
The mechanical evaluation of expressions

By P. J. Landin

This paper is a contribution to the "theory" of the activity of using computers. It shows how
some forms of expression used in current programming languages can be modelled in Church's
X-notation, and then describes a way of "interpreting" such expressions. This suggests a
method, of analyzing the things computer users write, that applies to many different problem
orientations and to different phases of the activity of using a computer. Also a technique is
introduced by which the various composite information structures involved can be formally
characterized in their essentials, without commitment to specific written or other representations.

Introduction
The point of departure of this paper is the idea of a

machine for evaluating schoolroom sums, such as

1. (3 + 4)(5 + 6)(7 + 8)
2. if 219 < 312 then 12V2 else 5 V 2

17 cos n/l7 ~ "V̂ 1 ~ 1 7 sin
3 If

l7 cos TT/17 + V(l + 17 sin

Any experienced computer user knows that his
activity scarcely resembles giving a machine a numerical
expression and waiting for the answer. He is involved
with flow diagrams, with replacement and sequencing,
with programs, data and jobs, and with input and output.
There are good reasons why current information-
processing systems are ill-adapted to doing sums.
Nevertheless, the questions arise: Is there any way of
extending the notion of "sums" so as to serve some of
the needs of computer users without all the elaborations
of using computers? Are there features of "sums" that
correspond to such characteristically computerish con-
cepts as flow diagrams, jobs, output, etc.?

This paper is an introduction to a current attempt to
provide affirmative answers to these questions. It
leaves many gaps, gets rather cursory towards the end
and, even so, does not take the development very far.
It is hoped that further piecemeal reports, putting right
these defects, will appear elsewhere.

Expressions
Applicative structure

Many symbolic expressions can be characterized by
their "operator/operand" structure. For instance

al(2b + 3)

can be characterized as the expression whose operator
is V and whose two operands are respectively 'a,' and the
expression whose operator is ' + ' and whose two
operands are respectively the expression whose operator
is ' x ' and whose two operands are respectively '2' and
'6,' and '3. ' Operator/operand structure, or "applica-
tive" structure, as it will be called here, can be exhibited
more clearly by using a notation in which each operator

is written explicitly and prefixed to its operand(s), and
each operand (or operand-list) is enclosed in brackets,
e.g.

/(a,+(x(2,6),3)).

This notation is a sort of standard notation in which
all the expressions in this paper could (with some loss
of legibility) be rendered.

The following remarks about applicative structure
will be illustrated by examples in -which an expression is
written in two ways: on the left in some notation whose
applicative structure is being discussed, and on the right
in a form that displays the applicative structure more
explicitly, e.g.

/(fl,a/(2b + 3)
(a + 3)(6 - 4) +
(c-5)(d-6)

In both these examples the right-hand version is in the
"standard" notation. In most of the illustrations that
follow, the right-hand version will not adhere rigorously
to the standard notation. The particular point illus-
trated by each example will be more clearly emphasized
if irrelevant features of the left-hand version are carried
over in non-standard form. Thus the applicative
structure of subscripts is illustrated by

Oib,, a{j)b(J,k).

Some familiar expressions have features that offer
several alternative applicative structures, with no
obvious criterion by which to choose between them.
For example

3 + 4 + 5 + 6
f +(+(+(3, 4), 5), 6)
\ +(3, +(4, +(5, 6)))
[£'(3,4,5,6)

where 2 ' is taken to be a function that operates on a
list of numbers and produces their sum. Again

/ t («. 2)
\ square (a)

where t is taken to be exponentiation.

308

Mechanical evaluation

Sometimes the choice may be more material to the
meaning. For instance, without background informa-
tion it is impossible to decide whether or not

Ay + 1) + n(y - 1)
contains a sub-expression whose operator is multi-
plication. We are not concerned here with offering
specific rules for answering such questions. What
interests us is that in many cases such a rule can be
considered as a rule about applicative structure.

Using Church's A-notation [1] we can impute applica-
tive structure to some familiar notations that use
"private" (or "internal," or "local," or "dummy," or
"bound") variables, such as the second and third
occurrence of 'x' in the following:

*x2dx [(0, x, Xx.x2).

Similarly

^o^joiOjjbjk 2"(0, n, ty.a(i,j)b(j, k))

where E" is a triadic function that is analogous to J.

Auxiliary definitions
The use of auxiliary definitions to qualify an expression

can also be rendered in terms of A. E.g.

(« - 1)(M + 2)
where u — 1 — 3.

2)} [7-3]

Notice that AK.(M — 1)(« + 2) is a function and hence
it is appropriate to write this expression in a context
that is more familiarly occupied by an identifier, such
as 'sin' or '/,' designating a function. Notice also that
an expression that denotes a function does not necessarily
occur in such a context; witness some previous examples
and also

/ (0, TT/2, sin).

We shall consistently distinguish between "operators"
and "functions" as follows. An operator is a sub-
expression of a (larger) expression appearing in a
context that, when written in standard form, would
have an operand (or operand-list) to the right of it. A
function bears the same relation to an operator as a
number, e.g. the fourth non-negative integer, does to a
numerical expression, e.g. (16 — 7)/(5 — 2). The "value"
of this expression is a number; similarly we shall speak
of the "value" of an expression that can occur as an
operator. Just as the value of an expression that occurs
as an operand combined with 'V ' must, to make sense,
be a number, so the value of an expression that occurs
as an operator must be a function. However, any
expression that can occur sensibly as an operator can
also occur sensibly as an operand.

Applicative structure can be indicated unambiguously
by brackets. Legibility is improved by using a variety
of bracket shapes. In particular we shall tend to use
braces for enclosing (long) operators and square brackets

for enclosing operands (and operand-lists). However,
except that we observe correct mating, no formal
significance will be attached to differences of bracket
shape. That is to say, the rules for making sense of a
written expression do not rely on them; no information
would be lost by disregarding the differences in a
correctly mated expression.

There is another informal device by which we shall
bring out the internal grouping of long expressions,
namely indentation. For instance, the connection
between the items of an operand-list, or the two com-
ponents of an operator/operand combination, will
frequently be emphasized by indenting them equally.

The use of several auxiliary definitions, rather than
just one, can be rendered in terms of A. For example,
if the definitions are mutually independent, they can be
considered as a "simultaneous," or "parallel" definition
of several identifiers, e.g.

u = 2p + q
and v = p — 2q

(u,v) = (2p +q,p- 2q).

So if Church's notation is extended to permit a list of
identifiers between the 'A' and the ' . ' , a group of
mutually independent auxiliary definitions raises no new
issue, e.g.

u(u + 1) - v(v + 1) {X(u, v).u(u + 1) - v(v + 1)}
where u = 2p + q [2p + q, p — 2q]

and v = p — 2q.

If the definitions are inter-dependent the correspond-
ence is more elaborate. Some examples of this situation
will be given below.

When we say that the applicative structure of a
specific piece of algebraic notation is such-and-such, we
are providing unique answers to certain questions about
it, such as "What is its operator?" "What are its
operands?" Our discussion of specific algebraic nota-
tions will now be interrupted by a discussion of what
precisely these questions are. That is to say, the next
Section is devoted to explaining what is meant by
"applicative structure" rather than to exhibiting the
applicative structure of specific notations.

This attempt to characterize applicative structure will
use a particular technique called here "structure
definitions," and used later in the paper to characterize
other sorts of structure. The next Section but one
explains this technique. After these two Sections, the
discussion of the applicative structure of specific
notations will be resumed.

Applicative expressions
The expressions in this paper are constructed out of

certain basic components which are, for our purposes,
"atomic"; i.e. their internal structure (if any) does not
concern us. They comprise single- and multi-character
constants and variables, including decimal numbers.
All these will be called identifiers. There will be no need
for a more precise characterization of identifiers.

309

Mechanical evaluation

By a X-expression we mean, provisionally, an expression
characterized by two parts: its bound variable part,
written between the 'A' and the ' . ' ; and its X-body,
written after the ' . ' . (A more precise characterization
appears below.)

Some of the right-hand versions appearing above
contain a A-expression. Some of those below contain
several A-expressions, sometimes one inside another.
This paper shows that many expressions can be con-
sidered as constructed out of identifiers in three ways:
by forming A-expressions, by forming operator/operand
combinations, and by forming lists of expressions. Of
these three ways of constructing composite expressions,
the first two are called "functional abstraction" and
"functional application," respectively. We shall show
below that the third way can be considered as a special
case of functional application and so, in so far as our
discussion refers to functional application, it implicitly
refers also to this special case.

We are, therefore, interested in a class of expressions
about any one of which it is appropriate to ask the
following questions:

Ql. Is it an identifier? If so, what identifier?
Q2. Is it a A-expression? If so, what identifier or

identifiers constitute its bound variable part and
in what arrangement? Also what is the expression
constituting its A-body?

Q3. Is it an operator/operand combination? If so>
what is the expression constituting its operator?
Also what is the expression constituting its
operand?

We call these expressions applicative expressions (AEs).
Later the notion of the "value of" (or "meaning of,"

or "unique thing denoted by") an AE will be given a
formal definition that is consistent with our correspond-
ence between AEs and less formal notations. We shall
find that, roughly speaking, an AE denotes something
as long as we know the value of each identifier that
occurs free in it, and provided also that the expression
does not associate any argument with a function that
is not applicable to it. In particular, for a combination
to denote something, its operator must denote a function
that is applicable to the value of its operand. On the
other hand, any A-expression denotes a function;
roughly speaking, its domain (which might have few
members, or even none) contains anything that makes
sense when substituted for occurrences of its bound
variable throughout its body.

Given a mathematical notation it is a trivial matter
to find a correspondence between it and AEs. It is less
trivial to discover one in which the intuitive meaning
of the notation corresponds to the value of AEs in the
sense just given. A correspondence that meets this
condition might be called a "semantically acceptable"
correspondence. For instance, someone might con-
ceivably denote the sum

vr+vr+ . . . +vr+s_+s_1

of a segment of a vector by

»«.
Themostdirect rendering of this as anAEis somethinglike

sum (v(r), s).
However, this is not a semantically acceptable cor-
respondence since it wrongly implies dependence on
only one element of v, namely vr. The same criterion
prevents A from being considered as an operator, in
our sense of that word; more precisely it rules that

X(x, x2 + 1)
incorrectly exhibits the applicative structure of
'Ax.x2 + 1.'

We are interested in finding semantically acceptable
correspondences that enable a large piece of mathe-
matical symbolism (with supporting narrative) to be
rendered by a single AE.

Structure definitions
AEs are a particular sort of composite information

structure. Lists are another sort of composite informa-
tion structure. Seyeral others will be used below, and
they will be explained in a fairly uniform way, each sort
being characterized by a "structure definition." A
structure definition specifies a class of composite informa-
tion structures, or constructed objects (COs) as they will
be called in future. It does this by indicating how many
components each member of the class has and what sort
of object is appropriate in each position; or, if there
are several alternative formats, it gives this information
in the case of each alternative. A structure definition
also specifies the identifiers that will be used to designate
various operations on members of the class, namely
some or all of the following:

(a) predicates for testing which of the various
alternative formats (if there are
alternatives) is possessed by a given
CO;

(b) selectors for selecting the various components
of a given CO once its format is
known;

(c) constructors for constructing a CO of given
format from given components.

The questions Ql to Q3 above comprise the main part
of the structure definition for AEs. What they do not
convey is the particular identifiers to be used to designate
the predicates, selectors and constructors. Future
structure definitions in this paper will be laid out in
roughly the following way:

An AE is either
an identifier,

or a X-expression (Xexp) and has a bound variable (by)
which is an identifier or
identifier-list,

and a X-body (body)
which is an AE,

310

Mechanical evaluation

or a combination and has an operator (rator)
which is an AE,

and an operand (rand)
which is an AE.

This is intended to indicate that 'identifier,' 'A-
expressiori and 'combination1 (and also the abbreviations
written after them if any) designate the predicates, and
'bv,' 'body,' 'rator,' 'rand' (mentioning here the
abbreviated forms) designate the selectors. We consider
a predicate to be a function whose result for any suitable
argument is a "truth-value," i.e. either true or false.
For instance, if A' is a A-expression, then the predicate
Xexp applied to X yields true, whereas identifier yields
false; i.e. the following equations hold:

Xexp X = true
identifier X = false.

(It will be observed that, by considering predicates as
functions, we are led into a slight conflict with the
normal use of the word "apply." For instance, in
normal use it might be said that the predicate even
"applies to" the number six, and "does not apply to"
the number seven. We must here avoid this turn of
phrase and say instead that even "holds for," or "yields
true when applied to," six; and "does not hold for," or
"yields false when applied to," seven.)

The constructors will not usually be named explicitly.
Instead we shall use obviously suggestive identifiers
such as 'constructXexp.' E.g. the following equations
hold:

identifier (constructXexp (J, X)) = false
Xexp (constructXexp (J, X)) = true
bv (constructXexp (J, X)) = J
constructXexp (bv X, body X) = X

and many others. (More precisely, each of these
equations holds provided J and X are such as to make
both sides meaningful. Thus the first three hold
provided J is an identifier or list of identifiers and X is
an AE. Again, the last holds provided I is a
A-expression.)

A structure definition can also be written more
formally, as a definition with a left-hand side and a
right-hand side. The left-hand side consists of all the
identifiers to which the structure definition gives mean-
ing. The right-hand side is an AE containing references
to the component-classes involved (e.g. some class of
character-strings, in the case of AEs that are identifiers)
and also to one or more of a small number of functions
concerned with classes of COs. However, in this
paper we shall not formalize the notion of structure
definitions, and shall write any we need in the style
illustrated above.

Function definitions

In ordinary use, definitions frequently give a functional,
rather than numerical, meaning to the definiendum by
using a dummy argument variable. This can be rendered

as an explicit definition with a A-expression for its right-
hand side, e.g.

f(y) = / =

So an expression using an auxiliary function definition
can be rendered by using two A-expressions, one for its
operator and one for its operand, e.g.

+ f(A)}[Xy.y(y + 1)].
where f(y) = y(y + 1)

A group of auxiliary definitions may include both
numerical and functional definitions, e.g.

{X(a,b,f).f(a + b,a-b)
f(a -b,a + b)}

[33, 44, A(w, v). uv(u + v)].

f(a +b,a-b) +
f(a -b,a+b)

where a = 33
and b = 44
and /(M, V) = uv(u + v)

When a A-expression is written as a sub-expression of
a larger expression, the question may arise: how far to
the right does its body extend? This question can
always be evaded by using enough brackets, e.g.

(X(u,v).(uv(u+v))).

However, to economize in brackets, we adopt the
convention that it extends as far as is compatible with
the brackets, except that it is stopped by a comma.
Another way of saying this is that the "binding power"
of the ' . ' is less than that of"functional application",
multiplication and all the written operators such as
' + . ' 7.' etc-> DUt exceeds that of the comma. For
example:

Asia)) + g(f(b))
where f(z) = z2 + 1

and g(z) = z2 — 1

[Xz.z2 + 1, A z . z 2 - 1].

An identifier may occur in the bound variable part of
a A-expression (either constituting the entire bound
variable, or as one item of it). Apart from this, every
written occurrence of AE is in one of the following four
sorts of context:

(a) It is the A-body of some A-expression.
(b) It is the operator of some combination.
(c) It is the operand of some combination.
(d) It is a "complete" AE occurring in a context of

English narrative, or other non-AE.

Each of the three formats of AE can appropriately
appear in any of the four sorts of contexts. We have
already seen that A-expressions, like identifiers, can
appropriately occur both as operators and as operands.
Below we shall find combinations appearing as operators,
and A-expressions appearing as A-bodies. These last
two possibilities are both associated with the possibility
that a function might produce a function as its result.
Together with more obviously acceptable possibilities,

311

Mechanical evaluation

they almost complete the full range of ways in which a
particular sort of AE can appear in a particular sort of
context. (The one remaining case is that of an identifier
occurring as a A-body, which occurs in a later example.)

The right-hand side of an auxiliary definition might
itself be qualified by an auxiliary definition, e.g.

- 3]].

In particular this might happen with an auxiliary
definition of a function, e.g.

x)}

«/(« +
where

5)
u == a(a +

where
1)
a = 7 - 3

{AM.

[{Xa
«/(«
.a(a

where f(x) = ax(a + x)
where a — 7 — 3

[{Xa.Xx.ax(a
[7 - 3]].

This last example contains a A-expression whose body
is another A-expression. Notice that such a A-expression
describes a "function-producing" function and hence
can meaningfully give rise to a combination whose
operator is a combination, e.g.

{{Xa.Xx.ax(a +
We shall slightly abbreviate such expressions by

omitting brackets round an operator that is a com-
bination, i.e.

{Xa. Xx. ax{a + x)}[7 - 3][3].

This amounts to an "association to the left" rule. We
also abbreviate by omitting brackets round a single
identifier,

{Xa.Xx.ax(a + x)}[l - 3]3.

Similarly we may write 'fa + / 3 + Dfb" for
'/(«) + / (3) + {D(f)}[b],' and rely on context to
distinguish between ' / applied to a' and ' / times a'
(as indeed we also do when writing 'f(a + 1)')-

Since we shall use multicharacter identifiers (excluding
spaces), this abbreviation means that the reader will
sometimes be obliged to use his intelligence, together
with the context, to decide whether, e.g.

is to be read as

or

prefix x nullist

{prefix[x]}[nullist]

{prefi[x][x]}[nul[list]]

or many other conceivable alternatives. Generally we
shall use spaces wherever they are helpful without being
ungainly in appearance.

We now turn to three forms of expression that play
an important role in programming languages, namely
lists (in particular argument-lists), conditional expressions
and recursive definitions. The next three Sections are
devoted to showing how these can be rendered as
operator/operand combinations using certain basic
functions.

Lists
In an earlier Section we gave a structure definition for

AEs that made no explicit provision for lists of operands.
Our illustrations have begged this issue by using dyadic
and triadic functions. It will turn out below that
discussion of the evaluation of AEs can be simplified if
we can avoid classifying operands into "single operands"
and "operand-lists," and avoid classifying functions
into those that take one argument and those that take
several. We now show how this is done.

Lists can be characterized by a structure definition as
follows:

A list is either null
or else has a head (h)

and a tail (t) which is a list.

A null-list has length zero. A non-null-list has length
one or more; if its items are au a2, • • ., ak, (fc > 1),
then its head is ax and its tail is the (null or non-null)
list whose k — 1 items are a1,...,ak_x and ak.
So we let

1st = ft
2nd L = h(tL)
3rd L = h(t(tL)), etc.

defining the functions 1st, 2nd, etc., in terms of the
selectors h and t. So the "items" of a list are the things
that result from applying 1st, 2nd, etc., to it.

On the lines mentioned earlier, the two identifiers
constructnullist and constructlist designate constructors
for lists, taking respectively zero and two arguments.
So the following equations hold:

null{constructnullist{)) = true
null(constructlist(x, L)) — false
h(constructlist(x, LJ) = x
constructlistQiL, tL) = L

and several more.
We shall not distinguish between lists in this sense

and the argument lists of dyadic and triadic functions.
That is to say, we consider a triadic function to be a
function whose arguments are limited to lists of length
three. So an operator denoting a triadic function is not
necessarily prefixed to an operand-list of three items;
e.g. if L is a list of two numbers, the following expression
is acceptable:

{X{x, y, z).x + y + z}[constructlist(3, L)].

We use nullist to designate a list of length zero, and
consider an empty bracket pair as merely an alternative
way of writing nullist. Also we consider commas as
merely an alternative way of writing a particular sort
of combination, which we now explain.

Associated with any object x there is a function that
transforms any given list into a list of length one more,
by adding x at the beginning of it. We denote this
function by

prefixix).

312

Mechanical evaluation

So if L is a list whose k items are au a2, • • •, ak, then

prefix(x)L

denotes a list whose k + 1 items are x, au . . .,ak. The
function prefix is function-producing and so gives rise
to combinations whose operators are combinations. It
can be denned in terms of constructlist as follows:

prefix{x) = \L.constructlist(x, L).

By a natural extension of the notation for function
definitions this can also be written

prefix{x){L) = constructlist(x, L).

The following examples illustrate the applicative
structure we are now imposing on operand-lists of
length two or more, and of length zero:

f(a, b, c) /{prefix a(prefix b(prefix c niillist)))
a + b -\-{prefix a(prefix b(nullist)))
constructnullistQ constructnullist(nullist).

Notice that while it is meaningful to ask whether a
function is dyadic (i.e. has arguments restricted to lists
of length two), there is no significance to asking whether
a function is monadic since any function may be denoted
in combination with a single operand rather than a list
of operand expressions.

For the rare cases in which we wish to refer to a list
with just one item, we use the function defined as
follows:

unitlist{x) = prefix x nullist.

We shall use the following abbreviation for 'prefix x
V:

x:L.
So, e.g.

x,y,z = x:(y,z) = -x:(y : unitlistz) = x :{y : (z : ())).

We shall treat':' as more "binding" than ',', e.g.

2nd(2nd(L, x:M, N)) = 1st M.

The last example refers to a list whose items include
a list. We admit this possibility and write, e.g.

(a, b),(c,(),e), unitlistf.

In what follows, a list whose items include lists (i.e. a
list which has items that are amenable to null, 1st, 2nd,
etc.) will be called a "list-structure."

Conditional expressions
We now show how AEs provide a match for con-

ditional expressions, e.g. for

if a < b then a1 else b1. (A)

This expression somewhat resembles

/th(a7, b1)

where / is a computed index number, used to select an

item from a list which is not referred to elsewhere. So,
we consider 'if to be an identifier designating a function-
producing function such that

//(true) = 1st
//(false) = 2nd.

Then (A) is equivalent to the following AE:

if (a < b)(a\ V). (Al)

This rendering is not, however, adequate. For it
would match

if a = 0 then 1 else I/a

by

(B)

(Bl)

But the value of this expression, i.e. to be more explicit,
of

if (a = Q)(prefix l(prefix(l/a)())) (Bl')

depends on the value of the sub-expression 'I/a,' and
hence only exists if I/a exists. So (Bl) is not an
acceptable rendering of (B) if a is zero and division by
zero is undefined. More generally, this method of
rendering conditional expressions as AEs does not meet
our criterion of semantic acceptability unless the domain
of every function is artificially extended to contain any
argument that might conceivably arise on either
"branch" of a conditional expression. We now present
another method that avoids any such commitment.

Consider instead the following alternative

i/(a = O)(Ax.l, (B2)

where 'x' is an arbitrarily chosen variable and '3' is
an arbitrarily chosen operand. Unlike (Bl), (B2) has
a value even if a = 0; for, Xx.l/a denotes a function
even if a = 0 (albeit with null domain—this is in
accordance with our view of the "value" of an expression,
as introduced informally in a previous Section and
formalized in a subsequent one). So (B2) is precisely
equivalent to (B) in the sense that either they are
equivalent or they are both without value.

The arbitrary V and '3' in (B2) can be obviated.*
For the bv of a A-expression can be a list of identifiers,
and in particular a list whose length is zero. Such a
A-expression is applicable to an argument list of the
same length. This suggests that all conditional expres-
sions can be rendered in a uniform way as follows:

if a < b then a1 else b1 if {a < 6)(A().a7,
if a = 0 then 1 else I/a if (a = 0)(A(). 1, A(). \/a)().

Recursive definitions
The use of self-referential, or "circular," or what

have come to be called in the computer world,
"recursive" definitions can also be rendered in operator/

* The device given here was suggested by W. H. Burge.

313

Mechanical evaluation

operand terms. By a circular definition we mean an
implicit definition having the form

i.e. a definition of x in which x is referred to one or
more times in the definiens. For example, suppose 'M'
designates a list-structure, then

(a, M, (b, c))

denotes a list-structure whose second item is the list-
structure M. The equation

L = (a, L, (b, c))

is satisfied by the "infinite" list-structure containing
three items, of which the first is a, the third is (b, c) and
the second is the infinite list-structure whose first item
is a, and whose third item is (b, c) and whose second,
. . . and so on.

So the above equation may be considered as a circular
definition that associates this "infinite" list-structure
with the identifier 'Z,.'

Again

fin) = if n = 0 then 1 else nfin — 1)
i.e.

/ = An.if n = 0 then 1 else nf(n — 1)

may be considered as a circular definition of the factorial
function. (In this brief discussion the important
question of whether each circular definition characterizes
a unique object will be skipped.)

Making use of A, any circular definition can be
rearranged so that there is just one self-referential
occurrence, and moreover so that the single occurrence
constitutes the operand of the definiens, e.g.

L = (a, L, (b, c)) L = {XL'.(a, V, [b, c))}L

fin) = if n = 0 then 1 / = {Xf. An . if n = 0 then 1
else nfin - 1) else nfin - 1)}/.

Notice that, had we used 'V and ' / ' instead of 'L"
and ' / " they would still have been bound and so would
not have constituted self-referential occurrences.

A circular definition of the form

x = Fx

(such as the last two above) characterizes an object as
being invariant when transformed by the function F,
i.e. as the "fixed-point" of F. If we use ' Y' to designate
the function of finding the fixed-point of a given function,
such a circular definition can be rearranged so that it is
formally no longer circular:

x = YF.

Thus the above examples become

L = (a, L, (b, c)) L = YXL.{a, L, (b, c))

fin) = if n = 0 then 1 / = FA/. An.if n = 0 then 1
else nfin — 1) else nfin — 1).

Notice that, according to the above treatment of con-

ditional expressions, the existence' of /(0) does not
involve the existence of/(—I). Notice also that Y
may produce a function, and hence gives rise to com-
binations whose operators are combinations, e.g.

{YXf. Xn.ifn = 0 then 1 else nfin - l)}6

is a meaningful combination. In fact its value is 720.
This device can also be used for a group of "jointly

circular" or "simultaneously recursive" definitions, e.g.

fx = F[f, g, x] if, g) = YXtf, g)• (*x.F[f, g, x],
and gx = G[f, g, x] Xx. G[f, g, x]).

So the fixed-point of a function might be a list of
functions. This gives rise to the possibility that a
dyadic function might appear with what looks like one,
rather than two, arguments, e.g. when the above
jointly circular functions appear in an auxiliary
definition:

figa) + gifb) {Xif, g) .figa) + gifb)}
where fx = Fif, g, x) [FA(/, g). (Ax .Ftf, g, x),

and gx = Gif g, x) Xx. G(f, g, *))].

Notice that the circularity is explicitly indicated in
the right-hand version, whereas the left-hand version is
only recognizable as circular by virtue of our comments
about it or by common sense. In the next Section we
shall extend our hitherto informal use of where so as to
provide a match for any use of A.

The difference between structure and written representation

Our notation for AEs is deliberately loose. There
are many ways in which we can write the same AE,
differing in layout, use of brackets and use of infixed
as opposed to prefixed operators. However, they are
all written representations of the same AE, in the sense
that the information elicited by the questions Ql, Q2
and Q3 above are the same in each case. This is the
essential information that characterizes the AE. We
call this information the "structure" of the AE. Our
laxity with written representations is based on the
knowledge that any expression we write could, at the
cost of legibility, have been writter ;n standard form,
with exclusively prefixed operators •<. J every bracket in
place.

One of the syntactic liberties that we shall take is to
use where instead of A. More precisely, we shall use an
expression of the form

L where X = M

as a "syntactic variant" of

{XX.L}[M]

even in cases that go rather further than the familiar
use of where, e.g.

n2+3n + 2 {Xn.n2 + 3n + 2}\n + 1]
where n = n -\- 1
xy{x + y) {Xy .{Xx. xyix + y)}
where x = a2 + ay/y [a2 + a-\/y]}
where y = a2 + b2 [a2 + b2].

314

Mechanical evaluation

We use indentation to indicate that the where qualifies
a sub-expression, e.g. in each of the following examples
'y' occurs both bound and free:

{\(x,y).xy(x+y)}
[a2 + ay/y, a2 + b2]

xy(x + y)
where x — a2 + aV

and y = a2 + b2

xy(x+y) {Xx.xy(x+y)}
where x = a2 + a^y [{Xy.a2+a^y}[a2+b2]].

where y = a2 + b2

The where notation can be extended to allow for
circular definitions and jointly circular definitions, thus
formalizing a feature of auxiliary definitions that has
previously required verbal comment. An occurrence of
'Y' is indicated by the word recursive or, more shortly,
rec.

{ / / (- 3)}
[yA/.An.if n = 0thenl

else nf(n — 1)].

g(fb)}

/ (- 3)
where rec/(«) =

if n = 0 then 1
else nf(n — 1)

f(ga) + g(fb) {AC/", *) .f(ga)
where rec fx = F(/, #, *) [YMf, g)• (**•*"(/, #, *),

and g* = C7(/, g, x) Xx. G(f, g, x))].

It will be observed that our discussion of applicative
structure has doubled back on itself. We started by
remarking the possibility of analyzing certain more or
less familiar notations in terms of functional application
and functional abstraction. We are now remarking the
possibility of looking upon these notations as "really"
AEs, written with syntactic variations that make them
more palatable. Clearly, once a semantically acceptable
correspondence between AEs and some other notation
has been established, it can be looked at in either way.

The above explanation of where and AEs leaves some
details unsettled, but should be enough to make the use
of where in what follows (a) comprehensible and (b)
plausibly a mere "syntactic sugaring" of AEs. Further
discussion of where, or of other sorts of syntactic sugar,
is outside the scope of this paper.

Another example of alternative notations concerns
conditional expressions. Interchangeably with the
if . . . then . . . notation we use the. -*• notation as
illustrated by the following two examples:

else

p ->

else

if p then a
else b.

p->a
else -> (<7 -> b

else -> c).

Any particular set of rules about representing AEs by
written text (the correspondence with where is one such
set of rules) has two aspects:

(a) a rule for deriving the structure of an AE, given
a text that represents it,

(b) a rule for deriving a text that represents an AE,
given its structure.

The formalization of these rules, and in particular their
formalization as AEs, is arother topic that is outside
the scope of this paper.

The power of applicative expressions

We have described how certain expressions can be
considered as being constructed from "known" identi-
fiers, or "constants," by means of functional application
and functional abstraction. We might look at the
situation another way round and consider how many
expressions can be constructed, starting with a given
selection of constants, using these same means of
construction. More precisely, we might compare
working within such constraints to working within some
other set of constraints, e.g. some algebraic program-
ming language or machine code, or system of formal
logic. It transpires that the seven objects, null, h, t,
nullist, prefix, if and Y provide a basis for describing a
wide range of things.

Roughly speaking, when taken together with func-
tional application and functional abstraction, they per-
form the "house-keeping" or "red-tape" roles that are
performed by sequencing, indices and copying in a
conventional programming language, and by narrative
in informal mathematics. For example:

(1) With a few basic numbers and numerical functions
they are sufficient to describe the numbers and
functions of recursive number theory. So they
are in some sense "as powerful as" other current
symbolisms of mathematical logic and computer
programming. The question whether this sense
has much practical significance is one that will
not be discussed here.

(2) With a few basic symbols, and functions associated
with classes of symbol-strings, they are sufficient
to describe syntax (of, say, ALGOL 60, or for
AEs themselves), from the point of view both of
synthesizing and of analyzing.

(3) With a few basic classes, and functions associated
with classes of composite information structures,
they are sufficient to formalize "structure defini-
tions," as introduced above (for example the
structure definition of AEs themselves).

(4) With a few structure definitions they are sufficient
to characterize formally the "value" of an AE,
and to describe a mechanical process for "pro-
ducing" it. This is the use to which AEs will be
put in the rest of this paper.

A discussion of the relative convenience of various
notations in the fields mentioned here is outside the
scope of this paper.

Evaluation

The value of an applicative expression
Every AE in the above examples, including every sub-

expression of every AE, has a "value," which is either
a number, or a function, or a list of numbers, or a list

315

Mechanical evaluation

of functions, etc. More precisely, an AE X has a value
(or rather might have a value) relative to some back-
ground information that provides a value for each
identifier that is free in X. This background information
will be called the environment relative to which evaluation
is conducted. It will be considered as a function that
associates with each of certain identifiers, either a
number, or a list, or a function, etc. Each identifier to
which an environment E gives a value is called a constant
of E, and each object "named," or "designated," by a
constant of E (possibly by several) is called a primitive
of E. So E is a function whose domain and range
comprise respectively its constants and its primitives.

If we let

val(E)(X)

denote the value of X relative to E (or in E for short),
the function that val designates can be specified by means
of three rules, Rl, R2 and R3. These correspond to the
three questions, Ql, Q2 and Q3 that were introduced
earlier to elucidate the structure of AEs.

Rl. If A' is an identifier, valEX is EX;
(R2. appears below);
R3. If X is a combination, valEX can be found by

first subjecting both its operator and operand to
valE, and then applying the result of the former
to the result of the latter.

The rules Rl and R3 are enough to specify valEX
provided that A'contains ho A-expressions. For example,
consider an environment in which the identifier k is
associated with the number 7 and the identifier p with
the truthvalue false, and other identifiers have their
expected meanings. Then Rl and R3 suffice to fix the
value of, say,

if((219 < 312) yp)(sin, cos)(nlk).

This example illustrates the need for evaluating the
operator of a combination as well as its operand.

R2. If A' is a A-expression, valEX is a function. Like
any function it can be specified by specifying
what result it produces for an arbitrary argument,
and we now do this as follows: valEX is that
function whose result for any given argument
can be found by evaluating bodyX in a new
environment derived from £ in a way we shall
presently describe. For example, suppose E is
the environment postulated above, and X is the
A-expression 'Xr.k2 + r2.' Then its value in E
is that function whose result for any given argu-
ment, say 13, can be found by evaluating
'k2 + r2' in a new environment E', derived from
E. To be precise, E' agrees with E except that
it gives the value 13 to the identifier r.

More generally, this derived environment consists of
E, modified by pairing the identifier(s) in bvX with
corresponding components of the given argument x
(and using the new value for preference if any variable

in bvX coincides with a constant of E). We denote this
derived environment by

derive(assoc(bvX, x))E.

We shall describe below a mechanical process for
obtaining the value, if it exists, of any given AE relative
to any given environment. This process can be imple-
mented with pencil and paper, or (as we shall briefly
sketch) with a digital computer. The rules Rl and R3
provide a criterion for deciding Whether or not the
outcome of this process is in fact the value as we under-
stand it.

The three rules can be formalized as a definition of
val, thus:

recursive valEX=identifierX'-> EX
\expX-+f

where fx=val(derive(assoc(bvX,x))E)
(bodyX)

else -+ {valE(ratorX))[valE(randX)].

For example, suppose thrice is the function-producing
function defined by

thrice(f)(x) = f(f(f(x))).

Then it follows from the above definition of val that the
values of the following fivee AEs,

square 5
thrice square 5
thrice square (thrice square 5)
thrice (thrice square) 5
thrice thrice square 5

are respectively 52, 523, 5*6, 52' and 5227. The reader
may be better equipped to check this assertion when he
has read the next Section, which describes an orderly
way of evaluating AEs.

The set of objects that can be denoted by an AE
relative to an environment E, is the range of the function
valE. It contains all the primitives of E, and everything
produced by such an object, and every function that can
be denoted by a A-expression.

Mechanical evaluation
In order to mechanize the above rule, we represent

an environment by a list-structure made up of name-
value pairs. There is a function designated by location
such that if E* is this structure and Xis an identifier then

locationE*X

denotes the selector that selects the value of X from E*.
So if E* represents the environment E then the following
equation holds:

valEX = locationE*XE*.

We shall not bother below to distinguish between E
and £*.

Also we represent the value of a A-expression by a
bundle of information called a "closure," comprising

316

Mechanical evaluation

the A-expression and the environment relative to which
it was evaluated. We must therefore arrange that such
a bundle is correctly interpreted whenever it has to be
applied to some argument. More precisely:

a closure has

an environment part which is a list whose two items
are:

(1) an environment
(2) an identifier or list of identifiers,

and a control part which consists of a list whose
sole item is an AE.

The value relative to E of a A-expression X is represented
by the closure denoted by

constructclosure((E, bvX), unitlist(bodyX)).

This particular arrangement of the information in a
closure has been chosen for our later convenience.

We now describe a "mechanization" of evaluation in
the following sense. We define a class of COs, called
"states," constructed out of AEs and their values; and
we define a "transition" rule whose successive application
starting at a "state" that contains an environment E
and an AE X (in a certain arrangement), leads eventually
to a "state" that contains (in a certain position) either
valEX or a closure representing valEX. (We use the
phrase "result of evaluation" to cover both objects and
closures. We suppose that the identifier closure
designates a predicate that detects whether or not a
given result of evaluation is a closure.)

A state consists of a stack, which is a list, each of
whose items is an intermediate result of
evaluation, awaiting subsequent use;

and an environment, which is a list-structure made
up of name/value pairs;

and a control, which is a list, each of whose items
is either an AE awaiting evaluation, or a
special object designated by 'ap,' distinct
from all AEs;

and a dump, which is a complete state, i.e. com-
prising four components as listed here.

We denote a state thus:

(S, E, C, D).

The environment-part (both of states and of closures)
would be unnecessary if A-expressions containing free
variables were prohibited. Also the dump would be
unnecessary if all A-expressions were prohibited.

Each step of evaluation is completely determined by
the current state (S, E, C, D) in the following way:

1. If C is null, suppose the current dump D is
(S\ E', C, D').

Then the current state is replaced by the state
denoted by

(hS : S', E', C, £>')•

2. If C is not null, then hC is inspected, and:
(2a) If hC is an identifier X (whose value relative

to E occupies the position locationEX in E),
then S is replaced by

locationEXE : 5

and C is replaced by tC. We describe this step
as follows: "Scanning X causes locationEXE to
be loaded."

(2b) If hC is a A-expression X, scanning it causes the
closure derived from E and X (as indicated
above) to be loaded on to the stack.

(2c) If hC is ap, scanning it changes £ as follows:
hS is inspected and:

(2cl) If hS is a closure, derived from E' and X',
then: S is replaced by the nullist,

E is replaced by
derive(assoc(bvX', 2ndS))E',

C is replaced by unitlist(bodyX'),
D is replaced by (t(tS), E, tC, D).

(2c2) If hS is not a closure, then scanning ap
causes S to be replaced by

((1st S)(lnd S) : t(tS)).

(2d) If hC is a combination X, C is replaced by
randX : (ratorX : (ap : tC)).

Formally this transformation of one state into another is

Transform(S,E,C,D) =
nullC->[hS:S',E',C,D']

where S',E',C,D' = D
else-*-

identifierX-+ [locationEXE:S, E, tC, D]

[constructclosure((E, bvX),unitlist(bodyX)) :S,
E, tC, D]

X = ap-> closure(hS) ->
[(), derive{assoc(J,2ndS)E'),

C,
(t(tS), E, tC, D)]

where E',J = environmentparl(hS)
and C" = controlpart(hS)

else->[(lstS)(2nd):t(tS), E, tC, D]
else-*- [S, E, randX:(ratorX:(ap:tC)), D]
where X — hC

We assume here that an AE composed of a single
identifier is the same object as the identifier itself. This
suggests a more general assumption that whenever one
of the alternative formats of a structure definition has
just one component, the corresponding selector and
constructor are both merely the identity function. We
also assume that a state is identical to a list of its four
components. This suggests a more general assumption
that whenever a structure definition allows just one format,
the constructor is the identity function. Without these
assumptions the above definition would be a bit more

317

Mechanical evaluation

elaborate. A formal account of structure definitions
would lead to a more careful discussion of these points.

Notice that, whereas a previous formula described a
rule for deriving from an AE its value, this new formula
describes a rule for advancing a certain information-
structure through one step. If X is an AE, and E is an
environment such that valEX is defined, then starting at
any state of the form

S, E, X : C, D
and repeatedly applying this transformation, we shall
eventually reach the state denoted by

valEX : S, E, C, D.
That is to say, at some later time X will have been
scanned and its value relative to the current environment
will have been loaded (on to the stack). In particular, if
5 and C are both null, i.e. if the initial state is

(), E, unitlistX, (S', E\ C, D')
there will be a subsequent state

unitlist(valEX), E, (), (5", E', C, D')
which will be immediately succeeded by the state denoted
by

valEX : S', E', C, D'.
These assertions can be verified by performing the
appropriate substitutions in the definition of Transform.

Basic functions
By a "basic" function of E we mean a function other

than a closure, that can arise as a result of evaluation.
At the most the basic functions comprise

(1) primitive functions;
(2) any functions produced by basic functions.

For, any result of a closure must also be a result of a
primitive (or be a result of a result of a primitive, or, etc.).

However, this may be an over-estimate of the number
of basic functions, for it is clearly possible that a
primitive might be a closure. For instance the evaluation
of

{A/./3 +f4}[Xx.x2 + 1]
relative to E involves evaluating

/3+/4
relative to an environment in which ' / ' names the closure
that we may roughly denote by

constructclosure((E, V), unitlist('x2 + 1')).
Of th six sorts of step described above, namely (1),

(2a), (2b), (2c\), (2c2) and (2d), all except (2c2) are mere
rearrangements. (2c2) arises whenever ap finds that the
head of the stack is a basic function.

Other ways of mechanizing evaluation
It should be observed that this is only one of many

ways of mechanizing the evaluation of AEs, all pro-
ducing the value, as specified above. For instance, it is
not essential that the operand of a combination be
evaluated before its operator. The operand might be

evaluated after the operator; it might even be evaluated
piecemeal when and if it is required during the application
of the value of the operator. Again, the evaluation of
a A-expression might be accompanied by partial evalua-
tion of its body. The AE might be subjected to pre-
processing of various kinds, e.g. to disentangle
combinations once for all or to remove its dependence
on an arbitrary choice of identifiers occurring bound in
it. The pre-processing might be more elaborate and
perform symbolic reduction.

The particular evaluation process described above
will be called normal evaluation, and its significance
partly lies in that many other evaluation processes can
be described in terms of it; i.e. they can be specified as
a transformation of the AE into some other AE, followed
by normal evaluation of the derived AE. Further
discussion of evaluation processes and of their mutual
relationships is outside the scope of the present paper.

Evaluating with a digital computer
This Section describes how a "state," in the above

sense, can be represented in the instantaneous state of
a digital computer, and how the transformation forma-
lized above can be represented by a stored program.
The method chosen here is one of many and is disting-
uished by its simplicity in description, rather than by
its cheapness. It will hold no surprises for anyone
familiar with the "chaining" techniques of storage and
location pioneered in list-processing systems. It is
given here as a demonstration of possibility, not of
practicability.

Representing each composite object by an address

Each component of a state, from the entire state
downwards, and including such COs as are definable
objects, can be represented in a computer by an address.
The way of doing this is closely related to the structure
definitions used to introduce the various COs concerned.
For, given that the components can be represented by
addresses, the complete CO can be represented by a
short segment of store, large enough to contain these
addresses (and, if the CO is one admitting alternative
formats, a distinguishing tag). So the complete CO can
also be represented by the address of this short segment.
There is need for one fixed area in the store, large
enough to hold an address and representing the current
state. The merit of this method is that the predicates,
selectors, and constructors can be represented by stored
programs whose size and speed is independent of the
size of the COs operated on. Hence this is also true
of the information-rearranging steps that occur during
evaluation, namely (1), (2a), (2b), (2c\) and (2d); for
each of these is a composition of predicates, selectors
and constructors.

Each of these steps can be represented by a stored
program of ten or twenty orders in most current
machine-codes. Obviously, the possibility arises of
designing a machine-code that favours these steps.

318

Mechanical evaluation

However, the implementation sketched here has less
claim to such embodiment than some others whose
properties are briefly referred to below.

Shared components
One consequence of this method is the presence of

"shared" components. For instance, suppose the
environment denoted by

derive(assoc(bvX, x))E

is being formed m step (2cl). It is possible that a copy
of the address representing E is "incorporated" into the
new environment. As long as environment components
are not updated, the extent of sharing is immaterial.
However, there are two possible developments in which
it would become important to consider precisely what
components are shared.

(a) We might vary the evaluation process by intro-
ducing a preparatory investigation of each AE, to
determine whether any of the transformations
of COs that occur during its evaluation can
be performed by overwriting rather than by
reconstructing.

(ft) We might generalize AEs by introducing a fourth
format playing the role of an assignment.

Representing each non-composite object by an address
The possibility of using the above storage technique

depends on

(1) being able to represent each non-composite
definable object by an address: namely, identifiers,
primitives and all results of evaluation other than
closures and composite definable objects;

(2) being able to represent each basic function / by
a stored program such that, if the head of the
stack represents x, the program replaces it by an
address representing fx.

Representing Y
If we consider a specific (powerful) set of primitives,

comprising some basic numbers, some numerical
functions, the basic list-processing primitives, and Y,
only the latter involves any unfamiliar technique. Y
can be represented by a stored program that, given an
argument F at the head of the stack, performs the
following steps:

1. Take a fresh cell z, whose address is Z.
2. Use Z as a spurious argument for F, producing a

result-address Z'.
3. Copy the word addressed by Z' to the cell z. Then

Z is the required result of Y.

This representation of Y is adequate for the uses of it
mentioned in the Section on "Circular definitions."

Source of storage
The stored programs for constructing COs must have

access to a source of fresh storage cells, which (unless

the machine is to be congested rapidly) must in turn
be able to retrieve for re-use used cells that have become
irrelevant.

Other ways of representing our mechanization with a
digital computer

It was earlier observed that the mechanization in
terms of SECD-states is only one of many ways of
mechanizing evaluation. Likewise, given a particular
mechanization, there may be many ways of representing
it with a digital computer. In particular, the method
just sketched is not the only way of mechanizing SECD-
states.

For example, of all the occasions on which a fresh
cell is required, there are eertain sub-sets that can
reasonably be acquired and disposed of in a "last
in/first out" (LIFO) pattern. Hence by distributing
these requirements among more than one source of
fresh cells it is possible to exploit consecutive addressing.
In particular by restricting the structure of AEs it is
possible to rely exclusively on the LIFO pattern. Such
restrictions suggest a pre-evaluational transformation
for eliminating expensive structures in favour of
equivalent cheaper ones. SuGh variations are outside
the scope of this paper.

Conclusion
Several lines of development outside the scope of this

paper have been indicated above. Some of these consist
in part of a "sideways advance," a rephrasing of previous
work in a new jargon. However, a new jargon might
have features that justify this procedure. The best
claim in the present case seems to be based on the
extent to which it isolates several aspects of the use of
computers that frequently appear inextricably inter-
woven.

One such feature is the distinction between structure
and representation effected by "structure definitions."
For instance, the structure of expressions was dis-
tinguished from their written representation. Again,
the structure of the information that is recorded during
evaluation was distinguished from its representation in
a computer.

Another separation achieved above is that between
considerations special to a particular subject-matter, and
considerations relevant to every subject-matter (or
"universe of discourse," or "field of application," or
"problem orientation"). The subject-matter is deter-
mined precisely by the choice of primitives and is not
affected by the choice of names for them, or of rules for
writing expressions (except that these rules might narrow
the subject-matter by making some AEs unwritable).

The relationship between expressions and their written
representation encompasses all that is customarily called
the "syntax" of a language and part of what is custo-
marily called its "semantics." The chosen name/value
relation, together with the primitives themselves (that is
to say, the applicative relationships between them)
constitute the rest of what is customarily called the

319

Mechanical evaluation

"semantics" of a language insofar as it is distinct from
the semantics of other languages.

These remarks about "languages" are subject to an
important qualification. They apply only to languages
that can be considered as AEs plus syntactic sugar.
While most languages in current use can partly be
accounted for in these terms, entirely "applicative"
languages have yet to be proved adequate for practical
purposes. Whether or not they will be, and whether
their interesting properties can be extended to hold for
currently useful languages are questions outside the
scope of this paper.

Relation to other work
Most of the above ideas are to be found in the

literature. In particular Church and Curry, and
McCarthy and the ALGOL 60 authors, are so large a
part of the history of their respective disciplines as to
make detailed attributions inevitably incomplete and
probably impertinent.

The criterion of "semantic acceptability," whereby a
proposed rendering in terms of AEs can be judged
correct or incorrect, is closely related to what some
logicians (e.g. Quine [8]) call "referential transparency,"
and to what Curry [2] calls the "monotony" of
equivalence.

Structure definitions are in some sense merely a
convenient way of avoiding the uninformative strings of
a's and d's that occur in LISP's 'cadar,' 'cadaddr,'

References

etc. [6]. However, they have another merit, that of
being less associated with a particular internal repre-
sentation, and, in particular, with a particular ordering
of the components. (Gilmore [5] effectively uses
"selectors" to avoid entanglement with a specific
written representation of expressions.)

Church [1], Curry [2] and Rosenbloom [9] all include
discussions of how to eliminate various uses of bound
variables in terms of just one use, namely functional
abstraction; also of how to eliminate lists, and functions
that select items from lists, in terms of functional
application. The function Y is called 0 in Rosenbloom
[9], and Y in Curry [2]; roughly speaking Y\ is
McCarthy's label [6].

Formalizing a system in its own terms is now a
familiar occupation. The relative simplicity of the
function val, compared, say, with LISP's eval, apply,
etc. [6, 7], is due partly to the fact that it treats the
operator and operand of a combination symmetrically.

The formalization of a machine for evaluating
expressions seems to have no precedent. Gilmore's
machine [5] is specified by a flow diagram. The relative
simplicity of the function Transform, compared with his
specification, is also due in part to the above mentioned
symmetry. Closures are roughly the same as McCarthy's
"FUNARG" lists [7] and Dijkstra's PARD's [3].
(This method of "evaluating" a A-expression is to be
contrasted with "literal substitution" such as is used in
Church's normalization process, in Gilmore's machine
[5], and in Dijkstra's mechanism [4]).

1. CHURCH, A. (1941). The Calculi of Lambda-Conversion, Princeton, Princeton University Press.
2. CURRY, H. B., and FEYS, R. (1958). Combinatory Logic, Vol. 1, Amsterdam, North Holland Publishing Co.
3. DUKSTRA, E. W. (1962). "An ALGOL60 Translator for the XI," Automatic Programming Bulletin, No. 13.
4. DtjKSTRA, E. W. (1962). "Substitution Processes," Preliminary Publication, Amsterdam, Mathematisch Centrum.
5. GILMORE, P. C. (1963). "An Abstract Computer with a LISP-like Machine Language without a Label Operator," in

Computer Programming and Formal Systems, ed. Braffort, P., and Hirschberg, D., Amsterdam, North Holland Publishing
Co.

6. MCCARTHY, J. (1960). "Recursive Functions of Symbolic Expressions and their Computation by Machine, Part 1,"
Comm. A.C.M., Vol. 3, No. 4, pp. 184-195.

7. MCCARTHY, J. et al. (1962). LISP 1.5, Programmer's Manual, Cambridge, M.I.T.
8. QUINE, W. V. (1960). Word and Object, New York, Technology Press and Wiley.
9. ROSENBLOOM, P. (1950). The Elements of Mathematical Logic, New York, Dover.

320

