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Game theory
Multiple self-interested 
agents interacting in the g g
same environment

What is an agent to do?

What is an agent to …What is an agent to 
believe?  (What are we to 
believe?)

…

believe?)



Penalty kick example

probability .7

probability .3

action

probability 1

Is this a action

probability .6
“rational” 
outcome?  
If not, what 

action

probability .4 is?



Multiagent systemsg y

Goal:Goal: 
Blocked(Room0)

Goal: 
Cl (R 0)Clean(Room0)



Game playingp y g



Real-world security 
applications

Airport security
Wh h ld h k i t i it

Milind Tambe’s TEAMCORE group (USC)

• Where should checkpoints, canine units, 
etc. be deployed?

D l d t LAX i t d l h• Deployed at LAX airport and elsewhere

Federal Air MarshalsFederal Air Marshals
• Which flights get a FAM?

US Coast Guard
• Which patrol routes should be followed?

• Deployed in Boston, New York, Los Angeles



Mechanism designg

Rating/voting systems
Auctions

Kidney exchanges
Donation matching

Kidney exchanges Prediction markets
overview: C., CACM 

March 2010



Outline
• Introduction to game theory (from CS/AI perspective)• Introduction to game theory (from CS/AI perspective)

• Representing games
St d d l ti t• Standard solution concepts
• (Iterated) dominance
• Minimax strategies
• Nash and correlated equilibriumq

• Recent developments
• Commitment: Stackelberg mixed strategies• Commitment: Stackelberg mixed strategies
• Security applications
L i i (ti itti )• Learning in games (time permitting)
• Simple algorithms
• Evolutionary game theory
• Learning in Stackelberg games



Representing gamesRepresenting games



Rock-paper-scissors
Column player akaColumn player aka. 
player 2
(simultaneously) 
chooses a column

0, 0 -1, 1 1, -1Row player
aka. player 

1, -1 0, 0 -1, 1
p y

1 chooses a 
row , , ,

-1, 1 1, -1 0, 0A row or column is 1, 1 1, 1 0, 0A row or column is 
called an action or 
(pure) strategy

Row player’s utility is always listed first, column player’s secondp y y y , p y

Zero-sum game: the utilities in each entry sum to 0 (or a constant)
Three-player game would be a 3D table with 3 utilities per entry, etc.



Penalty kick
(also known as: matching pennies)

L R
.5 .5

0 0 -1 1L

L R

5 0, 0 1, 1
-1 1 0 0

L

R

.5

5 1, 1 0, 0R.5



Security example

Terminal A Terminal B

actionaction

action



Security gamey g

A B

0, 0 -1, 2A

-1, 1 0, 0B



“Chicken”
• Two players drive cars towards each other
• If one player goes straight, that player winsy g g y
• If both go straight, they both die

S D

D S

0 0 1 1
D S

0, 0 -1, 1
1 1 5 5

D not zero-sum

1, -1 -5, -5S



Modeling and representing games
2, 2 -1, 0

-7 -8 0 0

THIS TALK
(unless 
specified -7, -8 0, 0

normal-form games

specified 
otherwise)

extensive-form games

Bayesian gamesBayesian games
stochastic games

hi l
action-graph games

[L B & T h l IJCAI’03graphical games
[Kearns, Littman, Singh UAI’01]

[Leyton-Brown & Tennenholtz IJCAI’03
[Bhat & Leyton-Brown, UAI’04]

[Jiang, Leyton-Brown, Bhat GEB’11] MAIDs 
[Koller & Milch. IJCAI’01/GEB’03]



A poker-like game
• Both players put 1 chip in the pot
• Player 1 gets a card (King is a winning card Jack a• Player 1 gets a card (King is a winning card, Jack a 

losing card)
• Player 1 decides to raise (add one to the pot) or• Player 1 decides to raise (add one to the pot) or 

check
Pl 2 d id t ll

“nature”

• Player 2 decides to call
(match) or fold (P1 wins)

1 gets King 1 gets Jack

player 1player 1

• If player 2 called, player
1’s card determines

raise raisecheck check

1 s card determines
pot winner

call fold call fold call fold call fold

player 2 player 2

2 1 1 1 -2 -11 1



Poker-like game in normal formPoker like game in normal form

“nature”

1 gets King 1 gets Jack

raise raisecheck check

player 1player 1 0, 0 0, 0 1, -1 1, -1
cc cf fc ff

rr

call fold call fold call fold call fold

player 2 player 2
.5, -.5 1.5, -1.5 0, 0 1, -1
-.5, .5 -.5, .5 1, -1 1, -1
0 0 1 1 0 0 1 1

cr
rc

2 1 1 1 -2 -11 1

0, 0 1, -1 0, 0 1, -1cc



Our first solution concept: 
Dominance



Rock-paper-scissors – Seinfeld variant
MICKEY: All right, rock beats paper!
(Mickey smacks Kramer's hand for losing)
KRAMER: I thought paper covered rockKRAMER: I thought paper covered rock.
MICKEY: Nah, rock flies right through paper.
KRAMER: What beats rock?
MICKEY: (looks at hand) Nothing beats 
rock.

0 0 1 1 1 10, 0 1, -1 1, -1

1 1 0 0 1 1-1, 1 0, 0 -1, 1
-1, 1 1, -1 0, 0



Dominance
f• Player i’s strategy si strictly dominates si’ if 

– for any s-i, ui(si , s-i) > ui(si’, s-i) i i i i i i i

• si weakly dominates si’ if 
– for any s i ui(si s i) ≥ ui(si’ s i); and

-i = “the player(s) 
other than i”

for any s-i, ui(si , s-i) ≥ ui(si , s-i); and
– for some s-i, ui(si , s-i) > ui(si’, s-i)

0 0 1 1 1 10, 0 1, -1 1, -1

1 1 0 0 1 1
strict dominance

-1, 1 0, 0 -1, 1weak dominance

-1, 1 1, -1 0, 0



Prisoner’s Dilemma
• Pair of criminals has been caught• Pair of criminals has been caught
• District attorney has evidence to convict them of a 

i i (1 i j il) k th t thminor crime (1 year in jail); knows that they 
committed a major crime together (additional 2 
years in jail) but cannot prove ityears in jail) but cannot prove it

• Offers them a deal:
– If both confess to the major crime, they each get a 1 year reduction
– If only one confesses, that one gets 3 years reduction

2 2 0 3
confess don’t confess

f -2, -2 0, -3
3 0 1 1

confess

-3, 0 -1, -1don’t confess



“Should I buy an SUV?” 
purchasing (+gas, maintenance) cost accident cost

cost: 5 cost: 5 cost: 5

cost: 3 cost: 8 cost: 2

cost: 5 cost: 5

-10, -10 -7, -11
-11, -7 -8, -8



Back to the poker-like gameBack to the poker like game

“nature”

1 gets King 1 gets Jack

raise raisecheck check

player 1player 1 0, 0 0, 0 1, -1 1, -1
cc cf fc ff

rr

call fold call fold call fold call fold

player 2 player 2
.5, -.5 1.5, -1.5 0, 0 1, -1

-.5, .5 -.5, .5 1, -1 1, -1

0 0 1 1 0 0 1 1

cr
cc

rc

2 1 1 1 -2 -11 1

0, 0 1, -1 0, 0 1, -1cc



Mixed strategies
• Mixed strategy for player i = probability 

distribution over player i’s (pure) strategies

• E g 1/3 1/3 1/3• E.g.,1/3        , 1/3       , 1/3

• Example of dominance by a mixed strategy:p y gy

3, 0 0, 01/2

0, 0 3, 01/2
Usage: 
σi denotes a mixed 0, 0 3, 0

1 0 1 0
1/2 i

strategy, 
si denotes a pure 1, 0 1, 0 strategy



Checking for dominance by mixed strategies 

• Linear program for checking whether strategy si* is 
strictly dominated by a mixed strategy:strictly dominated by a mixed strategy:

• maximize ε
• such that:• such that: 

– for any s-i, Σsi
psi

ui(si, s-i) ≥ ui(si*, s-i) + ε
Σ p = 1– Σsi

psi
= 1

Li f h ki h th t t * i• Linear program for checking whether strategy si* is 
weakly dominated by a mixed strategy:

i i Σ [(Σ ( )) ( * )]• maximize Σs-i
[(Σsi

psi
ui(si, s-i)) - ui(si*, s-i)]

• such that: 
– for any s-i, Σsi

psi
ui(si, s-i) ≥ ui(si*, s-i)

– Σsi
psi

= 1



Iterated dominance

• Iterated dominance: remove (strictly/weakly) Iterated dominance: remove (strictly/weakly) 
dominated strategy, repeat

• Iterated strict dominance on Seinfeld’s RPS:

0 0 1 1 1 10, 0 1, -1 1, -1
-1, 1 0, 0 -1, 1

0, 0 1, -1
1, 1 0, 0 1, 1

-1, 1 1, -1 0, 0
-1, 1 0, 0



“2/3 of the average” game
• Everyone writes down a number between 0 and 100

• Person closest to 2/3 of the average wins

• Example:Example:
– A says 50

– B says 10

– C says 90C says 90

– Average(50, 10, 90) = 50

– 2/3 of average = 33.33

– A is closest (|50-33.33| = 16.67), so A wins(| | ),



“2/3 of the average” game solvedg g
100

dominated

(2/3)*100
dominated after removal of 
(originally) dominated strategies

(2/3)*(2/3)*100
(originally) dominated strategies

…

00



Iterated dominance: path (in)dependence
Iterated weak dominance is path-dependent: 
sequence of eliminations may determine whichsequence of eliminations may determine which 
solution we get (if any)
(whether or not dominance by mixed strategies allowed)
L d t i NP h d ltLeads to various NP-hardness results [Gilboa, Kalai, Zemel Math of 
OR ‘93; C. & Sandholm EC ’05, AAAI’05; Brandt, Brill, Fischer, Harrenstein  TOCS ’11]

0, 1 0, 0
1 0 1 0

0, 1 0, 0
1 0 1 0

0, 1 0, 0
1 0 1 01, 0 1, 0

0, 0 0, 1
1, 0 1, 0
0, 0 0, 1

1, 0 1, 0
0, 0 0, 1

Iterated strict dominance is path-independent: elimination 
process will always terminate at the same point
( h th t d i b i d t t i ll d)(whether or not dominance by mixed strategies allowed)



Two computational questions for 
iterated dominanceiterated dominance

• 1.  Can a given strategy be eliminated using iterated 
d i ?dominance?

• 2.  Is there some path of elimination by iterated 
dominance such that only one strategy per playerdominance such that only one strategy per player 
remains?

• For strict dominance (with or without dominance by 
mixed strategies), both can be solved in polynomial g ) p y
time due to path-independence:
– Check if any strategy is dominated, remove it, repeat

F k d i b th ti NP h d• For weak dominance, both questions are NP-hard 
(even when all utilities are 0 or 1), with or without 
dominance by mixed strategies [C Sandholm 05]dominance by mixed strategies [C., Sandholm 05]
– Weaker version proved by [Gilboa, Kalai, Zemel 93]



Solving two-player 
zero-sum games



How to play matching pennies

L R
Them

1, -1 -1, 1L
Us

-1, 1 1, -1R
Us

• Assume opponent knows our mixed strategy

• If we play L 60%, R 40%...

t ill l R• … opponent will play R…

• … we get .6*(-1) + .4*(1) = -.2… we get .6 ( 1)  .4 (1)  .2

• What’s optimal for us?  What about rock-paper-scissors?



A locally popular sport

go for 3 go for 2

0, 0 -2, 2defend the 3 

go for 3 go for 2

, ,

-3 3 0 0defend the 2 3, 3 0, 0defend the 2



Solving basketball

3 2
Them

0, 0 -2, 23
Us

-3, 3 0, 02
Us

• If we 50% of the time defend the 3, opponent will shoot 3

– We get .5*(-3) + .5*(0) = -1.5g ( ) ( )

• Should defend the 3 more often: 60% of the time

• Opponent has choice between• Opponent has choice between

– Go for 3: gives them .6*(0) + .4*(3) = 1.2

G f 2 i th 6*(2) 4*(0) 1 2– Go for 2: gives them .6*(2) + .4*(0) = 1.2

• We get -1.2 (the maximin value)



Let’s change roles

3 2
Them

0, 0 -2, 23
Us

-3, 3 0, 02
Us

• Suppose we know their strategy

• If 50% of the time they go for 3, then we defend 3y g ,

– We get .5*(0)+.5*(-2) = -1

• Optimal for them: 40% of the time go for 3
von Neumann’s minimax
theorem [1928]: maximinOptimal for them: 40% of the time go for 3

– If we defend 3, we get .4*(0)+.6*(-2) = -1.2

If we defend 2 we get 4*( 3)+ 6*(0) = 1 2

value = minimax value
(~ linear programming duality)

– If we defend 2, we get .4 (-3)+.6 (0) = -1.2

• This is the minimax value



Minimax theorem [von Neumann 1928]

• Maximin utility: maxσi mins-i ui(σi, s-i)

(= - minσi maxs-i u-i(σi, s-i))

• Minimax utility: minσ-i maxsi ui(si, σ-i)

(= max min u (s σ ))(= - maxσ-i minsi u-i(si, σ-i))

• Minimax theorem:Minimax theorem: 

maxσi mins-i ui(σi, s-i) = minσ-i maxsi ui(si, σ-i)i i i i

• Minimax theorem does not hold with pure 
( ?)strategies only (example?)



Practice gamesPractice games

20, -20 0, 0
0, 0 10, -10

20, -20 0, 0 10, -10
0, 0 10, -10 8, -8, , ,



Back to the poker-like game againBack to the poker like game, again
“nature”

1 gets King 1 gets Jack

raise raisecheck check

player 1player 1 0, 0 0, 0 1, -1 1, -1
cc cf fc ff

rr

2/3 1/3

1/3
raise raisecheck check

ll f ld ll f ld ll f ld ll f ld

player 2 player 2
.5, -.5 1.5, -1.5 0, 0 1, -1

-.5, .5 -.5, .5 1, -1 1, -1cr
rc2/3

call fold call fold call fold call fold

2 1 1 1 -2 -11 1

0, 0 1, -1 0, 0 1, -1cc

• To make player 1 indifferent between bb and bs, we need:
utility for bb = 0*P(cc)+1*(1-P(cc)) = .5*P(cc)+0*(1-P(cc)) = utility for bs
That is, P(cc) = 2/3

• To make player 2 indifferent between cc and fc, we need:
utility for cc = 0*P(bb)+( 5)*(1 P(bb)) = 1*P(bb)+0*(1 P(bb)) = utility for fcutility for cc = 0*P(bb)+(-.5)*(1-P(bb)) = -1*P(bb)+0*(1-P(bb)) = utility for fc
That is, P(bb) = 1/3



A brief history of the minimax theorem
VilleVille

new proof 
related to 
systems of von Neumann

Borel
some very 

special cases of 

systems of 
linear 

inequalities
(in Borel’s

explains to 
Dantzig about 

strong duality of Émile Borel George 
the theorem

1921-1927 1928
von Neumann

1938

(
book)

1944
von Neumann &

linear programs

1947
Gale-Kuhn-

1951

Émile Borel
Dantzig

von Neumann
complete proof

von Neumann & 
Morgenstern

Theory of Games 
and Economic

Gale-Kuhn-
Tucker

proof of LP duality,
Dantzigand Economic 

Behavior
new proof also based 
on systems of linear 

Dantzig
proof* of 

equivalence to 
zero-sum games,y

inequalities, inspired 
by Ville’s proof

g
both in 

Koopmans’ book
Activity AnalysisJohn von Oskar 

of Production and 
Allocation

Neumann Morgenstern

E.g., John von Neumann's conception of the minimax theorem : a journey through different mathematical 
contexts.  Kjeldsen, Tinne Hoff.  In: Archive for History of Exact Sciences, Vol. 56, 2001, p. 39-68.



Computing minimax strategiesComputing minimax strategies

• maximize vR Row utilityR

subject to

for all c, Σr pr uR(r, c) ≥ vR

Σ p = 1 distributional constraint

Column optimality

Σr pr = 1 distributional constraint

Slide 7



Equilibrium notions for 
general-sum games



General-sum games
Y ld till l i i t t i l• You could still play a minimax strategy in general-sum 
games
– I.e., pretend that the opponent is only trying to hurt you

• But this is not rational:• But this is not rational: 0, 0 3, 1
1, 0 2, 1

• If Column was trying to hurt Row, Column would play Left, so 
Row should play Down

• In reality, Column will play Right (strictly dominant), so Row 
should play Up

• Is there a better generalization of minimax strategies in zero-
sum games to general-sum games?



Nash equilibrium [Nash 1950]q [ ]

• A profile (= strategy for each player) so that no 
player wants to deviateplayer wants to deviate

D S

0, 0 -1, 1D

1, -1 -5, -5S

• This game has another Nash equilibrium in g q
mixed strategies – both play D with 80%



Nash equilibria of “chicken”…
D S

0, 0 -1, 1D

D S
0, 0 1, 1
1, -1 -5, -5

D

S 1, 1 5, 5S
• Is there a Nash equilibrium that uses mixed strategies?  Say, where player 1 

uses a mixed strategy?uses a mixed strategy?
• If a mixed strategy is a best response, then all of the pure strategies that it 

randomizes over must also be best responses
• So we need to make player 1 indifferent between D and S
• Player 1’s utility for playing D = -pc

S

Player 1’s utility for playing S pc 5pc 1 6pc• Player 1’s utility for playing S = pc
D - 5pc

S = 1 - 6pc
S

• So we need -pc
S = 1 - 6pc

S which means pc
S = 1/5

• Then, player 2 needs to be indifferent as well, p y
• Mixed-strategy Nash equilibrium: ((4/5 D, 1/5 S), (4/5 D, 1/5 S))

– People may die!  Expected utility -1/5 for each player



The presentation 
game

Pay attention (A)
Do not pay 

attention (NA)

Put effort into 
presentation (E) 2, 2 -1, 0

Do not put effort into 
presentation (NE) -7, -8 0, 0

• Pure-strategy Nash equilibria: (E, A), (NE, NA)

• Mixed-strategy Nash equilibrium: 

((4/5 E 1/5 NE) (1/10 A 9/10 NA))((4/5 E, 1/5 NE), (1/10 A, 9/10 NA))
– Utility -7/10 for presenter, 0 for audience



The “equilibrium selection problem”
• You are about to play a game that you have never 

played before with a person that you have never met
• According to which equilibrium should you play?
• Possible answers:

– Equilibrium that maximizes the sum of utilities (social 
welfare)

– Or at least not a Pareto-dominated equilibriumOr, at least not a Pareto dominated equilibrium
– So-called focal equilibria

• “Meet in Paris” game: You and a friend were supposed to meet in 
P i t S d b t f t t di h dParis at noon on Sunday, but you forgot to discuss where and you 
cannot communicate.  All you care about is meeting your friend.  
Where will you go?

Equilibrium that is the convergence point of some learning– Equilibrium that is the convergence point of some learning 
process

– An equilibrium that is easy to compute
– …

• Equilibrium selection is a difficult problem



Computing a single Nash equilibrium
“Together with factoring, the complexity of 
finding a Nash equilibrium is in my opinion 
th t i t t t tithe most important concrete open question 

on the boundary of P today.”

Christos Papadimitriou, 
STOC’01

• PPAD complete to compute one Nash equilibrium in a two

STOC’01
[’91]

• PPAD-complete to compute one Nash equilibrium in a two-
player game [Daskalakis, Goldberg, Papadimitriou STOC’06 
/ SIAM J C ‘09 Ch & D FOCS’06 / Ch D/ SIAM J. Comp. ‘09; Chen & Deng FOCS’06 / Chen, Deng, 
Teng JACM’09] 

• Is one Nash equilibrium all we need to know?



A useful reduction (SAT → game)     
[C & Sandholm IJCAI’03 Games and Economic Behavior ‘08][C. & Sandholm IJCAI 03, Games and Economic Behavior 08]

(Earlier reduction with weaker implications: Gilboa & Zemel GEB ‘89)
Formula: (x1 or -x2) and (-x1 or x2)
Solutions: x =true x =trueSolutions: x1=true,x2=true

x1=false,x2=false
Game: x1 x2 +x1 -x1 +x2 -x2 (x1 or -x2) (-x1 or x2) default

x1 -2,-2 -2,-2 0,-2 0,-2 2,-2 2,-2 -2,-2 -2,-2 0,1
x2 -2,-2 -2,-2 2,-2 2,-2 0,-2 0,-2 -2,-2 -2,-2 0,1

+x1 -2,0 -2,2 1,1 -2,-2 1,1 1,1 -2,0 -2,2 0,1
-x1 -2,0 -2,2 -2,-2 1,1 1,1 1,1 -2,2 -2,0 0,1
+x2 -2,2 -2,0 1,1 1,1 1,1 -2,-2 -2,2 -2,0 0,1
-x2 -2,2 -2,0 1,1 1,1 -2,-2 1,1 -2,0 -2,2 0,1

(x or -x ) 2 2 2 2 0 2 2 2 2 2 0 2 2 2 2 2 0 1(x1 or -x2) -2,-2 -2,-2 0,-2 2,-2 2,-2 0,-2 -2,-2 -2,-2 0,1
(-x1 or x2) -2,-2 -2,-2 2,-2 0,-2 0,-2 2,-2 -2,-2 -2,-2 0,1
default 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 ε, ε

• Every satisfying assignment (if there are any) corresponds 
to an equilibrium with utilities 1, 1; exactly one additional 
equilibrium with utilities ε ε that always existsequilibrium with utilities ε, ε that always exists

• Evolutionarily stable strategies Σ2
P-complete [C. WINE 2013]



Some algorithm families for computing Nash 
ilib i f 2 l l fequilibria of 2-player normal-form games

L k H
Search over supports / MIP

[Dickhaut & Kaplan Mathematica J ‘91]
image from von Stengel

Lemke-Howson [J. SIAM ‘64]
Exponential time due to Savani & von 
Stengel [FOCS’04 / Econometrica’06]

[Dickhaut & Kaplan, Mathematica J. 91] 
[Porter, Nudelman, Shoham AAAI’04 / GEB’08]

[Sandholm, Gilpin, C. AAAI’05]

Special cases / subroutines
[C & Sandholm AAAI’05 AAMAS’06; Benisch

Approximate equilibria
[Brown ’51 / C. ’09 / Goldberg, Savani, Sørensen, 

Ventre ’11; Althöfer ‘94 Lipton Markakis Mehta ‘03[C. & Sandholm AAAI 05, AAMAS 06; Benisch, 
Davis, Sandholm AAAI’06 / JAIR’10; 

Kontogiannis & Spirakis APPROX’11; Adsul, 
Garg, Mehta, Sohoni STOC’11; …]

Ventre 11; Althöfer 94, Lipton, Markakis, Mehta 03,
Daskalakis, Mehta, Papadimitriou ‘06, ‘07, Feder, 
Nazerzadeh, Saberi ‘07, Tsaknakis & Spirakis ‘07, 

Spirakis ‘08, Bosse, Byrka, Markakis ‘07, …]



Search-based approaches (for 2 players)

• Suppose we know the support Xi of each 
player i’s mixed strategy in equilibriumplayer i s mixed strategy in equilibrium
– That is, which pure strategies receive positive 

probabilityprobability
• Then, we have a linear feasibility problem:

f b th i f S X ( ) 0– for both i, for any si  Si - Xi, pi(si) = 0
– for both i, for any si  Xi, Σp-i(s-i)ui(si, s-i) = ui
– for both i, for any si  Si - Xi, Σp-i(s-i)ui(si, s-i) ≤ ui

• Thus, we can search over possible supports, p pp
– This is the basic idea underlying methods in 

[Dickhaut & Kaplan 91;  Porter, Nudelman, Shoham AAAI04/GEB08]

• Dominated strategies can be eliminated



Solving for a Nash equilibrium 
using MIP (2 players)

[Sandholm Gilpin C AAAI’05][Sandholm, Gilpin, C. AAAI 05]

• maximize whatever you like (e.g., social welfare)
• subject to• subject to 

– for both i, for any si, Σs-i
ps-i

ui(si, s-i) = usi
– for both i, for any si, ui ≥ usi
– for both i, for any si, psi

≤ bsii i
– for both i, for any si, ui - usi ≤ M(1- bsi

)
– for both i, Σsi

psi
= 1si

psi

• b is a binary variable indicating whether si isbsi
is a binary variable indicating whether si is 

in the support, M is a large number



Lemke-Howson algorithm (1-slide sketch!)
GREEN ORANGE

1, 0 0, 1RED

GREEN ORANGE

, ,
0, 2 1, 0BLUE

player 2’s utility as 
function of 1’s player 1’s utility as 

f i f 2’

best-response strategies
function of 1 s 
mixed strategy function of 2’s 

mixed strategy redraw both

• Strategy profile = pair of points
BLUERED GREEN ORANGE

unplayed strategies
• Profile is an equilibrium iff every pure strategy is either a best response or 

unplayed
• I.e. equilibrium = pair of points that includes all the colorsq p p

– … except, pair of bottom points doesn’t count (the “artificial equilibrium”)

• Walk in some direction from the artificial equilibrium; at each step, throw out the 
color used twice



Correlated equilibrium [Aumann ‘74]q [ ]

0 0 0 1 1 00, 0 0, 1 1, 0

1 0 0 0 0 1
1/6 1/60

1, 0 0, 0 0, 1
1/6 1/60

0, 1 1, 0 0, 0
1/61/6 0



Correlated equilibrium LP
maximize whatever

subject to

for all r and r’ Σ p u (r c) ≥ Σ p u (r’ c)for all r and r , Σc pr,c uR(r, c) ≥ Σc pr,c uR(r , c)
Row incentive constraint

for all c and c’, Σr pr,c uC(r, c) ≥ Σr pr,c uC(r, c’)
C l i ti t i t

Σr c pr c = 1 distributional constraint

Column incentive constraint

Σr,c pr,c  1



Recent developmentsRecent developments



Questions raised by security games
• Equilibrium selection?

0 0 -1 1D
D S

• How should we model temporal / information

0, 0 -1, 1
1, -1 -5, -5S

• How should we model temporal / information 
structure? 2, 2 -1, 0

-7, -8 0, 0

• What structure should utility functions have?

• Do our algorithms scale?• Do our algorithms scale?



Observing the defender’s 
distribution in security

Terminal A

Terminal B

observe
Mo Tu We Th Fr Sa

This model is not uncontroversial… [Pita, Jain, Tambe, Ordóñez, Kraus 
AIJ’10; Korzhyk, Yin, Kiekintveld, C., Tambe JAIR’11; Korzhyk, C., Parr AAMAS’11]



Commitment 
(Stackelberg(Stackelberg 
strategies)strategies)



CommitmentCommitment

1, 1 3, 0Unique Nash 

0, 0 2, 1
q

equilibrium (iterated 
strict dominance 

solution)

• Suppose the game is played as follows:

solution)

von Stackelberg

– Player 1 commits to playing one of the rows,

– Player 2 observes the commitment and then chooses a columnPlayer 2 observes the commitment and then chooses a column

• Optimal strategy for player 1: commit to Down



Commitment as an 
i fextensive-form game

Player 1

• For the case of committing to a pure strategy:

Player 1

Up Down

Player 2 Player 2

Left Left RightRight

1, 1 3, 0 0, 0 2, 1



Commitment to mixed strategiesg

0 1

1, 1 3, 0.49 , ,

0, 0 2, 1.51

Sometimes also called a Stackelberg (mixed) strategy



Commitment as an 
i fextensive-form game…

• for the case of committing to a mixed strategy:
Player 1

… for the case of committing to a mixed strategy:

(1,0) 
(=Up)

(0,1) 
(=Down)

(.5,.5)

… …
Player 2

Left Left RightRight Left Right

1, 1 3, 0 0, 0 2, 1.5, .5 2.5, .5

• Economist: Just an extensive form game nothing new here• Economist: Just an extensive-form game, nothing new here

• Computer scientist: Infinite-size game!  Representation matters



Computing the optimal mixed 
strategy to commit to

[C & Sandholm EC’06 von Stengel & Zamir GEB’10][C. & Sandholm EC 06, von Stengel & Zamir GEB 10]

• Separate LP for every column c*:p y

maximize Σr pr uR(r, c*)

subject to

Row utility

subject to

for all c, Σr pr uC(r, c*) ≥ Σr pr uC(r, c) Column optimality

Σr pr = 1 distributional constraint

Slide 7



On the game we saw beforeOn the game we saw before

1, 1 3, 0x

0, 0 2, 1y

maximize 1x + 0y

subject to

maximize 3x + 2y

subject tosubject to

1x + 0y ≥ 0x + 1y

subject to

0x + 1y ≥ 1x + 0y

x + y = 1

x ≥ 0

x + y = 1

x ≥ 0

Slide 7

x ≥ 0

y ≥ 0

x ≥ 0

y ≥ 0



VisualizationVisualization

L C RL C R

U 0,1 1,0 0,0 (0,1,0) = M
M 4,0 0,1 0,0
D 0,0 1,0 1,1

( , , )

C

RL R

(1,0,0) = U (0,0,1) = D



Generalizing beyond zero-sum games 
Minimax, Nash, Stackelberg all agree in zero-sum games

0, 0 -1, 1

zero-sum games

0, 0 1, 1

-1, 1 0, 0

minimax strategies

zero-sum games general-sum games

Nash equilibrium

general-sum gameszero-sum games

Stackelberg mixed strategies



Other nice properties of 
commitment to mixed strategies

• No equilibrium selection problem
0, 0 -1, 1

1, -1 -5, -5

• Leader’s payoff at least as good as 
any Nash eq. or even correlated eq. 
(von Stengel & Zamir [GEB ‘10]; see also C. ≥(von Stengel & Zamir [GEB 10]; see also C. 
& Korzhyk [AAAI ‘11], Letchford, Korzhyk, C. 

[JAAMAS’14])[JAAMAS 14])

More discussion: V. Conitzer. Should Stackelberg Mixed Strategies Be 
Considered a Separate Solution Concept? [LOFT 2014] 



Committing to a correlated 
strategy [C. & Korzhyk AAAI’11]

1, 1 3, 0
24

0, 0 2, 1
.2.4

.1 .3



LP for optimal correlated 
strategy to commit to

maximize Σr,c pr,c uC(r, c)

subject to

leader utility

subject to

for all c and c’, Σr pr,c uC(r, c) ≥ Σr pr,c uC(r, c’)r r,c C r r,c C
Column incentive constraint

Σr,c pr,c = 1 distributional constraint



Equivalence to Stackelbergq g
L C R

Proposition 1. There
exists an optimalexists an optimal
correlated strategy to
commit to in which the

U
commit to in which the
follower always gets the
same recommendation

M
Dsame recommendation. D



3-player example
Leader

Utilities2 1

Unique optimal correlated 
strategy to commit to:

50%

Different from Stackelberg / CE

50%

Different from Stackelberg / CE



Stackelberg mixed strategies deserve 
recognition as a separate solution concept!recognition as a separate solution concept!

• Seeing it only as a solution of a modified 
(extensive-form) game makes it hard to 
see…
– when it coincides with other solution concepts

– how utilities compare to other solution conceptshow utilities compare to other solution concepts

– how to compute solutions

– …

• Does not mean it’s not also useful to think of 
it as a backward induction solution

• Similar story for correlated equilibriumSimilar story for correlated equilibrium



Some other work on commitment in 
unrestricted games

2 2 1 02, 2 -1, 0

-7, -8 0, 0
l fnormal-form games

learning to commit [Letchford, C., Munagala SAGT’09] 
correlated strategies [C. & Korzhyk AAAI’11]

uncertain observability [Korzhyk, C., Parr AAMAS’11] extensive-form games 
[Letchford & C., EC’10]

commitment in Bayesian games
[C. & Sandholm EC’06;  Paruchuri, Pearce, Marecki, Tambe, stochastic games[ ; , , , ,

Ordóñez, Kraus AAMAS’08; Letchford, C., Munagala 
SAGT’09; Pita, Jain, Tambe, Ordóñez, Kraus AIJ’10; Jain, 

Kiekintveld, Tambe  AAMAS’11; …]

g
[Letchford, MacDermed, C., 

Parr, Isbell, AAAI’12]



Security gamesSecurity games



Example security game
• 3 airport terminals to defend (A, B, C)

• Defender can place checkpoints at 2 of them

Att k tt k 1 t i l• Attacker can attack any 1 terminal

A B C

0 1 0 1 2 3{A B}

A B C

0, -1 0, -1 -2, 3
0 1 1 1 0 0

{A, B}

{A, C} 0, -1 -1, 1 0, 0
1 1 0 1 0 0

{A, C}

{B, C} -1, 1 0, -1 0, 0{ , }



Security resource allocation games

• Set of targets T

[Kiekintveld, Jain, Tsai, Pita, Ordóñez, Tambe AAMAS’09]

g

• Set of security resources available to the defender (leader)

• Set of schedules• Set of schedules

• Resource  can be assigned to one of the schedules in

• Attacker (follower) chooses one target to attack

• Utilities:                       if the attacked target is defended, 

otherwise

• s
t1

1

s1

s2

t2
t3

2
2

s3

t5t4



Game-theoretic properties of security resource 
allocation games [Korzhyk, Yin, Kiekintveld, C., Tambe JAIR’11]

For the defender:• For the defender: 
Stackelberg strategies are 
also Nash strategies
– minor assumption needed

– not true with multiple attacks

• Interchangeability property for• Interchangeability property for 
Nash equilibria (“solvable”) 1, 2 1, 0 2, 2
• no equilibrium selection problem

• still true with multiple attacks 
1, 1 1, 0 2, 1

[Korzhyk, C., Parr IJCAI’11] 0, 1 0, 0 0, 1



Scalability in security games
t1

1
s1

s2

1

t2
t3

2
s3

t5t4

basic model
games on graphs 

(usually zero-sum)
[H l C P IJCAI’09 T i Yi[Kiekintveld, Jain, Tsai, Pita, Ordóñez, Tambe 

AAMAS’09; Korzhyk, C., Parr, AAAI’10; Jain, 
Kardeş, Kiekintveld, Ordóñez, Tambe 

AAAI’10; Korzhyk C Parr IJCAI’11]

[Halvorson, C., Parr IJCAI’09; Tsai, Yin, 
Kwak, Kempe, Kiekintveld, Tambe 
AAAI’10; Jain, Korzhyk, Vaněk, C., 

Pěchouček, Tambe AAMAS’11; Jain, C., 

Techniques:

AAAI 10; Korzhyk, C., Parr, IJCAI 11] , ; , ,
Tambe AAMAS’13; Xu, Fang, Jiang, C., 

Dughmi, Tambe AAAI’14]

t li /i t
Defender utility

Marginal probability

compact linear/integer programs
strategy generation

Distributional constraints

Marginal probability 
of t* being defended (?)

Attacker optimality



Compact LPCo pac
• Cf. ERASER-C algorithm by Kiekintveld et al. [2009]

• Separate LP for every possible t* attacked:

f d iliDefender utility

Marginal probability

Distributional constraints

Marginal probability 
of t* being defended (?)

Distributional constraints

Attacker optimality

Slide 11



Counter-example to the compact LP
2

.5 .5

5 tt

1

.5 tt

.5 t t

• LP suggests that we can cover every 
target with probability 1…

b t in fact e can co er at most 3• … but in fact we can cover at most 3 
targets at a time

Slide 12



Birkhoff-von Neumann theorem
• Every doubly stochastic n x n matrix can be 

represented as a convex combination of n x n 
permutation matrices .1 .4 .5

.3 .5 .2

.6 .1 .3

1 0 0
0 0 1= .1

0 1 0
0 0 1+.1

0 0 1
0 1 0+.5

0 1 0
1 0 0+.3

• Decomposition can be found in polynomial time O(n4.5)

0 1 0 1 0 0 1 0 0 0 0 1

Decomposition can be found in polynomial time O(n ), 
and the size is O(n2) [Dulmage and Halperin, 1955]

C b t d d t t l d bl b t h ti• Can be extended to rectangular doubly substochastic
matrices Slide 14



Schedules of size 1 using BvNSchedules of size 1 using BvN

1 t1
.7

.1 .2 t1 t2 t3

2
t2

.7

.3 1 .7 .2 .1

2 0 .3 .7

t3

.1 .2.2 .5
0 0 1
0 1 0

0 1 0
0 0 1

1 0 0
0 1 0

1 0 0
0 0 1



Algorithms & complexityg p y
[Korzhyk, C., Parr AAAI’10]

Homogeneous
R

Heterogeneous
Resources resources

Size 1 P P
(BvN theorem)

du
le

s

(BvN theorem)

Size ≤2, bipartite P
(BvN theorem)

NP-hard
(SAT)

Sc
he Size ≤2 P

(constraint generation)
NP-hard

NP hard
Size ≥3 NP-hardNP-hard

(3-COVER)

Slide 16

Also: security games on graphs
[Letchford, C. AAAI’13]



Security games with multiple attacks
[Korzhyk, Yin, Kiekintveld, C., Tambe JAIR’11]

• The attacker can choose multiple targets to attack• The attacker can choose multiple targets to attack

• The utilities are added over all attacked targets• The utilities are added over all attacked targets

• Stackelberg NP-hard; Nash polytime-solvable and 
interchangeable [Korzhyk, C., Parr IJCAI‘11]

• Algorithm generalizes ORIGAMI algorithm for single attack• Algorithm generalizes ORIGAMI algorithm for single attack 
[Kiekintveld, Jain, Tsai, Pita, Ordóñez, Tambe AAMAS’09]



Actual Security Schedules: Before vs. After
Boston, Coast Guard – “PROTECT” algorithm, g

slide courtesy of Milind Tambe
Before PROTECT After PROTECTBefore PROTECT After PROTECT

C
ou

nt

C
ou

nt

D 1 D 2 D 3 D 4 D 5 D 6 D 7Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7

Industry port partners comment:
“The Coast Guard seems to be everywhere, all the time." 



Data from LAX checkpoints
before and after “ARMOR” algorithm

slide courtesy of 
Milind Tambe

before and after ARMOR  algorithm
slide 

140

(pre)4/17/06 to 7/31/07 

120

1/1/08 to 12/31/08 not a controlled 
experiment!

80

100
1/1/09 to 12/31/09

experiment!

60

80
1/1/10 to 12/31/10

40

60

20

0
Firearm Violations Drug Related Offenses Miscellaneous Total



Placing checkpoints in a city
[T i Yi K k K Ki ki t ld T b AAAI’10 J i K h k[Tsai, Yin, Kwak, Kempe, Kiekintveld, Tambe AAAI’10; Jain, Korzhyk, 

Vaněk, C., Pěchouček, Tambe AAMAS’11; Jain, C., Tambe AAMAS’13]



Learning in gamesLearning in games



Learning in (normal-form) games
• Learn how to play a game by

– playing it many times, and y g y
– updating your strategy based on experience

• Why?y
– Some of the game’s utilities (especially the other 

players’) may be unknown to you
– The other players may not be playing an equilibrium 

strategy
C ti ti l t t b h d– Computing an optimal strategy can be hard

– Learning is what humans typically do
– …

• Does learning converge to equilibrium?



Iterated best response
I h fi d l hi bi• In the first round, play something arbitrary

• In each following round, play a best response against 
h t th th l l d i th i dwhat the other players played in the previous round

• If all players play this, it can converge (i.e., we reach 
ilib i ) l

0 0 -1 1 1 -1

an equilibrium) or cycle

0, 0 -1, 1 1, -1
1, -1 0, 0 -1, 1

-1, -1 0, 0
0 0 1 1

-1, 1 1, -1 0, 0
0, 0 -1, -1

rock paper scissors
a simple congestion game

• Alternating best response: players alternatingly
change strategies: one player best-responds each

rock-paper-scissors

change strategies: one player best responds each 
odd round, the other best-responds each even round



Fictitious play [Brown 1951]
I h fi d l hi bi• In the first round, play something arbitrary

• In each following round, play a best response against 
th i i l di t ib ti f th th l ’ lthe empirical distribution of the other players’ play
– I.e., as if other player randomly selects from his past 

actionsactions
• Again, if this converges, we have a Nash equilibrium
• Can still fail to converge

0 0 1 1 1 1

• Can still fail to converge…

0, 0 -1, 1 1, -1
1 -1 0 0 -1 1

-1, -1 0, 0
1, 1 0, 0 1, 1
-1, 1 1, -1 0, 0

0, 0 -1, -1
a simple congestion game

rock-paper-scissors
a simple congestion game



Fictitious Row Column

play on 
rock paperrock-paper-

scissorsscissors

0, 0 -1, 1 1, -10, 0 1, 1 1, 1
1, -1 0, 0 -1, 1
-1, 1 1, -1 0, 0

30% R, 50% P, 20% S 30% R, 20% P, 50% S



Does the empirical distribution 
of play converge to equilibrium?

• … for iterated best response?
• for fictitious play?… for fictitious play?

3, 0 1, 2
1 2 2 11, 2 2, 1



Fictitious play is guaranteed to 
converge in…

Two player zero sum games [Robinson• Two-player zero-sum games [Robinson 
1951]

• Generic 2x2 games [Miyasawa 1961]
• Games solvable by iterated strict y

dominance [Nachbar 1990]
• Weighted potential games [Monderer &• Weighted potential games [Monderer & 

Shapley 1996]
Not in general [Shapley 1964]• Not in general [Shapley 1964]

• But, fictitious play always converges to the set of ½-
approximate equilibria [C 2009; more detailed analysis byapproximate equilibria [C. 2009; more detailed analysis by 
Goldberg, Savani, Sørensen, Ventre 2011]



Shapley’s game on which fictitious 
play does not converge

starting with (U, C):

0, 0 0, 1 1, 0
1 0 0 0 0 11, 0 0, 0 0, 1
0, 1 1, 0 0, 00, 1 1, 0 0, 0



“Teaching”
• Suppose you are playing against a player that uses• Suppose you are playing against a player that uses 

one of these learning strategies
– Fictitious play, anything with no regret, …Fictitious play, anything with no regret, …

• Also suppose you are very patient, i.e., you only care 
about what happens in the long runpp g

• How will you (the row player) play in the following 
repeated games?p g
– Hint: the other player will eventually best-respond to 

whatever you do

4, 4 3, 5
5 3 0 0

1, 0 3, 1
2 1 4 05, 3 0, 0 2, 1 4, 0

• Note relationship to optimal strategies to commit top p g
• There is some work on learning strategies that are in 

equilibrium with each other [Brafman & Tennenholtz AIJ04]



Hawk Dove Game
Dove Hawk

Hawk-Dove Game
[Price and Smith 1973]

1, 1 0, 2Dove

[Price and Smith, 1973] 2, 0 -1, -1Hawk

• Unique symmetric equilibrium: 

50% Dove, 50% Hawk



Evolutionary game theory
Gi t i 2 l• Given: a symmetric 2-player game

1 1 0 2
Dove Hawk

1, 1 0, 2
2, 0 -1, -1

Dove

Hawk , ,
• Population of players; players randomly matched to play 

gameg
• Each player plays a pure strategy

ps = fraction of players playing strategy s
t f ll f ti (th t t )p = vector of all fractions ps (the state)

• Utility for playing s is u(s, p) = Σs’ps’u(s, s’)
• Players reproduce at rate proportional to their utility;• Players reproduce at rate proportional to their utility;

their offspring play the same strategy
dps(t)/dt = ps(t)(u(s, p(t)) - Σs’ps’u(s’, p(t)))dps(t)/dt  ps(t)(u(s, p(t)) Σs ps u(s , p(t)))
– Replicator dynamic

• What are the steady states?



Stability

1, 1 0, 2
Dove

Dove

Hawk

2, 0 -1, -1Hawk

• A steady state is stable if slightly perturbing the state 
will not cause us to move far away from the state

• Proposition: every stable steady state is a Nash 
ilib i f th t iequilibrium of the symmetric game

• Slightly stronger criterion: a state is asymptotically 
stable if it is stable, and after slightly perturbing this 
t t ill (i th li it) t t thi t tstate, we will (in the limit) return to this state



Evolutionarily stable strategies
[P i d S ith 1973][Price and Smith, 1973]

• Now suppose players play mixed strategiesNow suppose players play mixed strategies

• A (single) mixed strategy σ is evolutionarily stable if• A (single) mixed strategy σ is evolutionarily stable if 
the following is true:

– Suppose all players play σ

– Then, whenever a very small number of invaders enters 
that play a different strategy σ’,

the players playing σ must get strictly higher utility than 
th l i ’ (i t b bl t l i d )those playing σ’ (i.e., σ must be able to repel invaders)



Properties of ESS
Proposition A strategy σ is evolutionarily• Proposition. A strategy σ is evolutionarily 
stable if and only if the following conditions both y g
hold:

(1) For all σ', we have u(σ, σ) ≥ u(σ', σ) (i.e., 
symmetric Nash equilibrium)symmetric Nash equilibrium)

(2) For all σ' (≠ σ) with u(σ, σ) = u(σ', σ), we ( ) ( ) ( , ) ( , ),
have u(σ, σ') > u(σ', σ‘)

• Theorem [Taylor and Jonker 1978, Hofbauer et al. 1979, Zeeman 1980]. 
Every ESS is asymptotically stable under theEvery ESS is asymptotically stable under the 
replicator dynamic.  (Converse does not hold [van Damme 1987].)



Dove Hawk

Invasion (1/2) 1, 1 0, 2

2 0 1 1

Dove

H k

• Given: population P that plays σ = 40% Dove

2, 0 -1, -1Hawk

• Given: population P1 that plays σ = 40% Dove, 
60% Hawk

• Tiny population P2 that plays σ' = 70% Dove, 30% 
Hawk invadesHawk invades

• u(σ, σ) = .16*1 + .24*2 + .36*(-1) = .28 but 

u(σ', σ) = .28*1 + .12*2 + .18*(-1) = .34

• σ‘ (initially) grows in the population; invasion is 
successful



Dove Hawk

Invasion (2/2) 1, 1 0, 2Dove

2, 0 -1, -1Hawk

• Now P1 plays σ = 50% Dove, 50% Hawk

• Tiny population P that plays σ' = 70% Dove 30%• Tiny population P2 that plays σ  = 70% Dove, 30% 
Hawk invades

• u(σ, σ) = u(σ', σ) = .5, so second-order effect:

( ') 35*1 35*2 15*( 1) 9 b t• u(σ, σ') = .35*1 + .35*2 + .15*(-1) = .9 but

u(σ', σ') = .49*1 + .21*2 + .09*(-1) = .82u(σ , σ )  .49 1  .21 2  .09 ( 1)  .82

• σ' shrinks in the population; invasion is repelled



R kRock-
Paper 0, 0 -1, 1 1, -1Paper-

Scissors 1, -1 0, 0 -1, 1Scissors 1, 1 0, 0 1, 1

1 1 1 1 0 0-1, 1 1, -1 0, 0

• Only one Nash equilibrium (Uniform)

(U if R k) (R k R k)• u(Uniform, Rock) = u(Rock, Rock)

• No ESS• No ESS 



“Safe Left Right”Safe-Left-Right

1 1 1 1 1 1S f

Safe Left Right

1, 1 1, 1 1, 1Safe

1, 1 0, 0 2, 2Left

1, 1 2, 2 0, 0Right

• Can 100% Safe be invaded?

• Is there an ESS?



The ESS problem
Input: symmetric 2-player normal-form game.  

Q: Does it have an evolutionarily stable strategy?
(Hawk-Dove: yes.  Rock-Paper-Scissors: no.  Safe-Left-Right: no.)( y p g )

NP DP
Σ2

PThm. ESS is NP-hard
[Etessami and Lochbihler 2004].

P

NP coDP
Thm. ESS is in 
Σ2

P [Etessami and 
Lochbihler 2004].

Thm. ESS 
is coDP-hard

coNP Thm. ESS is coNP-hard
[Etessami and Lochbihler 2004].

is coD hard 
[Nisan 2006]. Thm. ESS is 

Σ2
P-hard [C. 

2013].[ ]



The standard Σ2
P-complete problem2 p p

Input: Boolean formula f over variables X and XInput: Boolean formula f over variables X1  and X2 

Q: Does there exist an assignment of values to X1

such that for every assignment of values to X2

f is true?f is true?



Discussion of implications

• Many of the techniques for finding (optimal) Nash 
equilibria will not extend to ESS

• Evolutionary game theory gives a possible y g y g
explanation of how equilibria are reached…

f thi it ld b d if it l ti… for this purpose it would be good if its solution 
concepts aren’t (very) hard to compute!



Learning in Stackelberg games
[Letchford, C., Munagala SAGT’09]

See also: Blum, Haghtalab, Procaccia [NIPS’14]

• Unknown follower payoffs

• Repeated play: commit to mixed strategy, 
see follower’s (myopic) responsesee follower s (myopic) response

L R
U 1 ? 3 ?U 1,? 3,?
D 2 ? 4 ?D 2,? 4,?



Learning in Stackelberg games…
[Letchford, C., Munagala SAGT’09]

C (0,1,0) Theorem. Finding the 
optimal mixed strategy to 

L R

p gy
commit to requires 

O(Fk log(k) + dLk2)O(Fk log(k) + dLk2)

samples
– F depends on the size of the 

smallest region

(1,0,0) (0,0,1)

– L depends on desired precision

– k is # of follower actions
( , , )

– d is # of leader actions



Three main techniques in q
the learning algorithm

• Find one point in each region (usingFind one point in each region (using 
random sampling)

• Find a point on an unknown hyperplane

• Starting from a point on an unknown 
hyperplane, determine the hyperplanehyperplane, determine the hyperplane 
completely



Finding a point on an unknown 
hyperplane

Intermediate state
Step 1. Sample in the overlapping region

Step 2.  Connect the new point to the pointp p p
in the region that doesn’t match

C
Step 3.  Binary search along this lineL R

L R

R or L

Region: R



Determining the hyperplaneDetermining the hyperplane

Intermediate state
Step 1. Sample a regular d-simplex
centered at the point

Step 2.  Connect d lines between points on
opposing sides

C
Step 3.  Binary search along these lines

Step 4. Determine hyperplane (and update

L R

L R

Step 4.  Determine hyperplane (and update 
the region estimates with this information)

R or L



In summary: CS/AI pushing at some of 
the boundaries of game theory

learning in games

behavioral 
(humans 

game theory

playing 
games)

CS work in game theory

computation

representation
conceptual

(e.g., equilibrium selection)

representation



Backup slidesBackup slides



Computational complexity theory

NP
problems for which “yes” answers 

P

p ob e s o c yes a s e s
can be efficiently verified

P
problems that can be 

efficiently solved

NP-hard
problems at least as hardy

(incl. linear programming
[Khachiyan 1979])

problems at least as hard 
as anything in NP

• Is P = NP?  [Cook 1971, Karp 1972, Levin 1973, …]

(This picture assumes P ≠ NP.)



Matching pennies with a sensitive target

L R
Them

1, -1 -1, 1L
Us

-2, 2 1, -1R
Us

• If we play 50% L, 50% R, opponent will attack L

– We get .5*(1) + .5*(-2) = -.5g ( ) ( )

• What if we play 55% L, 45% R?

• Opponent has choice between• Opponent has choice between

– L: gives them .55*(-1) + .45*(2) = .35

R i th 55*(1) 45*( 1) 1– R: gives them .55*(1) + .45*(-1) = .1

• We get -.35 > -.5



Matching pennies with a sensitive target

L R
Them

1, -1 -1, 1L
Us

-2, 2 1, -1R
Us

• What if we play 60% L, 40% R?

• Opponent has choice betweenOpponent has choice between

– L: gives them .6*(-1) + .4*(2) = .2

R: gives them 6*(1) + 4*( 1) = 2– R: gives them .6 (1) + .4 (-1) = .2

• We get -.2 either way

• This is the maximin strategy

– Maximizes our minimum utility



Let’s change roles

L R
Them

1, -1 -1, 1L
Us

-2, 2 1, -1R
Us

• Suppose we know their strategy

• If they play 50% L, 50% R, von Neumann’s minimax y p y , ,

– We play L, we get .5*(1)+.5*(-1) = 0

• If they play 40% L 60% R

theorem [1927]: maximin 
value = minimax value

(~LP duality)If they play 40% L, 60% R,

– If we play L, we get .4*(1)+.6*(-1) = -.2

If we play R we get 4*( 2)+ 6*(1) = 2

( y)

– If we play R, we get .4 (-2)+.6 (1) = -.2

• This is the minimax strategy



Correlated equilibrium as Bayes-Nash equilibrium
θ =1 θ =2 θ =3

0, 0 0, 1 1, 0

1 0 0 0 0 1

0, 0 0, 1 1, 0

1 0 0 0 0 1

0, 0 0, 1 1, 0

1 0 0 0 0 1

θ2 1 θ2 2 θ2 3

θ 1 1, 0 0, 0 0, 1

0, 1 1, 0 0, 0

1, 0 0, 0 0, 1

0, 1 1, 0 0, 0

1, 0 0, 0 0, 1

0, 1 1, 0 0, 0
θ1=1

0 1/6 1/6
0, 0 0, 1 1, 0 0, 0 0, 1 1, 00, 0 0, 1 1, 0

0 1/6 1/6

1, 0 0, 0 0, 1

0, 1 1, 0 0, 0

1, 0 0, 0 0, 1

0, 1 1, 0 0, 0

1, 0 0, 0 0, 1

0, 1 1, 0 0, 0
θ1=2

0 0 0 1 1 0 0 0 0 1 1 00 0 0 1 1 0

0 1/61/6
0, 0 0, 1 1, 0

1, 0 0, 0 0, 1

0 1 1 0 0 0

0, 0 0, 1 1, 0

1, 0 0, 0 0, 1

0 1 1 0 0 0

0, 0 0, 1 1, 0

1, 0 0, 0 0, 1

0 1 1 0 0 0
θ1=3

0, 1 1, 0 0, 0 0, 1 1, 0 0, 00, 1 1, 0 0, 0

01/61/6



The Polynomial Hierarchy
p L = { x in {0,1}* | ( w in {0,1}≤p(|x|)) (x,w) in L } 
p L = { x in {0 1}* | ( w in {0 1}≤p(|x|)) (x w) in L }p L = { x in {0,1}  | ( w in {0,1} p(| |)) (x,w) in L }

P C = { p L | p is a polynomial 

and L in C }and L in C }
P C = { p L | p is a polynomial 

and L in C }

Σ0
P =Π0

P = P

Σ P PΠ PΣi+1
P = P Πi

P

Πi+1
P = P Σi

P



The ESS-RESTRICTED-
S O

I t t i 2 l l f

SUPPORT problem
Input: symmetric 2-player normal-form 
game, subset T of the strategies S

Q: Does the game have an evolutionarily 
stable strategy whose support is restricted tostable strategy whose support is restricted to 
(a subset of) T?



MINMAX-CLIQUE
proved Π2

P(=coΣ2
P)-complete by Ko and Lin [1995]p 2 ( 2 ) p y [ 99 ]

Input: graph G = (V, E), sets I and J, partition of V into 
subsets V (for i in I and j in J) number ksubsets Vij (for i in I and j in J), number k

Q: Is it the case that for every function t : I → J, Ui Vi,t(i), ( )

has a clique of size k? Thank you, compendium 
by Schaefer and Umans!

, k=2,



Illustration of 
d tireduction

T



Unrestricted support?pp
• Just duplicate all the strategies outside TJust duplicate all the strategies outside T…

• (Appendix: result still holds in games in which 
every pure strategy is the unique best y p gy q
response to some mixed strategy)



Bound on number of samples

Theorem. Finding all of the hyperplanes necessary to 
compute the optimal mixed strategy to commit to 
requires O(Fk log(k) + dLk2) samples

– F depends on the size of the smallest region

L depends on desired precision– L depends on desired precision

– k is the number of follower actions

– d is the number of leader actions


