
Constructive Logic (15-317), Fall 2018
Assignment 9: Focusing and Classical Logic

Course Staff

Due: Friday, November 16, 11:59 pm

Submit your homework via autolab as a file named hw9.pdf.

Focusing and Chaining

A major theme of this course has been the discovery of theory through practice: strategies for
efficient proof search in the concrete conditions of real-world implementations are transformed into
razor-edged intellectual weapons, entirely new logics which sharpen the principal contradiction of
proof theory: the dialectic of the positive and negative (polarity).

The decomposition of truth into verification and use was our first encounter with the scientific
law, “One Divides Into Two”. By studying invertibility in the context of the sequent calculus (when
does a conclusion imply its premises?), we were able to achieve a firmer grasp of the fault-lines at
play, summarized in a dangerously over-simplified1 form below:

LEFT RULE RIGHT RULE

POSITIVE invertible non-invertible
NEGATIVE non-invertible invertible

Inversion Invertible rules can always be applied without any need for backtracking: since the
conclusion of an invertible rule implies its premises, the “future truth” of the goal is preserved
under free application of such rules. This practical insight, which is crucial for implementing a
performant proof search engine, can be codified by sharpening the logic to include deterministic
inversion phases Γ; Ω −→L C and Γ; Ω −→R C (where Ω is an ordered context of propositions).

Chaining While the above gives a clear and deterministic account of invertible rules, the non-
invertible ones beg for something similar. In this week’s lecture, we began to study chaining, which

fixes a dynamics for the non-invertible rules based on two forms of judgment, Γ −→ [A+] and

Γ; [A−] −→ C . Chaining is a technique to minimize backtracking by applying a sequence of
non-invertible rules in one go.

1In structural or persistent logic, some rules which ought to be non-invertible turn out to be invertible; polarity arises
properly from the proof search dynamics of linear logic, and casts an imperfect shadow in persistent logic.
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1 Practicing focusing

Task 1 (10 pts). Construct a derivation in focused logic for the following sequent:

·; · −→R ↓
((
a+ ⊃ b−

)
∧
(
a+ ⊃ c−

))
⊃
(
a+ ⊃

(
b− ∧ c−

))
Task 2 (20 pts). Consider the following depolarized formula:

¬(a+ ∨ b−)⊃ ¬a+ ∧ ¬b−

Come up with two distinct polarizations of the formula, adding shifts in the appropriate places;
you do not need to prove them. Hint: remember that in depolarized constructive logic, negation
¬A ≡ A⊃⊥; in your solution, you must choose a polarization for negations.

2 Saturation

Consider the following grammar of ground terms representing binary numbers:

n ::= ε | b0(n) | b1(n)

In class, we learned to write forward logic programs using inference rules; a forward logic
programming engine will apply these inference rules until saturation is reached, and then the result
of our program can be read from the saturated proof state. In the tasks that follow, you are free to
introduce any auxiliary predicates that you require. You need to ensure that your rules saturate
when new facts of the indicated form are added to the database.

In the problems that follow, you are required to implement forward logic programs by writing
down systems of inference rules. You may find it useful to experiment with DLV, an implementation
of forward logic programming which can be downloaded here: http://www.dlvsystem.com/dlv/.
DLV can be used to test your ideas on specific cases and quickly determine if they are likely to
work; but it is not required.

Task 3 (5 pts). Implement a forward logic program std(n) which derives the atom no iff it is not the
case that n is in standard form. You may assume that n is ground (i.e. not subject to unification).

Task 4 (5 pts). Next, implement a forward logic program succ(m,n) which derives no when it is
not the case that m + 1 = n. For the purpose of this exercise, you may assume that m and n are
ground. You may also assume that m and n are in standard form.

3 A New Constructive Logic: Classical Logic

Intuitionistic logic is based on the idea that the fundamental mathematical activity is to affirm the
truth of something using evidence. Classical logic should be understood as a different, dialectical
model of mathematical activity, in which one party tries to affirm and the other party tries to deny.
Whereas the central duality of intuitionistic natural deduction was between the introduction and
elimination rules for truth A true , in classical natural deduction, each proposition is explained
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through the interaction between rules for affirmation A� and rules for denial A� , a contest
governed by the nullary form of judgment # (contradiction).2

To be precise, each connective comes equipped with introduction rules for both affirmation and
denial; classical negation ¬A implements the involutive “change of perspective” between player
(affirmation) and opponent (denial).

Conjunction

A� B �

A ∧B �
∧� A�

A ∧B �
∧�1

B �

A ∧B �
∧�2

Disjunction

A�

A ∨B �
∨�1

B �

A ∨B �
∨�2

A� B �

A ∨B �
∨�

Implication

A�
u

....
B �

A⊃B �
⊃�u A� B �

A⊃B �
⊃�

Units

>�
>� ⊥�

⊥�

Negation

A�

¬A�
¬� A�

¬A�
¬�

In classical natural deduction, affirmation and denial compete with each other in a formal
contradiction, a nullary judgment written # . The rules for contradictions are as follows:

2The symbols A � and A � can be written using the provided macros; if you have trouble using these symbols, it is
also acceptable to write A yes and A no.
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Contradiction

A� A�
# link

A�
u

....
#

A�
#�u

A�
u

....
#

A�
#�u

Using the rules #� and #�, all the usual “elimination rules” for truth can be derived in classical
natural deduction.

Task 5 (10 pts). Recall the introduction and elimination rules for the universal quantifier in intu-
itionistic natural deduction:

[z : τ ]....
A(z) true

∀x : τ. A(x) true
∀Iz

t : τ ∀x : τ. A(x) true

A(t) true
∀E

Now it’s your turn: invent affirmation and denial rules ∀�, ∀� for the universal quantifier, as an
extension to the classical natural deduction calculus which we have seen so far.

Task 6 (10 pts). Recall the introduction and elimination rules for the existential quantifier in
intuitionistic natural deduction:

t : τ A(t) true

∃x : τ. A(x) true
∃I

∃x : τ. A(x) true

[z : τ ] A(z) true
u

....
C true

C true
∃Ez,u

As in the previous task, invent affirmation and denial rules ∃�,∃� for the existential quantifier.

Task 7 (10 pts). Using the rules you invented in the previous tasks, show that the following
elimination rules for the universal and the extistential quantifier are derivable.

t : τ ∀x : τ. C(x) �

C(t) �
∀�E

∃x : τ. A(x) �

[z : τ ] A(z) �
u

....
C �

C �
∃�Ez,u
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