-recursive relation on integers can
be expressed as a primitive recursive function, restrict-
ing ourselves to the above form entails no loss of gen-
erality. But in any case, with a little care, we can
recursively define the top-level-continuation for an ar-
bitrary primitive recursive relation ¥(z), rather than
just f(z) =0.

The topic of top-level continuations bears some dis-
cussion, since the literature has always assumed that a
top-level continuation would be X z.r. This assump-
tion is predicated on the belief that the result of a
computation is always computed by-value, or, alter-
natively, that the result of a computation is an atomic
value. In fact, there is an intimate relation between
top-level continuations and the semantics of complete
evaluation for structured values which are evaluated in
a lazy manner internally, but eagerly at top-level (as
in any lazy system). Consider a noncanonical term of
type 3z € N.f(z) = 0. Once it is evaluated to a canon-
ical form, (N, G), the type system guarantees that N
is a pure integer expression. But G might contain un-
evaluated continuations, so we must further evaluate
it to a canonical form. Thus if we think of M as a non-
canonical form, then applying M7, results in 74 being
applied to the canonical form of M, say (N, G). Then
(loosely speaking) we bind n +— N, v — G, and evalu-
ate G to a canonical form by applying to A m.(n, m).
Then m is bound to the canonical form of G, and the
expression (n, m) is returned. This corresponds (in a
way that can be made precise) to the process of com-
plete evaluation described in Definition 4.

If, instead, ¢ = Jz € N.f(z) =0Ag(z) =0, then
we would have two choices of top-level continuation,
shown in Figure 2. Both are proofs of ¢* = ¢, or

3G eN((3U6) = 0 A 156 =0)))
Both correspond to

1. evaluating a program M of type ¢ to a canonical
form, (N, G), where N is an integer expression

2. evaluating G to a canonical form (A, B).

3. evaluating A,B, to canonical forms, say L,R.

4. returning (N, (L, R)).

But (3) evaluates A to a canonical form, and then
B, whereas (4) does these in the opposite order (note
that the only difference between (3) and (4) is that a, !
and b, r have been switched). All of this can be made

precise with relative ease, and we can draw direct cor-
respondences between methods of complete evaluation
for structured values on the one hand, and top-level
continuations on the other.

4.2 CPS-Translation Preserves Values

So far, we have shown that given a program expression
M of type ¢, a £ type, CPS-translation followed by
application to the proper top-level continuation gives
us a program expression M7y of the same type ¢. To
finish the job, we need to show one more thing; to wit,
that M 74 evaluates to a value b if and only if M, the
term with instances of C, evaluates to the same value
b. The method of proof is taken from Griffin [8], who
in turn adapted Plotkin [21].

Plotkin’s method is based on the (simple) observation
that the reduction sequences that translated terms
undergo are well-defined. When one looks at reduc-
tion sequences on M7y, one notices that they follow
a certain pattern: zero or more administrative reduc-
tions, which serve to do the “bookkeeping” associated
with a particular evaluation strategy, followed by a
single proper reduction, followed by more administra-
tive reductions, and so on. If we could contract all
the administrative redices in M4 (to M’) and Nty
(to N'), then we could prove that our modified M’
reduces to our modified N’. So what we do is de-
fine a new translation, M : 745, such that whenever
M >k N, M:74%>5 N:71y. The proof is long and
unilluminating, employing the colon-translation origi-
nated by Plotkin [21] and modified by Griffin [8]; hence
we will eschew the proof itself, and just state the theo-
rem. In any case, it is presented in detail in [13]. The
upshot of the whole exercise is to obtain a proof of

Theorem 6. (CPS Preserves Operational Se-
mantics) For any program M of (X9) type ¢, for all
values b € ¢,

M}KbQMTd,}Jb.

5 Simple Examples

We can now look at some simple examples. Consider
the sentence

¢ = 3n € N.prime(n) An < 100.

Clearly there are many proofs of this sentence. We list
one such proof below:



T$

A p.spread(p; n,m.m(X g.spread(q; a,b.a(A L.b(X r.(n, (I, r))))))) 3)

s = A p.spread(p;n,m.m(X q.spread(q; a,b.b(A r.a(X l{n, (I, 7))))))) (4)

Figure 2: Top-Level Continuations for ¢ =3z € N.f(z) = 0Ag(z) =0

F ¢ BY double-negation elim
—(¢) + 1 BY function-elim
—(¢) + ¢ BY intro 102
F prime(102) A 102 < 100 BY and-intro
b prime(102)
BY double-negation elim
THEN function elim
F ¢ BY intro 2, etc
F 102 < 100
BY double-negation elim
THEN function elim
F ¢ BY intro 3, etc

If we let w2 be the proof of prime(2) A 2 < 100, and
w3 the proof of prime(3) A 3 < 100, then we can write
the computational content of this proof as

CA k.k(102, (k(?, 7I’2), k<3, 7l’3))).

Here we see a simple example of the “nondetermin-
ism” inherent in classical reasoning. There are two
possible values of n specified by this proof (under a
naive reading): 2 and 3. In fixing a deterministic left-
to-right evaluator, we choose 7;. If we were to fix a
right-to-left complete evaluation strategy for pairs (as
in Figure 2, equation 4), we would choose 73 instead).

We can also look at a simple classical proof which does
not admit constructivization: assume f : N — {0, 1}
is a parameter. There is a simple classical proof of

¥ =3n € NVm € N.f(n) < f(m).

This sentence expresses the fact that every boolean
function attains a minimum (where 0 < 1). Suppose
we had a constructive proof of this fact, from which
we extracted a program. Intuitively, this cannot be
the case because the constant function f : n — 1
is industinguishable within n steps from a function
which becomes zero after n+1 (or some suitably large
number) of values. So if our program could exam-
ine the constant function f : n — 1 and determine
that it attained a minimum of 1 after N of computa-
tion, then we could “spoof” it by giving it as input a
function which attained zero only after a suitably long
time (say a stack of N 2’s). And our program would
report an incorrect minimum on this input. We give
a classical proof of ¥ below:

F % BY double-negation elim
-~(¥) F L BY function-elim
I ¥ BY intro 0
F Vm € N.f(0) < f(m) BY function intro
m:N F f(0) < f(m) BY cases on f(0) < f(m)
£(0) <" f(m) F £(0) < f(m) BY hypothesis
f(m) < f(0) F f(0) < f(m)
BY double-negation elim
THEN function-elim
f(m) < f(0) + ¢ BY intro m, etc

The computation in this proof is

CA.k(0,
Am.if f(0) < f(m) then aziom
else k(m, A m'.aziom))

Intuitively, the program given by the proof will make
a “guess” that 0 is the desired n. Then, given m, it
will check if f(0) < f(m). If so, then it will simply
report success. If not, then f(m) < f(0), which means
that f(m) = 0. So the program will unwind the con-
text back to before it chose 0, and instead choose m.
As a result, our program does not really provide ev-
idence for the truth of the proposition it purports to
be a proof of, but rather, provides a program which,
given a counterexample, will “throw” back to a place
in the computation where it can change the “answer”
to disqualify the counterexample.

6 Conclusions and Related Work

We have seen that we can directly extract compu-
tational evidence from classical proofs in arithmetic.
This evidence is obtained by a procedure which is
a slight modification/extension of the standard ex-
traction procedure for constructive proofs in arith-
metic. The proof of soundness of extraction employed
a CPS-translation on types which translated a type T
in a proof of a X proposition ¢ to (T[¢/L])°[¢/L].
The original Friedman A-translation produced a type
T°[¢/L]. We assumed that ¢ was X9, which is L-
free, so the two translations are identical in their ef-
fect on the top-level type. Within the proof, the only
difference is that with Friedman’s translation, every



instance of L in the original proof is translated into
;;‘(¢), whereas with our CPS-translation, every in-

stance of L becomes ¢ = ;;(d)*) This difference

is inconsequential, since we could have easily imag-
ined that Friedman used our CPS-translation rather
than the one he actually used. The internal differ-
ences are slight, and affect only the translation of C.
Thus it should be obvious now that at least one (and
in fact several) implementations of Friedman’s results
are CPS-translations. In fact, a minor variant of the
Kuroda negative translation can also be used to prove
these results, and the only consequence is that > is
call-by-value rather than call-by-name.

Moreover, we conjecture that by generalizing
Reynolds’ [19] notion of ¢rivial and serious terms, one
can interpret the standard translations in the litera-
ture as fixing values of classical proofs. That is, while
most CPS-translations fix evaluation order completely
(there is at most one closed redex (noncanonical term)
in a CPS-translated term at any point in its evalua-
tion), the translation is this paper fixes the order of
non-integer expressions only. Since integer expressions
are “trivial” (can have no control side-effects), they
are left untranslated. We conjecture that the standard
translations can also be interpreted in a like manner,
by generalizing further the notion of “trivial” to in-
clude terms of non-integer type which can be shown
to have no control side-effects.

Although implicit in the results of Friedman and in the
translations due to Godel, Kolmogorov, and others, no
one in the computer science community had exploited
the computational significance of the fact that classical
proofs of I sentences (i.e. Vz. Jy. R(z,y) where R is
decidable) can be translated into constructive proofs
of the same sentences.

Fortune, Leivant, and O’Donnell [22] found that a
typed CPS-translation effected a double-negation-like
translation. This was rediscovered (accidentally) by
Meyer and Wand [23], who also found that typed
CPS-translation effected a double-negation transla-
tion. Likewise, Krivine [24] found that a double-
negation translation on proofs in the polymorphic
lambda-calculus effected a CPS-like translation on
the implicit programs. Independently, Gabbay and
Reyle [25,26] found that an extension of PROLOG
with a “restart rule” much like the A operator was
sound and complete with respect to classical proposi-
tional logic, and an analogous result for a subtheory
of classical predicate logic. In completely independent
work, Adriaan Rezus [27] discovered a variant of Grif-
fin’s result, working from the angle of understanding

equational proof behaviours. He discovered a relative
of the C operator by examining classical proofs and
characterizing which proofs ought to be equal as pro-
grams. However, he was not concerned at that stage
with arriving at evidence semantics, and indeed, his
logic contained as primitives only v, —,V.

Griffin [8] found an algorithmic interpretation of clas-
sical proofs, or, alternatively, a logical characteriza-
tion of the control operator C. He showed that one
could view C as the algorithmic content (program ex-
traction) of the rule of double-negation elimination
(=~(P) F P) in classical propositional logic. Griffin
went on to show that the process of CPS-translation
was a translation from a classical propositional logic
into a constructive propositional logic. Griffin demon-
strated that such a CPS-translation preserved the op-
erational semantics of the term it was translating. But
his typing was only a weak typing, and did not guaran-
tee that a program of type ¢ would compute a value of
type ¢. In addition, as we have mentioned, he defined
conjunction (and disjunction) in terms of implication
and negation (e.g. @ A 8 = —(a — —(f8))) and as such,
the extent to which a proof A A B actually computed
evidence for A A B was not determined.

He had (in effect) reconstructed a part of Friedman’s
conservative extension result [2] from HA to PA for
119 sentences. He did not apply the last step, that of
A-translation, nor make the connection between top-
level continuations, Friedman’s top-level trick, and
complete evaluation strategies. He also restricted
his attention to propositional logic (or, equivalently,
simply-typed lambda-calculus). To quote Griffin:

This paper has shown that a formulae-as-types
correspondence can be defined between classical
propositional logic and a typed Idealized Scheme
containing a control operator similar to Scheme’s
call/cc. It should be noted, however, that the
paper merely presents a formal correspondence
... At this point there still remains the question:
Why should there be any correspondence at all?
Whether or not there is a deeper reason under-
lying the correspondence is unclear at this time.

Griffin’s work pointed towards a deeper logical and
computational content behind Friedman’s result and
also the classic results concerning CPS-translation.

We feel that our results explain the correspondence.
We feel we have shown that classical proofs are as
real a programming language as constructive proofs.
From every classical proof we can extract a program,
by the rules we described earlier. However, only for
¢ and II9 sentences are we guaranteed that every
classical proof computes evidence. To put it simply,



every classical proof is a program, but only proofs of
29 and 11 sentences are always correct. Our results
show that classical logic is a programming language
much like constructive logic, but with explicit control
operations.

We have shown that CPS-translation is not
just a double-negation translation, but a double-
negation/A-translation (a “Friedman” translation).
We have shown that Friedman’s conservative exten-
sion result is simply (and beautifully) the application
of a CPS-translation soundness theorem to an almost-
functional program extracted from a classical proof,
demonstrating that CPS-translation and “Friedman”
translation are one and the same, and that from classi-
cal proofs we may directly extract correct, well-typed
programs. By employing A-translation, we can not
only show that a classical proof computes evidence,
but also determine what sort of pathological behaviour
a nonconstructivizable proof can exhibit - that is,
what types of values a nonconstructivizable proof can
abort with.

In summary, every classical proof can be assigned
a program, but only for II sentences ¢ do these
programs always compute evidence in the construc-
tive sense [28] for ¢. From a programming lan-
guages/specification viewpoint, our work provides a
typed foundation for total-correctness reasoning about
programs with C, much as constructive type theo-
ries [14,29] provide a typed foundation for reasoning
about functional programs.

The full consequences of this run deep: Not only can
we regard classical proofs in PA (or other suitable the-
ories) as a programming language that makes logical
use of jumps and continuations, but we are able, in the
process, to extend the Curry-Howard interpretation of
functional computation to include such programming
constructs as C and call/cc, and reason about correct-
ness of programs using them in a semantically clear
manner.

7 Future Work

The possibilities for future work are numerous. We
list only a few here:

e Discover the algorithmic ideas inherent in the
many constructivizable classical proofs which ex-
ist.

e Extend these results to richer type theories, such
as Nuprl. The logic we presented here is only
the core of a rich programming logic. While we
can in theory extract computations from Classical

Nuprl proofs (via translation), our results show
us how to extract computations directly from the
classical proofs. One could also apply work of
Felleisen and Hieb [30] to yield a logic for rea-
soning about equalities between programs with C,
much as Nuprl allows one to reason about equal-
ities between functional programs.

e There are many double-negation translations in
the literature, and it would be interesting to learn
exactly what sorts of evaluation semantics these
translations correspond to.

e Many people are working on new and power-
ful control operators [31,32,33], and one could
give reasoning systems (both ML-style and total-
correctness reasoning systems) for languages with
some of these operators in a like manner to what
has been done herein. We conjecture that the
shift/reset system of Danvy & Filinski [31] can be
reasoned about with extensions of the techniques
presented in this paper.
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