
Using Dependent Types to Express Modu|ar Struetr~re

David MacQueen

AT&T Bell Laboratories

Murray Hill, New Jersey 07974

I~treductio~r~

Writing any large program poses difficult problems of organization, In many modern programming
languages these problems are addressed by special linguistic constructs, variously known as modules, packages,
or clusters, which provide for partitioning programs intn manageable components and for securely combining
these components to form complete programs. Some general purpose components are able to take on a life of
their own, being separately compiled and stored in libraries of generic, reusable program units. Usually
modularity constructs also support some form of information hiding, such as "abstract data types." "Pro-
gramming in the large" is concerned with using such constructs to impose structure on large programs, in con-
trast to '~programming in the smatF ', which deals with the detailed implementation of algorithms in terms of
data structurcs and control constructs. Our goal here is to examine some of the proposed linguistic notions
with respect to how they meet the pragmatic requirements of programming in the large.

Originally, linguistic constructs supporting modularity were introduced as a matter of pragmatic
language engineering, in response to a widely perceived need. More recently, the underlying notions have
been anatyzcd in terms of type systems incorporating second-order concepts. Here I use the term "second-
order '~ in the sense of °~second-order" logic, which admits quantification over predicate variables [Pra651.
Similarly, the type systems in question introduce variables ranging over types and allow various forms of
abstraction or '~quantification"' over them.

Historically, these type systems are based on fundamental insights in proof theory, particularly 'the "for-
mulas as types" notion that evolved through the work of Curry and Feys ICF58h Howard [HHow8010 de Bruijn
ldeBS0] and Scott IScoT0I. This notion provided the basis for Martin-L6f's h~rmalizations of constructive logic
as lntuitionistic Type Theory (ITF) IM-L71, M-L74, M-L821, and was utilized by Girard IGir71], who intro-
duced a h)rm of second-order typed lambda calculus as a tool in his proof-theoretic work. The "t2~rmulas as
types" notion, as developed in de Bruijn's AUTOMATH system and Martin-L6f's ITT° is also central to the
"programming logics", PL/CV3 and nu-PRL developed by Constable and his coworkers ICZ84, BC85].

In the programming language area. Reynolds 1Roy74] independently invented a language similar to that
used by Girard, and his version has come to be called the second-order lambda calculus. An extended form of
this language, called SOL, was used by Mitchell and Plotkin IMP851 to give an explanation of abstract data
types. The programming languages ML IGMW78, Mi178] and Russell IBDDS0, I'.too84, DD851 represent two
distinctly different ways of realizing *'polymorphism" by abstraction with respect to types. ML is basically a
restricted form of second-order lambda calculus, while Russell employs the more general notion of ~dependent
types" (Martin-L6f"s general product and sum, defined in §2). The Pebble language of Burstall and Lampson
IBL84, Bur841 also provides dependent types, but in a somewhat purer t~.)rm. Finally. HHuet and Coquand's
Calculus of Constructions is another variant of typed tambala calculus using the general product dependent
type. It also provides a form of metatype (or type of types), called a '~context", that characterizes the struc-
ture of second-order types, thus making it possib e to abstract not only with respect to types, but also with
respect to families of types and type constructors. The Calculus of Constructions is an explicit attempt to com-

bine a logic and a programming language in one system.

Permission m copy wi~.hout fee all or part of this maleria/is granted public~Uion and dale appear~ and notice is given that copying is by
provided that lhe copies are nol made or dislribuled lk~r direct permi~,~ion of ~hc As,~ociation for Computing Machinery. To c~py
commercial advantage, lhc ACM copyright nolice and the tillc of the o~herwi~, or t.~ republish, requires a fee andh~r specific permission,

© 1986 ACM-0-89791-175°X-I/86-0277 $00.75

277

Among these languages, Russell and Pebble arc distingl~ished by havi~g "ref lexive" type systems° mean-
ing that there is a "type of al] types" that is a m,)mber of itself ('FypecT}r;:)~,), Martin-I,Sf 's initial version of
ITT tM-L7t] was also reflexive in this sense, but hc abandoned this vcrsion in fav()r of a "'ramified ''l system
with a hierarchy of type univcrscs when Girard 's Paradox fGirTl] showed that the reflexive system was incon-
sistent as a constructive logic. In terms of programming languages, the paradox implies at least the existence
of divergent expressions, but it is not yet clear whether mnre serious pathologies might folk)w fr<nn it (see
Meyer and Rcinhotd's paper, this proceedings /MR861). Since types arc simply values belonging to the type
Tyl)e, reflexive type systems tend to obscure the distinction between types and the values they are meant to
describe, and this in turn tends to compile:ate the task of type checking, tt is, on the other hand~ possible to
construct reasonable semantic models %r reflexive typc systems I McC7% Car85t.

The remaining nonreflcxive languages distinguish, at least implicit]y, between individual types and the
universe of types to which they belong and over which type variables range. Howevcro ~he second order
lambda calculus, SOL, and the Calculus of Constructk)ns (despite its "contcxts-) arc -imprcdicativc., '< mean-
ing that there is only eric type universe and it is closed under type cnnstructions like Vt.(rU) and 3t.(r(, ') that
involve quantifiers ranging over itself. The reflexive type systems of Russell and Pebble are also impredica-
tire, in perhaps an even stronger sense since type variables can actually take on Type, the universe of types, as
a value. In contrast, the later verskms of ITT and Constable's logics are ramified systems in which quantifica-
lion or abstraction over a type universe at one level produces an element of the next higher level, and they are
therefore predicative.

Our purpose here is not to set out the mathematical nuances of these various languages, but to look at
some of the pragmatic issues that arise when we actually attempt to use such languages as vehicles h)r pro-
gramming in the 1urge. We will begin by discussing some of the consequences of the SOL Type system %r
modular programming. Then in §2 we briefly sketch a ramified (i.e. stratified) system of dependent types
from which we derive a small language called DL, which is a gcneralized and "desugared" vcrsinn of the
extended ML language presented in IMac85L The final seetinn uses DL to illustrate some uf the stylistic
differences between ML and Pebble.

t° Shortcomings o f S O L ' s e×is~entia] lypes

The SOL language JMP85J provides existential types of the form

where ,: is a type variabD and (r(:) is a type expression possibly containing free occurrences of :. Values of
such types are introduced by expressions of the %rm

where P is an expression of type o-(r), These values are intended to model abstract data types, and were
called data al,gebrets in IMP85] and packages in ICW85/: we wilt use the term structure to agree with the termi-
nology of]Mac851 that we wilt be adopting in tater sections. The type component ~r will be called the wimess
or rg5~resenmtion type of the structure~ Access to the components of a structure is provided by an expression
of the form

abs~ype : width x is M in N : p

which is well-typed assuming M : d t , ~ (:) and x:<r(~ ~) => N : p with the restriction that : does m)t appear free in
p nor in the type of any variable y appearing free in N.

As mentioned in tMP851, and because of the impredicative nature of SOL, these cxistential types arc
ordinary types just like in: and boot, and the structures that are their values arc just ordinary values. This
implies that atl the standard value manipulating constructs such as conditionals and functional abstraction
apply cqually to structures. Thus a parametric module is just an ordinary function of type T-*dt,(r(t), fl.)r
example,

There is a tradeoff for this simplicity, however. Let us consider carefully the consequences of the res-
trictions on the abs{ype expression, Once a structure has been constructed, say

A = rep3~.,,~,/rP

Since 9ertrand Russeil i~r~ed~eed his ~ramified type theory," the word "ramified" has been used in k~gic to
mean "stratified into a sequence of levels', normally an infinite ascending sequence of levels.
z Roughly speaking, a definition of a set is said to be. impredicativc if the set contains members defined wish
ret~renc¢ to the entire set,

278

the type T is essentially forgotten. Although we may locally " o p e n " the structure, as in

abs~ype t with x is A in N

there is absolutely no connection between the bound type variable t and the original representat ion type "r.
Moreover , we cannot even make a connection between the witness type names obtained from two different
opcnings of the s a m e structure. For example the types s and t will not agree within the body of

abs type s with x is A in
abs type ¢ with y is A in * . .

h~ effect, not only is the form and identity of the representat ion type hidden, but we are not even allowed to
assume that there is a unique witness type associated with the structure A. The witness type has been made
not only opaque, but hypothetical! This very strong restriction on our access to an abstraction goes beyond
~ommon practice in Xanguage design, since we nnrmalty have some means of referr ing to an abstract type as a
definite though unrccognizablc type within the scope of its definition. This indefiniteness seems to bc the price
paid for being able to treat the abstract type structure as an ordinary value rather than as a type. (See
tCMS5I , where we use the terms "virtual witness," "abstract witness °~, and " t ransparent witncss" to describe
three possible t rea tments of the witness type in an existential structure.)

H i e r a r c h i e s ~/" s t ruc tures . The consequences of SOL's t reatment of the witness type become clearer
when wc consider building abstractions in terms of other abstractions. Consider the following definition of a
structure represent ing a geometric point abstraction.

P o i n t W R T (p) : (m k ~ o i n t : (r e a l x rea l) -~p~

x c o o r d : p - , real ,

y j ' o o r d : p ~ real)

P o i n t = 3 p . P o i n t W R T (p)

C a r t e s i a n P o i n t = repff,,i,, (rea l x rea l)

(ink_poin t = X(x: real , y : r ea l) . (x , y),

x coo rd = Xp : r ea l x real o (f~'t p) ,

y e o o r d = Xp: rea l x r e a l . (s n d p))

Now suppose that we want to define a rectangle abstraction that uses C a r t e s i a n P o i n t . We must first open Car-

t e s i anPo in t , define the rectangle structure, and then close the rectangle structure with respect to the point type.

R e e t W R T ~R) = 3 r e c t . { po in t in terp : P o i n t W R T tP).

m k _ r e c t : p x p ~ reet ,

topic:/t: ree t ~ p ,

bo t r igh t : rec t --" p)

R e c r = 3 p . R e c t W R T (p)

C a r t e s i a n R e c t = abs type po in t with P is C a r t e s i a n P o i n t in

r ep ~,,,., po in t

rep gectWRT (poim ~ po in t x ,point
(p o i n t _ i n t e r p = P~ \

mk_rec t = h (tl : poinb~ br :point) ~ (br , tl),

toph,J? = k r :po in t x po'i~t . (f~'t r).

bo tr igh t = h r : po in t x p o i n t . (snd r))

If wc (doubly) opcv C a r t e s i a n R e c t we will get a new virtual point typd unrelated to any existing type We had
to incorporate an interpretation of this point type in the R e e t structure as p o i n t _ i n t e r p to provide the means to

create e lements of that type, which in turn allows us to create rectangles,

Now supposc we also define a circle abstractinn based on the same CartesianPoint structure, and we
warn to allow interactions between the two abstractions, such as creating a unit circle centered at the top left-
hand corner of a given rectangle, This requires that the rectangle structure, the circle structure, and any
operat ions relat ing them all be defined within the scope of a single opening of the CartesianPoint structure. In
general , we must anticipate all abstractions that use the point s tructure and might~ possibly interact in terms of

points and define them within a single abstype expression.

It anvears'H t ' that' when building a collection of interrelated abstractions, , , the lower the level of the abstrac-
tion the wider the scope in which it must be opened. We thus have the tradit ional disadvantages of block
structured languages where low-level facilities must be given the widest visibility. IFor further details, see the

279

examptes in {~6 of CardeIli and Wegner 's tutorial ICW851.)

]nterpreting km:n:p~ Oy)es, "/'he notion of providing operations to interpret a type does tint apply only to
"'abstract" types, It is oRen useful to,impose additional structure on a given type without hiding the identdy.
of that type, For instance, wc might want tn temporarily view in: x boo/ as an ordered set with some special
ordering. To do this wc might define <the structure]n:BoolOrd as ibllows

O r d S e : = ?3:, (/e " : × : -> b :m /)

hrtYm~l()rd repca.~/.n.: (ira" x b:>~:l)

(/~ X(n~, hi) , (n2, t : :) o .~f ,6~ and b~ ~her~ n , ~ n :
e~seif -db~ or b z) then :~ t ~ n z
e~seb i)

The following related and potentially useful mapping would :take an OrdSe: structure to the corresponding]exi-
cographic ardering on lists

LexOrd : OrdSe: .-~ OrdSe: =
XO : OrdSe:. abs@'pe : wish L is O i~

repo,,:,~.,,, (/is: :)
(h" = .fix ,/'o X(l,m)o ff (null I) t~e~ :rue " " " }

Under the SOL typing rules, there is no way ~o make use of]ntBoolOrd because wc could never crea~tc any
dement s to which the ordering operation could be applied. In fact, no structure of *ypc OrdSeI can ever bc
used, because of our inabdity to express values of type :. Of course, this also means that LexOrd is useless.
However , if we had access to the witness types~ then structures like lntBo(:/Ord and mappings like LexOrd
could be quite useful,

There arc various ways of working around these problems within S O L We can, fur instance° delay or
avoid entirely the creation of closed sttructurcs and ins<cad deal separately with types and thcir interpreting
operations, Thus, ZexOrd couM bc rewritten tu have the type Vt , OrdSe:WRT(:)-~OrdgetWRT(listt :) with
OrdSei'WRT(r) -: (Iv : ; x t -~b::::/), However, our preferred solution is to abandon the restrictive SOL rule and
view structures as inhcrcndy "*npcn" or "transparent. °' This is suggested by tthc type rules of ITT, which pro-
vide access to both the wdncss and interpretation components of an existential (i.e. general sum) structure,
intuitively, within the scope of the local declaration

ahstype : wish .r ~s M ~r~ N

we consider : to bc simply an abbrevia~hm or local name for thc witness type of M. Of cuursc, : itself should
not appear in the types of free variables or <)11: the en tke expression, because it has only local significance, but
its meaning that is ,:he witness type of M, may, "Abst rac t ion" is then achieved by other means, namely by
real or simulated functional abstraction with respect< a sttructture variable (scc IMac851), which is merely an
"uncurr icd" form of the approach ~o data abstraction originally propnscd by Reynolds in tRey74j. When
sttructures are transparenL it is d e a r that they carry a particu!ar type, ttngctther with its intcrprelation; in fact,
it is reasonable to think of structures as imerpreted types rather than a kind of value. Conseq~cntly we also
abandon the hnprcdioafivc twoqeve~ system of SOL and move to a ramified system in which quantified ~ypes
arc objccts of ~cvc~ 2, while Ievcl ~ is occupied by ordinary monomorphic types, structures, and po]ymorphic
functions,

2, A ~a~g~age with ramified degree,dent ty~es

2, ~. Depefider~t types

There are two basic {brms of depe~der~t types, which we wit~ call the gener~d product and the gee~eral
,r~m, The general product, written J lx :A,B(x) , i s ~aively intterpretcd as the ordinary Cartesian product of the
family of ~ets {B (x)}~a indexed by A, Le,

I Ix:A,B{x) = { l e A - r U B (x) I V a ~ A o f (a) ~ B (a) }
IdA

It denotes the type of functions that map aa etcmcat ~¢(A into B(a) , that< is functions whnsc result type
depends on the argumenL witth B specif~¢ing the dependence. E!ementts of H x : A , B (x) are in<<reduced by
~ambda absttraction and etiminatted by fhnction applicattion. In ~:hc degcacrattc case where B is a constant func-
tion, e,,',f, when B(x) is defined by an expression no~ con<raining x free, <the general product reduces to the ordi-
nary bane<ion space A --~B, ~

General produd: types arc also called "i'ndcxcd pr~,Muds"0 *~Cartcsian products," or *'depe~dcr~t {i~cdnn
spaces "' Other mr<arlenE include x :A ~ B ix) /CZg4L x :A B (x) J BLg4L and Vx :A.B (x) (from #~e fimnu~as as

280

The general sum, written E x : A . B (x) , is intuitively just the disjoint union of 'the family {B(X)}.v~ a, i .e.

) 2 x : A o B (x) = { (a , b) c A × U B (x) laeA & b e B (a) }

Etements of the general sum have the form of pairs, where the first element, called the witness or index deter-
mines the type of the second element. Elements of the general sum are constructed by a primitive injection
function

in j :]la :Ao(B(a) -~) '2x :A .B(x))

and they can be analyzed by using the two primitive projection functions

witness : (~2x : A .B (x)) ~ A

ou t : lip : (Z x :A °B (x)) o B (w#ness p)

Note that the existence of these projection functions (corresponding roughly to Mar t in-L6f ' s E operation) make
the general sum an " o p e n " construct° in contrast to the existential type of SOL or the categorical sum (see
IMP851, §2.6). 4 In the degenerate case where B (x) is independent of x, the general sum is isomorphic to the
ordinary binary Cartes ian product AcrossB. 5

~n the following sections we will snmetimes take the liberty of saying simply "p roduc t " or " s u m " when
we mean "general p roduc t" and "general sum."

2,2° SmMI and Jarge types

The stratified type system we will bc working with is basically a simplified version of the type system
described in lCZ841. It has several (in fact infinitely many) levels, though only the first two or three will be
ment ioned here. At the bottom of the hierarchy are the small types, contained in the level t type universe
Type~. The small types are generated from the customary primitive types int, boo/ by closing under
" f i r s t -o rder" gencral products and sums (i .e. l l x : A , B (x) and X x : A , B (x) where A:Type l and
R x : A , B (x) : A - + T y p e t , including their degenerate forms ~ and ×) and perhaps other constructions such as

recursion.r '

Types serves as a type of all small types, but it is not itself a small type. It resides in the]evel 2
univcrsc of " largc typcs ," Type?, which in turn is a "very large type" belonging to the next universe Type3,
and so on. The type universes are cumulativc, so Type 2 also contains all the small types. Typez contains
other large types generated from Type~ using second-order products and sums. For instance, the f irs t-order
products and sums can be viewed as operations 7 and as such they have the following largc type:

l l j , Z 1 : l l e X : T y p e l o (X ~ 2 T y p e ~) ~ 2 T y p e l :Type?

where ~ - is the degenerate form of Ih ,which has an analogous type in Type3). Note that as e lements of a
]argc type m Type?, 1tl and Zj are considcred level I objects even though they do nm belong to the basic type

universe Typel -

The existential and universal types of SOL correspond to the following large types:

Vt .~r~ t) ~ I~ , t :Type . ¢ ~ (t) : T y p e 2

3 t . ~ t t) ~ Z~t:Type~ ,~r~t) :Type2

The elements of these large types arc. respcctively, the I first-order~ polymorphic functions and the Z . -
structures, which are the open analogues of SOL's existential structures [we will call them simply "s t ruc tures"
when there is no danger of confusion). Being elements of large types, polymorphic functions and Z2-
structures are also level I objects, i.e. thcy are of the same level as small types. This means that neither
polymorphic funct ions nor Z2-structurcs can be manipulated as ordinary values (which are level 0 objects).

types isomorphism).
4 A "closed" version of the general sum, analngous n~ SOL's existential type, can be derived from the general
product [Pra65 , but the open version used here and in tTT appears m be an independent primitive notion.

~ ~ ~ i~} h ~ n ca ed "indexed sums ' dislo nt unions and "dependcm producW' (an t nf~.~r-

innate c ash with the *'general product" terminology) Other notations used include x:A B(x) IBL] '

3 x : A . B (x) (from the formulas as types isomorphism). I s r ~v
Thc simpler forms of type language will not admit variab e,' anging ~ er values and only constant functions B

will be definable. Under thesecircums~anccs the first-order general product and sum always reduce to their de-

generate forms A ~ B and A x B,
7 With e,g,, Hx:A ,B (x t = f I~(A) (hx:A ,B(x)L

281

We wilt in fact think of E~.structmcs as a generalizcd lbrm of small type.

The level 2 gestural sum operation E, and its associated primitive operations actually have vc,y ge~crzd

polymorphie ~ypcs:

E;, : l t.~ .4 : Type:~ 0 (k -+ ~Type?) ~.~ 'I"ype2 : Type:

inj: : l l > A : T y p e : o l l : ~ B : (A - + T y p e : ! , i] , x : A , (8 (x) - % E : (A) (: ~) : T y p e ;

The corresponding ~ypes for witness~ and o~t.~ arc left as exercises, The basic structure cxprcssbn

rep?:,,(:~TP : ~t.<r(:)

translates i~ato the following

i~j2(Type~)(X::Type~ . (r(:))(,r)(Y) : E: : : Type, , <r(:)

which wc will often abbreviate to if~j2"r P when the polymorphic parameters Types and X:.(r(:) clear from ~he
context. Notc that because of tbc gcncra]ity of E2, we may also create s t rudures with structures rather than
types as witnesses (or even with polymorphic functions as witnesses, though we won"t pursue this possibility
here). We wil lexptoi t this generality in the languagcdcscribcd in the next section.

The rules for type chucking in this system arc convcntional, consisting of the appropriate generalizations
of 'the usual introduction and elimination rules at each level, togdher with additional rules to deal with ~.

conversion and definitional equality.

3, A simple PebMe4ike language

We will now describe a fairty simple language which is intended to isolate a useful subset of the rami
fied type system sketched in the previous section. We will call this language DL, just to have a name for it.
DL resembles Pebble in having explicit depcndunt types, but bccausc of its ramificd nature it is closer in spirit
to ML and the module facilities of {Mac85].

3.1, Small types

The base type language of DL will bc a simplified version of that of ML, For simplicity, we omit
recursive types, but add a labeled product to cxprcss types of galuc environments. Type expressions°
represented by the metavariable te.u~, have the following abstract syntax:

:~<rp ::= b<:o: lint!real I t~,ar ! :exp x :exp' i {id I ::expl i4,::e.~p,,) ! :exp-~e.~p' l w#:w.~.~t,~:~:r)

where :~'ar ranges over type variables and svar over structure wariables. ~ The actual small types of DL
correspond to the closed (i.e. variable free) type expressions, and this class is dcnotcd simply by Type {short
for Type1).

3°2, Sig~a~ures

The class of signatures is obtained by starting with Types and closing with rcspcct to the E~ operator.
This gives a class of types characterizing the union of small typcs and "~abstraction-free ~ E?-structures (Ye.
those that d() not contain any second-order lambda abstractions), Rather than use {he E2 opera{or directly, we
give a ~ittlc grammar for signatures that covers the cases of imerest:

sig :: -- Type I E s~!ar : sig otexp I E <far : sig ,#ig'

where E is short for E2. Typically, the :exp forming the body of a signature is a labeled product typc spccify-.
ing a collection of named functions and other vatues. Note that if sig is Type in cithcr of thc E h?rms, the
siructure variable is actually a type -variable, so structurc variables ,subsume type variables. Note also that m a
signature such as E s : A . B (s) , the structure variable s can appear ill B only as a cornponen~ of a type subcx-
prcssion, It can appear either directly, if A = Type, or else in a sabc'kpression ~'wiiness(. ._r. , .) ," tk)rmed by
nested application of w~iriess and out and denoting a smaU type.

f;or wi:ne,~s{~'ar) to be proper small type, ,s'vur should be restricted to range over structures wilb Type
Wit f~ebge~,

~ 2

3°3° S*rue~tures

In DL, the term "s t ruc ture" is used in a somewhat broader sense than above to match the notion of sig-
nature . ©L Structures may be either small types or nested Z2-structures. As in the case of signatures, we
substitute some syntax for the use of the inj primitive in its full generality, The syntax of structure expres-
sions natural ly follows that of signatures, viz.

sexp : := svar l texp l inj sexp ~,rp l in j sexp sexp '

where svar ranges over structure variables and exp ranges over ordinary value expressions. We will not
fur ther specify exp other than to say that it includes labeled tuples (called bindings in Pebble) expressing ele-
ments of labeled products, and cxpressions of the form " o u t (. . . s w m . .) , " formed by nested application of wi~-
hess and out and denot ing a value of type depending on the signature of s w m

3,4° Func' tors

Wc allow (second-order) lambda-abstract ion of structurc exprcssions with respect to structurc variables
to ff)rm functions from structures to structures. Following IMae85], we will call such abstractions.]unctors.
Wc will allow nested abstractions, yielding "cur r ied" functors. The type of a functor is a gencral product that

we will call a,fimctor s ignature .

The abstract syntax of functor signatures and functor expressions is

msig : := It svar: s ig . s ig] J i svar : s igomsig

mexp :: = h sw~r : s ig , s exp I ~ swfr : s i g .mexp

where 1t represents It a. The syntax of structure expressions must be extended to encompass functor applica-

t ions by adding

sexp : := m e x p (s e x p)

The restrict ions embodied in the structure and functor syntax amount to saying that structures cannot
have functors as components , nor can functors have functnrs as arguments . In other words, functors arc res-
trictcd to bc csscntiatly " f i rs t -order" mappings over structures. These restrictions are partly a reflection of
certain tentat ive principles for programming with parametr ic modules, and partly an at tempt to simplify imple-
menta t ion of the language. Further experience with parametr ic modules (functors) and their implementat ion
should help refine our ideas about what restrictions on the full type theory are pragmatical ly justified.

4. Dependence, abs t rac t ion , and s ignaIure closure

This section considcrs some of the interactions that occur as structures and funetolis are defined in terms
of one another . The interactions bctwecn l l-abstraction and hierarchical chains of definit ions, particularly

those involving sharing, are particularly subtle and interesting.

The definition of a new structure will frcquently refer to existing ones. sett ing up various forms of
dependency between the new structurc and the older structures ment ioned in its definition /known as its
anteceder~ts). For instance, suppose CPoin t ~short for Cartes ianPoin t , perhaps) is an existing structure of signa-

ture Poin t and we define a new rectangle structure C R e c t in terms of C Poin t as follows:

R e c t W R T (P : Po in t) =
E r e c t : T y p e . ~mk_rec t : IP x [Pt - , r e c t .

tophJ? :rect ~ I P .

botr ight :rect ~ [p t)

CRec t : R e c t W R T (CPo in t) =
in j (fCPoint] × [CPoin t l)

~mk_rect = h(t l . br) . (t l_ b r) . " " ")

Here the dependence of CRec t on CPo in t is explicitly indicated by the fact the the name C Poin t appears free in
the signature of CRect . tn such cases of overt dependency significant use of the dependent structure usually
requires access to the referenced structures as auxiliaries, In this instance the manipulat ion of rectangles using

C R e c t is very likely to entail the manipulat ion of associated points using C Poin t ,

In other cases the dependency between a structure and one of its antecedents may be tacit ra ther than
overt , as when a structure B is defined in terms of a structure expression strt~(A) but A does not appear in the
s ignature of B. This gcnerally occurs When A is used for purely internal purposes in the implementat ion of B
and therefore is not relevant to the use of B. The structures on which a structure overt ly depends, i .e . those

283

referred to in its s ignature, will be called its support ing structures, or more brieEty, its support .

kf we have an overt dependency, such as

B = ser~(k) : s @ a (A)

where A :sigA, there are two ways of making B serf-sufficient relative to A, both of which have the effect of
ck)sing ¢he signature sigte(A) with respect to A. One method is to abstract with respect to A, thus turrdng B

in:to a functor:

B ~ = XA :S@A oSt@(A) :]iA :s ix a .s /g~(A)

whose signature is the l t-closure of sig u with respect to A.

The other al ternat ive is to incorporate A as the witness component in a E-sm~ctarc with tle as the body,

yielding :the E--closure of s@ls as signature:

B'" = i N k s W ~ (k) : E X : s i g : os'ig~(X)

Note that the B " closure is no longer a structure, in order t() get a usable structure we have to apply it to a
s tructure expression, thus recreat ing the original situation of overt dependency, as in

I3' = B ~ (F (G (X))) : x i g B (F (G (X))) .

On the o ther hand, B *' is truly self-contained, at least so far as A is concerned, and is usable as i~ stands
because it incorporates the necessary support ing structure A within i{seK. ~n ML, A is callcd a sub,~'tructure o f

Now consider what happens when there is a chain of dependencies such as

A = s:ra : gig a

t3 = s trg(A) : s igB(A)

C - sgrc(A, /3): s igc(A , B)

and we wish to abstract C with respect to its support ing structures. There are three different ways ~o do this:
(~) full abstract ion with respect to all support ing structures:

M k C I = XA : sign • XB : sigu(A) , strc,(A, B)
:liA :,rig:, ° ~IIB : sigB(A) , s igc (A , B)

(2) abstract ion with respect to B, with a residual dependencc on the fixed A:

M k C 2 = k B : s i g ~ (A) , s i re(A, B)
: t lB:sig~e(A)o s igc(A, B)

and (3) abstract ion of both B and C with respect to A:

MkB = hA : s ig A ostrt~(A) : J[A : sig A osig~(A)

M k C ~ = XA : s ig A , s i re (A , MkB (A))
:]lA : siga , s igc (A , MkB (A))

Now suppose that we first E-close B with respect to A, obtaining

B' = inj A (s t ra (A)) : sigg, = E X : s i g a . s i&~(A)

Then abst ract ing C with respect to B' gives

M k C ' = k B ' : sigt~, , i N B ' strc(IB' l , out (B '))
: l tB ' : s ig :r o sig<.(1B' Io ou~(B'))

i f we both E-close C with respecI to B' a n d abstract with respect to B ' we get

M k C ' = XB' : sig, 8, , i N B ' (s ire([B' t, otlt(B '))) : I IB' : sig:r ,s ig c,

where sig(. . . . EB':si&~, , s i g c (t B ' t , e u t (B ')) . The rules of type equMity will insure ihat h)r all s t ructures
S: s igu , , I M k C ' (S) I=S , even though the relat ion between the a rgument and result of M k C ' is not manifest in
its s ignature.

Note that when B was E-closed to {brm B' the support of C was coalesced into a single st~~.~ct,~fc, which
made it easier to fuIly abs t ract C with respect to its support. When there are many levels of s u p i x ~ i n g struc-
tures this efficiency of abst ract ion becomes a signifieam advantage . On the other hand , it became impossible

284

to abstract with respect to B' while leaving A fixed, because A had become a component of B.

The final example illustrates the interplay between sharing and abstraction. Suppose structures A, B, C,
and D are related as follows:

A s t r a : s i g A

B str~(A) : sigB(A)

C = s : r c (A) : s i g c (A)

D = s trD(A, fL C): s ig l) (A, I3, C)

i .e, D depends on A, B, and C while B and C both depend on A. It" we fully abstract D with respect to its sup-
port wc have

M k D = XA : sig A o XB : sig B , X C : s igc o strf)(A , 13~ C) : I IA : siga , lIB : sigl~ , I]C: s igc o s ig l) (A, B , C)

~f, on the other hand, we first Z-close B and C with respect to A and then abstract D with respect to its sup-
port, we get

B' = i N A s t ra tA) : sigle = Z X : siga o s i g# (A)

C' = inj A s i r e (A) : sig c, = Z X : s i g a , s i g n (A)

M k D ' - XB': sig;r . XC' : s ign , , str;)(tB' I , o u t (B ') , o u t (C '))
: I]B':sig;~,o I IC ' : s i g c, °sigD(t B '] , out(B') , ou~(C')) - -shar~ng 113' I = IC'I

]n the type of M k D ' something new has been added. The way that B and C support the definition of D prob-
ably depends on the fact that B and C share the same support A (think of B and C as rectangles and circles,
and A as points, for example). For M k D this sharing is directly expressed by the signature, but this is not the
case for M k D ' , so a special sharing constraint must be added to the signature.

Two styles of modular programming have been illustrated here. The first, which is favored in Pebble,
expresses dependencies by allowing structure names to appear in the signatures of other structures, and tends
to abstract directly and individually on each supporting structure. The other style is representative of modules
in ML. It involves h)rming Z-closures to capture dependencies and coalesce the support of structures into one
level. In fact, the ML module language goes so far as to require that all signatures be Z-closed, even the
argument and result signatures of functors. There are several other factors involved which indirectly support
this strict closure rule. In particular, ML's "generat ive" declarations of datatypes and exceptions, and the fact
that structures can contain state, make it necessary to maintain fairly rigid relations between structures. In
addition, Z-closed structures appear to bc more appropriate units for separate compilation and persistent

storage.

5, CencJusions

The main thrust of this work is that a ramified type system with general dependent type constructs is an
effective tool for the analysis and design of programming language type systems, particularly those oriented
toward programming m the large. We have explored some of the design choices that have been raised by
recently proposed languages such as Pebble. SOL, and Standard ML with modules. But many important ques-
tions remain to be answered. For instance, we need to have precise characterizations of the relative strengths
of predicative vs impredicative type systems, and reflexive vs irreflexive systems, it would be desirable to
have a representation independence result analogous to that of Mitchell]Mit86] for the stratified system used
here. Finally, It appears that the basic polymorphic type system of ML IMi1781 is in fact a ramified system,
and that the system described in §2, rather than the second order lambda calculus, can be viewed as its most

natural generalization.

References

IBC851

t BDD80J

IBL841

J. L. Bates and R. L. Constable. Proofs" as Programs , ACM Trans. on Programming Languages

and Systems, 7, 1~ January 1985, pp 113-136.

H. Boehm, A. Demers. and J. Donahue, An inJbrmal descr ip t ion o f Russel l , Technical Report TR

80-430, Computer Science Dept.. Cornell Univ.- October 1980.

R o M. Burstall and B. Lampsono A kerne l language. f i) r abs tract data types a n d modules , in Seman-
tics of Data Types, G. Kahn. D. B. MacQueem and G. Plotkin,. eds., LNCS, Vol 173, Springer-

Verlag, Berlin, 1984.

2 8 5

IBur84/

ICargN]

ICF581

/CH85]

ICM85]

Icwss!

!CZ841

IdeB80]

tDD85]

tGir71]

I H 0o84]

I How80/

IMac85]

IMcC791

IM-L7~i

{M-L74t

IM-L821

lMR86]

IM~I_~?81

IMit86]

tMP85]

I Rey74j

ISco701

R. M. Burstall, Programming w#h modzdes as (s7:ed ./hnctiona/ pros, ramming, in{'] Conf. {)n 5th
Generation Compm:h~g Systems, Tokyo., Nov. t984.

L. CardeIIi~ 77~e impredica:ive o,ped X-ealcu&s, u~pubtishcd mam~script, 1985.

H. B, Curry and R. Feys~ Combinatory Logk I, North.-Holland. 1958.

T. Coquand and G. Huet, A ca~cubes q/consfructions, ~nR)rmatkm and Control, to appear.

L. Cardelli and D. B. MacQucen, Persistence and type abstvwtion, Proceedings of ~he Appin
Workshop on Data Types and Persistence, Aug ~985, to appear.

L. Cardelli and P. Wegncr, On unc@r,~'mnding (vpes, data abstraction, and po&moephism, Technical
Report No. CS-85-~4, Brown University, August t985.

R. L. Constable and D. R. Zlatin, The type theo~ T (g PL/CK3, ACM Trans. on Programming
Languages and Systems, 6, 1, January 1984, pp. 94-1 t7.

N. G. de gru0n, A survey G['project AUTOMATH, in To H. B. Curry: Essays on CombinaIory
l,ogic, Lambda-Calculus and Formalism, Academic Press, 1980, pp, 579-607.

J. Donahue and A. Dcmers, Data)~7)es are Va&es, ACM Traas. on Programming Languages and
Systems, 7, 3, July 1985, pp. 426--445.

J.-Y. Girard, Une extension de t'intewremtion de G~}de[~) ['ano/vse, el son application d
['d/imination &'s coupures &ms :'ona@se el /a :h&:rie des (vpes, in Second Scandinavian Logic Sym-
posium, J. E. Fenstad, Ed., North-Holland, 197t, pp. 63-92.

J. G. Hook, Understanding Russell--o .firs: attempG in Semantics of Data Types, G. Kahn, D. B.
MacQuecn, and G. Ptotkin., Eds., LNCS Vol 173, Springer-Verlag, 1984, pp. 69-85.

W. Howard, The./brnTulas-as-types notion of constant:ion, in To H. B. Ct~rry: Essays on Combina-
tory Logic° Lambda-Calculus and Formalism, Academic Press, 1980, pp. 476-490. (written 1969)

D. B° MacQtleen, ModulesJ})r Standard ML (Revised)° Polymorphism Newsletter, It, 2, Oct 1985.

N. J. McCracken, An inves'tigason oj" a programming langeeage with a po@morphic t)'pe structure,
Ph.D. Thesis, Computer and Information Science, Syracusc Univ., June 1979.

P, Martin-L6f, A :heogv q/'typeso unpunished manuseripL Octtober 1971.

P. Martin-LSf, An intuitionistic :heo 0, :71" (ypes: predicative part, L, ogic Colloquium 73, H. Rose and
J. Shepherdson, Eds., North-Holland, 1974, pp. 73-118.

P. Martin-LSf, Constructive mathematics and computer progratnming, in LogiG Methede]ogy and
Phi~osephy of Scfience, VL North-Holland, Amsterdam,]982, pp, I53-175.

A. R. Meyer and M. B. Reinhold, 'Type' is not a type, t3th Annual ACM POPL Symposium, S~.
Petersburg, January 1986.

R. Milner~ A theory (?/'type po@morphism in programming, JCSS, t7,3, Dec 1978, pp. 348-375.

J. C. Mitchell, Representation independence and da:aabs#'action, t3th Annual ACM POPL Sympo-
sium, St. Petersburg, January 1986,

J. C. Mitchell and G, D. Plotkin, Absmw: types have ~:ristenthd O, pes, 12th ACM Syrup. on Princi-
pics of Programming Languages, New Orleans, Jan. t985, pp. 37-51,

J, C, ReynoMs, Towards a theop 3, 4" (vpe structure, in Co|]oq~htm sur ~a Pregraramaflon° Lecture
Notes in Compu~ter Science, Vol~ 19, Springer Verlag, Berlin, 1974, pp, 408--423,

D. Scott, Constructive Va:idigy, in Symposinm on Automatic Demonstration, Lecture Notes in
Math., Vol 125, Springcr-Verlag, t970, pp. 237-275.

288

