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Qutline

® Background: variability and covariability
® What is it? Why is it important!
® The effect of coupling on covariability

® A simple model of coupled units, explaining some
curious somatosensory data

® A first glance at a fully coupled, realistic model

® Efficient implementation and analysis of these
models
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Neural responses are variable
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The effect of variability on coding
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Motivated by Stein (1967) and Knight (1972). Figure from Doiron (2009).
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Using variability for coding
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Neural co-variability is important
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Calculating Spike Count Correlation
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Calculating Spike Count Correlation
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Calculating Spike Count Correlation
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Calculating Spike Count Correlation
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Calculating Spike Count Correlation
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Calculating Spike Count Correlation
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Calculating Spike Count Correlation
Cov,,; = ET(nlnz) — ET(nl)ET(nz)

— COVIZ,T 0 = lim Oy Correlation coefficient
r V V T —0
\/ a}/i,T arZ,T

Jo

p =-1 - completely anti-correlated
p =0 -uncorrelated

p=1 -completely correlated
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Predicting Output Correlation
Given Input Statistics

A correlation rate relationship?
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Why!
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Predicting Output Correlation
Given Input Statistics

A correlation rate relationship?
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Shea-Brown, et al, 2008
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E-l correlations

40} |

¥ 5 high
= 7 Ell

o |Iow
e

© 20t

@)

£

‘= 10}

[ -

0O 20 40 60 80 100 120 140
time (ms)

depressed more depressed

Gabernet, Jadhav, Feldman, Carandini, Scanziani, 2005

Tuesday, September 1, 2009



easuring E-l correlation in vivo
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Middleton et al, in prep
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Measuring E-l correlation in vivo
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What'’s the problem!?

correlated slow noise
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What'’s the problem!?

correlated slow noise
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A Coupled Model

correlated slow noise rr(t) = max{0, Wi(t) +n:(t)}
7N d
pad S TI% — —U[(t)+J[€](t)
dl
RS = 10+
rep(t) = max{0,Wg(t) —gl(t) +ng(t)}
dng
layer IV whisker input BT T —n5(t) +ople(l)
fojjizze_;o;fft (€e(t)) = (&) =0
@) = (@) =1
(Ep(t)Er(t)) = c e [0,1]
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Fitting the model
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The effect of feedforward inhibition
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E-| correlation coefficient
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Summary so far

- Inhibitory coupling anti-correlates neural
populations

- Non-linearities dilute this effect

- The evoked state moves you toward the linear
part of the transfer function, unlocking the anti-
correlating effect of inhibition
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Issues with this model

® Missing full set of connections
® Not-quite-realistic non-linearities

® Externally-imposed noise with a fixed and
fitted input correlation
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A Spiking Model with

Internally Generated Variability
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Efficiently simulating and analyzing
thousands of trials with a large
spiking network

® 4000 neurons, 1000 trials

® 8 million pairwise correlations to calculate
per bin, 50 bins

® Conventional code: |.5 hours for
simulations, 8 hours to calculate correlations
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GPUs

(Graphics Processing Units)

® Massively parallel single precision
floating point

® Have to program in SPMD (single
program multiple data) style -
thousands of threads all running the
same code on different parts of
memory
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SpikeStream

® Python framework for simulation and spike
train analysis

® Specify models and computations in Python
(a very nice language!)

® Code generation techniques produce
underlying CUDA code for the device
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Example

® (show Python code and generated CUDA
code)
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SpikeStream

® |nteresting performance characteristics:

® More complex models not much slower
(rate-limiting step: spike propagation)

® |arge memory access latency, hundreds of accesses per spike

® Memory limits: 4GB per card, so millions of
synapses (or thousands of repeats of a
smaller sim), but not billions

® Multiple cards can be used for repeats, but
not easy to extend one sim over multiple
cards
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A Spiking Model with
Internally Generated Variability
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(1.2 hours on CPU, 30 seconds on GPU = |30x speedup)
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The system is acting linearly
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|-l Correlation Distribution For Each Bin
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E-l1 Correlation Distribution For Each Bin
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Questions

® (Can we understand the peculiar shape of the
correlation distribution in this network?

® Can we modify the network to behave like Jay’s data?
® More realistic connectivity (sparse vs. dense)

® More realistic coupling (strong feedforward
inhibition)

® Different non-linearities in the neurons

® More realistic input
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Summary

® Correlations in neural systems are affected
by connectivity and non-linearities in
complex ways. The details matter.

® GPU computing opens up new avenues for
approaching this problem with larger-scale
models with more realistic characteristics.

Tuesday, September 1, 2009



Thank You!
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