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Neural responses are variable2

fluences are fixed across all experimental trials. The responses are then averaged

across trials and the mean membrane trajectory and spike rate are reported.
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Fig. 0.1. Single neuron variability. A. A drifting grating stimulus was presented

to an anesthetized cat (top). The orientation of the stimulus was chosen to

maximize the membrane response of a recorded cell (bottom). The response

to one cycle of the grating is shown. B. Course (subthreshold) membrane re-

sponse (top), and instantaneous firing rate (bottom) computed from the spike

response for three separate trials. C. The trial average for the course potential

(top) and instantaneous firing rate (bottom) with the shaded area marking

2 standard deviations. Data and figure provided by Matteo Carandinni; see

Carandinni (2004) for details.

Nevertheless, it is well known that neural responses are quite variable across

trials (Heggelund and Albus, 1978), meaning that single neuron response within

any given trial may differ significantly from the trial averaged response. To il-

lustrate this important observation I review some recent data from Carandinni

(2004). Figure 0.1 shows intracellular recordings from cortical neurons in the pri-

mary visual cortex obtained during presentation of a drifting grating stimulus at

the optimal orientation (Fig. 0.1B,C top). The mean neural response is a quasi-

sinusoidal membrane trajectory (solid curve in Fig. 0.1C top), and a mean firing

rate
1

that resembles a rectified copy of the mean membrane dynamic (solid curve

in Fig. 0.1C bottom). However, significant trial-to-trial membrane variability is

very apparent (shaded region in Fig. 0.1C), and for comparison purposes I show

three trials (0.1B). As Carandinni (2004) remarks, the trial to trial variability of

the firing rate is, in a relative sense, much larger than the membrane variabil-

ity (compare the relative standard deviation in Fig. 0.1C top and bottom). The

source of the membrane variability is likely a combination of random synaptic

bombardment and intrinsic channel variability, with synaptic inputs being the

dominate culprit. However, spike train mechanisms exhibit very low variability

(Bryant and Segundo, 1976; Mainen and Sejnowski, 1995), giving question to

1Firing rate is to be interpreted as N(t)/δt where N(t) is the number of spikes in a time
window of length δt centered at t.

Carrandini, 2004
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The effect of variability on coding
10

100

50

0

0 100

1.3

0.7

50

20

0

0 10050 0 10050

σ=0.02 σ=0.2 σ=2
A B C

In
d
e
x

F
ir
in

g
 r

a
te

 (
H

z)
μ

(t
)

10 Hz 10 Hz

35 Hz

time (ms) time (ms) time (ms)

2

1

0
0 0.5 1 1.5

N=31

N=15

N=7

N=3

N=1

D E

M
I 

(b
it

s)

σ

μ(t
k
) ...

Y(t
k
)

θ

θ

θ

ξ
1
(t

k
)

ξ
2
(t

k
)

ξ
N
(t

k
)

Σ

y
1
(t

k
)

y
1
(t

k
)

y
N
(t

k
)

Fig. 0.3. Noise enhanced coding of µ(t). A. The top panel is the spike train

raster of a fraction of the spiking network in response to a particular real-

ization of a time varying input µ(t), shown in the bottom row. The mid-

dle row is an estimate of the instantaneous firing rate ν(t), the scale is the

same for all panels with the mean rate (over time) indicated to the right

of each plot . For presentation purposes I smoothed the data by making

ν(t) =
1
N G(t) ∗

�
i

�
j δ(t − tik) where G is a Gaussian function with stan-

dard deviation of 1 ms, and ∗ denotes convolution. Throughout, σ is a small

value. B. Same as A, but σ is moderate. C. Same as A, but σ is a large

value. D. Schematic of population of threshold units. At each time iteration

ti every unit receives the signal µ(ti) and a noise source σξi(ti). The unit

outputs, yk are summed to give the population response Y (ti). E. Mutual

information, MI, as a function of σ for ensembles of different size N . The

open circles are simulations of the threshold unit ensemble, and the curves

are theory calculated from Eq. (0.17). Here σ = σξ/σµ. I thank Nigel Stocks

for the donation of panel E.

Motivated by Stein (1967) and Knight (1972). Figure from Doiron (2009).
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Using variability for coding
Effects of noise in the coding of time varying stimuli 13
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Fig. 0.4. Mean versus noise coded signals. A. Sample current trace (bottom)
used to drive an neocortical pyramidal cell in vitro. Following Eq. (0.18) the
mean current changes abruptly at ts = 300 ms, σ remains fixed through the
trial. Spike rain rasters (top) for 10 trials, and the population instantaneous
firing rate ν(t) computed from 4000 sequential trials (middle). B. The same
as A except the current used in each trial is given by Eq. (0.19). Experimental
details are given in Silberberg et al. (2004). I thank Matthias Bethge for the
donation of the figure.

To understand why the response speed is dramatically enhanced for noise
coded signals (Eq. 0.19) as compared to mean coded signals (Eq. 0.18) it is useful
to write down the evolution equation for the membrane density P (V, t). For an
ensemble of LIF neurons described Eq. (0.2)-(0.4) P (V, t) obeys the Fokker-
Planck Equation (Risken, 1989):

∂P (V, t)
∂t

=
∂

∂V

�
V − µ(t) +

σ2(t)
2

∂

∂V

�
P (V, t) + ν(t)δ(V − VR). (0.20)

P (V, t) also satisfies a continuity relation with an effective probability current
S(V, t):

Silberberg et al, 2004
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Neural co-variability is important18

Pre-synaptic populations Post-synaptic population

+

+

ξ
1

ξ
2

ξ
c

A B 

P
i

P
j

P
c

-60

0

20 mV
0.1 nA

100 ms
  30 ms

cu
rr

e
n

t -50 0 50-50 50

50 (spks/s)2

0

∼∼

τ (ms)τ (ms)

C
ii
(τ) C

ij
(τ)

C

Fig. 0.6. Correlated inputs to a pair of cells. A. Schematic of pools of presy-
naptic inputs afferent to two representative cells in a postsynaptic population
(see Eq. (0.26). We dissect the activity of the presynaptic populations in pri-
vate groups Pip and Pjp, and a shared presynaptic pool Pc. B. Reduction of
panel A to a simplified stochastic setting (see Eq. (0.28)). C. Example pair
of correlated membrane traces (left), and computed auto-covariance (mid-
dle) and cross-covariance (right) functions. Spike trains were generated from
current driven cortical neurons in vitro. See de la Rocha et al., (2007) for
details.

The spike train response from the neuron pair is y1(t) =
�

k δ(t − t1k) and
y2(t) =

�
k δ(t − t2k). To define a reasonable measure of spike train correlation

we first define the covariance function (Cox and Lewis, 1966):

Cij(t, t�) = �yi(t)yj(t�)�ijc − �yi(t)�ijc�yj(t�)�ijc. (0.31)

If we let the inputs statistics µ(t), σ(t), and c(t) vary in time with frequencies
upper bounded by fU , then computing the spike train covariance function over
times intervals of length 2T << 1/fU allows us to center the covariance function
at t and replace t� = t + τ for τ ∈ (−T, T ):

Cij(t, τ) = �yi(t)yj(t + τ)�ijc − ν2(t). (0.32)

This is effectively stating that over any time interval of length 2T the spike train
is statistically stationary, also permitting for t� ∈ (t− T, t + T ) that �yi(t)�ijc =
�yj(t�)�ijc = ν(t). An example of the spike train auto-covariance function, Cii(τ),
and the cross-covariance function, Cij(τ)(i �= j), is given in Fig. 0.6C.
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These results have direct bearing on (and are at 
odds with) the binding-by-synchrony hypothesis. This 
hypothesis, originally put forward by Milner30 and von der 
Malsburg31, and championed by Singer and colleagues32–34, 
states that noise correlations (more specifically, synchro-
nous spikes) could solve the binding problem35 by signal-
ling whether different features in a visual scene belong 
to the same object. Specifically, they suggested that the 
number of synchronous spikes across a pair of neurons 
depends on whether the pair represents the same or dif-
ferent objects. If this hypothesis were true, it would imply 
that ΔIshuffled would be large and positive, at least for some 
pairs, because shuffling data removes synchronous spikes. 
To test this directly, Golledge et al.25 calculated ΔIshuffled (Icor 
in their study) using an experimental paradigm similar to 
that used by Singer and colleagues. They found that shuf-
fling the data eliminated little information about whether 
two features in a visual scene belonged to the same object, 
a finding that argues against the binding-by-synchrony 
hypothesis.

These empirical studies suggest that in vivo correla-
tions have little impact on the amount of information in 
pairs of neurons. Whether this holds for large popula-
tions, however, is unknown. In fact, as pointed out by 
Zohary and colleagues36, small effects of correlations 
in pairs can have large effects in populations. But, as 
with the two neuron example given above, the effect 
can be either positive or negative. To illustrate this, 
consider a population of neurons with bell-shaped 
tuning curves in which neurons with similar tuning 
curves are more strongly correlated than neurons with 
dissimilar tuning curves. As, in this example, neurons 
with similar tuning curves show positive signal cor-
relations, we expect, on the basis of our two neuron, 
two stimulus example above, that positive noise cor-
relations will lead to a reduction in information and 
negative correlations to an increase. This is exactly 
what is found. Specifically, as the number of neurons 
increases, Ishuffled (FIG. 2a, correlation coefficient (c) = 0) 
becomes much larger than I when noise correlations 
are positive (FIG. 2a, c = 0.01 or c = 0.1) and much 
smaller when they are negative (FIG. 2a, c = –0.005). 
Interestingly, however, these effects are small for pairs of 
neurons, and only become pronounced at the popula-
tion level. FIGURE 2b shows how Ishuffled compares with 
I as the number of neurons increases. For a model in 
which the maximum correlations are 0.1, the differ-
ence between Ishuffled and I is minimal (<1%) for a pair 
of neurons (n = 2). However, as the size of the popula-
tion grows to only a few thousand neurons, correlations 
begin to have a large effect on the encoded information, 
reducing it by a factor of almost 25 relative to Ishuffled. 
Although it is not yet clear whether this model accu-
rately reflects the effects of noise correlation in the 
brain, it provides us with an important lesson: small, 
perhaps undetectable, correlations in pairs of neurons 
can have a large effect at the population level. Therefore, 
it may be typical for Ishuffled and I to be very different. 
This, in turn, implies that studies14,37–44 in which Ishuffled 
is used as a surrogate for the true information, I, should 
be treated with caution.

A corollary of these results is that noise correlations 
can cause the amount of information in a population of 
neurons to saturate as the number of neurons approaches 
infinity36,45–47 (FIG. 2a). One of the first studies to address 
this question empirically suggested that the pattern of 
noise correlations observed in the medial temporal visual 
area (MT) was such that information would saturate36. 
This was subsequently challenged by theoretical stud-
ies46,47 that pointed out that the correlations measured in 
MT do not necessarily imply that the information would 
saturate as the number of neurons increased.

Although the question of whether or not a particular 
correlational structure will cause the information to satu-
rate is interesting from a theoretical perspective, it may 
not be so relevant to networks in the brain. This is because 
the nervous system can extract only a finite amount of 
information about sensory stimuli, and, in subsequent 
stages of processing, the amount of information cannot 
exceed the amount extracted by, for example, the retina 
or the cochlea. Therefore, as the number of neurons 
increases, the correlations must be such that information 

Figure 2 | Information, I, and ΔIshuffled versus population 
size. a | Information, I, versus population size, for different 
correlation coefficients, c. Positive correlations (c = 0.01 
or c = 0.1) decrease information with respect to the 
uncorrelated (c = 0) case. Furthermore, for positive 
correlations, information saturates as the number of 
neurons increases. b | ∆Ishuffled/I versus population size. 
An important feature of this plot is that correlations have 
large effects at the population level even though ∆Ishuffled/I 
is small for individual neuronal pairs. Ishuffled, uncorrelated 
information; ∆Ishuffled, I–Ishuffled. Encoding model in panels a 
and b was taken from REF. 45 and the information measure 
was Fisher.
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The larger the overlap of the ellipses, the more mistakes 
are made during decoding, and the less information 
is contained in the neural code. Therefore, these plots 
allow us to see, graphically, how correlations affect the 
information in the neuronal responses.

An important point about correlations is that the 
interaction between the signal correlations (which in 
this case correspond to the relative positions of the 
mean responses, see BOX 1 for definitions) and the noise 

correlations controls whether correlations increase or 
decrease information. To illustrate this, in FIG. 1a we 
have constructed responses such that the signal and 
noise correlations are both positive. This leads to larger 
overlap between the ellipses for the correlated than for 
the uncorrelated responses, which makes the correlated 
responses harder to decode. The correlated responses 
carry less information, so ∆Ishuffled <0. In FIG. 1b, on the 
other hand, the signal is negatively correlated whereas 
the noise is positively correlated. Here, there is less over-
lap in the correlated than the uncorrelated responses, 
which makes the correlated responses easier to decode. 
In this figure, then, the correlated responses carry more 
information, and ∆Ishuffled >0. Importantly, there is also 
an intermediate regime (FIG. 1c) in which I and Ishuffled are 
the same (∆Ishuffled = 0). So, the presence of correlations 
does not guarantee an effect on the amount of informa-
tion encoded. The decrease in information when the 
signal and noise are both positively correlated (or both 
negatively correlated) and the increase when the signal 
and noise have opposite correlations is a general feature 
of information coding in pairs of neurons, and has been 
observed by a number of authors18–20.

These examples illustrate two important points. First, if 
we know only the individual responses of each neuron in a 
pair, and not their correlations, we do not know how much 
information they encode. Second, just because neuronal 
responses are correlated does not necessarily mean that 
they contain more (or less) information. This is important, 
as it has been suggested that correlations between neurons 
provide an extra channel of information14,21.

In all of the examples shown in FIG. 1, the correlations 
are the same for both stimuli, meaning the ellipses in each 
panel have the same size and orientation. However, it is 
possible for the correlations to depend on the stimulus, 
in which case the ellipses would have different sizes or 
orientations. Such correlations are often referred to 
as stimulus-modulated correlations22, and they affect 
information encoding in the same way as the examples 
discussed above: if the correlations increase the overlap, 
the information goes down, whereas if the correlations 
decrease the overlap then the information goes up. In 
extreme cases, it is even possible for neurons to have 
identical mean responses to a pair of stimuli, but differ-
ent correlations (for example, one ellipse at +45° and the 
other at –45°). Although beyond the scope of this review, 
the effect of these stimulus-modulated correlations, which 
are just beginning to be investigated23, can be large.

What is actually observed in the brain? Do cor-
relations increase or decrease the amount of available 
information? Various empirical studies have measured 
ΔIshuffled in pairs of neurons and have found that it is small 
in the rat barrel cortex24, and macaque V1 (REFS 25,26), 
prefrontal27 and somatosensory cortices28. The results 
of these studies have also shown that ΔIshuffled can be 
either positive or negative, which means that in real 
neurons — not just in theory — noise correlations can 
either increase or decrease the amount of information 
encoded in pairs of simultaneously recorded neurons. 
Overall, however, the observed effects have been 
quite small29.

Figure 1 | Effects of correlations on information 
encoding. In all three cases, we show the response 
distributions for two neurons that respond to two different 
stimuli. The panels on the left show the unshuffled 
responses, those on the right show the shuffled responses. 
Each ellipse (which appears as a circle in the uncorrelated 
plots) indicates the 95% confidence interval for the 
responses. Each diagonal line shows the optimal decision 
boundary — that is, responses falling above the line are 
classified as stimulus 2 and responses below the line 
are classified as stimulus 1. The x-axis is the response of 
neuron 1, the y-axis the response of neuron 2. a | A larger 
fraction of the ellipses lie on the ‘wrong’ side of the 
decision boundary for the true, correlated responses 
than for the independent responses, so ΔIshuffled <0. 
b | A smaller fraction of the ellipses lie on the wrong side 
of the decision boundary for the correlated responses, 
so ΔIshuffled >0. c | The same fraction of the ellipses lies on 
the wrong side of the decision boundary for both the 
correlated and independent responses, so ΔIshuffled = 0. 
Ishuffled, uncorrelated information; ∆Ishuffled, I–Ishuffled.
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Predicting Output Correlation 
Given Input Statistics
A correlation rate relationship?

de la Rocha, Doiron, et al, 2007

those measured in vivo7,8,11. In this range r(c) was approximately
linear (Fig. 2a, b), allowing us to use perturbation techniques26 to
obtain an expression for r(c) (see Supplementary Information):

r<S m,sð Þc~
s2 dn

dm

! "2

CV2n
c ð3Þ

Wedefine the slope S(m,s) relating r to c as correlation susceptibility.
Here dn/dm is the derivative of the spike-rate transfer function (that
is, the relationship between firing rate, n(m,s), and the mean injected
current). Equation (3) accurately predicts the transformation r(c)
obtained via simulations (Fig. 2a, b, dashed lines).

As with the experiments, we varied m or s while keeping c fixed to
obtain different values of n. A plot of r versus n when m (or s) was
increased while keeping s (or m) fixed (inset of Fig. 2c) shows that r
rapidly increased in the physiological range of 0–50 spikes s21 and
asymptoted to c at high rates (Fig. 2c). Notably, the correlation–rate
curves obtained by increasing m or s were nearly identical, even
though voltage traces, correlation functions and CVs were very dif-
ferent (Fig. 2c). To show that these results did not depend on specific
m and s values, we used equation (3) to sweep a large region of the
m–s parameter space. The resultant r–n values were confined to a
narrow band around the stereotyped curve (Fig. 2c, shaded areas).
This allowed us to rewrite equation (3) in an approximate form in
which the susceptibility, S, depends only on the output rate and not
on the input variables m and s:

r<S nð Þc ð4Þ
The empirically measured rT also increased with n for all T
examined; however, the approximation that S depends only on n
(equation (4)) becomes progressively less accurate as T decreases
(see Supplementary Information).

To determine whether the correlation–rate relationship emerges in
a less controlled andmore biologically relevant setting, we performed
simulations of a two-layer network where neurons from layer 1 were
randomly connected to neurons in layer 2 (Fig. 3a). Layer 1 consisted
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Figure 1 | Relationship between output spike correlation and rate in in vitro
cells. a, Twenty neurons from cortical slices (n5 11) were stimulated with
gaussian currents (filtered with a time constant of 5ms), with both common
and independent components. b, Fluctuating current injection (bottom)
often evoked nearly synchronous spikes (top arrowheads). Red and black
traces are membrane potentials from cells 1 and 2, respectively. c, Typical
cross- (left) and auto-correlation (right) functions from a pair of cells firing
at low (blue), medium (red) and high (green) rate. d, A typical rT versus c for
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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(inset, linear regression, r5 0.13); cwas fixed at 0.5. Squares represent mean
and s.d. of the population, and coloured circles the examples shown in c. f, A
simple cell model that generates an output spike for every input spike. The
correlation rT is fixed at c, and is independent of n. Throughout we used
T5 40ms.
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r(c). Grey lines are the diagonal r5 c. Inset shows r(c) for all c. c, As m (red)
or s (blue) were varied following the paths drawn in the inset, r and n co-
varied as shown. Note that this relationship holds only when r(c) is linear
(a and b). Simulations (dots) and theory (solid line) show a dependence of r
and n along a stereotyped curve. The shaded area shown in m–s space (inset)
was swept using equation (3) and yielded the shaded area around the r–n
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and3 in inset). We used tm5 10ms.
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Why?

of excitatory or inhibitory neurons that fired stationary Poisson spike
trains with fixed rate, whereas layer 2 neurons were conductance-
based LIF model neurons that received randomly weighted AMPA
(a-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid) and
GABAA (c-aminobutyric acid) synapses (see Methods). Each cell i
in layer 2 received an input current with a different mean and vari-
ance, producing a natural heterogeneity in their firing rates, ni, and
variability, CVi (Fig. 3b). In addition, each pair of layer 2 cells, i and j,
shared a different number of afferents, giving rise to a wide distri-
bution of input correlation coefficients, cij, and in turn a wide distri-
bution of output correlation coefficients, rij (Fig. 3b).

A plot of rij versus the geometric mean of the rates
ffiffiffiffiffiffiffi
ninj

p
shows

a positive correlation (Fig. 3c). However, the trend is not nearly as
tight as the one obtained in the controlled setting (compare Fig. 3c
with Fig. 2c), primarily owing to the heterogeneity in cij (Fig. 3b,
bottom panel). After normalization by the measured cij values
(obtainable experimentally using intracellular recordings), we
obtained Sij5 rij/cij, and a tight clustering of points along the same
stereotyped curve emerged (Fig. 3d). If we group the pairs according
to how different their rates are, we find that spike trains with similar
rates (Fig. 3d, black points) showed slightly larger Sij and a tighter
correlation–rate relationship than pairs with more different rates
(Fig. 3d, grey points). The same qualitative results were obtained in
networks where synapses had slow kinetics (NMDA (N-methyl-D-
aspartate) and GABAB), or where the total conductance was highly
non-gaussian (see Supplementary Information).

The experiments, simulations and theory, although showing a
clear relationship between r and n, do not give a mechanistic under-
standing of the relationship. To develop this intuition, we examined
phenomenological neuron models defined by a simple function, f,
that transforms an input random variable, I, with gaussian statistics
(m,s) to an output random variable, n (Fig. 4a). The inputs I1 and I2
to a pair of such neuron models were constructed in analogy to
our two-cell system so that their correlation coefficient was c (com-
pare Fig. 1a to Fig. 4a). We varied the mean input, m, while keeping
s and c fixed (as in Fig. 2c, red curve), and computed the mean
output,n. and the output correlation coefficient r (equation
(2)). When f was strictly linear in I (Fig. 4c, top row), then r5 c
for all values of m, making r independent of,n.. However, when
f was threshold-linear, which captures the rectifying property of
spike generation, r increased with,n. (Fig. 4b), as was observed
previously (Figs 1e and 2c). The fact that the simple threshold-
linear model reproduced the correlation–rate relationship indicates
that the specific dynamics of the cell model are not vital to the
relationship. Modifying the threshold-linear transfer, to include
saturation, produced a non-monotonic relationship between r
and,n. (Fig. 4c, middle row). Similarly, adding a boosting non-
linearity to the threshold-linear model introduces a small concavity
in the r–,n. relationship (Fig. 4c, bottom row). Despite this divers-
ity of behaviour across these examples, one general feature is clear:
when the input distribution P(I) (coloured gaussians) overlapped
with the nonlinear region of f, then r was significantly less than c.

0 40

O
ut

pu
t c

or
re

la
tio

n 
ρ i

j

0 0.2

ρij
cij

..
...
. ..
.

Layer 1
presynaptic

Layer 2
postsynaptic

0.5 1

Geometric mean rate √νiνj
(spikes s–1)

Geometric mean rate √νiνj
(spikes s–1)

ν

CV

a b

0

0.1

0.2

0.3

0 20 0 20 4040
0

0.5

1

C
or

re
la

tio
n 

su
sc

ep
tib

ili
ty

S
ij =

 ρ
ij /

c i
j

c d
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network with sparse random connectivity (connection probability was 0.25)
where layer 1 contained excitatory and inhibitory cells firing with Poisson
statistics. Layer 2 cells were conductance-based LIF neurons with randomly
chosen synaptic weights. b, Distribution of n (top), CV (middle) and cij and
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for layer 2 (linear regression

r5 0.57). d, Sij5rij/cij versus
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for each pair shown in c. Pairs were

grouped according to qij5 ni/nj (with ni# nj): qij. 0.5 (black) and qij# 0.5
(grey).
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Predicting Output Correlation 
Given Input Statistics
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ple membrane and current traces for a pair of neurons during a single trial.
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E-I correlations

cortical spiking responses is dynamically regulated
downstream of the thalamus. Because 10 Hz whisker
stimulation reduced whisker-evoked spikes for RS units
(Chung et al., 2002; Khatri et al., 2004) (Figures 1B and
1C), the increased jitter could merely reflect weaker ex-
citatory input to RS units or increased contamination
of weak whisker-evoked responses by spontaneous
spikes. To address this possibility, we tested whether
spike jitter was correlated with spike probability across
RS units. No correlation existed (r = 0.04) (Figure 1D).
In addition, an identical increase in jitter occurred

when long recovery times were used between 10 Hz
trains, a protocol that leads to less adaptation and
more spikes (Figure 1D). Thus, the increase in spike jitter
during trains was not due to reduced excitation of RS
neurons or the small number of whisker-evoked spikes.

These data show that the temporal precision of corti-
cal responses to somatosensory stimuli is dynamically
regulated by a circuit downstream of the thalamus.
To establish what controls this dynamic range, we de-
termined the integration window (IW) of cortical units
to thalamic inputs in vitro.

Figure 1. Increased Spike Jitter of Layer 4 RS Units In Vivo by Repetitive Whisker Stimulation

(A) Raster plot and peri-stimulus time histogram (PSTH) of the response of a single RS unit to PW deflection (1.5º, 0.5 Hz, 100 trials). Insets: raw
voltage recording and representative spike waveforms (red) and mean waveform (black) for the RS unit after spike sorting.
(B) PSTHs of the responses of a layer 4 RS unit and a thalamic (VPM) unit to 10 Hz principal whisker (PW) deflection. Note the pronounced
adaptation (decrease in spike probability) and increase in jitter (width of the PSTH peaks) of the RS unit as compared to the thalamic unit.
Insets: single-unit spike waveforms.
(C) Effects of 10 Hz stimulation across the population of layer 4 RS and thalamic units. Top: population PSTHs for onset responses to first and
fourth stimuli in the 10 Hz train. Curves represent Gaussian fits. Note the increased jitter in layer 4 RS cells, but not in thalamus. Bottom left:
spike jitter increased with stimulus number in the train for RS units (increase in jitter was significant after the fourth stimulus in the train, p <
0.01, paired t test), but not for thalamic units. Bottom right: adaptation of whisker-evoked spike count (normalized to first stimulus in each unit)
for the population of RS (n = 105) and thalamic units (n = 22). RS units adapted significantly faster than thalamic units (RS, adaptation index [AI;
defined as the ratio of fifth stimulus response to first stimulus response] = 0.19 6 0.03; thalamus, AI = 0.47 6 0.07; p < 0.001, t test).
(D) Increase in jitter during trains is not due to decreased spike count. Top: jitter for RS units grouped by whisker-evoked spike count to the
first stimulus. Increase in jitter occurred equally for the strongest responding and the weakest responding units. Bottom: population PSTHs for
first and fourth stimuli for RS units tested with a longer recovery time between each train (10 s, n = 22) to produce less adaptation. Note the
marked increase in jitter despite less adaptation. Summary graphs show mean 6 standard error of the mean (SEM).
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Measuring E-I correlation in vivo
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Measuring E-I correlation in vivo

Figure 3:
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A Coupled Model
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Fitting the model
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Fitting the model
Figure 3:
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The effect of feedforward inhibition
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Mechanism

transfer function:
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Summary so far
- Inhibitory coupling anti-correlates neural 
populations
- Non-linearities dilute this effect
- The evoked state moves you toward the linear 
part of the transfer function, unlocking the anti-
correlating effect of inhibition

Tuesday, September 1, 2009



Issues with this model

• Missing full set of connections

• Not-quite-realistic non-linearities

• Externally-imposed noise with a fixed and 
fitted input correlation
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A Spiking Model with 
Internally Generated Variability

(Vogels  &  Abbo,,  2005)

model with 2% connectivity by systemat-
ically varying the strengths of its excitatory
and inhibitory synapses (Fig. 1). Figure 1a
indicates how long activity was sustained
in the network after a brief period of initial
stimulation, Figure 1b gives the average
firing rate of the network neurons (for the
period while the activity lasted in the case
of transiently active networks), and Figure
1c shows the ISI CV averaged over all net-
work neurons. The black square in these
figures denotes a state that satisfies the re-
quirements listed above (actually, the
“sustained” activity in the COBA network
lasts for as long as our simulations run, but
it will not last indefinitely) with conduc-
tances that correspond, on average, to 1
mV EPSPs and !2.6 mV IPSPs within the
active network. This state is used for the
remaining figures in which a COBA model
appears.

With the parameters described by the
black square in Figure 1, the network stays

active with an average firing rate of 9 Hz
and an average ISI CV of 1.2 (Fig. 2e,g).
Network activity for these parameters is
asynchronous. Neither the raster plot of
the spike times of 250 sample cells (Fig. 2a)
nor the average population activity (Fig.
2b, top) shows obvious temporal structure,
and autocorrelations also do not reveal any
obvious firing patterns (data not shown).
To quantify the asynchronous nature of the
firing, we compared the population firing
rate obtained from the network (Fig. 2b,
top) with equivalent fire rates derived from
a Poisson process generating spikes at the
same rate (Fig. 2b, bottom). The Poisson
spikes produce a smoother firing rate than
the network, indicating that there is some
temporal structure in the network activity,
but the overall levels of the fluctuations are
similar. For example, the variance of the
firing rate measured in 0.1 ms bins for the
network is 1.5 times that of the Poisson
train.

Excitatory and inhibitory currents are
balanced and tend to cancel each other
(Fig. 2c), keeping the average membrane
potential of the network neurons at !70
mV (Fig. 2h). The sample single-neuron
membrane potential trace in Figure 2d
shows that spiking is irregular but tends to
come in bursts. This is further revealed by
the distribution of ISIs (Fig. 2f), which has
a peak at small intervals reflecting this
bursting and a second local maximum at a
larger interval indicating the typical inter-
burst interval.

It is possible to obtain activity similar,
but not identical, to that shown for the
COBA model in Figure 2 using a CUBA
model (Fig. 3a) with 0.25 mV EPSPs and

Figure 2. Background activity in a COBA model. a, Spike raster for a sample set of 250 neurons over a simulated time of 400 ms.
b, Average firing rate of the entire population and of a Poisson train. The black trace shows the rate computed from 0.1 ms bins,
and the white trace shows the same activity computed using 5 ms bins. The top panel is computed from the network, and the
bottom panel, for comparison, from an equivalent number of Poisson processes with a 5 ms refractory period producing spikes at
the same rate as the network. c, Membrane currents of a randomly chosen neuron. Inhibitory currents are in dark gray, excitatory
ones are in light gray, and the total synaptic current is shown in solid black. d, Membrane potential of a randomly chosen neuron.
e, Distribution of firing rates of the network neurons. f, Distribution of ISIs of the network neurons. g, Distribution of CVs of ISIs of
the network neurons. h, Distribution of average membrane potentials of the network neurons. e– h, The arrow marks the mean
of the distribution. Pop., Population; Pot., potential.

Figure 1. Parameter search. Excitatory and inhibitory conductances refer to the parameters "gex and "ginh converted to
nanosiemens assuming a resting neuronal membrane conductance of 100 M#. The black square shows the parameter values used
in all subsequent COBA simulations. a, Duration of network activity. Parameter pairs in which network activity was sustained over
the length of the simulation (1000 ms) are colored in orange. Pairs leading to silent networks are shown in yellow and the same
regions are denoted by a white mesh in b and c. b, Average network firing rates. Firing rates in configurations with sustained
activity range from 8 to 200 Hz. c, Average CV of ISIs. CVs range from 0 (very regular) to 3 (very bursty) over the range in which
activity was sustained.
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whether such networks generate sufficient internal “noise” to sup-
port propagation, because, unlike the external noise case, the level of
noise cannot be adjusted; it is fixed by the network. In addition, we
must examine whether the propagating signal interferes with the
ongoing background activity enough to disrupt its role as a noise
source. We also study synfire propagation in the same networks.

Signal propagation has been studied primarily in feedforward
networks, either standing alone or embedded into larger networks.
To study both rate-code and synfire transmission through a network
with self-sustained activity, we do not embed a feedforward struc-
ture into the random network used to generate background activity.
Instead, we feed a signal into a selected set of network neurons, find
the most likely path of transmission through the existing network,
and then modify the properties of neurons and synapses along this
candidate pathway to determine whether propagation can be
achieved. Thus, we are studying signal propagation within the archi-
tecture of a sparsely and randomly connected network, not an arti-
ficial feedforward structure.

Although faithful signal propagation is a necessary condition
for cognitive processing, by itself it does not represent any type of
computational process. Once we have established signal propa-
gation in the networks we study, we find and reinforce subcircuits
within the existing architecture that provide computational func-
tions. Specifically, we show how logic gates, switches, and mem-
ory units can be formed from multiple interacting signal propa-
gating pathways.

Materials and Methods
Neuron model. The network we study is composed of 10,000 leaky
integrate-and-fire neurons. Each integrate-and-fire neuron is character-
ized by a time constant, ! ! 20 ms, and a resting membrane potential,
Vrest ! "60 mV. Whenever the membrane potential crosses a spiking
threshold of "50 mV, an action potential is generated and the membrane
potential is reset to the resting potential, where it remains clamped for a
5 ms refractory period. To set the scale for currents and conductances in
the model, we use a membrane resistance of 100 M#.

We model the synaptic connections between these neurons in two differ-
ent ways, as currents and as conductances, resulting in either current-based
(CUBA) or conductance-based (COBA) models. For the CUBA model, the
subthreshold membrane potential obeys the following equation:

!
dV

dt
" $Vrest"V% # gex$Eex"Vrest% # ginh$Einh"Vrest% , (1)

whereas, in the COBA model, the membrane voltages are calculated as
follows:

!
dV

dt
" $Vrest"V% # gex$Eex"V% # ginh$Einh"V% . (2)

Reversal potentials are Eex ! 0 mV and Einh ! "80 mV. The synaptic
conductances (or effective synaptic conductance in the case of the CUBA
model) gex and ginh are expressed in units of the resting membrane
conductance.

Neurons in the network are either excitatory or inhibitory. When a
neuron fires, the appropriate synaptic variable of its postsynaptic targets
are increased, gex3 gex & 'gex for an excitatory presynaptic neuron and
ginh 3 ginh & 'ginh for an inhibitory presynaptic neuron. Otherwise,
these parameters obey the following equations:

!ex

dgex

dt
" "gex (3)

and

! inh

dginh

dt
" "ginh , (4)

with synaptic time constants !ex ! 5 ms and !inh ! 10 ms. In most cases,
rather than reporting the values of 'gex and 'ginh, which are the synaptic
strengths, we report the resulting EPSP and IPSP sizes. These are ob-
tained within the active network from spike-triggered average membrane
potentials of postsynaptic neurons after spikes evoked within individual
network neurons. The integration time step for our simulations is 0.1 ms.

Network architecture. To create self-sustained, asynchronous back-
ground activity, we chose a 4:1 ratio of excitatory to inhibitory neurons in
a network of 10,000 cells and connected them to each other randomly
with a connection probability of 2%. This value was chosen as a compro-
mise between the higher connection probabilities found for neighboring
neurons in cortex and the lower values for neurons separated by distance.
Our results should apply to models with connection probabilities up to
(10%. Except along the signaling pathway (see below), all excitatory
synapses took the same strength, as did all of the inhibitory synapses.
These two sets of strengths were adjusted to allow asynchronous activity
within the network.

Input signals. To test signal propagation through the network, we gen-
erated a set of Poisson input spike trains with a firing rate r0(t). These
form a 0th layer, L0, that provides input to the network. Input spikes
generated by the Poisson process in layer 0 were fed into a layer 1 sub-
population of the network neurons, labeled L1, by increasing their exci-
tatory synaptic conductances by gex3 gex & 'g0 whenever they received
an input spike from the layer 0 source. The synaptic strength 'g0 was
tuned so that the firing rates of the layer 1 neurons reproduce the input
signal, that is, they track the input firing rate r0(t). To analyze propaga-
tion, we fed various signals r0(t) into the network. At first, square-wave
pulses at 180 Hz lasting for 30 ms were used to assess propagation. Then,
constant input firing rates were used to study the elevation of firing rates
across different propagation layers Li for i ! 1, 2,. . . , 6. Finally, the
accuracy of signal propagation was examined by constructing r0(t) from
Gaussian-distributed white noise low-pass filtered at 50 ms and half-
wave rectified (van Rossum et al., 2002). In addition, the temporal prop-
erties of signal propagation were analyzed using input rates that varied
sinusoidally at different frequencies, by measuring the onset delay in each
layer for a propagated constant stimulus, and by studying propagation
for synchronous stimuli. The results we obtain by injecting layer 0 spikes
into the network could also be obtained by injecting current into the layer
1 neurons.

Signaling pathways. Signal propagation is investigated along specific
pathways found within the full network. We do not change the network
architecture by, for example, adding a feedforward pathway to the net-
work, and we do not require all-to-all connectivity between pathway
layers. Instead, we look for existing pathways already in the network. To
do this, we look for the most likely candidates for neurons that will be
affected by layer 1 activity. A potential signal-propagation pathway is a
series of layers of neurons that are connected to each other in a feedfor-
ward manner more highly than average because of random fluctuations
in network connectivity. By tracing these most likely candidates through
the existing network, we uncover a potential signal-propagation
pathway.

Specifically, we identify candidate propagation pathways in the follow-
ing manner. First, we choose 33 neurons randomly as layer 1 neurons
that received input from layer 0. Then, by searching the networks, we find
33 neurons, each of which receives three or more synapses from the
neurons in layer 1 (although the condition is three or more, the number
is three (90% of the time). These define layer 2. A third layer of neurons
is constructed in a similar manner by finding 33 network neurons that
receive three or more synaptic connections from the neurons of layer 2.
An additional requirement on layer 3 neurons is that they must not
receive any direct connections from layer 1. This prevents “short-
circuiting” of the multilayered propagation pathway. This procedure is
continued with layer i, for i ! 4, 5, 6, defined as a set of 33 neurons, each
of which receives at least three synapses from the neurons of layer i " 1,
and receives no synapses from layers i " 2, i " 3,. . . , 1. In the networks
we study, probabilities of connections between neurons are given by
binomial distributions. This allows us to compute the expected numbers
of neurons in each of the layers of a propagation pathway. The expected
number of neurons satisfying the conditions for layer 2 is 250, but the “no
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whether such networks generate sufficient internal “noise” to sup-
port propagation, because, unlike the external noise case, the level of
noise cannot be adjusted; it is fixed by the network. In addition, we
must examine whether the propagating signal interferes with the
ongoing background activity enough to disrupt its role as a noise
source. We also study synfire propagation in the same networks.

Signal propagation has been studied primarily in feedforward
networks, either standing alone or embedded into larger networks.
To study both rate-code and synfire transmission through a network
with self-sustained activity, we do not embed a feedforward struc-
ture into the random network used to generate background activity.
Instead, we feed a signal into a selected set of network neurons, find
the most likely path of transmission through the existing network,
and then modify the properties of neurons and synapses along this
candidate pathway to determine whether propagation can be
achieved. Thus, we are studying signal propagation within the archi-
tecture of a sparsely and randomly connected network, not an arti-
ficial feedforward structure.

Although faithful signal propagation is a necessary condition
for cognitive processing, by itself it does not represent any type of
computational process. Once we have established signal propa-
gation in the networks we study, we find and reinforce subcircuits
within the existing architecture that provide computational func-
tions. Specifically, we show how logic gates, switches, and mem-
ory units can be formed from multiple interacting signal propa-
gating pathways.

Materials and Methods
Neuron model. The network we study is composed of 10,000 leaky
integrate-and-fire neurons. Each integrate-and-fire neuron is character-
ized by a time constant, ! ! 20 ms, and a resting membrane potential,
Vrest ! "60 mV. Whenever the membrane potential crosses a spiking
threshold of "50 mV, an action potential is generated and the membrane
potential is reset to the resting potential, where it remains clamped for a
5 ms refractory period. To set the scale for currents and conductances in
the model, we use a membrane resistance of 100 M#.

We model the synaptic connections between these neurons in two differ-
ent ways, as currents and as conductances, resulting in either current-based
(CUBA) or conductance-based (COBA) models. For the CUBA model, the
subthreshold membrane potential obeys the following equation:
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whereas, in the COBA model, the membrane voltages are calculated as
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Reversal potentials are Eex ! 0 mV and Einh ! "80 mV. The synaptic
conductances (or effective synaptic conductance in the case of the CUBA
model) gex and ginh are expressed in units of the resting membrane
conductance.

Neurons in the network are either excitatory or inhibitory. When a
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rather than reporting the values of 'gex and 'ginh, which are the synaptic
strengths, we report the resulting EPSP and IPSP sizes. These are ob-
tained within the active network from spike-triggered average membrane
potentials of postsynaptic neurons after spikes evoked within individual
network neurons. The integration time step for our simulations is 0.1 ms.

Network architecture. To create self-sustained, asynchronous back-
ground activity, we chose a 4:1 ratio of excitatory to inhibitory neurons in
a network of 10,000 cells and connected them to each other randomly
with a connection probability of 2%. This value was chosen as a compro-
mise between the higher connection probabilities found for neighboring
neurons in cortex and the lower values for neurons separated by distance.
Our results should apply to models with connection probabilities up to
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synapses took the same strength, as did all of the inhibitory synapses.
These two sets of strengths were adjusted to allow asynchronous activity
within the network.
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form a 0th layer, L0, that provides input to the network. Input spikes
generated by the Poisson process in layer 0 were fed into a layer 1 sub-
population of the network neurons, labeled L1, by increasing their exci-
tatory synaptic conductances by gex3 gex & 'g0 whenever they received
an input spike from the layer 0 source. The synaptic strength 'g0 was
tuned so that the firing rates of the layer 1 neurons reproduce the input
signal, that is, they track the input firing rate r0(t). To analyze propaga-
tion, we fed various signals r0(t) into the network. At first, square-wave
pulses at 180 Hz lasting for 30 ms were used to assess propagation. Then,
constant input firing rates were used to study the elevation of firing rates
across different propagation layers Li for i ! 1, 2,. . . , 6. Finally, the
accuracy of signal propagation was examined by constructing r0(t) from
Gaussian-distributed white noise low-pass filtered at 50 ms and half-
wave rectified (van Rossum et al., 2002). In addition, the temporal prop-
erties of signal propagation were analyzed using input rates that varied
sinusoidally at different frequencies, by measuring the onset delay in each
layer for a propagated constant stimulus, and by studying propagation
for synchronous stimuli. The results we obtain by injecting layer 0 spikes
into the network could also be obtained by injecting current into the layer
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pathways found within the full network. We do not change the network
architecture by, for example, adding a feedforward pathway to the net-
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ward manner more highly than average because of random fluctuations
in network connectivity. By tracing these most likely candidates through
the existing network, we uncover a potential signal-propagation
pathway.

Specifically, we identify candidate propagation pathways in the follow-
ing manner. First, we choose 33 neurons randomly as layer 1 neurons
that received input from layer 0. Then, by searching the networks, we find
33 neurons, each of which receives three or more synapses from the
neurons in layer 1 (although the condition is three or more, the number
is three (90% of the time). These define layer 2. A third layer of neurons
is constructed in a similar manner by finding 33 network neurons that
receive three or more synaptic connections from the neurons of layer 2.
An additional requirement on layer 3 neurons is that they must not
receive any direct connections from layer 1. This prevents “short-
circuiting” of the multilayered propagation pathway. This procedure is
continued with layer i, for i ! 4, 5, 6, defined as a set of 33 neurons, each
of which receives at least three synapses from the neurons of layer i " 1,
and receives no synapses from layers i " 2, i " 3,. . . , 1. In the networks
we study, probabilities of connections between neurons are given by
binomial distributions. This allows us to compute the expected numbers
of neurons in each of the layers of a propagation pathway. The expected
number of neurons satisfying the conditions for layer 2 is 250, but the “no
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port propagation, because, unlike the external noise case, the level of
noise cannot be adjusted; it is fixed by the network. In addition, we
must examine whether the propagating signal interferes with the
ongoing background activity enough to disrupt its role as a noise
source. We also study synfire propagation in the same networks.

Signal propagation has been studied primarily in feedforward
networks, either standing alone or embedded into larger networks.
To study both rate-code and synfire transmission through a network
with self-sustained activity, we do not embed a feedforward struc-
ture into the random network used to generate background activity.
Instead, we feed a signal into a selected set of network neurons, find
the most likely path of transmission through the existing network,
and then modify the properties of neurons and synapses along this
candidate pathway to determine whether propagation can be
achieved. Thus, we are studying signal propagation within the archi-
tecture of a sparsely and randomly connected network, not an arti-
ficial feedforward structure.

Although faithful signal propagation is a necessary condition
for cognitive processing, by itself it does not represent any type of
computational process. Once we have established signal propa-
gation in the networks we study, we find and reinforce subcircuits
within the existing architecture that provide computational func-
tions. Specifically, we show how logic gates, switches, and mem-
ory units can be formed from multiple interacting signal propa-
gating pathways.

Materials and Methods
Neuron model. The network we study is composed of 10,000 leaky
integrate-and-fire neurons. Each integrate-and-fire neuron is character-
ized by a time constant, ! ! 20 ms, and a resting membrane potential,
Vrest ! "60 mV. Whenever the membrane potential crosses a spiking
threshold of "50 mV, an action potential is generated and the membrane
potential is reset to the resting potential, where it remains clamped for a
5 ms refractory period. To set the scale for currents and conductances in
the model, we use a membrane resistance of 100 M#.

We model the synaptic connections between these neurons in two differ-
ent ways, as currents and as conductances, resulting in either current-based
(CUBA) or conductance-based (COBA) models. For the CUBA model, the
subthreshold membrane potential obeys the following equation:

!
dV

dt
" $Vrest"V% # gex$Eex"Vrest% # ginh$Einh"Vrest% , (1)

whereas, in the COBA model, the membrane voltages are calculated as
follows:

!
dV

dt
" $Vrest"V% # gex$Eex"V% # ginh$Einh"V% . (2)

Reversal potentials are Eex ! 0 mV and Einh ! "80 mV. The synaptic
conductances (or effective synaptic conductance in the case of the CUBA
model) gex and ginh are expressed in units of the resting membrane
conductance.

Neurons in the network are either excitatory or inhibitory. When a
neuron fires, the appropriate synaptic variable of its postsynaptic targets
are increased, gex3 gex & 'gex for an excitatory presynaptic neuron and
ginh 3 ginh & 'ginh for an inhibitory presynaptic neuron. Otherwise,
these parameters obey the following equations:

!ex

dgex

dt
" "gex (3)

and

! inh

dginh

dt
" "ginh , (4)

with synaptic time constants !ex ! 5 ms and !inh ! 10 ms. In most cases,
rather than reporting the values of 'gex and 'ginh, which are the synaptic
strengths, we report the resulting EPSP and IPSP sizes. These are ob-
tained within the active network from spike-triggered average membrane
potentials of postsynaptic neurons after spikes evoked within individual
network neurons. The integration time step for our simulations is 0.1 ms.

Network architecture. To create self-sustained, asynchronous back-
ground activity, we chose a 4:1 ratio of excitatory to inhibitory neurons in
a network of 10,000 cells and connected them to each other randomly
with a connection probability of 2%. This value was chosen as a compro-
mise between the higher connection probabilities found for neighboring
neurons in cortex and the lower values for neurons separated by distance.
Our results should apply to models with connection probabilities up to
(10%. Except along the signaling pathway (see below), all excitatory
synapses took the same strength, as did all of the inhibitory synapses.
These two sets of strengths were adjusted to allow asynchronous activity
within the network.

Input signals. To test signal propagation through the network, we gen-
erated a set of Poisson input spike trains with a firing rate r0(t). These
form a 0th layer, L0, that provides input to the network. Input spikes
generated by the Poisson process in layer 0 were fed into a layer 1 sub-
population of the network neurons, labeled L1, by increasing their exci-
tatory synaptic conductances by gex3 gex & 'g0 whenever they received
an input spike from the layer 0 source. The synaptic strength 'g0 was
tuned so that the firing rates of the layer 1 neurons reproduce the input
signal, that is, they track the input firing rate r0(t). To analyze propaga-
tion, we fed various signals r0(t) into the network. At first, square-wave
pulses at 180 Hz lasting for 30 ms were used to assess propagation. Then,
constant input firing rates were used to study the elevation of firing rates
across different propagation layers Li for i ! 1, 2,. . . , 6. Finally, the
accuracy of signal propagation was examined by constructing r0(t) from
Gaussian-distributed white noise low-pass filtered at 50 ms and half-
wave rectified (van Rossum et al., 2002). In addition, the temporal prop-
erties of signal propagation were analyzed using input rates that varied
sinusoidally at different frequencies, by measuring the onset delay in each
layer for a propagated constant stimulus, and by studying propagation
for synchronous stimuli. The results we obtain by injecting layer 0 spikes
into the network could also be obtained by injecting current into the layer
1 neurons.

Signaling pathways. Signal propagation is investigated along specific
pathways found within the full network. We do not change the network
architecture by, for example, adding a feedforward pathway to the net-
work, and we do not require all-to-all connectivity between pathway
layers. Instead, we look for existing pathways already in the network. To
do this, we look for the most likely candidates for neurons that will be
affected by layer 1 activity. A potential signal-propagation pathway is a
series of layers of neurons that are connected to each other in a feedfor-
ward manner more highly than average because of random fluctuations
in network connectivity. By tracing these most likely candidates through
the existing network, we uncover a potential signal-propagation
pathway.

Specifically, we identify candidate propagation pathways in the follow-
ing manner. First, we choose 33 neurons randomly as layer 1 neurons
that received input from layer 0. Then, by searching the networks, we find
33 neurons, each of which receives three or more synapses from the
neurons in layer 1 (although the condition is three or more, the number
is three (90% of the time). These define layer 2. A third layer of neurons
is constructed in a similar manner by finding 33 network neurons that
receive three or more synaptic connections from the neurons of layer 2.
An additional requirement on layer 3 neurons is that they must not
receive any direct connections from layer 1. This prevents “short-
circuiting” of the multilayered propagation pathway. This procedure is
continued with layer i, for i ! 4, 5, 6, defined as a set of 33 neurons, each
of which receives at least three synapses from the neurons of layer i " 1,
and receives no synapses from layers i " 2, i " 3,. . . , 1. In the networks
we study, probabilities of connections between neurons are given by
binomial distributions. This allows us to compute the expected numbers
of neurons in each of the layers of a propagation pathway. The expected
number of neurons satisfying the conditions for layer 2 is 250, but the “no
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whether such networks generate sufficient internal “noise” to sup-
port propagation, because, unlike the external noise case, the level of
noise cannot be adjusted; it is fixed by the network. In addition, we
must examine whether the propagating signal interferes with the
ongoing background activity enough to disrupt its role as a noise
source. We also study synfire propagation in the same networks.

Signal propagation has been studied primarily in feedforward
networks, either standing alone or embedded into larger networks.
To study both rate-code and synfire transmission through a network
with self-sustained activity, we do not embed a feedforward struc-
ture into the random network used to generate background activity.
Instead, we feed a signal into a selected set of network neurons, find
the most likely path of transmission through the existing network,
and then modify the properties of neurons and synapses along this
candidate pathway to determine whether propagation can be
achieved. Thus, we are studying signal propagation within the archi-
tecture of a sparsely and randomly connected network, not an arti-
ficial feedforward structure.

Although faithful signal propagation is a necessary condition
for cognitive processing, by itself it does not represent any type of
computational process. Once we have established signal propa-
gation in the networks we study, we find and reinforce subcircuits
within the existing architecture that provide computational func-
tions. Specifically, we show how logic gates, switches, and mem-
ory units can be formed from multiple interacting signal propa-
gating pathways.

Materials and Methods
Neuron model. The network we study is composed of 10,000 leaky
integrate-and-fire neurons. Each integrate-and-fire neuron is character-
ized by a time constant, ! ! 20 ms, and a resting membrane potential,
Vrest ! "60 mV. Whenever the membrane potential crosses a spiking
threshold of "50 mV, an action potential is generated and the membrane
potential is reset to the resting potential, where it remains clamped for a
5 ms refractory period. To set the scale for currents and conductances in
the model, we use a membrane resistance of 100 M#.

We model the synaptic connections between these neurons in two differ-
ent ways, as currents and as conductances, resulting in either current-based
(CUBA) or conductance-based (COBA) models. For the CUBA model, the
subthreshold membrane potential obeys the following equation:

!
dV

dt
" $Vrest"V% # gex$Eex"Vrest% # ginh$Einh"Vrest% , (1)

whereas, in the COBA model, the membrane voltages are calculated as
follows:

!
dV

dt
" $Vrest"V% # gex$Eex"V% # ginh$Einh"V% . (2)

Reversal potentials are Eex ! 0 mV and Einh ! "80 mV. The synaptic
conductances (or effective synaptic conductance in the case of the CUBA
model) gex and ginh are expressed in units of the resting membrane
conductance.

Neurons in the network are either excitatory or inhibitory. When a
neuron fires, the appropriate synaptic variable of its postsynaptic targets
are increased, gex3 gex & 'gex for an excitatory presynaptic neuron and
ginh 3 ginh & 'ginh for an inhibitory presynaptic neuron. Otherwise,
these parameters obey the following equations:

!ex

dgex

dt
" "gex (3)

and

! inh

dginh

dt
" "ginh , (4)

with synaptic time constants !ex ! 5 ms and !inh ! 10 ms. In most cases,
rather than reporting the values of 'gex and 'ginh, which are the synaptic
strengths, we report the resulting EPSP and IPSP sizes. These are ob-
tained within the active network from spike-triggered average membrane
potentials of postsynaptic neurons after spikes evoked within individual
network neurons. The integration time step for our simulations is 0.1 ms.

Network architecture. To create self-sustained, asynchronous back-
ground activity, we chose a 4:1 ratio of excitatory to inhibitory neurons in
a network of 10,000 cells and connected them to each other randomly
with a connection probability of 2%. This value was chosen as a compro-
mise between the higher connection probabilities found for neighboring
neurons in cortex and the lower values for neurons separated by distance.
Our results should apply to models with connection probabilities up to
(10%. Except along the signaling pathway (see below), all excitatory
synapses took the same strength, as did all of the inhibitory synapses.
These two sets of strengths were adjusted to allow asynchronous activity
within the network.

Input signals. To test signal propagation through the network, we gen-
erated a set of Poisson input spike trains with a firing rate r0(t). These
form a 0th layer, L0, that provides input to the network. Input spikes
generated by the Poisson process in layer 0 were fed into a layer 1 sub-
population of the network neurons, labeled L1, by increasing their exci-
tatory synaptic conductances by gex3 gex & 'g0 whenever they received
an input spike from the layer 0 source. The synaptic strength 'g0 was
tuned so that the firing rates of the layer 1 neurons reproduce the input
signal, that is, they track the input firing rate r0(t). To analyze propaga-
tion, we fed various signals r0(t) into the network. At first, square-wave
pulses at 180 Hz lasting for 30 ms were used to assess propagation. Then,
constant input firing rates were used to study the elevation of firing rates
across different propagation layers Li for i ! 1, 2,. . . , 6. Finally, the
accuracy of signal propagation was examined by constructing r0(t) from
Gaussian-distributed white noise low-pass filtered at 50 ms and half-
wave rectified (van Rossum et al., 2002). In addition, the temporal prop-
erties of signal propagation were analyzed using input rates that varied
sinusoidally at different frequencies, by measuring the onset delay in each
layer for a propagated constant stimulus, and by studying propagation
for synchronous stimuli. The results we obtain by injecting layer 0 spikes
into the network could also be obtained by injecting current into the layer
1 neurons.

Signaling pathways. Signal propagation is investigated along specific
pathways found within the full network. We do not change the network
architecture by, for example, adding a feedforward pathway to the net-
work, and we do not require all-to-all connectivity between pathway
layers. Instead, we look for existing pathways already in the network. To
do this, we look for the most likely candidates for neurons that will be
affected by layer 1 activity. A potential signal-propagation pathway is a
series of layers of neurons that are connected to each other in a feedfor-
ward manner more highly than average because of random fluctuations
in network connectivity. By tracing these most likely candidates through
the existing network, we uncover a potential signal-propagation
pathway.

Specifically, we identify candidate propagation pathways in the follow-
ing manner. First, we choose 33 neurons randomly as layer 1 neurons
that received input from layer 0. Then, by searching the networks, we find
33 neurons, each of which receives three or more synapses from the
neurons in layer 1 (although the condition is three or more, the number
is three (90% of the time). These define layer 2. A third layer of neurons
is constructed in a similar manner by finding 33 network neurons that
receive three or more synaptic connections from the neurons of layer 2.
An additional requirement on layer 3 neurons is that they must not
receive any direct connections from layer 1. This prevents “short-
circuiting” of the multilayered propagation pathway. This procedure is
continued with layer i, for i ! 4, 5, 6, defined as a set of 33 neurons, each
of which receives at least three synapses from the neurons of layer i " 1,
and receives no synapses from layers i " 2, i " 3,. . . , 1. In the networks
we study, probabilities of connections between neurons are given by
binomial distributions. This allows us to compute the expected numbers
of neurons in each of the layers of a propagation pathway. The expected
number of neurons satisfying the conditions for layer 2 is 250, but the “no
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whether such networks generate sufficient internal “noise” to sup-
port propagation, because, unlike the external noise case, the level of
noise cannot be adjusted; it is fixed by the network. In addition, we
must examine whether the propagating signal interferes with the
ongoing background activity enough to disrupt its role as a noise
source. We also study synfire propagation in the same networks.

Signal propagation has been studied primarily in feedforward
networks, either standing alone or embedded into larger networks.
To study both rate-code and synfire transmission through a network
with self-sustained activity, we do not embed a feedforward struc-
ture into the random network used to generate background activity.
Instead, we feed a signal into a selected set of network neurons, find
the most likely path of transmission through the existing network,
and then modify the properties of neurons and synapses along this
candidate pathway to determine whether propagation can be
achieved. Thus, we are studying signal propagation within the archi-
tecture of a sparsely and randomly connected network, not an arti-
ficial feedforward structure.

Although faithful signal propagation is a necessary condition
for cognitive processing, by itself it does not represent any type of
computational process. Once we have established signal propa-
gation in the networks we study, we find and reinforce subcircuits
within the existing architecture that provide computational func-
tions. Specifically, we show how logic gates, switches, and mem-
ory units can be formed from multiple interacting signal propa-
gating pathways.

Materials and Methods
Neuron model. The network we study is composed of 10,000 leaky
integrate-and-fire neurons. Each integrate-and-fire neuron is character-
ized by a time constant, ! ! 20 ms, and a resting membrane potential,
Vrest ! "60 mV. Whenever the membrane potential crosses a spiking
threshold of "50 mV, an action potential is generated and the membrane
potential is reset to the resting potential, where it remains clamped for a
5 ms refractory period. To set the scale for currents and conductances in
the model, we use a membrane resistance of 100 M#.

We model the synaptic connections between these neurons in two differ-
ent ways, as currents and as conductances, resulting in either current-based
(CUBA) or conductance-based (COBA) models. For the CUBA model, the
subthreshold membrane potential obeys the following equation:

!
dV

dt
" $Vrest"V% # gex$Eex"Vrest% # ginh$Einh"Vrest% , (1)

whereas, in the COBA model, the membrane voltages are calculated as
follows:

!
dV

dt
" $Vrest"V% # gex$Eex"V% # ginh$Einh"V% . (2)

Reversal potentials are Eex ! 0 mV and Einh ! "80 mV. The synaptic
conductances (or effective synaptic conductance in the case of the CUBA
model) gex and ginh are expressed in units of the resting membrane
conductance.

Neurons in the network are either excitatory or inhibitory. When a
neuron fires, the appropriate synaptic variable of its postsynaptic targets
are increased, gex3 gex & 'gex for an excitatory presynaptic neuron and
ginh 3 ginh & 'ginh for an inhibitory presynaptic neuron. Otherwise,
these parameters obey the following equations:

!ex

dgex

dt
" "gex (3)

and

! inh

dginh

dt
" "ginh , (4)

with synaptic time constants !ex ! 5 ms and !inh ! 10 ms. In most cases,
rather than reporting the values of 'gex and 'ginh, which are the synaptic
strengths, we report the resulting EPSP and IPSP sizes. These are ob-
tained within the active network from spike-triggered average membrane
potentials of postsynaptic neurons after spikes evoked within individual
network neurons. The integration time step for our simulations is 0.1 ms.

Network architecture. To create self-sustained, asynchronous back-
ground activity, we chose a 4:1 ratio of excitatory to inhibitory neurons in
a network of 10,000 cells and connected them to each other randomly
with a connection probability of 2%. This value was chosen as a compro-
mise between the higher connection probabilities found for neighboring
neurons in cortex and the lower values for neurons separated by distance.
Our results should apply to models with connection probabilities up to
(10%. Except along the signaling pathway (see below), all excitatory
synapses took the same strength, as did all of the inhibitory synapses.
These two sets of strengths were adjusted to allow asynchronous activity
within the network.

Input signals. To test signal propagation through the network, we gen-
erated a set of Poisson input spike trains with a firing rate r0(t). These
form a 0th layer, L0, that provides input to the network. Input spikes
generated by the Poisson process in layer 0 were fed into a layer 1 sub-
population of the network neurons, labeled L1, by increasing their exci-
tatory synaptic conductances by gex3 gex & 'g0 whenever they received
an input spike from the layer 0 source. The synaptic strength 'g0 was
tuned so that the firing rates of the layer 1 neurons reproduce the input
signal, that is, they track the input firing rate r0(t). To analyze propaga-
tion, we fed various signals r0(t) into the network. At first, square-wave
pulses at 180 Hz lasting for 30 ms were used to assess propagation. Then,
constant input firing rates were used to study the elevation of firing rates
across different propagation layers Li for i ! 1, 2,. . . , 6. Finally, the
accuracy of signal propagation was examined by constructing r0(t) from
Gaussian-distributed white noise low-pass filtered at 50 ms and half-
wave rectified (van Rossum et al., 2002). In addition, the temporal prop-
erties of signal propagation were analyzed using input rates that varied
sinusoidally at different frequencies, by measuring the onset delay in each
layer for a propagated constant stimulus, and by studying propagation
for synchronous stimuli. The results we obtain by injecting layer 0 spikes
into the network could also be obtained by injecting current into the layer
1 neurons.

Signaling pathways. Signal propagation is investigated along specific
pathways found within the full network. We do not change the network
architecture by, for example, adding a feedforward pathway to the net-
work, and we do not require all-to-all connectivity between pathway
layers. Instead, we look for existing pathways already in the network. To
do this, we look for the most likely candidates for neurons that will be
affected by layer 1 activity. A potential signal-propagation pathway is a
series of layers of neurons that are connected to each other in a feedfor-
ward manner more highly than average because of random fluctuations
in network connectivity. By tracing these most likely candidates through
the existing network, we uncover a potential signal-propagation
pathway.

Specifically, we identify candidate propagation pathways in the follow-
ing manner. First, we choose 33 neurons randomly as layer 1 neurons
that received input from layer 0. Then, by searching the networks, we find
33 neurons, each of which receives three or more synapses from the
neurons in layer 1 (although the condition is three or more, the number
is three (90% of the time). These define layer 2. A third layer of neurons
is constructed in a similar manner by finding 33 network neurons that
receive three or more synaptic connections from the neurons of layer 2.
An additional requirement on layer 3 neurons is that they must not
receive any direct connections from layer 1. This prevents “short-
circuiting” of the multilayered propagation pathway. This procedure is
continued with layer i, for i ! 4, 5, 6, defined as a set of 33 neurons, each
of which receives at least three synapses from the neurons of layer i " 1,
and receives no synapses from layers i " 2, i " 3,. . . , 1. In the networks
we study, probabilities of connections between neurons are given by
binomial distributions. This allows us to compute the expected numbers
of neurons in each of the layers of a propagation pathway. The expected
number of neurons satisfying the conditions for layer 2 is 250, but the “no
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Efficiently simulating and analyzing 
thousands of trials with a large 

spiking network

• 4000 neurons, 1000 trials

• 8 million pairwise correlations to calculate 
per bin, 50 bins

• Conventional code: 1.5 hours for 
simulations, 8 hours to calculate correlations
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GPUs

• Massively parallel single precision 
floating point

• Have to program in SPMD (single 
program multiple data) style - 
thousands of threads all running the 
same code on different parts of 
memory

. . .

. . .

(Graphics Processing Units)
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SpikeStream

• Python framework for simulation and spike 
train analysis

• Specify models and computations in Python 
(a very nice language!)

• Code generation techniques produce 
underlying CUDA code for the device
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Example

• (show Python code and generated CUDA 
code)
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SpikeStream
• Interesting performance characteristics:

• More complex models not much slower 
(rate-limiting step: spike propagation)

• Large memory access latency, hundreds of accesses per spike

• Memory limits: 4GB per card, so millions of 
synapses (or thousands of repeats of a 
smaller sim), but not billions

• Multiple cards can be used for repeats, but 
not easy to extend one sim over multiple 
cards
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A Spiking Model with 
Internally Generated Variability
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(1.2 hours on CPU, 30 seconds on GPU = 130x speedup)
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The system is acting linearly
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(relaxation to steady state)

(8 hours on CPU, 2 minutes on GPU = 240x speedup)
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E-E Correlation Distribution For Each Bin
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I-I Correlation Distribution For Each Bin
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E-I Correlation Distribution For Each Bin
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Questions
• Can we understand the peculiar shape of the 

correlation distribution in this network?

• Can we modify the network to behave like Jay’s data?

• More realistic connectivity (sparse vs. dense)

• More realistic coupling (strong feedforward 
inhibition)

• Different non-linearities in the neurons

• More realistic input
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Summary

• Correlations in neural systems are affected 
by connectivity and non-linearities in 
complex ways. The details matter.

• GPU computing opens up new avenues for 
approaching this problem with larger-scale 
models with more realistic characteristics.
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Thank You!
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