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ABSTRACT
The Gibbard-Satterthwaite Theorem states that (in unrestricted set-
tings) any reasonable voting rule is manipulable. Recently, a quan-
titative version of this theorem was proved by Ehud Friedgut, Gil
Kalai, and Noam Nisan: when the number of alternatives is three,
for any neutral voting rule that is far from any dictatorship, there
exists a voter such that a random manipulation—that is, the true
preferences and the strategic vote are all drawn i.i.d., uniformly at
random—will succeed with a probability ofΩ( 1

n
), wheren is the

number of voters. However, it seems that the techniques usedto
prove this theorem can not be fully extended to more than three
alternatives. In this paper, we give a more limited result that does
apply to four or more alternatives. We give a sufficient condition
for a voting rule to be randomly manipulable with a probability of
Ω( 1

n
) for at least one voter, when the number of alternatives is held

fixed. Specifically, our theorem states that if a voting ruler satisfies
1. homogeneity, 2. anonymity, 3. non-imposition, 4. a canceling-
out condition, and 5. there exists a stable profile that is still stable
after one given alternative is uniformly moved to differentposi-
tions; then there exists a voter such that a random manipulation for
that voter will succeed with a probability ofΩ( 1

n
). We show that

many common voting rules satisfy these conditions, for example
any positional scoring rule, Copeland, STV, maximin, and ranked
pairs.
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1. INTRODUCTION
If a group of agents needs to decide among a set of alternatives,

they can do so byvoting over the alternatives. First, agents are
asked to submit their preferences (usually in the form of linear or-
ders over the alternatives); then, the winner is selected based on the
reported preferences according to avoting rule. One complication
in this process ismanipulation, that is, a voter can sometimes obtain
a better result for herself by declaring her preferences insincerely.
One may try to prevent this by creating a rule that isstrategy-proof,
that is, a rule in which reporting one’s true preferences is always op-
timal. Unfortunately, when there are three or more alternatives and
preferences are unrestricted, no rule that satisfies non-imposition
(for every alternative, there exist votes that would make that al-
ternative win) and non-dictatorship (the rule does not simply al-
ways choose the most-preferred alternative of a single fixedvoter)
is strategy-proof, that is, a manipulation always exists. This fun-
damental impossibility result in mechanism design is knownas the
Gibbard-Satterthwaite theorem [10, 13].

Although a manipulation is guaranteed to exist (for reasonable
rules), in order for the manipulating agent to use it, she must also
be able to find it. Recent research has studied whether findinga
manipulation can be made computationally hard, thereby erecting
a computational barrier against manipulation. In early work [2, 1],
it was shown that when the number of alternatives is not bounded,
the second-order Copeland and STV rules are hard to manipulate,
respectively. More recent research has studied how to modify other
existing rules to make them hard to manipulate [3, 7]. Also, it
has been shown that richer variants of the manipulation problem
(manipulation by coalitions of weighted voters) can be hardeven
with a constant number of alternatives [5, 11].

However, all of these hardness results areworst-caseresults.
That is, they suggest that any algorithm will require exponential
time to solvesomeinstances. However, this does not mean that
there is no efficient algorithm that can find a manipulation for most
instances. Indeed, several recent results suggest that finding ma-
nipulations is usually easy. Procaccia and Rosenschein have shown
that, when the number of alternatives is a constant, manipulation
of positional scoring rules is easy even with respect to “junta” dis-
tributions, which arguably focus on hard instances [12]. Conitzer
and Sandholm have given some sufficient conditions under which
manipulation is easy and argue that these conditions are usually
satisfied in practice [4]. Zuckermanet al.have given manipulation
algorithms with the property that if they fail to find a manipulation
when one exists, then, if the manipulators are given some additional
vote weights, the algorithm will succeed [14].

Following this line of research, a quantitative version of the Gibbard-
Satterthwaite theorem was recently proved [9]. This theorem states
that, when there are three alternatives, for any neutral voting rule



that is far from any dictatorship, a random manipulation—that is,
the true preferences and the strategic vote are all drawn i.i.d., uni-
formly at random—will succeed with a probability ofΩ( 1

n
), where

n is the number of voters. This is perhaps one of the nicest ap-
proaches so far in trying to show that it is usually easy to findma-
nipulations; unfortunately, it seems that the technique used in the
proof of the theorem cannot be easily extended to four or moreal-
ternatives. In this paper, we obtain a similar result that does extend
to four or more alternatives, albeit under different assumptions.

After recalling some basic definitions and notations in Section 2,
we prove our main result in Section 3. Instead of consideringneu-
tral voting rules that are far from a dictatorship, our theorem applies
to all voting rules that satisfy the following five conditions: 1. ho-
mogeneity (if all the votes are multiplied by the same factor, the
outcome does not change), 2. anonymity (the rule treats all voters
equally), 3. non-imposition, 4. a canceling-out condition(if the set
of all linear orders is added to the votes, then the outcome does not
change), and 5. there exists a stable profile that is still stable af-
ter one given alternative is uniformly moved to different positions
(and a profile is stable if slight perturbations do not changethe
winner). Our theorem states that for any fixed number of alterna-
tives, if a voting rule satisfies the five conditions, then there exists a
voter such that a random manipulation for that voter succeeds with
a probability ofΩ( 1

n
). Finally, in Section 5, we show that some

common voting rules, including all positional scoring rules, STV,
Copeland, maximin, and ranked pairs, satisfy the five conditions.

2. PRELIMINARIES
Let C = {c1, . . . , cm} be the set ofalternatives(or candidates).

A linear order onC is a transitive, antisymmetric, and total relation
on C. The set of all linear orders onC is denoted byL(C). An
n-voter profileP on C consists ofn linear orders onC. That is,
P = (V1, . . . , Vn), where for everyi ≤ n, Vi ∈ L(C). The set of
all profiles onC is denoted byP (C). In the remainder of the paper,
m denotes the number of alternatives andn denotes the number of
voters.

A voting ruler is a function from the set of all profiles onC to
C, that is,r : P (C) → C. The following are some common voting
rules.

1. (Positional) scoring rules: Given ascoring vector
~v = (v(1), . . . , v(m)), for any voteV ∈ L(C) and any
c ∈ C, let s(V, c) = v(j), wherej is the rank ofc in V . For

any profileP = (V1, . . . , Vn), let s(P, c) =
n
∑

i=1

s(Vi, c).

The rule will selectc ∈ C so thats(P, c) is maximized. Two
examples of scoring rules areBorda, for which the scoring
vector is(m− 1, m− 2, . . . , 0), andplurality, for which the
scoring vector is(1, 0, . . . , 0).

2. Copeland: For any two alternativesci andcj , we can simu-
late apairwise electionbetween them, by seeing how many
votes preferci to cj , and how many prefercj to ci. Then,
an alternative receives one point for each win in a pairwise
election. Typically, an alternative also receives half a point
for each pairwise tie. The winner is the alternative who has
the highest score.

3. STV: The election has|C| rounds. In each round, the alter-
native that gets the minimal plurality score drops out, and is
removed from all of the votes (so that votes for this alterna-
tive transfer to another alternative in the next round). The
last-remaining alternative is the winner.

4. Maximin: Let N(ci, cj) denote the number of votes that rank
ci ahead ofcj . The winner is the alternativec that maximizes
min{N(c, c′) : c′ ∈ C, c′ 6= c}.

5. Bucklin: An alternativec’s Bucklin score is the smallest num-
berk such that more than half of the votes rankc among the
top k alternatives. The winner is the alternative who has the
smallest Bucklin score. (Sometimes, ties are broken by the
number of votes that rank an alternative among the topk.)

6. Ranked pairs: This rule first creates an entire ranking of all
the alternatives.N(ci, cj) is defined as for the maximin rule.
In each step, we will consider a pair of alternativesci, cj that
we have not previously considered; specifically, we choose
the remaining pair with the highestN(ci, cj). We then fix
the orderci > cj , unless this contradicts previous orders that
we fixed (that is, it violates transitivity). We continue until
we have considered all pairs of alternatives (hence we have a
full ranking). The alternative at the top of the ranking wins.

6. Dictatorship: For each voteri, the rule wherei is the dictator
always chooses the alternative at the top ofVi.

A manipulationfor voter i is a tuple(V−i, Vi, V
′

i ), whereV−i

corresponds to the true preferences of all the voters excepti, Vi

corresponds to the true preferences of voteri, andV ′
i is the strate-

gic vote of voteri. A manipulation issuccessfulunder voting rule
r if r(V−i, V

′
i ) �Vi

r(V−i, Vi). That is, if voteri submitsV ′
i in-

stead ofVi, this results in a winner that is more preferred by voter
i. In this paper,V−i is drawn uniformly fromL(C)n−1, andVi

andV ′
i are drawn uniformly fromL(C); in this case,(V−i, Vi, V

′
i )

is a random manipulationfor voter i. Let Mi,m,n(r) denote the
probability that a random manipulation for voteri is successful.

For two voting rulesf and g, let ∆m,n(f, g) be the distance
between two voting rulesf andg w.r.t.m alternatives andn voters,
defined as follows:

∆m,n(f, g) = PrP∈L(C)n(f(P ) 6= g(P ))

Here,P is drawn uniformly fromL(C)n. The following theorem
(proved by Friedgutet al. [9]) states that when there are three al-
ternatives, if the distance between a neutral voting ruler and any
dictatorship is at leastε > 0, then

∑

i Mi,3,n(r) is Ω(ε2).

Theorem 1 (Theorem 1 in [9]) Whenm = 3, there exists a con-
stantC such that if there existsε > 0 such that for any dictatorship
dict, ∆3,n(r, dict) > ε, then

∑n
i=1 Mi,3,n(r) > Cε2.

This theorem implies that for any voting rule that isε-far away from
any dictatorship for any number of voters, there exists a voteri such

that with a probability ofΩ(
1

n
), a random manipulation for voteri

is successful.

3. MAIN THEOREM
In the remainder of this paper, we assume that all the distribu-

tions are uniform. For any setS, let L(S) be all the linear orders
over S. Given a linear orderV overS andS′

n ⊂ S, let V |S′

n
be

the restriction ofV to S′
n. Similarly, letP |S′

n
be the restriction of

the profileP to S′
n. For any subset of agentsI ⊆ {1, . . . , n} and

anyn-voter profileP = {V1, . . . , Vn}, let P (I) = {Vi : i ∈ I}.
In this paper, we focus onanonymousrules (that is, rules that do
not distinguish among the voters), so that we can represent apro-
file as a (multi)set rather than a vector. LetiP be the profile that is
obtained fromP by replacing each vote withi copies of it. A rule
r is homogenousif for any P andi, r(P ) = r(iP ).



Definition 1 Given a voting ruler that satisfies anonymity and ho-
mogeneity, a profileP is stableif there existsε > 0 such that for
anyi ∈ N and any profileP ′ with |P ′| < εi|P |,

r(iP ∪ P ′) = r(P )

We emphasize that stability is a property of a profile with respect
to a rule, not just of a rule. If fractional votes are allowed,then a
profile is stable (with respect to a rule) if there exists anε such that
if we add a set of votes whose size is at mostε times the size of
the original set, then the winner does not change. However, we are
interested in the case where fractional votes are not allowed. This
is the reason that we need thei in the definition.

Definition 2 Let us consider a social choice setting withm alter-
natives andn voters, where social choice ruler is being used. Also
suppose we drawV1, . . . , Vn andV ′

i uniformly at random. Then,
for anyi ≤ n, let Mi,m,n(r) be the probability that
r(V1, . . . , V

′
i , . . . , Vn) �Vi

r(V1, . . . , Vn)—that is,V ′
i is a suc-

cessful manipulation fori.

Let Cm = {c1, . . . , cm} be the set of alternatives.

Definition 3 Define the merging function
M : L(Cm)n × {1, . . . , m}n → L(Cm)n such that

M((V1, . . . , Vn), (i1, . . . , in))) = (M(V1, i1), . . . , M(Vn, in))

whereM(Vj , ij) is the vote that results from movingcm to theij th
position. (We note that we allowM to be applied both to vectors
and to individual elements.)

For example,M((c1 � c2 � c3, c2 � c3 � c1), (1, 3)) = (c3 �
c1 � c2, c2 � c1 � c3).

We now define a functionDm that maps any profileP of n
votes to another profileDm(P ) such that the position ofcm is uni-
formly redistributed, while keeping the restriction of theprofile to
Cm−1 = {c1, . . . , cm−1} unchanged. The size of the resulting
profile is stilln; however, some of the votes in the resulting profile
are fractional. The setL(Cm) of linear orders of the alternatives
hasm! elements; letli denote theith linear order (1 ≤ i ≤ m!).
Then, any profileP can be written as

∑m!
i=1 pili, for somepi that

indicate how many times each linear order occurs. (This is making
use of the fact that we only consider anonymous rules.)

Definition 4 For any profileP =
∑m!

i=1 pili, let

Dm(P ) =
m!
∑

i=1

m
∑

j=1

pi

m
M(li, j)

Definition 5 Let P ′ = L(Cm) be the profile of all linear orders,
each appearing exactly once. We say a ruler satisfiescanceling
out if for any profileP , r(P ∪ P ′) = r(P ).

We are now ready to present our main result. This result states
that any rule that satisfies certain conditions is, in a sense, fre-
quently manipulable. (The precise definition of “frequently ma-
nipulable” is the same as that used by Friedgutet al.)

Theorem 2 Suppose that a voting ruler that chooses an alterna-
tive fromCm = {c1, . . . , cm} satisfies the following properties:

1. Homogeneity.

2. Anonymity.

3. Non-imposition, which means that for anyn, any alternative
ci, there exists a profileP of n votes such thatr(P ) = ci.

4. Canceling out.

5. There exists a profileP such that: (a)P and Dm(P ) are
both stable, (b)r(P ) = c1, and (c)r(Dm(P )) = c2.

Then, there existsε > 0 such that for anyn ∈ N,
∑n

i=1 Mi,m,n(r) >
ε. Here,ε does not depend onn.

We note that Theorem 1 [9] relates the frequency of manipulation
under any neutral voting rule to the distance between the rule and
dictatorships, when the number of alternatives is three. Incontrast,
the main theorem in this paper (Theorem 2) applies to any num-
ber of alternatives, and implies that the frequency of manipulation
under any voting rule satisfying the five conditions in Theorem 2
is non-negligible. The conditions in Theorem 1 and Theorem 2
are not comparable. Theorem 1 assumes neutrality, and Theorem 2
does not. The assumption of anonymity in Theorem 2 is relatedto
the dependence on the distance to the dictatorships in Theorem 1.
Admittedly, Condition 5 in Theorem 2 is less natural than allthe
other conditions. In Section 5, we will show that many of the
common rules satisfy the five conditions (including Condition 5)
in Theorem 2.

4. PROOF OF MAIN THEOREM
The proof of our main theorem follows the line of the proof of

Theorem 1 in [9]. First, for any voting ruler, we define the quantity
Mm−1

n (r) to be the probability that the winners underr for two
randomly drawn profiles are the same, given that the restrictions of
the two profiles toCm−1 = {c1, . . . , cm−1} are the same. Second,
we prove that, for any voting ruler satisfying the five conditions in
Theorem 2 and any fixed number of alternativesm, Mm−1

n (r) is
non-negligible, meaning that it is always strictly larger than some
positive constant (Lemma 2). Third, we bound the frequency of
manipulation below byMm−1

n (r).
The first and third steps are natural extensions of their counter-

parts in [9]. However, the technique used to prove the secondpart
is quite different. For this part, we bound the probability that a
randomly drawn profile satisfies the following two conditions be-
low by a constant. 1. The profile is approximately multiple copies
of the profileP in Condition 5. 2. After “shifting”cm in each
vote in the profile to a random position in the vote, the new profile
is approximately multiple copies ofDm(P ) with a non-negligible
probability.

We first present a basic result in probability theory that we will
need in the proof. The result is a corollary of a known multivariate
version of the central limit theorem; this multivariate version can
be found in Dudley [6]1.

Lemma 1 Suppose each random variableXi (1 ≤ i ≤ n) is uni-
formly (i.i.d.) drawn from{x1, . . . , xm}. LetP = (X1, . . . , Xn),
ti(P ) be the number of timesxi occurs inP . Then, for anyq1, . . . , qm ∈
R such thatq1 + . . . + qm = 0 and anyε > 0, there exists
δq1,...,qm > 0 (which does not depend onn) such that

lim
n→∞

Pr(
m
⋂

i=1

(|ti(P ) − n

m
− qi

√
n| < ε

√
n)) > δq1,...,qm

Proof of Lemma 1: We first note that

Pr(

m
⋂

i=1

(|ti(P ) − n

m
− qi

√
n| < ε

√
n))

≥Pr(

m−1
⋂

i=1

|ti(P ) − n

m
− qi

√
n| <

ε

m

√
n))

1We thank Sayan Mukherjee for referring us to this result.



This inequality holds because
∑m

i=1(ti(P ) − n
m

− qi
√

n) = 0,
which means that if|ti(P ) − n

m
− qi

√
n| is small for all i =

1, . . . , m−1, then|tm(P )− n
m
−qm

√
n| = |∑m−1

i=1 (ti(P )− n
m
−

qi
√

n)| is also small. For eachi ≤ n, let Xi be drawn uniformly
and i.i.d. from the following set ofm − 1-dimensional vectors:
{(1, . . . , 0), (0, 1, . . . , 0), . . . , (0, . . . , 1), (0, . . . , 0)}. By defini-
tion, Xi is a vector-valued random variable inRm−1. Let P =
∑n

i=1 Xi. Then

Pr(

m−1
⋂

i=1

|ti(P ) − n

m
− qi

√
n| <

ε

m

√
n))

=Pr(

m−1
⋂

i=1

n

m
+ qi

√
n − ε

m

√
n < P(i) <

n

m
+ qi

√
n +

ε

m

√
n)

=Pr(

m−1
⋂

i=1

qi − ε

m
<

P(i) − n
m√

n
< qi +

ε

m
)

whereP(i) is thei-th component ofP . It is easy to check that the
covariance matrix ofX is positive definite, which means its rank
is m − 1. Therefore from Theorem 9.5.6 (the central limit theo-

rem) and Theorem 9.5.7 in [6], whenn goes to infinity,
P − n

m√
n

converges to a multivariate normal distribution inR
m−1,

N(0, Σ) = fX(x1, . . . , xm−1)

=
1

(2π)(m−1)/2|Σ|1/2
exp(−1

2
x>Σ−1x)

Similarly to the proof of Theorem 9.3.6 in [6], because the proba-
bility density function of a multivariate normal distribution is con-
tinuous, we can prove that whenn goes to infinity,

Pr(

m−1
⋂

i=1

qi − ε

m
<

P(i) − n
m√

n
< qi +

ε

m
)

=

∫ q1+ ε
m

q1−
ε
m

. . .

∫ qm−1+ ε
m

qm−1−
ε
m

N(0, Σ)dxm−1 . . . dx1

Since
∫ q1+ ε

m

q1−
ε
m

. . .
∫ qm−1+ ε

m

qm−1−
ε
m

N(0, Σ)dxm−1 . . . dx1 > 0, there

existsδq1,...,qm > 0 such that

lim
n→∞

Pr(
m
⋂

i=1

|ti(P ) − n

m
− qi

√
n| < ε

√
n)) > δq1,...,qm

2

This lemma tells us that given “displacements”q1, . . . , qm, there
is someδq1,...,qm such that whenn goes to infinity, the probability
that for eachi, ti(P ) (the number of timesxi occurs inP ) is within
ε
√

n of its expectationn/m plus the displacementqi
√

n, is at least
δq1,...,qm .

We now define a quantityMm−1
n (r). We recall that for any pro-

file P over the set of alternativesCm = {c1, . . . , cm}, P |Cm−1 is
the profile obtained by removingcm from each vote inP .

Definition 6 Suppose we draw profilesP1, P2 uniformly at ran-
dom. LetMm−1

n (r) denote the conditional probability thatr(P1) =
c1 andr(P2) = c2, given thatP1|Cm−1 = P2|Cm−1 .

We will first show that whenn goes to infinity,Mm−1
n (r) is

bounded below by a quantity that does not depend onn. Then, we
will relate Mm−1

n (r) to
∑n

i=1 Mi,m,n(r), which will show that
the latter is bounded below by a quantity that does not dependon
n.

Lemma 2 If r satisfies all five conditions in Theorem 2, then there
existsn′ ∈ N andδ > 0 (which does not depend onn) such that
for anyn > n′, Mm−1

n (r) > δ.

Proof of Lemma 2: Supposer satisfies all five conditions. Let
the stable profile in Condition 5. of Theorem 2 bePs = q1l1 +
. . . + qm!lm!, and letε > 0 be such thatPs and Dm(Ps) are

both stable with respect toε. Let q̄ =
Σm!

i=1qi

m!
, andq′i = qi − q̄.

Also letSn denote the profilesP of n voters such that the number

of occurrencesti(P ) of each voteli in P is within
ε

4m!

√
n of

n

m!
+ q′i

√
n, that is,

Sn = {P : for everyi ≤ m!, |ti(P ) − n

m!
− qi

√
n| <

ε

4m!

√
n}

By Lemma 1 we know that there existsδq1,...,qm! such that

lim
n→∞

Pr(P ∈ Sn) > δq1,...,qm!

We first make the following claim.

Claim 1 For anyP ∈ Sn, r(P ) = c1.

Proof of Claim 1: Since for any profileP ∈ Sn, any i ≤ m!,

the number ofli in P is more than
n

m!
− q̄

√
n − ε

4m!

√
n, we can

decomposeP into the following three parts.

1. The “canceling-out” part:CP (P ) ⊂ {1, . . . , n}, such that

P (CP (P )) is (
n

m!
− (q̄ +

ε

4m!
)
√

n)(l1 + . . . + lm!).

2. The “main” partMP (P ): from the definition of theS, in
P (CP (P )) we can findP (MP (P )) =

√
n(

∑m!
i=1 qili).

3. The “negligible” partNP (P ): all the remaining
ε

4m!

√
n ·

m! =
ε

4

√
n votes.

Therefore

r(P ) = r(P (MP (P )) + P (NP (P ))) canceling out

=r(
√

nPs + NP (P )) anonymity ofr

=r(
√

nPs)) stability

=r(Ps) homogeneity

=c1

(End of the proof of Claim 1.) 2

For any pair(P1, P2) such thatP1|Cm−1 = P2|Cm−1 , we can
represent this pair as(P1, K2) whereK2 ∈ {1, . . . , m}n. Here,
theith component ofK2 indicates the position ofcm in theith vote
in P2. We remember that for the earlier-defined merging function
M , M(P1, K2) = P2.

For anyP1 ∈ S, we further decompose the canceling-out part
and the main part as follows.

1. For eachli andi ≤ m!, letA(P1, li) denote the subscripts of
all the votes in the canceling-out partCP (P1) that are equal
to li, that is,

A(P1, li) = {j ≤ n : j ∈ CP (P1) andP1(j) = li}

2. For eachli, i ≤ m!, letB(P1, li) denote the subscripts of all
the votes in the main partMP (P1) that are equal toli, that
is,

B(P1, li) = {j ≤ n : j ∈ MP (P1) andP1(j) = li}



We note that
⋃m!

i=1 A(P1, li) = CP (P1) and
⋃m!

i=1 B(P1, li) =
MP (P1).

What we will do next is to define a functionS′
n : Sn → 2{1,...,m}n

.
That is, for every profileP1 ∈ Sn, and everyK2 ∈ {1, . . . , m}n,
the functionS′

n determines whether or notK2 ∈ S′
n(P1). We want

this function to have the following properties:

1. There exists somen′ and someδ′ > 0 such that for any

n > n′, |S′

n(P1)|

mn > δ′ (that is, if we are drawing an ele-
ment uniformly at random from{1, . . . , m}n, then with a
probability of at leastδ′ the element we draw is inS′

n(P1) ).

2. For everyK2 ∈ S′
n(P1), r(M(P1, K2)) = c2.

Again we make use of Lemma 1. This time we apply the lemma
to theK2 component. We recall thatK2 takes values in{1, . . . , m}n.
We require that for everyP1 ∈ Sn, for everyK2 ∈ S′

n(P1), for ev-
ery li, eachj ∈ {1, . . . , m} occurs approximately the same num-
ber of times inK2(A(P1, li)), and eachj ∈ {1, . . . , m} occurs
approximately the same number of times inK2(B(P1, li)). (For
anyC ⊆ {1, . . . , n}, K2(C) is the subvector ofK2 consisting of
the components inC.)

We will first defineS′
n,A,li

(P1) ⊆ {1, . . . , m}A(P1,li) and
S′

n,B,li
(P1) ⊆ {1, . . . , m}B(P1,li), which are the projections of

theK2 ∈ S′
n(P1) onto the components inA(P1, li) andB(P1, li),

respectively. The definition is as follows:K′
2 is in S′

n,A,li
(P1) if

and only if for anyj ≤ m,

|tj(K
′
2) −

|A(P1, li)|
m

| <
ε
√

|A(P1, li)|
4m! · m

K′
2 is in S′

n,B,li
(P1) if and only if for anyj ≤ m,

|tj(K
′
2) −

|B(P1, li)|
m

| <
ε
√

|B(P1, li)|
4m · √qmax

,

whereqmax = max{q1, . . . , qm!}.
We are now ready to defineS′

n. We defineS′
n(P1) to be the set

of profiles such thatK2 ∈ S′
n(P1) if and only if for anyi ≤ m!,

each of{1, . . . , m} occurs approximately equally many times in
K2(A(P1, li)) andK2(B(P1, li)). That is:

S′
n(P1) = {K2 ∈ {1, . . . , m}n : for everyi ≤ m!,

K2(A(P1, li)) ∈ S′
n,A,li(P1) andK2(B(P1, li)) ∈ S′

n,B,li(P1)}
We note that we are ignoring the theK2 component of the neg-

ligible partNP (P1).
We will now prove that properties 1 and 2 above hold. For prop-

erty 1, since each element ofK2 is drawn independently,K2 can
be determined in the following2m! + 1 steps: first draw theK2

component ofA(P1, l1), then that ofA(P1, l2), and so on, until
B(P1, lm!), in the last step draw all the remaining components (the
ones in the negligible part) arbitrarily. By Lemma 1, there exists
δ0,...,0 such that whenn goes to infinity, for the step concerning
A(P1, li), the probability that itsK2 component is inS′

n,A,li
(P1)

is larger thanδ0,...,0 (and similarly for theB(P1, li)). Hence,

lim
n→∞

Pr(K2 ∈ S′
n(P1)) > (δ0,...,0)

2m!

Therefore there exists aδ > 0 that does not depend onn such
that

lim
n→∞

Pr((P1, S
′
n(P1)) : P1 ∈ Sn) > δ

Specifically,δ = δq1,....qm! · (δ0,...,0)
2m!. We now make the fol-

lowing claim.

Claim 2 For anyP1 ∈ Sn, anyK2 ∈ S′
n(P1), r(M(P1, K2)) =

c2.

Proof of Claim 2: We first prove that for anyK2 ∈ S′
n(P1),

M(P1, K2)(CP (P1)) (that is, the projection of the profile result-
ing from the merge operator onto the elements that originally can-
celed out) still approximately cancels out. Then, we prove that
M(P1, K2)(MP (P1)) (the projection of the new profile onto the
elements that were originally in the main part) consists approxi-
mately of multiple copies ofDm(Ps). Then, by a similar argument
as the one in Claim 1, it follows thatr(M(P1, K2)) = c2.

First, for anyli, the number of votesli in M(P1, K2)(CP (P1))
can be bounded below as follows:

ti(M(P1, K2)(CP (P1))) > ti(CP (P1)) − ε
√

n

4m!

This is because for anyi ≤ m!, the votesli in M(P1, K2)(CP (P1))
result fromm sets in the original profile: if we letlij

= M(li, j)
be the order that agrees withli on Cm−1 but placescm in thejth
position, then for eachj, votesli in the new profile result from the
votes inP1(A(P1, lij

)) in the original profile. For example, ifli =
c1 � . . . � cm, thenli1 = cm � c1 � . . . � cm−1, li2 = c1 �
cm � c2 � . . . � cm−1, . . ., lim = li = c1 � . . . � cm. Be-

causeli occurs inM(P1, K2)(A(P1, lij
))) at least

|A(P1, lij
)|

m
−

ε
√

|A(P1, lij
)|

4m! · m times by the definition ofS′
n,A,lij

(P1), and be-

cause|A(P1, lij
)| < n, we have

ε
√

|A(P1, lij
)|

4m! · m <
ε
√

n

4m! · m ,

which means

ti(M(P1, K2)(CP (P1)))

>m · ( ti(CP (P1))

m
− ε

√
n

4m! · m )

=ti(CP (P1)) − ε
√

n

4m!

So, we can construct a new canceling-out part inM(P1, K2)
that contains most of the old canceling-out partCP (P1). That is,
there existsNCP (P1, K2) ⊆ CP (P1) such that

M(P1, K2)(NCP (P1, K2))

=(
n

m!
− (q̄ + 2 · ε

4m!
)
√

n)(V1 + . . . + Vm!)

The part of the old canceling-out part that is not in the new canceling-
out part will turn out to be negligible.

Second, the number of times that any orderli occurs in
M(P1, K2)(MP (P1)) can be bounded below as follows:

ti(M(P1, K2)(MP (P1))) >
√

nti(Dm(Ps)) − ε
√

n

4

This is true by a similar argument as before: for anyi ≤ m!, the
votesli in M(P1, K2)(MP (P1)) result fromm sets in the original
profile: for eachj, votesli in the new profile result from the votes



in P1(B(P1, lij
)) in the original profile. Therefore

ti(M(P1, K2)(MP (P1)))

>

m
∑

j=1

(
qij

√
n

m
−

ε
√

|B(P1, lij
)|

4m · √qmax
)

=

m
∑

j=1

(
qij

√
n

m
− ε

√

qji

√
n

4m · √qmax
)

>
m

∑

j=1

(
qij

√
n

m
− ε

√

qmax
√

n

4m · √qmax
)

=
m

∑

j=1

qij

√
n

m
− m · ε 4

√
n

4m

>
√

nti(Dm(Ps)) − ε
√

n

4

The first equality follows from the fact that
MP (P1) =

√
n

∑m!
i=1 qili, which means thatB(P1, lij

) = qij

√
n.

The last inequality follows from the fact that
√

n > 4
√

n.
So, we can construct a new main part inM(P1, K2) that con-

tains most of the old main partMP (P1). That is, there exists
NMP (P1, K2) ⊆ MP (P1) such that

M(P1, K2)(NMP (P1, K2)) =
√

nDm(Ps) − ε
√

n

4

m!
∑

i=1

li

We letNNP (P1, K2) denote the set of all the remaining votes—
consisting of the votes from the old canceling-out part thatare not
in the new canceling-out part, the votes from the old main part that
are not in the new main part, and the votes from the old negligible

part. We know|NNP (P1, K2)| ≤ 3ε
√

n

4
< ε

√
n. By definition

NCP (P1, K2)∪NMP (P1, K2)∪NNP (P1, K2) = {1, . . . , n}.
It follows that:

r(M(P1, K2))

=r(
ε
√

n

4

m!
∑

i=1

li + M(P1, K2)(NMP (P1, K2))

+ M(P1, K2)(NNP (P1, K2))) canceling out

=r(
√

nDm(Ps) + M(P1, K2)(NNP (P1, K2))) anonymity ofr

=r(
√

nDm(Ps)) stability

=r(Ps) homogeneity

=c2

(End of the proof of Claim 2.) 2

To conclude, there exists aδ > 0 which does not depend onn
such that

lim
n→∞

Pr((P1, S
′
n(P1)) : P1 ∈ Sn) > δ,

and for anyP1 ∈ Sn, any K2 ∈ S′
n(P1), r(P1) = c1 and

r(M(P1, K2)) = c2. So there existsn′ ∈ N s.t. whenn > n′,

Pr((P1, S
′
n(P1)) : P1 ∈ Sn) >

δ

2
. Notice that for anyn ∈ N,

Mm−1
n (r) ≥ Pr((P1, S

′
n(P1)) : P1 ∈ Sn), we know that for any

n ≥ n′,

Mm−1
n (r) ≥ Pr((P1, S

′
n(P1)) : P1 ∈ Sn) >

δ

2

(End of the proof for Lemma 3.) 2

We now obtain a lower bound on
∑n

i=1 Mi,m,n(r) that depends
onMm−1

n (r).

Lemma 3
∑n

i=1 Mi,m,n(r) > 1
m!

Mm−1
n (r).

Proof of Lemma 3: This is an extension of Lemma 3 in [9]. For
eachzm−1 ∈ L(Cm−1)

n, letA(zm−1) andB(zm−1) be two sub-
sets of{1, . . . , m}n defined as follows:

A(zm−1) = {y ∈ {1, . . . , m}n : r(M(zm−1, y)) = c1}

B(zm−1) = {y ∈ {1, . . . , m}n : r(M(zm−1, y)) = c2}
That is,A(zm−1) (B(zm−1)) consists of the vectors of positions
such that if we extendzm−1 to includecm in those positions, then
c1 (c2) wins. First we show that

Mm−1
n (r) = Ex[

|A(x|Cm−1)|
mn

· |B(x|Cm−1)|
mn

] (1)

(here,x is a vector ofn votes drawn uniformly at random), as fol-
lows:

Mm−1
n (r)

=
1

((m − 1)!)n · m2n

∑

xm−1∈L(Cm−1)n

|{(a, b) : a, b ∈ {1, . . . , m}n,

r(M(xm−1, a)) = c1, r(M(xm−1, b)) = c2}|

=
1

((m − 1)!)n · m2n

∑

xm−1∈L(Cm−1)n

|A(xm−1)| · |B(xm−1)|

Now, we have that

1

((m − 1)!)n · m2n

∑

xm−1∈L(Cm−1)n

|A(xm−1)| · |B(xm−1)|

=
1

((m − 1)!)n · m3n

∑

x∈L(Cm)n

|A(x|Cm−1)| · |B(x|Cm−1)|

because for eachxm−1, there aremn different vectorsx ∈ L(Cm)n

that, when restricted toCm−1, coincide withxm−1. Finally, we
have that

1

((m − 1)!)n · m3n

∑

x∈L(Cm)n

|A(x|Cm−1)| · |B(x|Cm−1)|

=
1

(m!)n

∑

x∈L(Cm)n

|A(x|Cm−1)|
mn

· |B(x|Cm−1)|
mn

=Ex[
|A(x|Cm−1)|

mn
· |B(x|Cm−1)|

mn
]

as claimed.
Given anyX ⊆ {1, . . . , m}n, we define theupper edges ofX

in direction i to be the set of pairs(v, v′
i) such thatv ∈ X, and

after increasing theith component ofv to v′
i, the resulting element

will be out ofX.

Definition 7 For anyX ⊆ {1, . . . , m}n, anyi ≤ n, let theupper
edges∂i(X) in directioni be defined as follows:

∂i(X) = {(v−i, vi, v
′
i) : v−i ∈ {1, . . . , m}n−1,

vi, v
′
i ∈ {1, . . . , m}, (v−i, vi) ∈ X, (v−i, v

′
i) 6∈ X, vi < v′

i}
Also, let∂(X) =

⋃n
i=1 ∂i(X).

We now make the following claim to relateMi,m,n(r) to
∂i(A(x|Cm−1)) and∂i(B(x|Cm−1)).



Claim 3

Mi,m,n(r) ≥ 1

m!
m−nEx[|∂i(A(x|Cm−1))| + |∂i(B(x|Cm−1))|]

Proof of Claim 3: First, given a vectorxm−1 of orders ofCm−1,
we define an injective functiongi that maps every(v−i, vi, v

′
i) ∈

∂i(A(xm−1)) (wherevi, v
′
i are positions in{1, . . . , m}, with vi <

v′
i, andv−i is a vector ofn − 1 such positions) to a successful ma-

nipulationgc1
i (xm−1, v−i, vi, v

′
i) = (P, V ′

i ) for voter i, whereP
is a profile representing the agents’ true preferences, andV ′

i is the
manipulation for voteri. Let r(M(xm−1, v−i, v

′
i)) = cj , where

j 6= 1. Then, let

gc1
i (xm−1, v−i, vi, v

′
i)

=















(M(xm−1, v−i, vi), M(xm−1(i), v′
i)),

if cj �M(xm−1(i),vi)
c1

(M(xm−1, v−i, v
′
i), M(xm−1(i), vi)),

if c1 �M(xm−1(i),vi)
cj

That is, we consider the orderM(xm−1(i), vi) that results from
taking theith order inxm−1, and insertingcm in positionvi. If, in
this order,cj is ranked higher thanc1, then we makeM(xm−1(i), vi)
the true preference ofi, andM(xm−1(i), v′

i) (where we placecm

in the v′
ith position instead)i’s false report of his preferences. If

cj is ranked lower thanc1, then we makeM(xm−1(i), v′
i) the true

preference, andM(xm−1(i), vi) the false report of his preferences.
We now show that this manipulationgc1

i (xm−1, v−i, vi, v
′
i) is in-

deed successful. There are4 different cases that we need to con-
sider.

1. j 6= m and cj �xm−1(i) c1: by changing his vote from
M(xm−1(i), vi) toM(xm−1(i), v′

i), voteri changes the out-
come fromc1 to cj , and he prefers the latter.

2. j 6= m and c1 �xm−1(i) cj : by changing his vote from
M(xm−1(i), v′

i) toM(xm−1(i), vi), voteri changes the out-
come fromcj to c1, and he prefers the latter.

3. j = m andcm �M(xm−1(i),vi)
c1: by changing his vote

from M(xm−1(i), vi) to M(xm−1(i), v′
i), voter i changes

the outcome fromc1 to cm, and he prefers the latter because
his true preference isM(xm−1(i), vi).

4. j = m andc1 �M(xm−1(i),vi)
cm: by changing his vote

from M(xm−1(i), v′
i) to M(xm−1(i), vi), voter i changes

the outcome fromcm to c1, and he prefers the latter, for the
following reason. By assumption, even an agent with prefer-
encesM(xm−1(i), vi) prefersc1 to cm; andi’s true prefer-
encesM(xm−1(i), v′

i) are different fromM(xm−1(i), vi)
only in thatcm is ranked even lower inM(xm−1(i), v′

i).

Now, for every(v−i, vi, v
′
i) ∈ ∂i(B(xm−1)), we can analogously

definegc2
i (xm−1, v−i, vi, v

′
i), which is a successful manipulation

for voteri. Additionally, for anyxm−1, ym−1 ∈ L(Cm−1)
n such

thatxm−1 6= ym−1, any(v−i, vi, v
′
i) ∈ ∂iA(xm−1), (w−i, wi, w

′
i) ∈

∂iB(ym−1), we have

gc1
i (xm−1, v−i, vi, v

′
i) 6= gc2

i (ym−1, w−i, wi, w
′
i)

That is, all of the manipulations are distinct. Therefore,

Mi,m,n(r)

≥ 1

(m!)n+1

∑

xm−1

(|∂iA(xm−1)| + |∂iB(xm−1)|)

=
1

(m!)n+1 · mn

∑

x

(|∂iA(x|Cm−1)| + |∂iB(x|Cm−1)|)

=
1

(m!) · mn
Ex(|∂iA(x|Cm−1)| + |∂iB(x|Cm−1)|)

(End of the proof of Claim 3.) 2

Summing overi, we obtain
n

∑

i=1

Mi,m,n(r)

≥
n

∑

i=1

1

m!
m−nEx[|∂i(A(x|Cm−1))| + |∂i(B(x|Cm−1))|]

=
1

m!
m−nEx[|∂(A(x|Cm−1))| + |∂(B(x|Cm−1))|]

(2)

Next, we prove an extension of Lemma 8 in [9].

Claim 4 For any disjointA,B ⊆ {1, . . . , m}n, we have|∂(A)|+
|∂(B)| ≥ m−n|A||B|.
Proof of Claim 4: The proof is an easy generalization of the proof
of Lemma 8 in [9]. The only difference is that in our claim the
lattice is{1, . . . , m}n instead of{0, 1, 2}n, and the coefficient of
the FKG [8] inequality ism−n.

We now present the proof in full.{1, . . . , m}n can be organized
as a distributive lattice in the following way:

1. (a1, . . . , an) ≤ (b1, . . . , bn) if and only if for all j ≤ n,
aj ≤ bj .

2. (a1, . . . , an)∧(b1, . . . , bn) = (min(a1, b1), . . . , min(an, bn)).

For anyA, we will find a monotonic setA′—that is, for anya ∈ A′

anda′ � a, a′ is also inA′—in this lattice such that|A′| = |A|,
and there exists a one-to-one correspondenced betweenA andA′

with the following properties. For anya ∈ A, there is a pathp(a)
from a to d(a). (In a path over the lattice, any two adjacent ele-
ments(a1, a2) differ only in one component, anda1 < a2. For
example,(1, 1, 1), (1, 3, 1), (1, 3, 2) is a path.) We will show that
for our definitions ofd(a) andp(a), for anya 6= a′, any adjacent
pair a1 < a2 on p(a) and any adjacent paira′

1 < a′
2 on p(a′), ei-

thera1 6= a′
1 or a2 6= a′

2. That is, if we choose one pair of adjacent
elements from the path ofa, and choose another pair of adjacent
elements from the path ofa′, then the two pairs of elements are not
equal. We will similarly defined(b) andp(b) for anyb ∈ B, with
the same properties.

To do this, we use a variant of the “component-wise shifting up”
from [9]. GivenA, we will define ann-step path, starting atA0 =
A. In stepi, for anyv−i, let Nv−i

denote the set of all elements in
{1, . . . , m} that extendv−i to an element ofAi−1, that is,Nv−i

=
{vi : (vi, v−i) ∈ Ai−1}. Let nv−i

= |Nv−i
|. We also define a

functionfi such thatfi(vi, v−i) = (m−k+1, v−i), wherevi is the
kth largest element inNv−i

. For example, ifNv−i
= {m−1, m−

3, m−4}, thenfi(m−1, v−i) = (m, v−i), fi(m−3, v−i) = (m−
1, v−i), fi(m − 4, v−i) = (m − 2, v−i). In other words,fi shifts
(NvI−i, v−i) up such thatfi(Nv−i

, v−i) is “locally monotonic” ,
which means that it is monotonic in({1, . . . , m}, v−i). Then let
Ai =

⋃

v−i
fi(Nv−i

, v−i). Finally, we letA′ = An. The path of
a is defined to be its trace in the shifting-up process, and the end



of the trace (which is inA′) is defined to bed(a). We note that the
length of a path can be less thann, because it is possible that in
some stepi, theith component is not shifted up.

We now prove the property (stated more precisely above) thatad-
jacent pairs of elements in different paths are never equal.Suppose,
for the sake of contradiction, that it does not hold. Then, there exist
a 6= a′, an adjacent paira1 < a2 in p(a), and an adjacent paira′

1 <
a′
2 in p(a′), such thata1 = a′

1, a2 = a′
2. Then, sincea1 anda2 are

adjacent, they differ in exactly one component—let us say, the ith
component. For anyj ≤ n anda ∈ A, letpj(a) be thejth element
along the trace ofa, that is,fj(fj−1(. . . f1(a) . . .)). (We note that,
unlike thepath starting ata, the trace starting ata can have du-
plicates.) We now know thata1 = a′

1 = pi−1(a) = pi−1(a
′)

anda2 = a′
2 = pi(a) = pi(a

′) (otherwise, theith component
could not have shifted). However, this is impossible, because for
any j ≤ n, fj is a one-one function, which implies that for any
a 6= a′ and anyj ≤ n, pj(a) 6= pj(a

′). Thus we have derived
the desired contradiction, thereby proving the adjacent-pairs-are-
never-equal property. We can similarly prove the property for B.

We now prove thatA′ is monotonic. We prove the following
claim by induction on the step of the shifting-up process. The claim
states that in any stepi ≤ n, for any~vn−i ∈ {1, . . . , m}{i+1,...,n},
the restriction ofAi to ~vn−i is monotonic. Here, the restriction of
Ai to ~vn−i, denoted byA|~vn−i

, is defined as follows:

Ai|~vn−i
= {~vi ∈ {1, . . . , m}i : (~vi, ~vn−i) ∈ Ai}

Claim 5 For any i ≤ n and any~vn−i ∈ {1, . . . , m}{i+1,...,n},
Ai|~vn−i

is monotonic.

Proof of Claim 5: We prove the claim by induction. Wheni = 1,
for any ~vn−1 ∈ {1, . . . , m}{2,...,n}, A1|~vn−1

is monotonic be-
cause the first component of each element inA0 = A has been
shifted up. Now suppose the claim is true fori = k; we will show
it is true for i = k + 1. To prove this, we only need to check that
given any~vn−k−1 ∈ {1, . . . , m}k+2,...,n, any~a ∈ Ak+1|~vn−k−1

,

and any~b > ~a where~b differs from ~a only in one component,
~b ∈ Ak+1|~vn−k−1

. We will consider two different cases.

We first consider the case where~b differs from~a in the (k +
1)th component. In this case the claim follows directly from the
definition ofAk+1.

We next consider the case where~b differs from~a in thelth com-
ponent, forl < k + 1. For anyo ≤ k + 1, let ao be theoth
component of~a, and let~a−o = (a1, . . . , ao−1, ao+1, . . . , ak+1).
We definebo and~b−o similarly. Thenb−(k+1) > a−(k+1), al 6= bl,
and for anyo 6= l, ao = bo. Specifically,ak+1 = bk+1. By the
definition ofAk+1, for anyak+1 ≤ j ≤ m, (~a−(k+1), j) ∈ Ak+1,

which means that there exista1
k+1, . . . , a

m−ak+1+1

k+1 ∈ {1, . . . , m}
such that for any1 ≤ t ≤ m−ak+1+1, (~a−(k+1), a

t
k+1, ~vn−k−1) ∈

Ak. Therefore, for any1 ≤ t ≤ m − ak+1 + 1, a−(k+1) ∈
Ak|(vn−k−1,at

k+1
). Now, the induction assumption states that

Ak|(vn−k−1,at
k+1

) is monotonic; therefore, for any1 ≤ t ≤ m −
ak+1 + 1,~b−(k+1) ∈ Ak|(vn−k−1,at

k+1
), which means that

(~b−(k+1), a
t
k+1, ~vn−k−1) ∈ Ak. Hence, there are more thanm −

ak+1 elements inN(~b
−(k+1),~vn−k−1), which means that

~b = (~b−(k+1), ak+1) ∈ Ak+1|~vn−k−1
. Hence, the claim holds for

i = k + 1, and we have proven the induction step. Thus, the claim
holds for alli ≤ n.

(End of the proof of Claim 5.) 2

Similarly,B′ is monotonic. Now we can apply the FKG inequal-
ity [8] to A′ andB′. It follows that |A′ ∩ B′|/mn ≥ |A′|/mn ·

|B′|/mn = |A|/mn · |B|/mn. BecauseA ∩ B = ∅, it follows
thatA′ ∩ B′ ⊆ (A′\A) ∪ (B′\B), and hence

|∂(A)|+|∂(B)| ≥ |(A′\A)∪(B′\B)| ≥ |A′∩B′| ≥ m−n|A||B|

(End of the proof of Claim 4.) 2

For anyr satisfying all the five conditions, we now apply In-
equality (2), Claim 4, and Equation (1) to obtain:

n
∑

i=1

Mi,m,n(r)

≥ 1

m!
· m−nEx[|∂(A(x|Cm−1))| + |∂(B(x|Cm−1))|] Ineq.(2)

≥ 1

m!
· m−2nEx[|∂(A(x|Cm−1))| · |∂(B(x|Cm−1))|] Claim4

=
1

m!
Ex[

|∂(A(x|Cm−1))|
mn

· |∂(B(x|Cm−1))|
mn

]

=
1

m!
Mm−1

n (r) Eq. (1)

(End of the proof of Lemma 3.) 2

We are ready to prove the main result.
Proof of Theorem 2: By the Gibbard-Satterthwaite theorem

and condition 2 and 3, we know that for any numbern of voters,
there exists a successful manipulation, which means that for anyn,
∑n

i=1 Mi,m,n(r) ≥ 1

(m!)n+1
. From Lemma 2 and Lemma 3 we

know that there exists somen′ ∈ N and a constantδ (that does
not depend onn) such that for anyn > n′,

∑n
i=1 Mi,m,n(r) >

δ. Therefore, for anyn,
∑n

i=1 Mi,m,n(r) > min{ 1

(m!)n′+1
, δ},

and the right-hand side of the inequality is a constant that does not
depend onn. 2

5. APPLYING THE RESULT TO SOME COM-
MON VOTING RULES

In this section, we show that fornontrivial positional scoring
rules (with4 or more alternatives), Copeland (with5 or more al-
ternatives), STV, maximin, and ranked pairs (all with3 or more
alternatives), the conditions in Theorem 2 hold (thereby showing
that those rules are frequently manipulable). (We note that[9] al-
ready proves a quite general result for the case of neutral rules with
exactly3 alternatives.) For the results in this section, ties can be
broken in any way that is consistent with anonymity. A positional
scoring rule isnontrivial, if the components of its scoring vector
(v(1), . . . , v(m)) are not all equal, that is,v(1) > v(m).

Proposition 1 Any (nontrivial) positional scoring rule, Copeland,
STV, maximin, and ranked pairs satisfy anonymity, homogeneity,
every alternative can win, and canceling out. However, Bucklin
does not satisfy canceling out.

All that remains to show is that Condition 5 holds for (nontrivial)
positional scoring rules, Copeland with 5 or more alternatives, STV,
maximin, and ranked pairs. We recall Condition 5: There exists a
profileP such that: (a)P andDm(P ) are both stable, (b)r(P ) =
c1, and (c)r(Dm(P )) = c2.

A positional scoring rule isnontrivial if it is defined by a score
vector(s1, . . . , sm) for whichs1 > sm.

Proposition 2 For any nontrivial positional scoring rulers, when
there are4 or more alternatives, there exists a profile that satisfies
Condition 5 in Theorem 2.



Proof of Proposition 2: We will consider two cases. The first case
is thats2, . . . , sm are not all equal. In other words,s2 > sm. In
this case, letk > 2 be the smallest number such thatsk is different
from sk−1. That is,s2 = . . . = sk−1 > sk. Let the profilePs

consists of two parts,P1 andP2. Let P1 = a(c1 � cm � c3 �
. . . ck−1 � c2 � others) + b(c2 � c3 � . . . � ck−1 � c1 �
cm � others), wherea andb satisfy the following conditions:

1. as1 + bs2 > ask + bs1

2. b > a

Since 1 is equivalent toa(s1 − sk) > b(s1 − s2) ands1 − sk >
s1 − s2 ≥ 0, there exista, b > 0 that satisfy both conditions. Let
Mc be the permutation that cycles{c3, . . . , cm}, that is,

Mc(ci) =







ci if i = 1, 2
ci+1 if 3 ≤ i ≤ m − 1
c3 if i = m

Let V1 = c1 � c2 � c3 . . . � cm, V2 = c2 � c1 � c3 . . . � cm.
Then, letP2 = am

∑m−3
i=0 (M i

c(V1) + M i
c(V2)).

We now show thatPs = P1 + P2 satisfies Condition 5 in The-
orem 2. We need to check thatrs(Ps) = c1, rs(Dm(Ps)) = c2,
and bothPs andDm(Ps) are stable.

It is easy to check thatrs(Ps) = c1. We now show that
rs(Dm(Ps)) = c2. The score ofc2 in Dm(Ps) is higher than
the score ofc1 in Dm(Ps), because they get the same score in
Dm(P2), c2 getsa(m−k+1

m
·s2+ k−1

m
·sk)+b(m−1

m
·s1+ 1

m
·s2) in

Dm(P1), andc1 getsb(m−k+1
m

·s2+
k−1
m

·sk)+a(m−1
m

·s1+
1
m
·s2)

in Dm(P1). Hence, becauseb > a ands1 ≥ s2 > sk, we know
that the score ofc2 is higher than that ofc1 in Dm(Ps).

Also, the score ofc2 is higher than the score ofcm, because the
score ofc2 is:

a(
m − k

m
· s2 +

k

m
· sk) + b(

m − 1

m
· s1 +

1

m
· s2)

+
am(m − 2)

m
((m − 1)s1 + (m − 1)s2 + 2s3)

>ask + b(
m − 1

m
· s1 +

1

m
· s2) + a(m − 2)((m − 1)s1

+ (m − 1)s2 + 2s3)

=a((m − 2)(m − 1)s1 + (m − 2)(m − 1)s2 + 2(m − 2)s3 + sk)

+ b(
m − 1

m
· s1 +

1

m
· s2)

≥a((2m − 4 +
1

m
)

m
∑

i=1

si) + b(
1

m

m
∑

i=1

si)

=the score ofcm

The last inequality follows from the facts thatm ≥ 4 ands1 ≥
s2 ≥ . . . ≥ sm.

Similarly, we can prove that for anyi ≥ 3, the score ofc2 is
higher than the score ofci. Since the inequality is strict in each
case, we know thatPs andDm(Ps) are stable. This completes the
proof of the first case (s2 > sm).

In the second case,s1 > s2 = . . . = sm (the plurality rule).
In this case letPs = 3(c1 � c2 � cm � others) + 2(c2 �
c1 � cm � others) + 2(cm � c2 � c1 � others). It is easy to
check thatrs(Ps) = c1 andrs(Dm(Ps)) = c2, and for bothP2

andDm(Ps), the scores of the winners are strictly larger than the
scores of other alternatives, which means thatPs andDm(Ps) are
stable.

So any nontrivial positional scoring rule satisfies Condition 5 in
Theorem 2. 2

Proposition 3 For the Copeland rule with 5 or more alternatives,
there exists a profile that satisfies Condition 5 in Theorem 2.

Proof of Proposition 3: The profile isPs = c1 � cm � c2 �
c3 � c4 � others + m(c2 � c4 � c1 � cm � c3 � others) +
m(c3 � c4 � others � c1 � cm � c2). It follows that
Copeland(Ps) = c1. In Dm(Ps), the Copeland score ofc1 is
m − 3 because it only loses tocm and c4 in pairwise elections.
However, the Copeland score ofc2 is m − 2 because it only loses
to c1. The Copeland score of any othercj is less thanm − 2. So
Copeland(Dm(Ps)) = c2. Since none of the pairwise elections
result in a tie, the result of each pairwise election is not sensitive to
a small fraction of additional votes, which means that bothPs and
Dm(Ps) are stable. 2

Proposition 4 For the maximin, ranked pairs, and STV rules, with
3 or more alternatives, there exists a profile that satisfies condition
5. in Theorem 2.

Proof of Proposition 4: Let Ps = 3(c1 � cm � c2 � others) +
2(cm � c2 � c1 � others) + 2(c2 � c1 � cm � others).
Then,STV (Ps) = Maximin(Ps) = RankedPairs(Ps) = c1.
In Dm(Ps), the minimum pairwise score ofc1 is no more than3,
becausec1 is ahead ofc2 in only 3 votes. The minimum pairwise
score ofc2 is more than11

3
becausec2 is ahead ofc1 in 4 votes, and

ahead ofcm in 3·m−2
m

+2·m−1
m

+2·m−1
m

≥ 3· 1
3
+2· 2

3
+2· 2

3
= 11

3
votes. c2 also defeats all the other alternatives (c3, . . . , cm−1) in
their pairwise elections. So,c2 is the Condorcet winner, which
means thatMaximin(Dm(Ps)) = RankedPairs(Dm(Ps)) =
c2. For STV, in the first round, all ofc3, . . . , cm−1 are eliminated;
then, in the second round, sincec2 is ranked first (among the re-
maining alternatives) the greatest number of times, eitherc1 or cm

will be eliminated. In either casec2 is still ranked first (among
the remaining alternatives) the greatest number of times inthe third
round. Therefore,STV (Dm(Ps)) = c2. Both Ps andDm(Ps)
are stable because there is no tie in any pairwise election orin any
step of STV. 2

We summarize the results of this section as follows:

Theorem 3 Any nontrivial positional scoring rule (with 4 or more
alternatives), Copeland (with 5 or more alternatives), STV, max-
imin, and ranked pairs (all of the three rules with 3 or more alter-
natives) are frequently manipulable.

6. CONCLUSIONS
By the Gibbard-Satterthwaite theorem, for any voting rule that

satisfies non-dictatorship and non-imposition, if there are three or
more alternatives, then there exists a successful manipulation. Re-
cently, a quantitative version of this result was proved by Friedgut
et al. [9]. This new theorem relates the distance between a neutral
voting rule and the set of dictatorships to the probability that a ran-
dom manipulation (from a random profile) will succeed, when the
number of alternatives is three. (Here, “random” means uniformly
random.) Unfortunately, it does not seem that the proof for that
result can be easily extended to more than three alternatives.

In this paper, we considered a different (incomparable) setof
conditions under which a similar result holds for more than three
alternatives. We showed that if a voting rule satisfies homogene-
ity, anonymity, non-imposition, a canceling-out condition, and a
stability condition, then there exists at least one voter such that a
random manipulation for this voter will succeed with a probability

of Ω(
1

n
). (We note that we did not assume neutrality.) We showed

that any positional scoring rule, STV, Copeland with five or more
alternatives, maximin, and ranked pairs satisfy these conditions.



Apart from the fact that it is restricted to three alternatives, the
theorem by Friedgutet al. is a very general result about voting
rules: it only requires that the voting rule is neutral (and the re-
sult depends on the distance to dictatorial rules). The conditions
for our theorem are technically incomparable because we do not
assume neutrality, but in practice they seem more restrictive: al-
though some common voting rules satisfy them, other rules donot.
Therefore, we still consider it an important open problem togen-
eralize the theorem by Friedgutet al. to four or more alternatives,
perhaps with some additional assumptions that are less restrictive
than the ones in this paper. Additionally, in this paper, we treated
m, the number of alternatives, as a constant, and because of that
we did not consider the dependence of the probability of success
on m. Another interesting question is how these results generalize
to coalitional manipulation. Once all these questions are settled,
we should re-evaluate the agenda of preventing manipulation by
making it computationally hard.
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