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1. Introduction 

In Section 2, two statements, an alternative con- 
struct and a repetitive construct, are introduced, to- 
gether with an intuitive (mechanistic) definition of their 
semantics. The basic building block for both of them 
is the so-called "guarded command , "  a statement list 
prefixed by a boolean expression: only when this 
boolean expression is initially true, is the statement list 
eligible for execution. The potential nondeterminacy 
allows us to map otherwise (trivially) different programs 
on the same program text, a circumstance that  seems 
largely responsible for the fact that  programs can now 
be derived in a manner  more systematic than before. 

In Section 3, after a prelude defining the notation, 
a formal definition of the semantics of  the two con- 
structs is given, together with two theorems for each 
of  the constructs (without proof).  

In Section 4, it is shown how, based upon the above, 
a formal  calculus for the derivation of programs can 
be founded. We would like to stress that  we do not  
present "an algori thm" for the derivation of programs:  
we have used the term "a calculus" for a formal  dis- 
c ipl ine--a  set of  rules--such that, if applied successfully: 
(1) it will have derived a correct program;  and (2) it 
will tell us that we have reached such a goal. (We use 
the term as in "integral calculus.") 

2. Two Statements Made from Guarded Commands 

I f  the reader accepts "other statements" as indi- 
cating, say, assignment statements and procedure calls, 
we can give the relevant syntax in Br~F [2]. In the follow- 
ing we have extended BNF with the convention that the 
braces { ... } should be read as "followed by zero or more 
instances of  the enclosed." 

(guarded command)  : := (guard) ~ (guarded list) 
(guard) : := (boolean expression) 
(guarded list) :: = (statement) { ; (statement) } 
(guarded command  set) : := (guarded command)  

{ ~ (guarded command)  } 
(alternative construct) :: = if (guarded command  set) fi 
(repetitive construct) :: = do (guarded command  set) od 
(statement) : := (alternative construct) [ 

(repetitive construct) I "other  statements" 

The semicolons in the guarded list have the usual 
meaning: when the guarded list is selected for execu- 
tion its statements will be executed successively in the 
order from left to right; a guarded list will only be 
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selected for execution in a state such that its guard is 
true. Note that a guarded command by itself is not a 
statement: it is a component of a guarded command 
set from which statements can be constructed. If  the 
guarded command set consists of more than one guarded 
command, they are mutually separated by the sepa- 
rator [~ ; our text is then an arbitrarily ordered enumera- 
tion of an unordered set; i.e. the order in which the 
guarded commands of a set appear in our text is seman- 
tically irrelevant. 

Our syntax gives two ways for constructing a state- 
ment out of a guarded command set. The alternative 
construct is written by enclosing it by the special 
bracket pair i f . . .  fi. If in the initial state none of the 
guards is true, the program will abort;  otherwise an 
arbitrary guarded list with a true guard will be selected 
for execution. 

Note. If  the empty guarded command set were al- 
lowed if fi would be semantically equivalent to "abor t" .  
(End of note.) 

An example--illustrating the nondeterminacy in a 
very modest fashion--would be the program that for 
fixed x and y assigns to m the maximum value of x 
and y: 

i f x  > y - - , m  := x 
~ y > _ x - - , m : = y  
fi. 

The repetitive construct is written down by enclos- 
ing a guarded command set by the special bracket pair 
d o . . .  od. Here a state in which none of the guards is 
true will not lead to abortion but to proper termina- 
tion; the complementary rule, however, is that it will 
only terminate in a state in which none of the guards 
is true: when initially or upon completed execution of a 
selected guarded list one or more guards are true, a 
new selection for execution of a guarded list with a 
true guard will take place, and so on. When the repeti- 
tive construct has terminated properly, we know that 
all its guards are false. 

Note. If  the empty guarded command set were 
allowed do od would be semantically equivalent to 
"skip". (End of note.) 

An example--showing the nondeterminacy in some- 
what greater glory--is  the program that assigns to 
the variables ql, q2, q3, and q4 a permutation of  the 
values Q1, Q2, Q3, and Q4, such that ql _< q2 _< 
q3 < q4. Using concurrent assignment statements for 
the sake of convenience, we can program 

ql, q2, q3, q4 := Q1, Q2, Q3, Q4; 
do ql > q2 ~ ql, q2 := q2, ql 
[7 q2 > q3 ~ q2, q3 := q3, q2 
[~ q3 > q4 ~ q3, q4 := q4, q3 
Qd. 

To conclude this section, we give a program where 
not only the computation but also the final state is not 
necessarily uniquely determined. The program should 

determine k such that for fixed value n (n > 0) and a 
fixed functionf(i)  defined for 0 < i < n, k will eventually 
sat isfy:0 < k < n a n d  (V i :0  _< i < n:f (k)  >_f(i)). 
(Eventually k should be the place of a maximum.) 

k : =  0 ; j : =  1; 
d o j ~  n ~ i f f ( j )  < f ( k )  ~ j : = j q -  1 

[~f(j) >_ f (k )  ~ k := j ; j  := j q- 1 
fi 

od. 

Only permissible final states are possible and each 
permissible final state is possible. 

3. Formal Definition of  the Semantics 

3.1 Notational Prelude 
In the following sections we shall use the symbols 

P, Q, and R to denote (predicates defining) boolean 
functions defined on all points of the state space; 
alternatively we shall refer to them as "condit ions,"  
satisfied by all states for which the boolean function is 
true. Two special predicates that we denote by the 
reserved names T and F play a special role: T denotes 
the condition that, by definition, is satisfied by all 
states; F denotes, by definition, the condition that is 
satisfied by no state at all. 

The way in which we use predicates (as a tool for 
defining sets of initial or final states) for the definition 
of the semantics of programming language constructs 
has been directly inspired by Hoare [1], the main dif- 
ference being that we have tightened things up a bit: 
while Hoare introduces sufficient pre-conditions such 
that the mechanisms will not produce the wrong result 
(but may fail to terminate), we shall introduce necessary 
and sufficient--i.e, so-called "weakest"--pre-condi-  
tions such that the mechanisms are guaranteed to 
produce the right result. 

More specifically: we shall use the notation wp(S, R), 
where S denotes a statement list and R some condition 
on the state of the system, to denote the weakest pre- 
condition for the initial state of  the system such that 
activation of S is guaranteed to lead to a properly 
terminating activity leaving the system in a final state 
satisfying the post-condition R. Such a wp--which is 
called "a predicate transformer" because it associates a 
pre-condition to any post-condition R--has ,  by defini- 
tion, the following properties. 

1. For  any S, we have for all states: wp(S,F) = F (the 
so-called Law of the Excluded Miracle). 
2. For  any S and any two post-conditions, such that 
for all states P ~ Q, we have for all states: 
wp( S,P) ~ wp( S, Q). 
3. For  any S and any two post-conditions P and 
Q, we have for all states (wp(S,P) and wp(S,Q)) = 
wp(S,P and Q). 
4. For  any deterministic S and any post-conditions P 
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and Q, we have for all states (wp(S,P) or wp(S,Q)) 
= wp(S,P or Q). 

For  nondeterministic mechanisms S, the equality has to 
be replaced by an implication; the resulting formula 
follows from the second property. 

Together with the rules of propositional calculus and 
the semantic definitions to be given below, the above four 
properties take over the role of the "rules of infer- 
ence" as introduced by Hoare [1 ]. 

We take the position that we know the semantics oi' 
a mechanism S sufficiently well if we know its predicate 
transformer, i.e. can derive wp(S,R) for any post-con- 
dition R. 

Note. We consider the semantics of S only defined 
for those initial states for which has been established 
a priori that they satisfy wp(S,T), i.e. for which proper 
termination is guaranteed (even in the face of possibly 
non-deterministic behavior); for other initial states we 
don' t  care. By suitably changing S, if necessary, we 
can always see to it that wp(S,T) is decidable. (End of 
note.) 

Example 1. The semantics of the empty statement, 
denoted by "skip" are given by the definition that for 
any post-condition R, we havewp ("skip", R) = R. 

Example 2. The semantics of the assignment state- 
ment "x  := E"  are given by wp("x := E",  R) = REx, 
in which RB ~ denotes a copy of the predicate defining R 
in which each occurrence of the variable x is replaced 
by (E). 

Example 3. The semantics of the semicolon ";" as 
concatenation operator are given by 
wp("Sl ; $2", R) = wp(Sl, wp(S2,R)). 

lead to a properly terminating activity leaving the sys- 
tem in a final state such that the value of t is decreased 
by at least 1 (compared to its initial value). In terms of 
wdec we can formulate the very similar: 

THEOREM 2. From (Vi : 1 < i < n : (Q and B~) 
wdec(SLi,t)) for all states we can conclude that 

(Q and BB) ~ wdec(IF, t) holds for  all states. 
Note (which can be skipped at first reading). The 

relation between wp and wdec is as follows. For  any 
point X in state space we can regard wp(S, t <_ to) as 
an equation with to as the unknown. Let its smallest 
solution for to be tmin(X). (Here we have added the 
explicit dependence on the state X.) Then train(X) can 
be interpreted as the lowest upper bound for the final 
value of  t if the mechanism S is activated with X as initial 
state. Then, by definition, wdec(S, t) = (tmin(X) <_ 
t(X) - 1) = (tmin(X) < t(X)). (End of note.) 

3.3 The Repetitive Construct 
As is to be expected, the definition of the repetitive 

construct 

do B1 - - o  S L x  ~] . • • [7 B n  ---o SL,  od, 

that we denote by DO, is more complicated. Let 

H o ( R )  = ( R  and non BB) 

and f o r k >  0, 

Hk(R) = (wp(1F, Hk_I(R)) or Ho(R)) 

(where IF denotes the same guarded command set en- 
closed by "if  fi"). Then, by definition 

3.2 The Alternative Construct 
In order to define the semantics of the alternative 

construct we define two abbreviations. 
Let IF denote 

if  B x - - o  SL1 [7 . . • [7 B ~  - - o  SL~ fi; 

let BB denote 

(':li : 1 < i < n :Bi ) ;  

then, by definition 

wp(IF, R) = (BB and (Vi : 1 < i < n : Bi ~ wp(SL~,R)),. 

(The first term BB requires that the alternative construct 
as such will not lead to abortion on account of all 
guards false; the second term requires that each guarded 
list eligible for execution will lead to an acceptable 
final state.) From this definition we can derive--by 
simple substitutions: 

THEOREM 1. From (Vi : 1 < i < n : (Q and Bi) 
wp(SLi,R)) for all states we can conclude that (Q and 
BB) ~ wp(1F, R) holds for all states. 

Let t denote some integer function, defined on the 
state space, and let wdec(S,t) denote the weakest pre- 
condition such that activation of S is guaranteed to 

wp(DO, R) = (3k  : k >_ 0 : Hk(R)). 

(Intuitively, Hk(R) can be interpreted as the weakest 
pre-condition guaranteeing proper termination after 
at most k selections of a guarded list, leaving the 
system in a final state satisfying R. )Via  mathematical 
induction we can prove: 

THEOREM 3. I f  we have for all states (P and BB) 
(wp(1F, P) and wdec(IF, t) and t >__ 0) we can conclude 
that we have for all states P ~ wp(DO, P and non BB). 

Note. The antecedent of Theorem 3 is of the form 
of the consequents of Theorems 1 and 2. (End of note.) 

Because T is the condition by definition satisfied by 
all states, wp(S,T) is the weakest pre-condition guaran- 
teeing proper termination for S. This allows us to 
formulate an alternative theorem about the repetitive 
construct, viz. : 

THEOREM 4. From (P and BB) ~ wp(IF, P ) f o r  all 
states, we can conclude that we have for all states 
(P and wp(DO, T)) ~ wp(DO, P and non BB). 

Note. In connection with the above theorems, P 
is called "the invariant relation" and t is called "the 
variant function." Theorems 3 and 4 are easily proved 
by mathematical induction, with k as the induction 
variable. (End of note.) 
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4. Formal  Derivation of  Programs 

The formal requirement of  our program performing 
m := max(x ,y ) - - see  above-- i s  that for fixed x and y 
it establishes the relation 

R: (m = x o r m  = y) a n d r n > _ x a n d m > _ y .  

Now the Axiom of Assignment tells us that  
"rn :=  x"  is the standard way of establishing the t ruth 
of  m = x for fixed x, which is a way of establishing the 
truth of  the first term of R. Will "m :=  x "  do the j ob?  
In order to investigate this, we derive and simplify: 

wp("m :=  x " , R )  = (x = x o r x  = y) 
a n d x > _  x a n d x _ >  y 

= x > _ y .  

Taking this weakest pre-condition as its guard, Theo- 
rem 1 tells us that 

i f x  _> y - - ~ m  :=  x f i  

will produce the correct result if it terminates success- 
fully. The disadvantage of this program is that BB ~ T; 
i.e. it might lead to abortion; weakening BB means 
looking for alternatives which might introduce new 
guards. The obvious alternative is the assignment 
"m :=  y "  with the guard wp("m := y" ,  R) = y _> x; 
thus we are led to our program 

i f x  _> y---~m :=  x 
~ y  > x---~m := y 
fi 

and by this time BB = T, and :herefore we have solved 
the problem. (In the meant ime we have proved that 
the max imum of  two values is always defined, viz. that 
R considered as equation for m has always a solution.) 

As an example of  the derivation of a repetitive con- 
struet we shall derive a program for the greatest com- 
mon  divisor of  two positive numbers;  i.e. for fixed, 
positive X and Y we have to establish the final relation 
x = gcd(X,Y).  

The formal  machinery only gets in motion, once we 
have chosen our invariant relation and our variant 
function. The program then gets the structure 

"establish the relation P to be kept invariant";  
do "decrease t as long as possible under variance of P "  
od. 

Suppose that  we choose for the invariant relation 

P: gcd(X,Y)  = gcd(x,y) and x > 0 and y > 0, 

a relation that has the advantage of  being easily es- 
tablished by x :=  X; y := Y. 

The most  general "someth ing"  to be done under 
invariance of  P is of  the form x, y :=  El ,  E2, and we 
are interested in a guard B such that  

(P  and B) ~ wp("x,  y := El ,  E2", P) 
= (gcd(X, Y) = gcd(E1, E2) 

and E1 > 0 and E2 > 0). 

Because the guard must be a computable boolean 
expression and should not contain the computat ion of 
gcd(X, Y)-- for  that was the whole p rob lem- -we  must 
see to it that the expressions E1 and E2 are so chosen, 
that the first term gcd(X, Y) = gcd(E1, E2) is implied 
by P, which is true if gcd(x, y) = gcd(E1, E2). In other 
words we are invited to massage the value pair (x,y) in 
such a fashion that their god is not changed. Because--  
and this is the place at which to mobilize our mathemati-  
cal knowledge about  the gcd-function--gcd(x, y ) =  
gcd(x -- y, y), a possible guarded list would be 
x := x -- y. Deriving wp("x  := x -- y" ,  P) = 
(gcd(X, Y) = gcd(x - y,  y) and x --  y > 0 and y > 0) 
and omitting all terms of the conjunction implied by P, 
we find the guard x > y as far as the invariance of P is 
concerned. Besides that we must require guaranteed 
decrease of  the variant function t. Let us investigate the 
consequences of  the choice t = x + y. F rom 

wp("x  := x - y" ,  t < to) 
= wp("x  :=  x - y" ,  x + y _< to) = (x _< to), 

we conclude that tmin = x; therefore wdec("x  := 
x - - y " , t )  = ( x < x + y )  = (y > 0). 

The requirement of  monotonic  decrease of  t imposes 
no further restriction of the guard because wdec("x :-- 
x -- y" ,  t) is fully implied by P, and at our first effort 
we come to 

x : =  X ; y : =  Y; 
d o x  > y - - ~ x  := x -- y o d .  

Alas, this single guard is insufficient: f rom P and 
non BB we are not allowed to conclude x = gcd(X, Y). 
In a completely analogous manner,  the alternative 
y := y - x will require as its guard y > x, and our 
next effort is 

x :=  X ; y  := Y; 
d o x  > y - - o x  :=  x - y 

y >  x - - - * y : = y - - x  
od. 

Now the job  is done, because with this last program 
non BB = (x = y) and (P  and x = y) ~ (x = gcd(X, Y), 
because gcd(x,x) = x. 

Note. The choice of  t = x + 2 y  and the knowledge 
of  the fact that the god is a symmetric function could 
have led to the program 

x : =  X ; y  := Y; 
d o x > y - - * x : =  x - - y  

y > x - - - ~ x , y  := y ,x  
od. 

The swap x,y := y ,x  can never destroy P:  the guard of 
the last guarded list is fully caused by the requirement 
that  t is effectively decreased. (End of note.) 

In both cases the final game has been to find a large 
enough set of  such guarded lists that  BB, the disjunc- 
tion of their guards, was sufficiently weak: in the ease 
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of the alternative construct the purpose is avoiding 
abortion, in the ease of the repetitive construct the goal 
is getting BB weak enough such that P and non BB is 
strong enough to imply the desired post-condition R. 

It is illuminating to compare our first version of 
Euclid's Algorithm with what we would have written 
down with the traditional clauses: 

x := X; y := Y; (version A) 
whi lex  ~ y d o i f x  > y t h e n x  :=  x - -  y 

e l s e y  := y - -  x f i o d  

and 

x := X; y := Y; (version B) 
w h i l e x ~ y d o w h i l e x  > y d o x : =  x - - y o d ;  

whi l ey  > x d o y  := y - -  x o d  
od. 

In the fully symmetric version with the guarded com- 
mands the algorithm has been reduced to its bare essen- 
tials, while the traditional clauses force us to choose 
between versions A and B (and others), a choice that 
can only be justified by making assumptions about the 
time taken for tests and about expectation values for 
traversal frequencies. (But even taking the time taken 
for tests into account, it is not clear that we have lost: 
the average number of necessary tests per assignment 
ranges with guarded commands from 1 to 2, equals 2 
for version A and ranges from 1 to 2.5 for version B. 
If the guards of a guarded command set are evaluated 
concurrently--nothing in our semantics excludes t ha t - -  
the new version is time-wise superior to all the others.) 
The virtues of the case-construction have been ex- 
tended to repetition as well. 

5. Concluding Remarks 

The research, the outcome of which is reported in 
this article, was triggered by the observation that 
Euclid's Algorithm could also be regarded as syn- 
chronizing the two cyclic processes "do x := x -- y od" 
and "do y := y -- x od" in such a way that the relation 
x > 0 and y > 0 would be kept invariantly true. It was 
only after this observation that we saw that the formal 
techniques we had already developed for the derivation 
of the synchronizing conditions that ensure the har- 
monious cooperation of (cyclic) sequential processes, 
such as can be identified in the total activity of operat- 
ing systems, could be transferred lock, stock, and barrel 
to the development of sequential programs as shown 
in this article. The main difference is that while for 
sequential programs the situation "all guards false" 
is a desirable goal--for  it means termination of a 
repetitive construct--one tries to avoid it in operating 
systems--for there it means deadlock. 

The second reason to pursue these investigations 
was my personal desire to get a better appreciation, 
which part of the programming activity can be regarded 
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as a formal routine and which part of  it seems to re- 
quire "invention." While the design of  an alternative 
construct now seems to be a reasonably straightforward 
activity, that of a repetitive construct requires what I 
regard as "the invention" of an invariant relation and a 
variant function. My presentation of this calculus 
should, however, not be interpreted as my suggestion 
that all programs should be developed in this way: 
it just gives us another handle. 

The calculus does, however, explain my preference 
for the axiomatic definition of programming language 
semantics via predicate transformers above other defini- 
tion techniques: the definition via predicate transform- 
ers seems to lend itself most readily to being forged into 
a tool for the goal-directed activity of program compo- 
sition. 

Finally, I would like to add a word or two about the 
potential nondeterminacy. Having worked mainly with 
hardly self-checking hardware, with which nonrepro- 
ducing behavior of user programs is a very strong indi- 
cation of a machine malfunctioning, I had to overcome a 
considerable mental resistance before I found myself 
willing to consider nondeterministic programs seriously. 
It is, however, fair to say that I could never have dis- 
covered the calculus before having taken that hurdle: 
the simplicity and elegance of the above would have 
been destroyed by requiring the derivation of deter- 
ministic programs only. Whether nondeterminacy is 
eventually removed mechanically--in order not to 
mislead the maintenance engineer--or (perhaps only 
partly) by the programmer himself because, at second 
thought, he does care--e.g, for reasons of efficiency-- 
which alternative is chosen is something I leave entirely 
to the circumstances. In any case we can appreciate the 
nondeterministic program as a helpful stepping stone. 
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