Constructive Logic (15-317), Fall 2018
Assignment 8: Practicing Prolog

Course Staff*

Due: Friday, November 2, 2018, 11:59 pm

Submit your homework as a tar archive containing the files: g4ip.pl, and coloring.pl.
After submitting via Autolab, please check the submission’s contents to ensure it contains what
you expect. No points can be given to a submission that isn’t there.

1 Implementing a theorem prover (one more time)

Now that you are experts in implementing G4ip in Standard ML, it is time to try doing so in Prolog.

Task 1 (15 points). Implement a theorem prover for G4ip in Prolog. You must define the predicate
predicate prove/1 for proving a formula, and use the predefined logical operators (see accompanying
g4ip.pl file). This means that, given a valid ground formula a, the query prove(a) should succeed (with
true or yes).

For your convenience, we have provided you with a shell script to test your implementation. You can
invoke it by going

$ ./test_gdip.sh

2 Colouring maps

Graph colouring is an interesting problem in graph theory. A graph colouring is an assignment of
colours to each vertex such that no two adjacent vertices have the same colour. Of particular interest is a
colouring using a minimum number of colours; this number is called the chromatic number of the graph.
The four-colour theorem states that any planar grap can be coloured using at most four colours. The
theorem was proved in 1976 using a computer program, and has caused much controversy (is a computer
proof really a proof?). It has since been formally verified using the Coq theorem prover in 2005.

As a consequence of this theorem, any map can be coloured with at most four colours such that no
adjacent regions have the same colour. This is because every map can be represented by a planar graph,
with one vertex for each region, and an edge between two vertices if and only if their corresponding
regions are adjacent.

Consider, for example, Australia’s map in Figure[l} Observe that this map uses more colours than
necessary, although this might make it more visually appealing.

Task 2 (15 points). Implement a predicate color_graph(nodes, edges, colours) that associates with the
graph (nodes, edges) all of the valid 4-colourings of the graph. Submit your implementation in a file
named coloring.pl.

*Based on an assignment by Giselle Reis.
! A graph that can be drawn on the plane with no crossing edges.



WESTERN
AUSTRALIA

VICTORIA

TASMANI"

Figure 1: Australia (more colourful than necessary)

The predicate color_graph should find all valid colourings via backtracking. For efficiency reasons,
you may prefer to find all valid colourings without repetition, but we will not be checking this. Once all
valid solutions have been found via backtracking, the predicate should fail. You may assume the graph is
finite and planar, and your implementation should satisfy the following requirements:

1. You should define a color/1 predicate with four colours.
2. Assume there are predicates node/1 and edge/2.

3. In color_graph/3, the first parameter is a list of node/1 terms, the second parameter is a list of
edge/2 terms, and the third parameter is a list of pairs (a,c), where a is a node and c is a colour.

4. In the terminology of Task 3, the predicate color_graph should be multisolution for the mode
color_graph(+nodes, +edges, —colouring). (Indeed, the four-colour theorem tells us that we will
always be able to find a 4-colouring for a planar graph, and the graph’s finiteness guarantees there
are only finitely many such colourings.)

To clarify the terminology, consider the predicate child0f (P, @)), which we claim is multisolution for the
mode childOf(+person, —person):

person(alice).

person(bob) .

person(eve) .

person(mallory).

childOf (eve, alice).

childOf (eve, bob).

childOf (alice, eve). % Yes, this family tree has a cycle...
childOf (bob, eve).

child0f (mallory, alice).

child0f (mallory, bob).

% Repeated for the sake of contrasting findall and setof below.
child0f (mallory, bob).

We can ask Prolog to backtrack and find additional solutions by entering ”;” when prompted:

| ?- childOf (eve, Parent).

Parent = alice 7 ;



Parent = bob

yes

Observe that child0f (+person, —person) is multisolution because it will always terminate with at least
one solution. In contrast, child0f(—person, +person) is not multisolution, because for no term P does
child0f (P, mallory) hold.

The built-in Prolog predicates findall/3 and setof /3 may be useful in debugging your implementa-
tion. You can use the findall/3 predicate to return a list of all solutions (including repetitions):

| ?- findall(P, childOf (mallory, P), Parents).
Parents = [alice,bob,bob]

yes
We can also ask Prolog to return a set of all solutions (in list form) using the setof /3 predicate:

| 7- setof(P, child0f(mallory, P), Parents).
Parents = [alice,bob]

yes

For your convenience, we have provided you with a shell script to test your implementation. You can
invoke it by going

$ ./test_coloring.sh

Submitting your assignment

Please generate a tarball containing your solution files by running
$ tar cf hw8.tar coloring.pl g4ip.pl

and submit the resulting hw8. tar file to Autolab.



	Implementing a theorem prover (one more time)
	Colouring maps

