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I~treductio~r~ 

Writing any large program poses difficult problems of organization, In many modern programming 
languages these problems are addressed by special linguistic constructs, variously known as modules, packages, 
or clusters, which provide for partitioning programs intn manageable components and for securely combining 
these components to form complete programs. Some general purpose components are able to take on a life of 
their own, being separately compiled and stored in libraries of generic, reusable program units. Usually 
modularity constructs also support some form of information hiding, such as "abstract data types." "Pro- 
gramming in the large" is concerned with using such constructs to impose structure on large programs, in con- 
trast to '~programming in the smatF ', which deals with the detailed implementation of algorithms in terms of 
data structurcs and control constructs. Our goal here is to examine some of the proposed linguistic notions 
with respect to how they meet the pragmatic requirements of programming in the large. 

Originally, linguistic constructs supporting modularity were introduced as a matter of pragmatic 
language engineering, in response to a widely perceived need. More recently, the underlying notions have 
been anatyzcd in terms of type systems incorporating second-order concepts. Here I use the term "second- 
order '~ in the sense of °~second-order" logic, which admits quantification over predicate variables [Pra651. 
Similarly, the type systems in question introduce variables ranging over types and allow various forms of 
abstraction or '~quantification"' over them. 

Historically, these type systems are based on fundamental insights in proof theory, particularly 'the "for- 
mulas as types" notion that evolved through the work of Curry and Feys ICF58h Howard [HHow8010 de Bruijn 
ldeBS0] and Scott IScoT0I. This notion provided the basis for Martin-L6f's h~rmalizations of constructive logic 
as lntuitionistic Type Theory (ITF) IM-L71, M-L74, M-L821, and was utilized by Girard IGir71], who intro- 
duced a h)rm of second-order typed lambda calculus as a tool in his proof-theoretic work. The "t2~rmulas as 
types" notion, as developed in de Bruijn's AUTOMATH system and Martin-L6f's ITT° is also central to the 
"programming logics", PL/CV3 and nu-PRL developed by Constable and his coworkers ICZ84, BC85]. 

In the programming language area. Reynolds 1Roy74] independently invented a language similar to that 
used by Girard, and his version has come to be called the second-order lambda calculus. An extended form of 
this language, called SOL, was used by Mitchell and Plotkin IMP851 to give an explanation of abstract data 
types. The programming languages ML IGMW78, Mi178] and Russell IBDDS0, I'.too84, DD851 represent two 
distinctly different ways of realizing *'polymorphism" by abstraction with respect to types. ML is basically a 
restricted form of second-order lambda calculus, while Russell employs the more general notion of ~dependent 
types" (Martin-L6f"s general product and sum, defined in §2). The Pebble language of Burstall and Lampson 
IBL84, Bur841 also provides dependent types, but in a somewhat purer t~.)rm. Finally. HHuet and Coquand's 
Calculus of Constructions is another variant of typed tambala calculus using the general product dependent 
type. It also provides a form of metatype (or type of types), called a '~context", that characterizes the struc- 
ture of second-order types, thus making it possib e to abstract not only with respect to types, but also with 
respect to families of types and type constructors. The  Calculus of Constructions is an explicit attempt to com- 

bine a logic and a programming language in one system. 
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Among these languages, Russell and Pebble arc distingl~ished by havi~g "ref lexive"  type systems° mean- 
ing that there is a "type of al] types" that is a m,)mber of itself ('FypecT}r;:)~,), Martin-I,Sf 's initial version of 
ITT tM-L7t]  was also reflexive in this sense, but hc abandoned this vcrsion in fav()r of a "'ramified ''l system 
with a hierarchy of type univcrscs when Girard 's  Paradox fGirTl] showed that the reflexive system was incon- 
sistent as a constructive logic. In terms of programming languages, the paradox implies at least the existence 
of divergent expressions, but it is not yet clear whether mnre serious pathologies might folk)w fr<nn it (see 
Meyer and Rcinhotd's  paper, this proceedings /MR861). Since types arc simply values belonging to the type 
Tyl)e, reflexive type systems tend to obscure the distinction between types and the values they are meant to 
describe, and this in turn tends to compile:ate the task of type checking, tt is, on the other hand~ possible to 
construct reasonable semantic models %r reflexive typc systems I McC7% Car85t. 

The remaining nonreflcxive languages distinguish, at least implicit]y, between individual types and the 
universe of types to which they belong and over which type variables range. Howevcro ~he second order 
lambda calculus, SOL, and the Calculus of Constructk)ns (despite its "contcxts-)  arc -imprcdicativc., '< mean- 
ing that there is only eric type universe and it is closed under type cnnstructions like Vt.(rU) and 3t.(r(, ') that 
involve quantifiers ranging over itself. The reflexive type systems of Russell and Pebble are also impredica- 
tire, in perhaps an even stronger sense since type variables can actually take on Type, the universe of  types, as 
a value. In contrast, the later verskms of ITT and Constable's logics are ramified systems in which quantifica- 
lion or abstraction over a type universe at one level produces an element of the next higher level, and they are 
therefore predicative. 

Our purpose here is not to set out the mathematical nuances of these various languages, but to look at 
some of the pragmatic issues that arise when we actually attempt to use such languages as vehicles h)r pro- 
gramming in the 1urge. We will begin by discussing some of the consequences of  the SOL Type system %r 
modular programming. Then in §2 we briefly sketch a ramified (i.e. stratified) system of dependent types 
from which we derive a small language called DL, which is a gcneralized and "desugared"  vcrsinn of the 
extended ML language presented in IMac85L The final seetinn uses DL to illustrate some uf the stylistic 
differences between ML and Pebble. 

t° Shortcomings  o f  S O L ' s  e×is~entia] lypes  

The SOL language JMP85J provides existential types of the form 

where ,: is a type variabD and (r(:) is a type expression possibly containing free occurrences of :. Values of  
such types are introduced by expressions of  the %rm 

where P is an expression of type o-(r), These values are intended to model abstract data types, and were 
called data al,gebrets in IMP85] and packages in ICW85/: we wilt use the term structure to agree with the termi- 
nology of  ]Mac851 that we wilt be adopting in tater sections. The type component ~r will be called the wimess 
or rg5~resenmtion type of  the structure~ Access to the components of a structure is provided by an expression 
of the form 

abs~ype : width x is M in N : p 

which is well-typed assuming M : d t , ~ ( : )  and x:<r(~ ~) => N : p  with the restriction that : does m)t appear free in 
p nor in the type of any variable y appearing free in N. 

As mentioned in tMP851, and because of  the impredicative nature of SOL, these cxistential types arc 
ordinary types just like in: and boot, and the structures that are their values arc just ordinary values. This 
implies that atl the standard value manipulating constructs such as conditionals and functional abstraction 
apply cqually to structures. Thus a parametric module is just an ordinary function of  type T-*dt,(r(t), fl.)r 
example, 

There is a tradeoff for this simplicity, however. Let us consider carefully the consequences of  the res- 
trictions on the abs{ype expression, Once a structure has been constructed, say 

A = rep3~.,,~,/rP 

Since 9ertrand Russeil i~r~ed~eed his ~ramified type theory," the word "ramified" has been used in k~gic to 
mean "stratified into a sequence of levels', normally an infinite ascending sequence of levels. 
z Roughly speaking, a definition of a set is said to be. impredicativc if the set contains members defined wish 
ret~renc¢ to the entire set, 
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the type T is essentially forgotten. Although we may locally " o p e n "  the structure, as in 

abs~ype t with x is A in N 

there is absolutely no connection between the bound type variable t and the original representat ion type "r. 
Moreover ,  we cannot  even make a connection between the witness type names  obtained from two different 
opcnings of the s a m e  structure. For example the types s and t will not agree within the body of 

abs type  s with x is A in 
abs type  ¢ with y is A in * . . 

h~ effect, not only is the form and identity of the representat ion type hidden, but we are not even allowed to 
assume that  there is a unique witness type associated with the structure A. The witness type has been made 
not only opaque,  but hypothetical! This very strong restriction on our access to an abstraction goes beyond 
~ommon practice in Xanguage design, since we nnrmalty have some means of referr ing to an abstract type as a 
definite though unrccognizablc type within the scope of its definition. This indefiniteness seems to bc the price 
paid for being able to treat the abstract type structure as an ordinary value rather  than as a type. (See 
tCMS5I ,  where we use the terms "virtual  witness,"  "abstract  witness °~, and " t ransparent  witncss" to describe 
three possible t rea tments  of the witness type in an existential structure.)  

H i e r a r c h i e s  ~/" s t ruc tures .  The consequences of SOL's  t reatment  of the witness type become clearer 
when wc consider building abstractions in terms of other abstractions.  Consider the following definition of a 
structure represent ing a geometric point abstraction. 

P o i n t W R T ( p )  : ( m k ~ o i n t : ( r e a l  x rea l )  -~p~ 

x c o o r d  : p - ,  real ,  

y j ' o o r d  : p ~ real  ) 

P o i n t  = 3 p . P o i n t W R T ( p )  

C a r t e s i a n P o i n t  = repff,,i,, ( rea l  x rea l )  

( ink_poin t  = X(x: real ,  y : r ea l )  . ( x ,  y ), 

x coo rd  = Xp : r ea l  x real  o (f~'t p ) ,  

y e o o r d  = Xp: rea l  x r e a l .  ( s n d  p )  ) 

Now suppose that  we want to define a rectangle abstraction that uses C a r t e s i a n P o i n t .  We must first open Car-  

t e s i anPo in t ,  define the rectangle structure, and then close the rectangle structure with respect to the point type. 

R e e t W R T  ~R ) = 3 r e c t . {  po in t  in terp : P o i n t W R T  tP ). 

m k _ r e c t  : p x p ~ reet ,  

topic:/t: ree t  ~ p ,  

bo t r igh t  : rec t  --" p ) 

R e c r =  3 p .  R e c t W R T ( p )  

C a r t e s i a n R e c t  = abs type  po in t  with P is C a r t e s i a n P o i n t  in  

r ep  ~,,,., po in t  

rep gectWRT (poim ~ po in  t x ,point  
( p o i n t _ i n t e r p  = P~ \ 

mk_rec t  = h ( tl : poinb~ br  :point )  ~ ( br ,  tl ), 

toph,J? = k r  :po in t  x po'i~t . (f~'t r ). 

bo tr igh t  = h r  : po in t  x p o i n t .  (snd r) ) 

If wc (doubly) opcv C a r t e s i a n R e c t  we will get a new virtual point typd unrelated to any existing type We had 
to incorporate an interpretation of  this point type in the R e e t  structure as p o i n t _ i n t e r p  to provide the means to 

create e lements  of  that type, which in turn allows us to create rectangles, 

Now supposc we also define a circle abstractinn based on the same CartesianPoint  structure, and we 
warn to allow interactions between the two abstractions, such as creating a unit circle centered at the top left- 
hand corner of a given rectangle,  This requires that the rectangle structure, the circle structure, and any 
operat ions  relat ing them all be defined within the scope of a single opening of the CartesianPoint  structure. In 
general ,  we must anticipate all abstractions that use the point s tructure and might~ possibly interact in terms of 

points and define them within a single abstype expression. 

It anvears'H t ' that' when building a collection of  interrelated abstractions, , ,  the lower the level of the abstrac- 
tion the wider the scope in which it must be opened. We thus have the tradit ional disadvantages of  block 
structured languages where low-level facilities must  be given the widest visibility. IFor further  details, see the 
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examptes in {~6 of CardeIli and Wegner 's  tutorial ICW851.) 

]nterpreting km:n:p~ Oy)es, "/'he notion of providing operations to interpret a type does tint apply only to 
"'abstract" types, It is oRen useful to,impose additional structure on a given type without hiding the identdy. 
of that type, For instance, wc might want tn temporarily view in: x boo/ as an ordered set with some special 
ordering. To do this wc might define <the structure ]n:BoolOrd as ibllows 

O r d S e :  = ?3:, (/e " :  × : -> b :m /  ) 

hrtYm~l()rd .... repca.~/.n.: ( ira" x b:>~:l) 

(/~ .... X(n~, hi) ,  (n2, t : : ) o  .~f ,6~ and b~ ~her~ n , ~ n :  
e~seif -db~ or b z) then :~ t ~ n  z 
e~seb i ) 

The following related and potentially useful mapping would :take an OrdSe: structure to the corresponding ]exi- 
cographic ardering on lists 

LexOrd : OrdSe: .-~ OrdSe: = 
XO : OrdSe:. abs@'pe : wish L is O i~ 

repo,,:,~.,,, (/is: : ) 
(h" = .fix ,/'o X(l,m)o ff (null I) t~e~ :rue " " " } 

Under the SOL typing rules, there is no way ~o make use of  ]ntBoolOrd because wc could never crea~tc any 
dement s  to which the ordering operation could be applied. In fact, no structure of  *ypc OrdSeI can ever bc 
used, because of our inabdity to express values of  type :. Of course, this also means that LexOrd is useless. 
However ,  if we had access to the witness types~ then structures like lntBo(:/Ord and mappings like LexOrd 
could be quite useful, 

There arc various ways of working around these problems within S O L  We can, fur instance° delay or 
avoid entirely the creation of closed sttructurcs and ins<cad deal separately with types and thcir interpreting 
operations, Thus, ZexOrd couM bc rewritten tu have the type Vt ,  OrdSe:WRT(:)-~OrdgetWRT(listt :) with 
OrdSei'WRT(r) -: (Iv : ; x t -~b::::/), However,  our preferred solution is to abandon the restrictive SOL rule and 
view structures as inhcrcndy "*npcn" or "transparent. °' This is suggested by tthc type rules of  ITT, which pro- 
vide access to both the wdncss and interpretation components of  an existential (i.e. general sum) structure, 
intuitively, within the scope of the local declaration 

ahstype : wish .r ~s M ~r~ N 

we consider : to bc simply an abbrevia~hm or local name for thc witness type of M. Of  cuursc, : itself should 
not appear in the types of  free variables or <)11: the en tke  expression, because it has only local significance, but 
its meaning that is ,:he witness type of M, may, "Abst rac t ion"  is then achieved by other means, namely by 
real or simulated functional abstraction with respect< a sttructture variable (scc IMac851), which is merely an 
"uncurr icd"  form of the approach ~o data abstraction originally propnscd by Reynolds in tRey74j. When 
sttructures are transparenL it is d e a r  that they carry a particu!ar type, ttngctther with its intcrprelation; in fact, 
it is reasonable to think of  structures as imerpreted types rather than a kind of value. Conseq~cntly we also 
abandon the hnprcdioafivc twoqeve~ system of  SOL and move to a ramified system in which quantified ~ypes 
arc objccts of  ~cvc~ 2, while Ievcl ~ is occupied by ordinary monomorphic types, structures, and po]ymorphic 
functions, 

2, A ~a~g~age with ramified degree,dent ty~es  

2, ~. Depefider~t types  

There are two basic {brms of  depe~der~t types, which we wit~ call the gener~d product and the gee~eral 
,r~m, The general product, written J lx :A,B(x) ,  i s  ~aively intterpretcd as the ordinary Cartesian product of  the 
family of  ~ets {B (x)}~a indexed by A, Le, 

I Ix:A,B{x)  = { l e A - r U B ( x )  I V a ~ A o f ( a ) ~ B ( a ) }  
IdA  

It denotes the type of  functions that map aa etcmcat ~¢(A into B(a ) ,  that< is functions whnsc result type 
depends on the argumenL witth B specif~¢ing the dependence. E!ementts of  H x : A , B ( x )  are in<<reduced by 
~ambda absttraction and etiminatted by fhnction applicattion. In ~:hc degcacrattc case where B is a constant func- 
tion, e,,',f, when B(x)  is defined by an expression no~ con<raining x free, <the general product reduces to the ordi- 
nary bane<ion space A --~B, ~ 

General produd: types arc also called "i'ndcxcd pr~,Muds"0 *~Cartcsian products," or *'depe~dcr~t {i~cdnn 
spaces "' Other mr<arlenE include x :A ~ B ix) /CZg4L x :A .... B (x) J BLg4L and Vx :A.B (x) (from #~e fimnu~as as 
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The general sum, written E x : A . B ( x ) ,  is intuitively just the disjoint union of 'the family {B(X)}.v~ a, i .e.  

) 2 x : A o B ( x )  = { ( a , b ) c A × U B ( x )  laeA & b e B ( a ) }  

Etements  of the general sum have the form of pairs, where the first element,  called the witness or index deter- 
mines the type of the second element.  Elements of the general sum are constructed by a primitive injection 
function 

in j :  ]la :Ao(B(a)  -~ ) '2x :A .B(x ) )  

and they can be analyzed by using the two primitive projection functions 

witness : (~2x : A .B (x))  ~ A 

ou t  : lip : ( Z x  :A °B (x))  o B (w#ness  p )  

Note that the existence of these projection functions (corresponding roughly to Mar t in-L6f ' s  E operation) make 
the general sum an " o p e n "  construct° in contrast to the existential type of SOL or the categorical sum (see 
IMP851, §2.6). 4 In the degenerate case where B ( x )  is independent  of x, the general sum is isomorphic to the 
ordinary binary Cartes ian product AcrossB.  5 

~n the following sections we will snmetimes take the liberty of  saying simply "p roduc t "  or " s u m "  when 
we mean "general  p roduc t"  and "general  sum."  

2,2° SmMI and  Jarge types 

The stratified type system we will bc working with is basically a simplified version of the type system 
described in lCZ841. It has several (in fact infinitely many) levels, though only the first two or three will be 
ment ioned here. At the bottom of the hierarchy are the small  types, contained in the level t type universe 
Type~. The small types are generated from the customary primitive types int, boo/  . . . .  by closing under 
" f i r s t -o rder"  gencral  products and sums (i .e.  l l x : A , B ( x )  and X x : A , B ( x )  where A:Type l  and 
R x : A , B ( x ) : A - + T y p e t ,  including their  degenerate forms ~ and ×) and perhaps other  constructions such as 

recursion.r '  

Types serves as a type of all small types, but it is not itself a small type. It resides in the ]evel 2 
univcrsc of " largc typcs ,"  Type?, which in turn is a "very large type"  belonging to the next universe Type3, 
and so on. The type universes are cumulativc, so Type 2 also contains all the small types. Typez contains 
other  large types generated from Type~ using second-order products and sums. For instance, the f irs t-order  
products and sums can be viewed as operations 7 and as such they have the following largc type: 

l l j ,  Z 1 : l l e X : T y p e l o ( X ~ 2 T y p e ~ ) ~ 2 T y p e l  :Type?  

where ~ -  is the degenerate  form of Ih ,which has an analogous type in Type3). Note that as e lements  of a 
]argc type m Type?,  1tl and Zj are considcred level I objects even though they do nm belong to the basic type 

universe Typel - 

The existential  and universal types of SOL correspond to the following large types: 

Vt .~r~ t )  ~ I~ , t :Type . ¢ ~ ( t ) : T y p e 2  

3 t . ~ t t )  ~ Z~t:Type~ ,~r~t) :Type2 

The  elements  of these large types arc. respcctively, the I first-order~ polymorphic functions and the Z . -  
structures,  which are the open analogues of SOL's existential structures [we will call them simply "s t ruc tures"  
when there is no danger  of confusion).  Being elements of  large types, polymorphic functions and Z2- 
structures are also level I objects, i.e. thcy are of  the same level as small types. This  means that neither 
polymorphic  funct ions nor Z2-structurcs can be manipulated as ordinary  values (which are level 0 objects). 

types isomorphism). 
4 A "closed" version of the general sum, analngous n~ SOL's existential type, can be derived from the general 
product [Pra65 , but the open version used here and in tTT appears m be an independent primitive notion. 

~ . . . . . .  ~ ....... ~ . . . .  i~} h ~ n  ca ed "indexed sums ' dislo nt unions and "dependcm producW' (an t nf~.~r- 

innate c ash with the *'general product" terminology) Other notations used include x:A B(x) IBL ] ' 

3 x : A . B ( x )  (from the formulas as types isomorphism). I s r ~v 
Thc simpler forms of type language will not admit variab e,' anging ~ er values and only constant functions B 

will be definable. Under thesecircums~anccs the first-order general product and sum always reduce to their de- 

generate forms A ~ B  and A x B, 
7 With e,g,, Hx:A ,B (x t  = f I~(A) (hx:A ,B(x)L  
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We wilt in fact think of  E~.structmcs as a generalizcd lbrm of small type. 

The level 2 gestural sum operation E, and its associated primitive operations actually have vc,y ge~crzd 

polymorphie ~ypcs: 

E;, : l t.~ .4 : Type:~ 0 (k -+ ~Type?) ~.~ 'I"ype2 : Type:  

inj:  : l l > A : T y p e : o l l : ~ B : ( A - + T y p e : ! , i ] , x : A , ( 8 ( x ) - % E : ( A ) ( : ~ )  : T y p e ;  

The corresponding ~ypes for witness~ and o~t.~ arc left as exercises, The basic structure cxprcssbn 

rep?:,,(:~TP : ~t.<r(:) 

translates i~ato the following 

i~j2(Type~ )(X::Type~ . (r(:))(,r)(Y) : E: :  : Type, , <r(:) 

which wc will often abbreviate to if~j2"r P when the polymorphic parameters Types and X:.(r(:) clear from ~he 
context. Notc that because of tbc gcncra]ity of E2, we may also create s t rudures with structures rather than 
types as witnesses (or even with polymorphic functions as witnesses, though we won"t pursue this possibility 
here). We wil lexptoi t  this generality in the languagcdcscribcd in the next section. 

The rules for type chucking in this system arc convcntional,  consisting of the appropriate generalizations 
of 'the usual introduction and elimination rules at each level, togdher  with additional rules to deal with ~. 

conversion and definitional equality. 

3, A simple PebMe4ike language 

We will now describe a fairty simple language which is intended to isolate a useful subset of the rami 
fied type system sketched in the previous section. We will call this language DL, just to have a name for it. 
DL resembles Pebble in having explicit depcndunt types, but bccausc of its ramificd nature it is closer in spirit 
to ML and the module facilities of  {Mac85]. 

3.1, Small  types 

The base type language of DL will bc a simplified version of that of ML, For simplicity, we omit 
recursive types, but add a labeled product to cxprcss types of  galuc environments. Type expressions° 
represented by the metavariable te.u~, have the following abstract syntax: 

:~<rp ::= b<:o: lint!real I t~,ar ! :exp x :exp' i {id I ::expl ..... i4,::e.~p,,) ! :exp-~e.~p' l w#:w.~.~t,~:~:r) 

where :~'ar ranges over type variables and svar over structure wariables. ~ The actual small types of DL 
correspond to the closed (i.e. variable free) type expressions, and this class is dcnotcd simply by Type {short 
for Type1 ). 

3°2, Sig~a~ures 

The class of  signatures is obtained by starting with Types and closing with rcspcct to the E~ operator. 
This  gives a class of types characterizing the union of  small typcs and "~abstraction-free ~ E?-structures (Ye.  
those that d() not contain any second-order lambda abstractions), Rather than use {he E2 opera{or directly, we 
give a ~ittlc grammar for signatures that covers the cases of imerest: 

sig :: -- Type I E s~!ar : sig otexp I E <far : sig ,#ig' 

where E is short for E2. Typically, the :exp forming the body of a signature is a labeled product typc spccify-. 
ing a collection of named functions and other vatues. Note that if sig is Type in cithcr of  thc E h?rms, the 
siructure variable is actually a type -variable, so structurc variables ,subsume type variables. Note also that m a 
signature such as E s : A . B ( s ) ,  the structure variable s can appear ill B only as a cornponen~ of a type subcx- 
prcssion, It can appear either directly, if A = Type, or else in a sabc'kpression ~'wiiness(. ._r. , .) ," tk)rmed by 
nested application of  w~iriess and out and denoting a smaU type. 

f;or wi:ne,~s{~'ar) to be proper small type, ,s'vur should be restricted to range over structures wilb Type 
Wit f~ebge~, 
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3°3° S*rue~tures 

In DL, the term "s t ruc ture"  is used in a somewhat  broader  sense than above to match the notion of  sig- 
nature .  ©L Structures may be either small types or nested Z2-structures.  As in the case of  signatures,  we 
substitute some syntax for the use of  the inj primitive in its full generality, The syntax of structure expres- 
sions natural ly follows that of signatures,  viz. 

sexp : := svar  l texp l inj  sexp ~,rp l in j  sexp sexp '  

where svar  ranges over structure variables and exp ranges over ordinary value expressions. We will not 
fur ther  specify exp other  than to say that it includes labeled tuples (called bindings  in Pebble) expressing ele- 
ments  of labeled products,  and cxpressions of the form " o u t ( . . . s w m . .  ) , "  formed by nested application of  wi~- 
hess and out  and denot ing a value of type depending on the signature of  s w m  

3,4° Func' tors  

Wc allow (second-order)  lambda-abstract ion of structurc exprcssions with respect to structurc variables 
to ff)rm functions from structures to structures. Following IMae85], we will call such abstractions.]unctors.  
Wc will allow nested abstractions,  yielding "cur r ied"  functors.  The type of a functor is a gencral product that 

we will call a,fimctor s ignature .  

The abstract  syntax of functor signatures and functor expressions is 

msig : := It svar:  s ig . s ig  ] J i svar : s igomsig 

mexp  :: = h sw~r : s ig , s exp  I ~ swfr  : s i g .mexp  

where 1t represents  It a. The syntax of structure expressions must be extended to encompass  functor applica- 

t ions by adding 

sexp : := m e x p ( s e x p )  

The restrict ions embodied in the structure and functor syntax amount  to saying that structures cannot  
have functors as components ,  nor can functors have functnrs as arguments .  In other  words,  functors arc res- 
trictcd to bc csscntiatly " f i rs t -order"  mappings over structures. These  restrictions are partly a reflection of 
certain tentat ive principles for programming with parametr ic  modules,  and partly an at tempt  to simplify imple- 
menta t ion of the language. Further  experience with parametr ic  modules (functors) and their implementat ion 
should help refine our ideas about what restrictions on the full type theory are pragmatical ly justified. 

4. Dependence,  abs t rac t ion ,  and  s ignaIure  closure 

This section considcrs some of the interactions that occur as structures and funetolis are defined in terms 
of one another .  The  interactions bctwecn l l-abstraction and hierarchical  chains of definit ions,  particularly 

those involving sharing,  are particularly subtle and interesting. 

The definition of a new structure will frcquently refer to existing ones. sett ing up various forms of  
dependency between the new structurc and the older structures ment ioned in its definition /known as its 
anteceder~ts).  For instance, suppose CPoin t  ~short for Cartes ianPoin t ,  perhaps)  is an existing structure of  signa- 

ture Poin t  and we define a new rectangle structure C R e c t  in terms of C Poin t  as follows: 

R e c t W R T  ( P : Po in t )  = 
E r e c t : T y p e .  ~mk_rec t :  IP x [Pt - , r e c t .  

tophJ? :rect  ~ I P . 

botr ight  :rect  ~ [p t ) 

CRec t  : R e c t W R T  (CPo in t )  = 
in j  ( fCPoint]  × [CPoin t l )  

~mk_rect = h( t l .  br) . ( t l_  b r ) .  " " " ) 

Here the dependence  of CRec t  on CPo in t  is explicitly indicated by the fact the the name C Poin t  appears  free in 
the signature of CRect .  tn such cases of  overt  dependency significant use of  the dependent  structure usually 
requires access to the referenced structures as auxiliaries, In this instance the manipulat ion of rectangles using 

C R e c t  is very likely to entail the manipulat ion of  associated points using C Poin t ,  

In other  cases the dependency between a structure and one of its antecedents may  be tacit ra ther  than 
overt ,  as when a structure B is defined in terms of a structure expression strt~(A) but A does not appear  in the 
s ignature of B. This  gcnerally occurs  When A is used for purely internal  purposes in the  implementat ion of B 
and therefore  is not relevant  to the  use of B. The  structures on which a structure overt ly depends,  i .e .  those 
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referred to in its s ignature,  will be called its support ing  structures,  or more brieEty, its support .  

kf we have an overt  dependency,  such as 

B = ser~(k) : s @ a ( A )  

where A :sigA, there are two ways of making  B serf-sufficient relative to A, both of which have the effect of 
ck)sing ¢he signature sigte(A) with respect to A. One method is to abstract  with respect to A, thus turrdng B 

in:to a functor:  

B ~ = XA :S@A oSt@(A) : ]iA :s ix  a .s /g~(A) 

whose signature is the l t-closure of  sig u with respect to A. 

The  other  al ternat ive  is to incorporate A as the witness component  in a E-sm~ctarc with tle as the body,  

yielding :the E--closure of  s@ls as signature:  

B'" = i N  k s W ~ ( k )  : E X : s i g :  os'ig~(X) 

Note that  the B "  closure is no longer a structure,  in order  t() get a usable structure we have to apply it to a 
s tructure expression,  thus  recreat ing the original situation of  overt  dependency,  as in 

I3' = B ~ ( F ( G ( X ) ) )  : x i g B ( F ( G ( X ) ) ) .  

On  the  o ther  hand,  B *' is truly self-contained, at least so far as A is concerned,  and is usable as i~ stands 
because it incorporates  the necessary support ing structure A within i{seK. ~n ML, A is callcd a sub,~'tructure o f  

Now consider what  happens  when there is a chain of dependencies such as 

A = s:ra : gig a 

t3 = s trg(A)  : s igB(A)  

C - sgrc(A, /3):  s igc(A ,  B)  

and we wish to abstract  C with respect to its support ing structures.  There  are three different  ways ~o do this: 
(~) full abstract ion with respect to all support ing structures: 

M k C  I = XA : sign • XB : sigu(A ) ,  strc,(A, B)  
:liA :,rig:, ° ~IIB : sigB(A ) ,  s igc (A ,  B)  

(2) abstract ion with respect to B, with a residual dependencc  on the fixed A: 

M k C  2 = k B  : s i g ~ ( A ) ,  s i re(A,  B)  
: t lB:sig~e(A)o s igc(A,  B)  

and (3) abstract ion of both B and C with respect to A: 

MkB = hA : s ig A ostrt~(A ) : J[A : sig A osig~(A ) 

M k C  ~ = XA : s ig A , s i re (A ,  MkB  (A))  
: ]lA : siga , s igc (A ,  MkB  (A))  

Now suppose that  we first E-close B with respect to A, obtaining 

B' = inj A (s t ra (A) )  : sigg, = E X : s i g  a . s i&~(A) 

Then abst ract ing C with respect to B' gives 

M k C '  = k B '  : sigt~, , i N  B '  strc( IB' l , out (B ' ) )  
: l tB ' : s ig :r  o sig<.( 1B' Io ou~(B'))  

i f  we both E-close C with respecI to  B' a n d  abstract  with respect to B '  we get 

M k C '  = XB' : sig, 8, , i N  B '  (s ire(  [B' t, otlt( B ' )  ) ) : I IB' : sig:r ,s ig c, 

where sig( . . . .  EB':si&~, , s i g c ( t B ' t , e u t ( B ' ) ) .  The rules of  type equMity will insure ihat h)r all s t ructures  
S: s igu , ,  I M k C ' ( S )  I=S ,  even though the  relat ion between the a rgument  and result of  M k C '  is not manifest  in 
its s ignature.  

Note  that when B was E-closed to {brm B' the support  of C was coalesced into a single st~~.~ct,~fc, which 
made it easier  to fuIly abs t ract  C with respect to its support.  When there are many levels of  s u p i x ~ i n g  struc- 
tures this efficiency of abst ract ion becomes a signifieam advantage .  On the other  hand ,  it became impossible 
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to abstract with respect to B' while leaving A fixed, because A had become a component of B. 

The final example illustrates the interplay between sharing and abstraction. Suppose structures A, B, C, 
and D are related as follows: 

A .... s t r  a : s i g  A 

B .... str~(A) : sigB(A ) 

C = s : r c ( A ) :  s i g c ( A )  

D = s trD(A,  fL  C):  s ig l ) (A,  I3, C)  

i .e,  D depends on A, B, and C while B and C both depend on A. It" we fully abstract D with respect to its sup- 
port wc have 

M k D  = XA : sig A o XB : sig B , X C : s igc o strf)( A ,  13~ C)  : I IA : siga , lIB : sigl~ , I]C: s igc  o s ig l ) (A,  B ,  C)  

~f, on the other hand, we first Z-close B and C with respect to A and then abstract D with respect to its sup- 
port, we get 

B'  = i N  A s t ra tA)  : sigle = Z X  : siga o s i g# (A)  

C' = inj A s i r e ( A )  : sig c, = Z X : s i g  a , s i g n ( A )  

M k D '  - XB': sig;r . XC'  : s ign , ,  str;)( tB'  I , o u t ( B ' ) ,  o u t ( C ' )  ) 
: I]B':sig;~,o I IC ' : s i g  c, °sigD( t B ' ] ,  out(B') ,  ou~(C' ) ) - -shar~ng 113' I = IC'I 

]n the type of M k D '  something new has been added. The way that B and C support the definition of  D prob- 
ably depends on the fact that B and C share the same support A (think of  B and C as rectangles and circles, 
and A as points, for example). For M k D  this sharing is directly expressed by the signature, but this is not the 
case for M k D ' ,  so a special sharing constraint must be added to the signature. 

Two styles of modular programming have been illustrated here. The first, which is favored in Pebble, 
expresses dependencies by allowing structure names to appear in the signatures of other structures, and tends 
to abstract directly and individually on each supporting structure. The other style is representative of  modules 
in ML. It involves h)rming Z-closures to capture dependencies and coalesce the support of structures into one 
level. In fact, the ML module language goes so far as to require that all signatures be Z-closed, even the 
argument and result signatures of functors. There are several other factors involved which indirectly support 
this strict closure rule. In particular, ML's "generat ive" declarations of datatypes and exceptions, and the fact 
that structures can contain state, make it necessary to maintain fairly rigid relations between structures. In 
addition, Z-closed structures appear to bc more appropriate units for separate compilation and persistent 

storage. 

5, CencJusions 

The main thrust of this work is that a ramified type system with general dependent type constructs is an 
effective tool for the analysis and design of programming language type systems, particularly those oriented 
toward programming m the large. We have explored some of the design choices that have been raised by 
recently proposed languages such as Pebble. SOL, and Standard ML with modules. But many important ques- 
tions remain to be answered. For instance, we need to have precise characterizations of the relative strengths 
of  predicative vs impredicative type systems, and reflexive vs irreflexive systems, it would be desirable to 
have a representation independence result analogous to that of Mitchell ]Mit86] for the stratified system used 
here. Finally, It appears that the basic polymorphic type system of  ML IMi1781 is in fact a ramified system, 
and that the system described in §2, rather than the second order lambda calculus, can be viewed as its most 

natural generalization. 

References  

IBC851 

t BDD80J 

IBL841 

J. L. Bates and R. L. Constable. Proofs" as Programs ,  ACM Trans. on Programming Languages 

and Systems, 7, 1~ January 1985, pp 113-136. 

H. Boehm, A. Demers. and J. Donahue, An inJbrmal descr ip t ion  o f  Russel l ,  Technical Report TR 

80-430, Computer Science Dept.. Cornell Univ.- October 1980. 

R o M. Burstall and B. Lampsono A kerne l  language. f i ) r  abs tract  data types  a n d  modules ,  in Seman- 
tics of  Data Types, G. Kahn. D. B. MacQueem and G. Plotkin,. eds., LNCS, Vol 173, Springer- 

Verlag, Berlin, 1984. 

2 8 5  



IBur84/ 

ICargN] 

ICF581 

/CH85] 

ICM85] 

Icwss! 

!CZ841 

IdeB80] 

tDD85] 

tGir71 ] 

I H 0o84 ] 

I How80/ 

IMac85] 

IMcC791 

IM-L7~i 

{M-L74t 

IM-L821 

lMR86] 

IM~I_~?81 

IMit86] 

tMP85] 

I Rey74j 

ISco701 

R. M. Burstall, Programming w#h modzdes as (s7:ed ./hnctiona/ pros, ramming, in{'] Conf. {)n 5th 
Generation Compm:h~g Systems, Tokyo., Nov. t984. 

L. CardeIIi~ 77~e impredica:ive o,ped X-ealcu&s, u~pubtishcd mam~script, 1985. 

H. B, Curry and R. Feys~ Combinatory Logk I, North.-Holland. 1958. 

T. Coquand and G. Huet, A ca~cubes q/consfructions, ~nR)rmatkm and Control, to appear. 

L. Cardelli and D. B. MacQucen, Persistence and type abstvwtion, Proceedings of ~he Appin 
Workshop on Data Types and Persistence, Aug ~985, to appear. 

L. Cardelli and P. Wegncr, On unc@r,~'mnding (vpes, data abstraction, and po&moephism, Technical 
Report No. CS-85-~4, Brown University, August t985. 

R. L. Constable and D. R. Zlatin, The type theo~ T (g PL/CK3, ACM Trans. on Programming 
Languages and Systems, 6, 1, January 1984, pp. 94-1 t7. 

N. G. de gru0n, A survey G['project AUTOMATH, in To H. B. Curry: Essays on CombinaIory 
l,ogic, Lambda-Calculus and Formalism, Academic Press, 1980, pp, 579-607. 

J. Donahue and A. Dcmers, Data )~7)es are Va&es, ACM Traas. on Programming Languages and 
Systems, 7, 3, July 1985, pp. 426--445. 

J.-Y. Girard, Une extension de t'intewremtion de G~}de[ ~) ['ano/vse, el son application d 
['d/imination &'s coupures &ms :'ona@se el /a  :h&:rie des (vpes, in Second Scandinavian Logic Sym- 
posium, J. E. Fenstad, Ed., North-Holland, 197t, pp. 63-92. 

J. G. Hook, Understanding Russell--o .firs: attempG in Semantics of Data Types, G. Kahn, D. B. 
MacQuecn, and G. Ptotkin., Eds., LNCS Vol 173, Springer-Verlag, 1984, pp. 69-85. 

W. Howard, The./brnTulas-as-types notion of constant:ion, in To H. B. Ct~rry: Essays on Combina- 
tory Logic° Lambda-Calculus and Formalism, Academic Press, 1980, pp. 476-490. (written 1969) 

D. B° MacQtleen, ModulesJ})r Standard ML (Revised)° Polymorphism Newsletter, It, 2, Oct 1985. 

N. J. McCracken, An inves'tigason oj" a programming langeeage with a po@morphic t)'pe structure, 
Ph.D. Thesis, Computer and Information Science, Syracusc Univ., June 1979. 

P, Martin-L6f, A :heogv q/'typeso unpunished manuseripL Octtober 1971. 

P. Martin-LSf, An intuitionistic :heo 0, :71" (ypes: predicative part, L, ogic Colloquium 73, H. Rose and 
J. Shepherdson, Eds., North-Holland, 1974, pp. 73-118. 

P. Martin-LSf, Constructive mathematics and computer progratnming, in LogiG Methede]ogy and 
Phi~osephy of  Scfience, VL North-Holland, Amsterdam, ]982, pp, I53-175. 

A. R. Meyer and M. B. Reinhold, 'Type' is not a type, t3th Annual ACM POPL Symposium, S~. 
Petersburg, January 1986. 

R. Milner~ A theory (?/'type po@morphism in programming, JCSS, t7,3, Dec 1978, pp. 348-375. 

J. C. Mitchell, Representation independence and da:aabs#'action, t3th Annual ACM POPL Sympo- 
sium, St. Petersburg, January 1986, 

J. C. Mitchell and G, D. Plotkin, Absmw: types have ~:ristenthd O, pes, 12th ACM Syrup. on Princi- 
pics of Programming Languages, New Orleans, Jan. t985, pp. 37-51, 

J, C, ReynoMs, Towards a theop 3, 4" (vpe structure, in Co|]oq~htm sur ~a Pregraramaflon° Lecture 
Notes in Compu~ter Science, Vol~ 19, Springer Verlag, Berlin, 1974, pp, 408--423, 

D. Scott, Constructive Va:idigy, in Symposinm on Automatic Demonstration, Lecture Notes in 
Math., Vol 125, Springcr-Verlag, t970, pp. 237-275. 

288 


