
Chapter 1

Introduction

In mathematics, one sometimes lives under the illusion that there is just one
logic that formalizes the correct principles of mathematical reasoning, the so-
called predicate calculus or classical first-order logic. By contrast, in philosophy
and computer science, one finds the opposite: there is a vast array of logics
for reasoning in a variety of domains. We mention intuitionistic logic, sorted
logic, modal logic, description logic, temporal logic, belief logic, dynamic logic,
Hoare logic, specification logic, evaluation logic, relevance logic, higher-order
logic, non-monotonic logic, bunched logic, non-commutative logic, affine logic,
and, yes, linear logic. Many of these come in a variety of flavors.

There are several reasons for these differing views on logic. An important
reason is that in mathematics we use logic only in principle, while in computer
science we are interested in using logic in practice. For example, we can eliminate
sorts from predicate logic by translating them to predicates and relativizing
quantifiers. For example, ∀x:s. A(x) can be reformulated as ∀x. S(x) ⊃ A(x).
This means, in principle, we do not have to bother with sorts when studying
logic. On the other hand, practical reasoning with formulas after sorts have
been eliminated is much more complex than before. An intrinisic property of
an object (t has sort s) has now become a proof obligation (S(t) is true). As
a result, some theorem provers such as SPASS instead apply essentially the
opposite transformation, translating monadic predicates into sorts before or
during the theorem proving process.

Another important difference between the mathematical and computational
point of view lies in the conceptual dependency between the notions of proof
and truth. In traditional mathematics we are used to thinking of “truth” as
existing abstractly, independently of anyone “knowing” the truth or falsehood
of a proposition. Proofs are there to demonstrate truth, but truth is really
independent of proof. In computer science, however, we have to be concerned
with computation. Proofs in this context show how to construct (= compute)
objects whose existence is asserted in a proposition. This means that the notions
of construction and proof come before the notion of truth. For example, ∃x. A(x)
is true if we can construct a t such that A(t) is true. Implication is another

Draft of September 18, 2001

fp
Lecture Notes on Linear Logic
Frank Pfenning
Fall 2001

2 Introduction

example, where A ⊃B is true if we can construct a proof of B from a proof of
A.

Our approach to linear logic is strongly influenced by both of these points.
First, we identify an important problem domain, namely reasoning with state,
that can be translated into the predicate calculus only with a great deal of
coding which makes simple situations appear complex. Second, we develop
an appropriate logic constructively. This means we explain the meaning of
the connectives via their proof rules, and not by an external mathematical
semantics. This is both philosophically sound and pragmatically sufficient to
understand a logic and how to use it.

Before we launch into examples and informal description of linear logic, we
should point out that our perspective is neither historical (linear logic instead
arose from domain theory) nor the most popular (much of the current work on
linear logic accepts the non-constructive law of excluded middle). On the other
hand, we believe our intuitionistic view of linear logic has its own compelling
beauty, simplicity, and inevitability, following the tradition of Gentzen [Gen35],
Prawitz [Pra65], and Martin-Löf [ML96]. Furthermore, intuitionistic linear logic
can directly accomodate most applications that classical linear logic can, but
not vice versa.

The interested reader is referred to the original paper by Girard [Gir87], and
several surveys [Lin92, Sce93, Tro92] for other views on linear logic. A historical
introduction [Dos̆93] and context for linear and other so-called substructural
logics outside computer science can be found in [SHD93].

As a motivating example for linear logic we consider the so-called blocks
world, which is often used to illustrate planning problems in artificial intelli-
gence. It consists of various blocks stacked on a table and a robot arm that is
capable of picking up and putting down one block at a time. We are usually
given an initial configuration and some goal to achieve. The diagram below
shows typical situation.

a

b

c
table

We would like to describe this situation, the legal moves, and the problem of
achieving a particular goal in logical form. This example led to an independent
discovery of a fragment of linear logic by Bibel [Bib86] around the same time
that Girard developed linear logic based on a very different foundations.

Draft of September 18, 2001

3

on(x, y) block x is on block y
tb(x) block x is on the table
holds(x) robot arm holds block x
empty robot arm is empty
clear(x) the top of block x is clear

A state is described by a collection of propositions that are true. For exam-
ple, the state above would be described as

∆0 = (empty, tb(a), on(b, a), clear(b), tb(c), clear(c))

A goal to be achieved can also be described as a logical proposition such
as on(a, b). We would like to develop a logical system so that we can prove a
goal G from some assumptions ∆ if and only if the goal G can be achieved from
the initial state ∆. In this kind of representation, plans correspond to proofs.
The immediate problem is how to describe legal moves. Consider the following
description:

If the robot hand is empty, a block x is clear, and x is on y, then we
can pick up the block, that is, achieve a state where the robot hand
holds x and y is clear.

One may be tempted to formulate this as a logical implication.

∀x. ∀y. (empty ∧ clear(x) ∧ on(x, y)) ⊃ (holds(x) ∧ clear(y))

However, this encoding is incorrect. With this axiom we can derive contradictory
propositions such as empty∧holds(b). The problem is clear: logical assumptions
persist. In other words, ordinary predicate calculus has no notion of state.

One can try to solve this problem in a number of ways. One way is to
introduce a notion of time. If we ©A to denote the truth of A at the next time,
then we might say

∀x. ∀y. (empty ∧ clear(x) ∧ on(x, y)) ⊃©(holds(x) ∧ clear(y))

Now the problem above has been solved, since propositions such as empty ∧
©holds(b) are not contradictory. However, we now have the opposite problem:
we have not expressed that “everything else” stays the same when we pick up a
block. Expressing this in temporal logic is possible, but cumbersome. At heart,
the problem is that we don’t really need a logic of time, but a logic of state.

Miraculously, this is quite easy to achieve by changing our rules on how
assumptions may be used. We write

A1 true, . . . , An true `̀ C true

to denote that we can prove C from assumptions A1, . . . , An, using every as-
sumption exactly once. Another reading of this judgment is:

Draft of September 18, 2001

4 Introduction

If we had resources A1, . . . , An we could achieve goal C.

We refer to the judgment above as a linear hypothetical judgment. The order
in which assumptions are presented is irrelevant, so we freely allow them to be
exchanged. We use the letter ∆ to range over a collection of linear assumptions.

From our point of view, the reinterpretation of logical assumptions as con-
sumable resources is the central insight in linear logic from which all else follows
in a systematic fashion. Such a seemingly small change has major consequences
in properties of the logic and its logical connectives. First, we consider the
laws that are derived from the nature of the linear hypothetical judgment itself,
without regard to any logical connectives. The first expresses that if we have a
resource A we can achieve goal A.

hyp
A true `̀ A true

Note that there may not be any leftover resources, since all resources must
be used exactly once. The second law in some sense defines the meaning of
linear hypothetical judgments.

If ∆ `̀ A true and ∆′, A true `̀ C true then ∆,∆′ `̀ C true.

Informally: if we know how to achieve goal A from ∆, and if we know how
to achieve C from A and ∆′, then we can achieve C if we have both collections
of resources, ∆ and ∆′. We write ∆,∆′ as concatentation of the resources. This
law is called a substitution principle, since it allows us to substitute a proof of
A true for uses of the assumption A true in another deduction. The substitution
principle does not need to be assumed as a primitive rule of inference. Instead,
we want to assure that whenever we can derive the first two judgments, we can
already derive the third directly. This expresses that our logical laws have not
violated the basic interpretation of the linear hypothetical judgment: we can
never obtain more from a resource A than is allowable by our understanding of
the linear hypothetical judgment.

Next we introduce a few connectives, considering each in turn.

Simultaneous Conjunction. We write A⊗B if A and B are true in the same
state. For example, we should be able to prove A true, B true `̀ A ⊗ B true.
The rule for infering a simultaneous conjunction reads

∆ `̀ A true ∆′ `̀ B true ⊗I
∆,∆′ `̀ A ⊗B true

Read from the conclusion to the premises:

In order to achieve goal A ⊗ B we divide our resources into ∆ and
∆′ and show how to achieve A using ∆ and B using ∆′.

This is called an introduction rule, since it introduce a logical connective in
the conclusion. An introduction rule explains the meaning of a connective by

Draft of September 18, 2001

5

explaining how to achieve it as a goal. Conversely, we should also specify how to
use our knowledge that we can achieve A⊗B. This is specified in the elimination
rule.

∆ `̀ A⊗ B true ∆′, A true, B true `̀ C true
⊗E

∆,∆′ `̀ C true

We read an elimination rule downward, from the premise to the conclusion:

If we know that we can achieve A⊗B from ∆, we can proceed as if we
had both A and B together with some other resources ∆′. Whatever
goal C we can achieve form these resources, we can achieve with the
joint resources ∆ and ∆′.

Intuitively, it should be clear that this is sound from the meaning of linear
hypothetical judgments explained above and summarized in the substitution
principle. We will see later more formally how to check that introduction and
elimination rules for a connective fit together correctly.

Alternative Conjunction. We write ANB if we can goals A and B with the
current resources, but only alternatively. For example, if we have one dollar, we
can buy a cup of tea or we can buy a cup of coffee, but we cannot buy them
both at the same time. For this reason this is also called internal choice. Do not
confuse this with disjunction or “exclusive or”, the way we often do in natural
language! A logical disjunction (also called external choice) would correspond
to a vending machine that promises to give you tea or coffee, but you cannot
choose between them.

The introduction rule for alternative conjunction appears to duplicate the
resources.

∆ `̀ A true ∆ `̀ B true
NI

∆ `̀ ANB true

However, this is an illusion: since we will actually have to make a choice between
A and B, we will only need one copy of the resources. That we are making an
internal choice is also apparent in the elimination rules. If we know how to
achieve ANB we but we have to choose between two rules to obtain either A or
B.

∆ `̀ ANB true
NEL

∆ `̀ A true

∆ `̀ ANB true
NER

∆ `̀ B true

Note that we do not use alternative conjunction directly in the blocks world
example.

Linear Implication. For our blocks world example, we also need a form of
implication: if we had resource A we could achieve B. This is written as A(B.
It expresses the meaning of the linear hypothetical judgment as a proposition.

∆, A true `̀ B true
(I

∆ `̀ A(B true

Draft of September 18, 2001

6 Introduction

The elimination rule for A(B allows us to conclude that B can be achieved,
if we can achieve A.

∆ `̀ A(B true ∆′ `̀ A true
(E

∆,∆′ `̀ B true

Note that we need to join the resources, which should be clear from our intuitive
understanding of assumptions as resources.

Without formalizing it, we also assume that we have a universal quantifier
with its usual logical meaning. Then we can express the legal moves in the
blocks world with the following axioms:

geton : ∀x. ∀y. empty⊗ clear(x)⊗ on(x, y)(holds(x) ⊗ clear(y),
gettb : ∀x. empty⊗ clear(x)⊗ tb(x)(holds(x),
puton : ∀x. ∀y. holds(x) ⊗ clear(y)(empty⊗ on(x, y) ⊗ clear(x),
puttb : ∀x. holds(x)(empty ⊗ tb(x)⊗ clear(x).

Each of these represents a particular possible action, assuming that it can
be carried out successfully. Matching the left-hand side of one these rules will
consume the corresponding resources so that, for example, the proposition empty
with no longer be available after the geton action has been applied.

For a given state ∆ = A1, . . . , An we write
⊗

∆ = A1 ⊗ · · · ⊗ An. The we
can reach state ∆′ from state ∆ if and only if we can prove

`̀ (
⊗

∆)((
⊗

∆′) true

where the axioms for the legal moves may be used arbitrarily many times. The
reader is invited to prove various instances of the planning problem using the
rules above.

This is still somewhat unsatisfactory. First of all, we may want to solve
a planning problem where not the complete final state, but only some desired
aspect of the final state (such as on(a, b)) is specified. Second, the axioms fall
outside of the framework on linear hypothetical judgments: they may be used
in an unrestricted manner, while state is used linearly.

The first problem is easily remedied by adding another logical constant. The
second is more complicated and postponed until the full discussion of natural
deduction.

Additive Truth. The goal > can always be achieved, regardless of which
resources we currently have. We can also think of it as consuming all available
resources.

>I
∆ `̀ > true

Consequently, we have no information when we know > and there is no elimi-
nation rule. It should be noted that > is the unit of alternative conjunction in
the sense that AN> is equivalent to A.

Draft of September 18, 2001

7

We can use > in order to specify incomplete goals. For example, if we want
to show that we can achieve a state where block a is no b, but we do not care
about any other aspect of the state, we can ask if we can prove

∆0 `̀ on(a, b)⊗>

where ∆0 is the representation of the initial state. There is another form of
trivial goal we discuss next.

Multiplicative Truth. The goal 1 can be achieved if we have no resources.

1I
· `̀ 1 true

Here we denote the empty collection of resources with “·”. In this case, knowing
1 true actually does give us some information, namely that the resources we have
can be consumed. This is reflected in the elimination rule.

∆ `̀ 1 true ∆′ `̀ C true
1E

∆,∆′ `̀ C true

Multiplicative truth is the unit of ⊗ in the sense that A⊗ 1 is equivalent to A.

Using our intuitive understanding of the connectives, we can decide various
judgments. And, of course, we can back this up with proofs given the rules
above. We only give two examples here.

A((B(C) true `̀ (A⊗ B)(C true

Informally we reason as follows:

In order to show (A⊗ B)(C we assume A⊗ B and show C.
If we know A⊗ B true we have both A and B simultaneously.
Using A and A((B(C) we can then obtain B(C.
Using B we can now obtain C.

Note that we use every assumption exactly once in this argument—linearity is
preserved.

A ⊗B true `̀ ANB true

This linear hypothetical judgment cannot be true for arbitrary A and B
(although it could be true for some specific A and B). We reason as follows:

Assume A⊗ B true `̀ ANB true holds for arbitrary A and B.
We know A true, B true `̀ A ⊗B true.
Therefore, by the substitution principle, A true, B true `̀ ANB true.
We also know ANB true `̀ A true by the hypothesis rule and NEL.
Therefore A true, B true `̀ A true, again by substitution.
But this is a contradiction to the meaning of the linear hypothetical
judgment (B is not used).

Draft of September 18, 2001

8 Introduction

Draft of September 18, 2001

Bibliography

[Bib86] Wolfgang Bibel. A deductive solution for plan generation. New Gen-
eration Computing, 4:115–132, 1986.

[Dos̆93] Kosta Dos̆en. A historical introduction to substructural logics. In Pe-
ter Schroeder-Heister and Kosta Dos̆en, editors, Substructural Logics,
pages 1–30. Clarendon Press, Oxford, England, 1993.

[Gen35] Gerhard Gentzen. Untersuchungen über das logische Schließen. Math-
ematische Zeitschrift, 39:176–210, 405–431, 1935. Translated under
the title Investigations into Logical Deductions in [Sza69].

[Gir87] J.-Y. Girard. Linear logic. Theoretical Computer Science, 50:1–102,
1987.

[Lin92] P. Lincoln. Linear logic. ACM SIGACT Notices, 23(2):29–37, Spring
1992.

[ML96] Per Martin-Löf. On the meanings of the logical constants and the
justifications of the logical laws. Nordic Journal of Philosophical Logic,
1(1):11–60, 1996.

[Pra65] Dag Prawitz. Natural Deduction. Almquist & Wiksell, Stockholm,
1965.

[Sce93] A. Scedrov. A brief guide to linear logic. In G. Rozenberg and A. Salo-
maa, editors, Current Trends in Theoretical Computer Science, pages
377–394. World Scientific Publishing Company, 1993. Also in Bul-
letin of the European Association for Theoretical Computer Science,
volume 41, pages 154–165.

[SHD93] Peter Schroeder-Heister and Kosta Dos̆en, editors. Substructural Log-
ics. Number 2 in Studies in Logic and Computation. Clarendon Press,
Oxford, England, 1993.

[Sza69] M. E. Szabo, editor. The Collected Papers of Gerhard Gentzen. North-
Holland Publishing Co., Amsterdam, 1969.

Draft of September 18, 2001

10 BIBLIOGRAPHY

[Tro92] A. S. Troelstra. Lectures on Linear Logic. CSLI Lecture Notes 29, Cen-
ter for the Study of Language and Information, Stanford, California,
1992.

Draft of September 18, 2001

