
Reasonably Programmable Syntax

Cyrus Omar

CMU-CS-17-113

May 17, 2017

School of Computer Science
Computer Science Department

Carnegie Mellon University
Pittsburgh, PA 15213

Thesis Committee:
Jonathan Aldrich, Chair

Robert Harper
Karl Crary

Eric Van Wyk, University of Minnesota

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Copyright © 2017 Cyrus Omar. This work is licensed under the Creative Commons Attribution 4.0
International License, which can be found at http://creativecommons.org/licenses/by/4.0/.
This research was sponsored by the DOE Computational Science Graduate Fellowship; the NSF Graduate Research Fellowship; the
US Department of Defense National Security Agency under grant H9823014C0140; the US Air Force Research Laboratory under
grant FA87501620042; the US Army Research Office under grants W911NF0910273 and W911NF1310154; the Boeing Company
under grant 1101601762; and the National Science Foundation under grants DGE0750271, DGE1252522, and CCF1116907. The
views and conclusions contained in this document are those of the author and should not be interpreted as representing the official
policies, either expressed or implied, of any sponsoring institution, the U.S. government or any other entity.

http://creativecommons.org/licenses/by/4.0/

Keywords: syntax, notation, parsing, type systems, module systems, macro systems,
hygiene, pattern matching, bidirectional typechecking, implicit dispatch

Abstract
Programming languages commonly provide “syntactic sugar” that decreases
the syntactic cost of working with certain standard library constructs. For
example, Standard ML builds in syntactic sugar for constructing and pattern
matching on lists. Third-party library providers are, justifiably, envious of
this special arrangement. After all, it is not difficult to find other situations
where library-specific syntactic sugar might be useful [97]. For example, (1)
clients of a “collections” library might like syntactic sugar for finite sets and
dictionaries; (2) clients of a “web programming” library might like syntactic
sugar for HTML and JSON values; (3) a compiler writer might like syntactic
sugar for the terms of the object language or various intermediate languages
of interest; and (4) clients of a “chemistry” library might like syntactic sugar
for chemical structures based on the SMILES standard [16].

Defining a “library-specific” syntax dialect in each of these situations is
problematic, because library clients cannot combine dialects like these in
a manner that conserves syntactic determinism (i.e. syntactic conflicts can
and do arise.) Moreover, it can become difficult for library clients to reason
abstractly about types and binding when examining the text of a program
that uses unfamiliar forms. Instead, they must reason transparently, about the
underlying expansion. Typed, hygienic term-rewriting macro systems, like
Scala’s macro system [23], while somewhat more reasonable, offer limited
syntactic control.

This thesis formally introduces typed literal macros (TLMs), which give
library providers the ability to programmatically control the parsing and
expansion, at “compile-time”, of expressions and patterns of generalized literal
form. Library clients can use any combination of TLMs in a program with-
out needing to consider the possibility of syntactic conflicts between them,
because the context-free syntax of the language is never extended (instead,
literal forms are contextually repurposed.) Moreover, the language validates
each expansion that a TLM generates in order to maintain useful abstract
reasoning principles. Most notably, expansion validation maintains:

• a type discipline, meaning that the client can reason about types while
holding the literal expansion abstract; and

• a strictly hygienic binding discipline, meaning that the client can always be
sure that:

1. spliced terms, i.e. terms that appear within literal bodies, cannot
capture bindings hidden within the literal expansion; and

2. the literal expansion does not refer to definition-site or application-
site bindings directly. Instead, all interactions with bindings external
to the expansion go explicitly through spliced terms or parameters.

In short, we formally define a programming language in the ML tradition
with a reasonably programmable syntax.

iv

Acknowledgments

I owe a tremendous debt of gratitude to my advisor, Jonathan Aldrich,
for being willing to take me on as a naïve neuroscience student interested in
designing programming languages, and for guiding me patiently through
many years of learning, experimentation and refinement. Jonathan’s depth of
expertise and breadth of perspective has been invaluable. Thank you.

I would also like to thank Bob Harper and Karl Crary, who both generously
served on my thesis committee and substantially influenced my approach.
Through their teaching and scholarship, they taught me the type-theoretic
foundations of programming languages, and more broadly, they taught me
the tremendous value of precision in both formal and informal discourse on
language design. These lessons were reinforced during long afternoons dis-
cussing theory papers with other POP students in the ConCert reading group,
and during long evenings grading and preparing for 15-150 (Functional Pro-
gramming) and 15-312 (Principles of Programming Languages) with Dan
Licata, Ian Voysey, Bob Harper, Shayak Sen and the rest of the course staff.
Thank you all for being uncompromisingly mathematical in your approach.

I have also learned a great deal about the psychological and social aspects
of software development from Brad Myers of the HCI Institute and from the
faculty and students of the Institute for Software Research (ISR), particularly
Thomas LaToza and Joshua Sunshine. In addition, I have collaborated with
Alex Potanin, who visited us on sabbatical, and with students Darya Melicher,
Ligia Nistor, Benjamin Chung and Chenglong Wang on projects related to the
work presented here. Thank you all for broadening my perspective on the art
and science of language design.

During my time in graduate school, I have had the privilege to attend a
great many conferences, workshops and summer schools where I participated
in more illuminating conversations than I could hope to recall here. I am
particularly grateful for conversations with Eric Van Wyk, who never failed to
appreciate the subtle contours of a design space and graciously served on my
thesis committee. I would also like to thank the organizers and participants
of the Oregon PL Summer School, where I had an amazing time learning
how to properly prove the proper theorems. Finally, I am grateful to have
collaborated with Ian Voysey, Michael Hilton and Matthew Hammer on
Hazelnut, a side project that quite successfully delayed the completion of this
dissertation. With friends and collaborators like these, why graduate?

I would be remiss not to mention Brent Doiron, who took me as a student
when I entered graduate school in the Neural Computation PhD program,
and Garrett Kenyon, who was my practicum supervisor during my “man vs.
wild” stint at Los Alamos National Lab. Both of them left me with a deep
appreciation for the mathematical and computational methods used to study
the dynamics of neurobiological systems. I hope some day, far in the future,
to return to neuroscience with a pack full of truly modern programming tools.

I also want to explicitly acknowledge Deb Cavlovich, Catherine Copetas,
Victoria Poprocky and all of the other staff that have kept things running
smoothly around the school, and at conferences and other events. I really
appreciate all of the work that you do.

Graduate school can be an emotionally taxing experience, to say the least.
Fortunately, my friends were there whenever I came up for air – sometimes
after going under for weeks at a time. Tommy and Sanna, you are beautiful
souls and our travels together have been incredibly rejuvenating. D, you
have the most exquisite taste and it’s so good to know you (yeh yeh yeh.)
To the greater Miasma crew, Ian, V, Tom7 and the rest of the thursdz crew,
and my former officemate, Harsha: yinz are such fascinating people and I
really enjoy the time we spend together. The same goes for so many other
individuals that I’ve connected with personally, whether at conferences, at
office hours, through the CNBC, CSGF, LANL, WRCT, SCS, on Twitter, at
shows and festivals, in the woods, or in apartments and backyards. You’ve
brought such color and texture to my life.

I especially want to remember Dan Schreiber. Dan was one of my very
closest friends, a romantic visionary and the greatest debate partner I have
ever had. He died in 2010. I am so glad to have known him and I only wish
that I could have heard his take on so many of the topics I’ve learned about
since then – proof theory, type theory, tech cooperatives, experimental music,
long-distance cycling, old books, psychedelic films, spontaneous theater and
colonizing Venus, to name a few topics I suspect he’d have some thoughts
about! Dan is truly missed.

Finally, so much of who I am is due to the love and support of my family.
The diverse personalities of my aunts, uncles, cousins and their spouses made
family gatherings so lively. My sister, Elisha, and now her husband, Pat, have
been an endless source of great book recommendations and conversations.
And I am forever grateful to Ami and Hibbi Abu, my mother and father, who
have given me so much love, offered so many heartfelt prayers and provided
me with so much practical assistance and advice throughout my life. From an
early age, they encouraged me to maintain an independent mind, to cultivate
the highest intellectual standards and to remember the Big Picture at all times.
Those lessons, rooted in the traditions of our family going back generations,
have proven incredibly valuable in research, and in life. Thank you.

It’s been an unforgettable journey. Thanks, everybody.

vi

Contents

1 Introduction 1
1.1 Motivation . 1

1.1.1 Informal Mathematical Practice . 3
1.1.2 Derived Forms in General-Purpose Languages 4

1.2 Existing Mechanisms of Syntactic Control 5
1.2.1 Syntax Dialects . 5
1.2.2 Term Rewriting Systems . 8

1.3 Contributions . 9
1.3.1 Outline . 11
1.3.2 Thesis Statement . 13

1.4 VerseML . 13
1.5 Disclaimers . 13

2 Background 15
2.1 Preliminaries . 15
2.2 Cognitive Cost . 16
2.3 Motivating Definitions . 17

2.3.1 Lists . 17
2.3.2 Regular Expressions . 20

2.4 Existing Approaches . 23
2.4.1 Standard Abstraction Mechanisms 23
2.4.2 Dynamic Quotation Parsing . 26
2.4.3 Fixity Directives . 28
2.4.4 Mixfix Syntax Definitions . 30
2.4.5 Grammar-Based Syntax Definition Systems 31
2.4.6 Parser Combinator Systems . 32
2.4.7 Examples of Syntax Dialects . 32
2.4.8 Problems with Syntax Dialects . 34
2.4.9 Non-Local Term Rewriting Systems 39
2.4.10 Term-Rewriting Macro Systems . 40

3 Simple Expression TLMs (seTLMs) 43
3.1 Simple Expression TLMs By Example . 43

3.1.1 TLM Application . 43

vii

3.1.2 TLM Definitions . 44
3.1.3 Splicing . 46
3.1.4 Segmentations . 47
3.1.5 Proto-Expansion Validation . 48
3.1.6 Final Expansion . 50
3.1.7 Comparison to the Dialect-Oriented Approach 50

3.2 miniVerseSE . 50
3.2.1 Overview . 51
3.2.2 Syntax of the Expanded Language 51
3.2.3 Statics of the Expanded Language 52
3.2.4 Structural Dynamics . 52
3.2.5 Syntax of the Unexpanded Language 53
3.2.6 Typed Expansion . 54
3.2.7 seTLM Definitions . 56
3.2.8 seTLM Application . 59
3.2.9 Syntax of Proto-Expansions . 61
3.2.10 Proto-Expansion Validation . 61
3.2.11 Metatheory . 64

4 Simple Pattern TLMs (spTLMs) 69
4.1 Simple Pattern TLMs By Example . 70

4.1.1 Usage . 70
4.1.2 Definition . 71
4.1.3 Splicing . 72
4.1.4 Segmentations . 73
4.1.5 Proto-Expansion Validation . 73
4.1.6 Final Expansion . 73

4.2 miniVerseS . 74
4.2.1 Syntax of the Expanded Language 74
4.2.2 Statics of the Expanded Language 75
4.2.3 Structural Dynamics . 76
4.2.4 Syntax of the Unexpanded Language 77
4.2.5 Typed Expansion . 78
4.2.6 spTLM Definition . 79
4.2.7 spTLM Application . 81
4.2.8 Syntax of Proto-Expansions . 82
4.2.9 Proto-Expansion Validation . 82
4.2.10 Metatheory . 84

5 Parametric TLMs (pTLMs) 89
5.1 Parametric TLMs By Example . 89

5.1.1 Type Parameters . 89
5.1.2 Module Parameters . 90

5.2 miniVerseP . 91

viii

5.2.1 Syntax of the Expanded Language (XL) 91
5.2.2 Statics of the Expanded Language 93
5.2.3 Structural Dynamics . 97
5.2.4 Syntax of the Unexpanded Language 100
5.2.5 Typed Expansion . 100
5.2.6 TLM Definitions . 102
5.2.7 TLM Abbreviations . 103
5.2.8 TLM Application . 104
5.2.9 Syntax of Proto-Expansions . 106
5.2.10 Proto-Expansion Validation . 109
5.2.11 Metatheory . 110

6 Static Evaluation 115
6.1 Static Values . 115
6.2 Applying TLMs Within TLM Definitions . 116

6.2.1 Quasiquotation . 116
6.2.2 Grammar-Based Parser Generators 116

6.3 Library Management . 118
6.4 miniVersePH . 118

6.4.1 Syntax of Unexpanded Modules . 118
6.4.2 Module Expansion . 119
6.4.3 Metatheory . 121

7 TLM Implicits 123
7.1 TLM Implicits By Example . 123

7.1.1 Designation and Usage . 123
7.1.2 Analytic and Synthetic Positions . 124

7.2 Bidirectional miniVerseS . 124
7.2.1 Expanded Language . 125
7.2.2 Syntax of the Unexpanded Language 125
7.2.3 Bidirectionally Typed Expansion . 125
7.2.4 Bidirectional Proto-Expansion Validation 129
7.2.5 Metatheory . 130

7.3 Parametric TLM Implicits . 132

8 Discussion & Conclusion 133
8.1 Summary of Contributions . 133
8.2 Summary of Related Work . 134
8.3 Limitations & Future Research Directions 136

8.3.1 Integration Into a Full-Scale Functional Language Definition 136
8.3.2 Integration Into Languages From Other Design Traditions 136
8.3.3 Constraint-Based Type Inference . 137
8.3.4 Module Expression Syntax Macros 137
8.3.5 Parameterized Implicit Designations 138

ix

8.3.6 Exportable Implicit Designations . 138
8.3.7 Controlled Capture . 139
8.3.8 Type-Aware Splicing . 139
8.3.9 TLM Application in Proto-Expansions 139
8.3.10 Mechanically Reasoning About Parse Functions 140
8.3.11 Refactoring Unexpanded Terms . 140
8.3.12 Integration with Editor Services . 141
8.3.13 Pretty Printing . 141
8.3.14 Structure Editing . 141

8.4 Concluding Remarks . 142

LATEX Source Code and Updates 143

A Conventions 147
A.1 Typographic Conventions . 147

B miniVerseSE and miniVerseS 149
B.1 Expanded Language (XL) . 150

B.1.1 Syntax . 150
B.1.2 Statics . 150
B.1.3 Structural Dynamics . 155

B.2 Unexpanded Language (UL) . 156
B.2.1 Syntax . 156
B.2.2 Type Expansion . 159
B.2.3 Typed Expression Expansion . 159

B.3 Proto-Expansion Validation . 165
B.3.1 Syntax of Proto-Expansions . 165
B.3.2 Proto-Type Validation . 169
B.3.3 Proto-Expression Validation . 170
B.3.4 Proto-Pattern Validation . 171

B.4 Metatheory . 172
B.4.1 Type Expansion . 172
B.4.2 Typed Pattern Expansion . 174
B.4.3 Typed Expression Expansion . 177
B.4.4 Abstract Reasoning Principles . 183

C miniVerseP 197
C.1 Expanded Language (XL) . 198

C.1.1 Syntax . 198
C.1.2 Statics . 199
C.1.3 Structural Dynamics . 206

C.2 Unexpanded Language (UL) . 207
C.2.1 Syntax . 207
C.2.2 Typed Expansion . 213

x

C.3 Proto-Expansion Validation . 223
C.3.1 Syntax of Proto-Expansions . 223
C.3.2 Deparameterization . 230
C.3.3 Proto-Expansion Validation . 230

C.4 Metatheory . 234
C.4.1 TLM Expressions . 234
C.4.2 Typed Expansion . 237
C.4.3 Abstract Reasoning Principles . 244

D Bidirectional miniVerseS 259
D.1 Expanded Language (XL) . 259
D.2 Unexpanded Language (UL) . 259

D.2.1 Syntax . 259
D.2.2 Bidirectionally Typed Expansion . 260

D.3 Proto-Expansion Validation . 265
D.3.1 Syntax of Proto-Expansions . 265
D.3.2 Proto-Expansion Validation . 266

D.4 Metatheory . 269
D.4.1 Typed Pattern Expansion . 269
D.4.2 Typed Expression and Rule Expansion 269
D.4.3 Abstract Reasoning Principles . 270

Bibliography 275

xi

xii

List of Figures

1.1 Syntax of Calc . 2
1.2 Derived XHTML forms in Ur/Web . 5
1.3 An example of unreasonable program text 7
1.4 An example of a TLM being applied to a generalized literal form 9
1.5 The segmentation of the example from Figure 1.4 10
1.6 TLMs make examples like the one from Figure 1.3 more reasonable. 10
1.7 The example from Figure 1.5 expressed using parametric TLMs 11
1.8 The example from Figure 1.5 drawn to take advantage of TLM implicits . 12
1.9 A non-trivial example demonstrating implicit TLM application at seven

different types: url, html, css, color, percentage, string and sql 12

2.1 Definition of the LIST signature . 19
2.2 Definition of the recursive labeled sum type rx 20
2.3 Pattern matching over regexes in VerseML 20
2.4 The RX signature and two example implementations 21
2.5 Pattern matching over normal unfoldings of regexes 22
2.6 The definition of RXUtil . 22
2.7 Compositional construction of a regex . 25
2.8 Fixity declarations and related bindings for RX 29
2.9 Derived regex expression forms in Vrx . 33
2.10 Derived regex pattern forms in Vrx . 33
2.11 Derived regex unfolding pattern forms in VRX 34
2.12 Using URI-based grammar names together with marking tokens to avoid

syntactic conflicts . 35

3.1 Generalized literal forms available in VerseML 44
3.2 Definitions of body, segment and parse_result in VerseML 45
3.3 Abbreviated definitions of proto_typ and proto_expr in VerseML 46
3.4 Syntax of the miniVerseSE expanded language (XL) 51
3.5 Syntax of the miniVerseSE unexpanded language (UL) 53
3.6 Syntax of miniVerseSE proto-types and proto-expressions 60

4.1 Abbreviated definition of proto_pat in VerseML 72
4.2 Syntax of the miniVerseS expanded language (XL) 74
4.3 Syntax of the miniVerseS unexpanded language 77

xiii

4.4 Syntax of miniVerseS proto-expansions . 82

5.1 The type-parameterized $list TLMs. 89
5.2 The type- and module-parameterized $list’ TLMs 90
5.3 The module-parameterized TLM $r . 91
5.4 Syntax of signatures and module expressions in miniVerseP 92
5.5 Syntax of kinds and constructions in miniVerseP 92
5.6 Syntax of expanded expressions, rules and patterns in miniVerseP 93
5.7 A VerseML signature and the corresponding miniVerseP signature 95
5.8 The miniVerseP encoding of the LIST signature 96
5.9 Syntax of unexpanded module expressions and signatures in miniVerseP . 98
5.10 Syntax of unexpanded kinds and constructions in miniVerseP 98
5.11 Syntax of unexpanded expressions, rules and patterns in miniVerseP 99
5.12 Syntax of unexpanded TLM types and expressions in miniVerseP 99
5.13 Syntax of TLM types and expressions in miniVerseP 100
5.14 Syntax of parameterized proto-expressions in miniVerseP 105
5.15 Syntax of proto-kinds and proto-constructions in miniVerseP 107
5.16 Syntax of proto-expressions, proto-rules and proto-patterns in miniVerseP . 108

6.1 Binding a static module for use within parse functions 115
6.2 A signature for parser generators . 117
6.3 A grammar-based definition of $rx . 117
6.4 Syntax of unexpanded modules in miniVersePH 119

7.1 An example of simple TLM implicits in VerseML 124
7.2 Syntax of unexpanded terms in Bidirectional miniVerseS 125

xiv

Chapter 1

Introduction

Bull (plates 3, 6, 9 and 11)
Pablo Picasso (1881-1973)

1.1 Motivation

Experienced mathematicians and programmers define formal structures compositionally,
drawing from libraries of “general-purpose” abstractions. The problem that motivates
this work is that the resulting terms are sometimes syntactically unwieldy, and, therefore,
cognitively costly.

Consider, for example, natural numbers. It is straightforward to define the natural
numbers, n, with an inductive structure:

n ::= z | s(n)

By defining natural numbers inductively, we immediately inherit a structural induction
principle – we can establish that some property P holds over the natural numbers if
we establish P(z) and P(s(n)) assuming P(n). The problem, of course, is that drawing
particular natural numbers by repeatedly applying s very quickly becomes syntactically
unwieldy (in fact, the syntactic cost of the drawing grows linearly with n.)1

Similarly, it is easy to define lists of natural numbers with an inductive structure:

~n ::= nil | cons(n,~n)

1We use the word “drawing” throughout this document to emphasize that syntactic cost is a property
of the visual representation of a structure, rather than a semantic property.

1

Sort Operational Form Stylized Form Textual Form Description
CalcExp e ::= x x x variable

let(e; x.e) let x = e in e let x = e in e binding
num[n] n n numbers
plus(e; e) e + e e + e addition
mult(e; e) e× e e * e multiplication
div(e; e) e

e e / e division
pow(e; e) ee e^e exponentiation

Figure 1.1: Syntax of Calc. Metavariable n ranges over natural numbers and n abbreviates
the numeral forms (one for each natural number n, drawn in typewriter font.) A formal
definition of the stylized and textual syntax of Calc would require 1) defining these
numeral forms explicitly; 2) defining a parenthetical form; 3) defining the precedence
and associativity of each infix operator; and 4) defining whitespace conventions.

The problem once again is that drawings of particular lists quickly become unwieldy,
and fail to resemble “naturally occurring” drawings of lists of numbers.

Consider a third more sophisticated example (which will be of particular relevance
later in this work): when defining a programming language or logic, one often needs
various sorts of tree structures equipped with metaoperations2 related to variable binding,
e.g. substitution. Repeatedly defining these structures “from scratch” is quite tedious, so
language designers have instead developed a more general structure: the abstract binding
tree (ABT) [14, 52, 62]. Briefly, an ABT is an ordered tree structure, classified into one of
several sorts, where each node is either a variable, x, or an operation of the following form:

op(~x1.a1; . . . ;~xn.an)

where op identifies an operator and each of the n ≥ 0 arguments ~xi.ai binds the (possibly
empty) sequence of variables ~xi within the subtree ai. The left side of the syntax chart
in Figure 1.1 summarizes the relevant operational forms for a sort called CalcExp. ABTs
of this sort are the expressions of a small arithmetic programming language, Calc. By
using ABTs as infrastructure in the definition of Calc, we need not manually define the
“boilerplate” metaoperations, like substitution, and reasoning principles, like structural
induction, that are necessary to define Calc’s semantics and to prove it correct. Harper
gives a detailed account of ABTs, and many other examples of their use, in his book [62].

The problem with this approach is, again, that drawing a non-trivial Calc expression
in operational form is syntactically costly. For example, we will consider the following
drawing in our discussion below:

div(num[s(z)]; pow(num[s(s(z))]; div(num[s(z)]; num[s(s(z))]))) (1.1a)

2...so named to distinguish them from the “object level” operations of the language being defined.

2

1.1.1 Informal Mathematical Practice

Within a document intended only for human consumption, it is easy to informally outline
less costly alternative syntactic forms.

For example, mathematicians generally use the Western Arabic numeral forms when
drawing particular natural numbers, e.g. 2 is taken as a syntactic alternative to s(s(z)).

Similarly, mathematicians might informally define alternative list forms, e.g. [0, 1, 2]
as a syntactic alternative to:

cons(z, cons(s(z), cons(s(s(z)), nil)))

The middle columns of the syntax chart in Figure 1.1 suggest two alternative forms for
every ABT of sort CalcExp. We can draw the ABT from Drawing (1.1a) in an alternative
stylized form:

1

2
1
2

(1.1b)

or in an alternative textual form:
1 / 2^(1/2) (1.1c)

Mathematicians also sometimes supplement alternative primitive forms like these
with various derived forms, which identify ABTs indirectly according to stated context-
independent desugaring rules. For example, the following desugaring rule defines a
derived stylized form for square root calculations:

√
e _ e

1
2 (1.2)

The reader can desugar a drawing of an ABT by recursively applying desugaring rules
wherever a syntactic match occurs. A desugared drawing consists only of the primitive
forms from Figure 1.1. For example, the following drawing desugars to Drawing (1.1b),
which in turn corresponds to Drawing (1.1a) as discussed above:

1√
2

(1.1d)

When defining the semantics of a language like Calc, it is customary to adopt an iden-
tification convention whereby drawings that identify the same underlying ABT structure,
like Drawings (1.1), are considered interchangeable. For example, consider the semantic
judgement e val, which establishes certain Calc expressions as values (as distinct from
expressions that can be arithmetically simplified or that are erroneous.) The following
inference rule establishes that every number expression is a value:3

num[n] val
(1.3)

Although this rule is drawn using the operational form for number expressions, we can
apply it to derive that 2 val, because 2 and num[2] identify the same ABT.

3Some familiarity with inductively defined judgements and inference rules like these is preliminary to
this work. See Sec. 2.1 for citations and further discussion of necessary preliminaries.

3

1.1.2 Derived Forms in General-Purpose Languages

We would need to define only a few more derived arithmetic forms to satisfyingly capture
the idioms that arise in the limited domains where a simple language of arithmetic
operations like Calc might be useful. However, programming languages in common
use today are substantially more semantically expressive. Indeed, many mathematical
structures, including natural numbers, lists and ABTs, can be adequately expressed
within contemporary “general-purpose” programming languages. Consequently, the
problems of syntactic cost just discussed at the level of the ambient mathematics also
arise “one level down”, i.e. when writing programs. For example, we want syntactic
sugar not only for mathematical natural numbers, lists and Calc expressions, but also for
encodings of these structures within a general-purpose programming language.

We can continue to rely on the informal notational conventions described above only
as long as programs are drawn solely for human consumption. These conventions break
down when we need drawings of programs to themselves exist as formal structures
suitable for consumption by other programs, i.e. parsers, which check whether draw-
ings are well-formed relative to a syntax definition and produce structures suitable for
consumption by yet other programs, e.g. compilers.

Constructing a formal syntax definition is not itself an unusually difficult task for
an experienced programmer, and there are many syntax definition systems that help with
this task (Sec. 2.4 will cover several examples.) The problem is that when designing the
syntax of a general-purpose language, the language designer cannot hope to anticipate
all library constructs for which derived forms might one day be useful. At best, the
language designer can bundle certain libraries together into a “standard library”, and
privilege select constructs defined in this library with derived forms.

For example, the textual syntax of Standard ML (SML), a general-purpose language in
the functional tradition, defines derived forms for constructing and pattern matching on
lists [60, 90]. In SML, the derived expression form [x, y, z] desugars to an expression
equivalent to:
Cons(x, Cons(y, Cons(z, Nil)))

assuming Nil and Cons stand for the list constructors exported by the SML Basis library
(i.e. SML’s “standard library”.)4 Other languages similarly privilege select standard
library constructs with derived forms:

• OCaml [80] defines derived forms for strings (defined as arrays of characters.)
• Haskell [73] defines derived forms for encapsulated commands (and, more gener-

ally, values of any type equipped with monadic structure.)
• Scala [94] defines derived XML forms as well as string splicing forms, which capture

the idioms of string concatenation.
• F# [124], Scala [114] and various other languages define derived forms for encod-

ings of the language’s own terms (these are referred to as quasiquotation forms.)
4The desugaring actually uses unforgeable identifiers bound permanently to the list constructors, to

ensure that the desugaring is context independent. We will return to the concept of context independence
throughout this work.

4

• Python [9] defines derived forms for mutable sets and dictionaries.
• Perl [8] defines derived regular expression forms.

These choices are, fundamentally, made according to ad hoc design criteria – there
are no clear semantic criteria that fundamentally distinguish standard library constructs
privileged with derived forms from those defined in third-party libraries. Indeed, as the
OCaml community has moved away from a single standard library in favor of competing
bundles of third-party libraries (e.g. Batteries Included [3] and Core [4]), this approach
has become starkly impractical.

1.2 Existing Mechanisms of Syntactic Control

A more parsimonious approach would be to eliminate derived forms specific to standard
library constructs from language definitions in favor of mechanisms that give more
syntactic control to third-party library providers.

In this section, we will give a brief overview of existing such mechanisms and speak
generally about the problems that they present to motivate our novel contributions in this
area. We will return to give a detailed overview of these various existing mechanisms of
syntactic control in Section 2.4.

1.2.1 Syntax Dialects

One approach that a library provider can take when seeking more syntactic control is to
use a syntax definition system to construct a syntax dialect, i.e. a new syntax definition
that extends the original syntax definition with new derived forms.

For example, Ur/Web extends Ur’s textual syntax with derived forms for SQL queries,
XHTML elements and other constructs defined in a web programming library [25, 26].
Figure 1.2 demonstrates how XHTML expressions that contain strings can be drawn
in Ur/Web. The desugaring of this derived form (not shown) is substantially more
verbose and, for programmers familiar with the standardized syntax for XHTML [134],
substantially more obscure.

val p = <xml ><p>Hello , {[join " " [first , last]]}!</p></xml >

Figure 1.2: Derived XHTML forms in Ur/Web

Syntax definition systems like Camlp4 [80], Copper [138] and SugarJ/Sugar* [41, 43],
which we will discuss in Sec. 2.4.5, have simplified the task of defining “library-specific”
(a.k.a. “domain-specific”) syntax dialects like Ur/Web, and have thereby contributed to
their ongoing proliferation.

Many have argued that a proliferation of syntax dialects is harmless or even desirable,
because programmers can simply choose the right syntax dialect for each job at hand
[135]. However, we argue that this “dialect-oriented approach” is difficult to reconcile

5

with the best practices of “programming in the large” [35], i.e. developing large programs
“consisting of many small programs (modules), possibly written by different people”
whose interactions are mediated by a reasonable type and binding discipline. The
problems that tend to arise are summarized below; a more systematic treatment will
follow in Sec. 2.4.5.

Problem 1: Conservatively Combining Syntax Dialects

The first problem with the dialect-oriented approach is that clients cannot always combine
different syntax dialects when they want to use derived forms that they define together.
This is problematic because client programs cannot be expected to fall cleanly into a
single preconceived “problem domain” – large programs use many libraries [78].

For example, consider a syntax dialect,H, defining derived forms for working with
encodings of HTML elements, and another syntax dialect,R, defining derived forms for
working with encodings of regular expressions. Some programs will undoubtedly need
to manipulate HTML elements as well as regular expressions, so it would be useful to
construct a “combined dialect” where all of these derived forms are defined.

For this notion of “dialect combination” to be well-defined at all, we must first have
thatH andR are defined under the same syntax definition system. In practice, there are
many useful syntax definition systems, each differing subtly from the others.

IfH andR are coincidentally defined under the same syntax definition system, we
must also have that this system operationalizes the notion of dialect combination, i.e.
it must define some operationH∪R that creates a dialect that extends bothH andR,
meaning that any form defined by either H or R must be defined by H ∪R. Under
systems that do not define such an operation (e.g. Racket’s dialect preprocessor [48]),
clients can only manually “copy-and-paste” or factor out portions of the constituent
dialect definitions to construct the “combined” dialect. This is not systematic and, in
practice, it can be quite tedious and error-prone.

Even if we restrict our interest to dialects defined under a common syntax definition
system that does operationalize the notion of dialect combination (or similarly one that
allows clients to systematically combine dialect fragments), we still have a problem: there
is generally no guarantee that the combined dialect will conserve important properties
that can be established about the constituent dialects in isolation (i.e. modularly.) In other
words, establishing P(H) and P(R) is not sufficient to establish P(H ∪R) for many
useful properties P. Clients must re-establish such properties for each combined dialect
that they construct.

One important property of interest is syntactic determinism – that every derived form
has at most one desugaring. It is not difficult to come up with examples where combining
two deterministic syntax dialects produces a non-deterministic dialect. For example,
consider two syntax dialects defined under a system like Camlp4: D1 defines derived
forms for sets, and D2 defines derived forms for finite maps, both delimited by {< and
>}.5 Though each dialect defines a deterministic grammar, i.e. det(D1) and det(D2),

5In OCaml, simple curly braces are already reserved by the language for record types and values.

6

when the grammars are naïvely combined by Camlp4, we do not have that det(D1 ∪D2)
(i.e. syntactic ambiguities arise under the combined dialect.) In particular, {<>} can be
recognized as either the empty set or the empty finite map.

Schwerdfeger and Van Wyk have developed a modular grammar-based syntax defini-
tion system, implemented in Copper [138], that guarantees that determinism is conserved
when syntax dialects (of a certain restricted class) are combined [111, 112] as long as each
constituent dialect prefixes all newly introduced forms with starting tokens drawn from
disjoint sets. We will describe the difficulties that this requirement causes in Section 2.4.5.

Problem 2: Abstract Reasoning About Derived Forms

Even putting aside the difficulties of conservatively combining syntax dialects, there are
questions about how reasonable sprinkling library-specific derived forms throughout a
large software system might be. For example, consider the perspective of a programmer
attempting to comprehend (i.e. reason about) the program fragment in Figure 1.3, which
is drawn under a syntax dialect constructed by combining a number of dialects of
Standard ML’s textual syntax.

1 val w = compute_w ()
2 val x = compute_x w
3 val y = {|(!R)@&{&/x!/:2_!x}’!R}|}

Figure 1.3: An example of unreasonable program text

If the programmer happens to be familiar with the (intentionally terse) syntax of the
stack-based database query processing language K [136], then Line 3 might pose few
difficulties. If the programmer does not recognize this syntax, however, there are no
simple, definitive protocols for answering questions like:

1. (Responsibility) Which constituent dialect defined the derived form that appears
on Line 3?

2. (Segmentation) Are the characters x and R on Line 3 parsed as spliced expressions
x and R (i.e. expressions of variable form), or parsed in some other way peculiar to
this form?

3. (Capture) If x is in fact a spliced expression, does it refer to the binding of x on Line
2? Or might it capture an unseen binding introduced in the desugaring of Line 3?

4. (Context Dependence) If w, on Line 1, is renamed, could that possibly break the
program, or change its meaning? In other words, might the desugaring of Line
3 assume that some variable identified as w is in scope (even though w is not
mentioned in the text of Line 3)?

5. (Typing) What type does y have?
In short, syntax dialects do not come with useful principles of syntactic abstraction:

if the desugaring of the program is held abstract, programmers can no longer reason
about types and binding (i.e. answer questions like those above) in the usual disciplined

7

manner. This is burdensome at all scales, but particularly when programming in the large,
where it is common to encounter a program fragment drawn by another programmer, or
drawn long ago. Forcing the programmer to examine the desugaring of the drawing in
order to reason about types and binding defeats the ultimate purpose of using syntactic
sugar – lowering cognitive cost (we expand on the notion of cognitive cost in Sec. 2.2.)

In contrast, when a programmer encounters, for example, a function call like the
call to compute_x on Line 3, the analagous questions can be answered by following clear
protocols that become “cognitive reflexes” after sufficient experience with the language,
even if the programmer has no experience with the library defining compute_x:

1. The language’s syntax definition determines that compute_x w is an expression of
function application form.

2. Similarly, compute_x and w are definitively expressions of variable form.

3. The variable w can only refer to the binding of w on Line 1.

4. The variable w can be renamed without knowing anything about the value that
compute_x stands for.

5. The type of x can be determined to be B by determining that the type of compute_x
is A -> B for some A and B, and checking that w has type A. Nothing else needs to be
known about the value that compute_x stands for. In Reynolds’ words [109]:

Type structure is a syntactic discipline for enforcing levels of abstraction.

1.2.2 Term Rewriting Systems

An alternative approach that a library provider can consider when seeking to control
syntactic cost is to leave the context-free syntax of the language fixed and instead contex-
tually repurpose existing syntactic forms using a term rewriting system. We will review
various term rewriting systems in detail in Sec. 2.4.9 and Sec. 2.4.10.

Naïve term rewriting systems suffer from problems analagous to those that plague
syntax definition systems. In particular, it is difficult to conserve determinism, i.e.
separately defined rewriting rules might attempt to rewrite the same term differently.
Moreover, it can be difficult to determine which rewriting rule, if any, is responsible for a
particular term, and to reason about types and binding given a drawing of a program
subject to a large number of rewriting rules without examining the rewritten program.

Modern term-rewriting macro systems, however, have made some progress toward
addressing these problems. In particular:

1. Macro systems require that the client explicitly apply the intended rewriting (im-
plemented by a macro) to the term that is to be rewritten, thereby addressing the
problems of conflict and determining responsibility. However, it is often unclear
whether a given macro is repurposing the form of a given argument or sub-term
thereof, as opposed to treating it parametrically by inserting it unmodified into
the generated expansion. This is closely related to the problem of determining a
segmentation, discussed above.

8

2. Macro systems that enforce hygiene, which we will return to in Sec. 2.4.10, address
many of the problems related to reasoning about binding.

3. The problem of reasoning about types has been relatively understudied, because
most research on macro systems has been for languages in the Lisp tradition that
lack rich static type structure [88]. That said, some progress has also been made
on this front with the design of typed macro systems, like Scala’s macro system [23],
where annotations constrain the macro arguments and the generated expansions.

The main problem with term-rewriting macros, then, is that they afford library
providers only limited syntactic control – they must find creative ways to repurpose
existing forms. For example, consider the XHTML and K examples above. In both cases,
the syntactic conventions are quite distinct from those of ML-like languages (and, for
that matter, languages that use S-expression.)

It is tempting in these situations to consider repurposing string literal forms. For
example, we might wish to apply a macro html! (following Rust’s convention of using a
post-fix ! to distinguish macro names from variables) to rewrite string literals containing
Ur/Web-style XHTML syntax as follows:

html! "<p>Hello , {[join " " [first , last]]}! </p>"

The problem here is that there is no way to extract the spliced expressions from
the supplied string literal forms while satisfying the context independence condition,
because variables that come from these spliced terms (e.g. join) are indistinguishable
from variables that inappropriately appear free relative to the expansion. In addition, the
problem of segmentation becomes even more pernicious: to a human or tool unaware
of Ur/Web’s syntax, it is not immediately apparent which particular subsequences of
the string literals supplied to html! are segmented out as spliced expressions. Reader
macros have essentially the same problem [49].

1.3 Contributions

This work introduces a system of typed literal macros (TLMs) that gives library providers
substantially more syntactic control than existing typed term-rewriting macro systems
while maintaining the ability to reason abstractly about types, binding and segmentation.

Client programmers apply TLMs to generalized literal forms. For example, in Figure 1.4
we apply a TLM named $html to a generalized literal form delimited by backticks. TLM
names are prefixed by $ to clearly distinguish TLM application from function application.
The semantics delegates control over the parsing and expansion of each literal body to
the applied TLM during a semantic phase called typed expansion, which generalizes the
usual typing phase.

$html ‘<p>Hello , {[join ($str ’ ’) ($strlist [first , last])]}</p>‘

Figure 1.4: An example of a TLM being applied to a generalized literal form. The literal
body, in green, is initially left unparsed according to the language’s context-free syntax.

9

Generalized literal forms subsume a variety of common syntactic forms because the
context-free syntax of the language only defines which outer delimiters are available.
Literal bodies (in green in Figure 1.4) are otherwise syntactically unconstrained and left
unparsed. For example, the $html TLM is free to use an Ur/Web-inspired HTML syntax
(compare Figure 1.4 to Figure 1.2.) This choice is not imposed by the language definition.
Generalized literal forms have no TLM-independent meaning.

The primary technical challenge has to do with the fact that the applied TLM needs
to be able to parse terms out of the literal body for inclusion in the expansion. We refer
to these as spliced terms. For example, Figure 1.5 reveals the locations of the spliced
expressions in Figure 1.4 by coloring them black. We have designed our system so that a
figure like this, which presents a segmentation of each literal body into spliced terms (in
black) and characters parsed in some other way by the applied TLM (in color), can always
be automatically generated no matter how each applied TLM has been implemented.

$html ‘<p>Hello , {[join ($str ’ ’) ($strlist [first , last])]}</p>‘

Figure 1.5: The segmentation of the example from Figure 1.4

Notice that both arguments to join are themselves of TLM application form – the
TLMs named $str and $strlist are applied to generalized literal forms delimited by
quotation marks and square brackets, respectively. The bracket-delimited literal form, in
turn, contains two spliced expressions of variable form – first and last.

TLMs come equipped with useful principles of syntactic abstraction. We will more
precisely characterize these abstract reasoning principles as we proceed. For now, to
develop some intuitions, consider Figure 1.6, which uses TLMs to express the “unreason-
able” example from Figure 1.3.

val w = compute_w ()
val x = compute_x w
val y = $kquery ‘(!R)@&{&/x!/:2_!x}’!R}‘

Figure 1.6: TLMs make examples like the one from Figure 1.3 more reasonable.

Without examining the expansion of Line 3, we can reason as follows:
1. (Responsibility) The applied TLM, $kquery, is solely responsible for typed expan-

sion of the literal body.

2. (Segmentation) By examining the segmentation, we know that the two instances
of x on Line 3 are parsed as spliced expressions, whereas R is parsed in some other
way peculiar to this form.

3. (Capture) The system prevents capture, so the spliced expression xmust refer to
the binding of x on Line 2 – it cannot capture an unseen binding introduced in the
expansion of Line 3.

4. (Context Dependence) The system enforces context independence, so the expan-
sion of Line 3 cannot rely on the fact that, for example, w is in scope.

10

5. (Typing) An explicit type annotation on the definition of $kquery determines the
type that every expansion it generates will have. We will see an example of a TLM
definition in Chapter 3.
Moreover, each segment in the segmentation also comes paired with the type it is
expected to have. This information is usually not necessary to reason about typing,
but it can be conveyed to the programmer upon request by the program editor if
desired.

1.3.1 Outline

After introducing necessary background material and summarizing the related work
in greater detail in Chapter 2, we formally introduce TLMs in Chapter 3 by integrating
them into a simple language of expressions and types. The introductory examples above
can be expressed using the language introduced in Chapter 3.

In Chapter 4, we add structural pattern matching to the language of Chapter 3 and
introduce pattern TLMs, i.e. TLMs that generate patterns rather than expressions.

In Chapter 5, we equip the language of Chapter 4 with type functions and an ML-style
module system. We then introduce parametric TLMs, i.e. TLMs that take type and module
parameters. Parameters serve two purposes:

1. They enable TLMs that operate not just at a single type, but over a type- and
module-parameterized family of types. For example, rather than defining a TLM
$strlist for string lists and another TLM $intlist for integer lists, we can define a
single parametric TLM $list that operates uniformly across the type-parameterized
family of list types.

2. They allow the expansions that TLMs generate to refer to application site bindings
in a context independent manner.

We also demonstrate support for partial parameter application in TLM abbreviations,
which decreases the syntactic cost of this explicit parameter passing style. Figure 1.7
demonstrates all of these features.

let syntax $strlist = $list string in
$html ‘<p>Hello , {[join ($str ’ ’) ($strlist [first , last])]}</p>‘

Figure 1.7: The example from Figure 1.5 expressed using parametric TLMs

In these first chapters, we assume for the sake of technical simplicity that each TLM
definition is self-contained, needing no access to libraries or to other TLMs. This is an
impractical assumption in practice. We relax this assumption in Chapter 6, introducing
a static environment shared between TLM definitions. We also give examples of TLMs
that are useful for defining other TLMs, e.g. TLMs that implement parser generators and
quasiquotation.

In Chapter 7, we develop a mechanism of TLM implicits that allows library clients to
contextually designate, for any type, a privileged TLM at that type. The semantics applies

11

this privileged TLM implicitly to unadorned literal forms that appear where a term of
the associated type is expected. For example, if we designate $str as the privileged TLM
at the string type and $strlist as the privileged TLM at the list(string) type, we can
express the example from Figure 1.5 instead as shown in Figure 1.8 (assuming join has
type string -> list(string) -> string.)

$html ‘<p>Hello , {[join ’ ’ [first, last]]}</p>‘

Figure 1.8: The example from Figure 1.5 drawn to take advantage of TLM implicits

This approach is competitive in cost with library-specific syntax dialects (e.g. compare
Figure 1.8 to Figure 1.2), while maintaining the abstract reasoning principles characteristic
of our approach. To further demonstrate the favorable economics of this approach, Figure
1.9 gives an example of a function that produces a value of type html. The body of this
function assumes implicit TLM designations at seven different types (the unspliced
segments are typeset in a color corresponding to the type that the enclosing literal form
is being checked against.) This collection of TLMs, together with the mechanism for
applying them implicitly, obviates the need for a web-programming-specific syntax
dialect of our language like Ur/Web. An analysis of string literals used in open source
projects discovered a wide variety of other examples like this [97].

1 fun resultsFor(searchQuery : string , page : int) : html =>
2 let imageBase : url = ‘images.example.com‘ in
3 let bgImage : url = ‘$imageBase$/background.png‘ in
4 ‘<html >
5 <head >
6 <title >Search Results </title >
7 <style >{{
8 body { background -image: url({ bgImage })} }
9 .search { background -color: {darken(‘#aabbcc ‘, ‘10% ‘)} }
10 }}</style >
11 </head ><body >
12 <h1>Results for {[searchQuery]}</h1 >
13 <div class=" search">
14 Search again: {searchBox "Go!"}
15 </div >
16 {formatResults (db,
17 ‘SELECT * FROM products WHERE {searchQuery} in title ‘,
18 10, page)}
19 </body >
20 </html >‘

Figure 1.9: A non-trivial example demonstrating implicit TLM application at seven
different types: url, html, css, color, percentage, string and sql

We conclude in Chapter 8 with a discussion of the present limitations of TLMs, and
outline various directions for future work.

12

1.3.2 Thesis Statement

In summary, this work defends the following statement:

A programming language (in the ML tradition) can give library providers the
ability to programmatically control the parsing and expansion of expressions
and patterns of generalized literal form such that clients can reason abstractly
about responsibility, segmentation, types and binding.

1.4 VerseML

The code examples in this document are written in a new full-scale functional language
called VerseML.6 VerseML is the language of Chapter 7 extended with some additional
conveniences that are commonly found in other functional languages (in particular,
in the ML family of languages) and, notionally, orthogonal to TLMs (e.g. higher-rank
polymorphism [39], signature abbreviations, and syntactic sugar that is not library-
specific, e.g. for curried functions.) We will not formally define these features mainly
to avoid unnecessarily complicating our presentation with details that are not essential
to the ideas introduced herein. As such, all examples written in VerseML should be
understood to be informal motivating material for the subsequent formal material.

1.5 Disclaimers

Before we continue, it may be prudent to explicitly acknowledge that eliminating the
need for syntax dialects would indeed be asking for too much: certain syntax design
decisions are fundamentally incompatible with others or require coordination across
a language design. We aim only to diminish the need for syntax dialects by finding a
reasonable “sweet spot” in the design space, not to give control over all design decisions
to library providers.

It may also be prudent to explicitly acknowledge that library providers could use
TLMs to define syntactic forms that are “in poor taste.” In practice, programmers should
defer to established community guidelines before defining their own TLMs (following
the example of languages that support operator overloading or ad hoc polymorphism
using type classes [38, 59], which also have some potential for “abuse” or “overuse”.)
The majority of programmers should very rarely need to define a TLM on their own.
The reasoning principles that we will develop ensure that even poorly designed TLMs
cannot prevent clients from reasoning abstractly about the behavior of a program.

6We distinguish VerseML from Wyvern, which is the language described in our prior publications
about some of the work that we will describe, because Wyvern is a group effort evolving independently.

13

14

Chapter 2

Background

The recent development of programming languages suggests that the simultaneous
achievement of simplicity and generality in language design is a serious unsolved
problem.

John Reynolds (1970) [108]

2.1 Preliminaries
This work is rooted in the tradition of full-scale functional languages like Standard ML,
OCaml and Haskell (as might have been obvious from Chapter 1.) Familiarity with
basic concepts in these languages, e.g. variables, types, polymorphic and recursive func-
tions, tuples, records, recursive datatypes and structural pattern matching, is assumed
throughout this work. Readers who are not familiar with these concepts are encouraged
to consult the early chapters of an introductory text like Harper’s Programming in Stan-
dard ML [60] (a working draft can be found online.) We discuss integrating TLMs into
languages from other design traditions in Sec. 8.3.2.

In Chapter 5 and onward, as well as in some of the motivating examples below, we
also assume basic familiarity with ML-style module systems. Readers with experience
in a language without such a module system (e.g. Haskell) are also advised to consult
the relevant chapters in Programming in Standard ML [60] as needed. We distinguish
modules, which are language constructs, from libraries, which are extralinguistic packaging
constructs managed by some implementation-defined compilation manager (e.g. CM,
distributed with Standard ML of New Jersey (SML/NJ) [17].) A library can export
modules, signatures and TLM definitions. We return to this distinction in Chapter 6.

The formal systems that we will consider are defined within the metatheoretic frame-
work of type theory. More specifically, we will assume that abstract binding trees (ABTs,
which enrich abstract syntax trees with the notions of binding and scope, as discussed
in Chapter 1), renaming, alpha-equivalence, substitution, structural induction and rule
induction are defined as described in Harper’s Practical Foundations for Programming
Languages, Second Edition (PFPL) [62]. Familiarity with other formal accounts of type
systems, e.g. Pierce’s Types and Programming Languages (TAPL) [102], should also suffice.

15

2.2 Cognitive Cost

In the present inquiry, the idea is to adopt a much wider conception of formal
languages so as to investigate more broadly what exactly is going on when a reasoner
puts these tools to use.

Catarina Dutilh Novaes
Formal Languages in Logic: A Philosophical and Cognitive Analysis [93]

Central to our motivations is the notion that different drawings of a formal structure
can and should be distinguished on the basis of the cognitive costs that humans incur as
they interact with them.

The broad notion of cognitive cost must ultimately be understood intuitively, relating
as it does to the complexities of the human mind. Cognitive cost is also fundamentally a
subjective and situational notion. As such, researchers cannot develop a truly comprehen-
sive formal framework capable of settling questions of cognitive cost.1 However, there
are several situationally useful frameworks worth briefly reviewing [20].

One useful quantitative framework reduces cognitive cost to syntactic cost, which is
measured by counting characters (or glyphs, more generally.) This is often a satisfying
proxy for cognitive cost, in that smaller drawings are often easier to comprehend and pro-
duce. For example, the drawing [x, y, z] has lower syntactic cost than its desugaring,
as discussed in the previous chapter. There is a limit to this approximation, of course. For
example, one might argue that the drawings involving the syntax of K, like the drawing
from Figure 1.3, have high cognitive cost, despite their low syntactic cost, until one is
experienced with the syntax of K. In other words, the relationship between syntactic cost
and cognitive cost depends on the subject’s progression along some learning curve.

A related quantity of interest to human programmers is edit cost, measured relative
to a program editor as the minimum number of primitive edit actions that must be
performed to produce a drawing. For example, when using a text editor (as most
professional programmers today do), drawings in textual form typically have lower
edit cost, as measured by the minimum number of keystrokes necessary to produce the
drawing, than those in operational or stylized forms (indeed, some drawings in stylized
form can be understood to have infinite text edit cost.) Edit cost can be modeled using,
for example, keystroke-level models (KLMs) as described by Card, Moran and Newell [24].

One can also analyze cognitive cost using disciplined qualitative methods. Green’s
Cognitive Dimensions of Notations [56, 57] and Pane and Myers’ Usability Issues [101] (both
of which synthesized much of the earlier work in the area) are highly cited heuristic
frameworks. For example, Green’s cognitive dimensions framework gives us a common
vocabulary for comparing the derived list forms described in Chapter 1 to the primitive
list forms. In particular, the derived list forms map more closely to other notations used for
sequences of elements (e.g. in typeset mathematics, or on a physical notepad) than the

1The fact that cognitive cost cannot be comprehensively characterized seems itself to create a cognitive
hazard, in that those of us who favor comprehensive formal frameworks sometimes devalue or dismiss
concerns related to cognitive cost, or consider them in an overly ad hoc manner. This tendency must be
resisted if programming language design is to progress as a human-oriented design discipline.

16

primitive list forms. They also make the elements of the list more clearly visible, in that
the identifier Cons is not interspersed throughout the term, and they have lower viscosity
because adding a new item to the middle of a list drawn in derived form requires only a
local edit, whereas for a list constructed by applying list constructors in prefix position,
one needs also to add a closing parenthesis to the end of the term. (Infix operators for
lists, discussed in Sec. 2.4.3, also have low viscosity.)

Finally, one might consider cognitive cost comparatively using quantitative empirical
methods, e.g. by conducting randomized control trials to compare forms with respect to
task completion time or error rate (for satisfyingly representative tasks.) Stefik et al. have
performed many such studies, mainly on novice programmers (these are summarized,
along with other such studies, in [122].) Kaijanaho provides another review of evidence-
based language design methodologies [75].

Our goal in this work is to provide a means by which library providers can introduce
alternative syntactic forms of their own design. We leave it up to each library provider to
establish the cognitive costs associated with the alternative forms that they introduce, ac-
cording to whichever operationalization of the concept that they favor. For the examples
in this document, we will mainly utilize syntactic cost, because claims about syntactic
cost can be evaluated quantitatively. In a few cases, we also make heuristic arguments.

We claim also that the abstract reasoning principles that TLMs come equipped with
serve to limit cognitive costs that a client programmer that encounters an unfamiliar
form would otherwise incur when attempting to reason about types and binding. This
claim follows from the intuitive assumption that examining only type annotations is
less costly than examining the full expansion of an unexpanded term and the logic that
produced that expansion.

2.3 Motivating Definitions

In this section, we give a number of VerseML definitions that will serve as the basis for
many subsequent examples. This section also serves as an introduction to the textual
syntax and semantics of VerseML.

2.3.1 Lists

The Standard ML Basis Library (i.e. the standard library) defines list types as follows:

datatype ’a list = nil | op:: of ’a * ’a list

This datatype declaration generates:
• a type function list that takes one type parameter;
• the value constructors nil : ’a list and op:: : ’a * ’a list -> ’a list; and
• the corresponding list pattern constructors nil and op::.

We will return to the significance of the identifier op:: in Sec. 2.4.3 below.
VerseML does not support SML-style datatype declarations directly. Instead, type

functions, recursive types, sum types, product types, value constructors, pattern con-

17

structors and type generativity arise through orthogonal mechanisms, as in foundational
accounts of these concepts (e.g. PFPL [62].) This is mainly for pedagogical purposes –
it will take until Chapter 5 to build up all of the machinery that would be necessary to
integrate TLMs into a language with SML-style datatype declarations. By exposing more
granular primitives, we can define sub-languages of VerseML in Chapter 3 and Chapter
4 that communicate certain fundamental ideas more clearly and generally.

With that in mind, the family of list types are defined in VerseML as follows:
type list(’a) = rec(self => Nil + Cons of ’a * self)

Here, list is a type function binding its type parameter to the type variable ’a. We apply
parameters in post-fix position (rather than in prefix position, as in SML.) For example,
the type of integer lists is list(int). This is equivalent, by substitution of int for ’a on
the right side of the definition above, to the following recursive type:
rec(self => Nil + Cons of int * self)

The values of a recursive type T are fold(e), where e is a value of the unrolling of
T. The unrolling of a recursive type is determined by substituting the recursive type
itself for the self reference in its type body. For example, the unrolling of list(int) is
equivalent, by substitution of list(int) for self, to the following labeled sum type:
Nil + Cons of int * list(int)

The values of a labeled sum type T are injections inj[Lbl](e), where Lbl is a label
specified by one of the classes specified by T and e is a value of the corresponding type.
The labeled sum type above specifies two classes:

1. One class, labeled Nil, takes values of unit type (we can omit of unit.) The only
value of unit type is the trivial value ().

2. The other class, labeled Cons, takes values of the product type int * list(int), the
values of which are tuples.

Let us now define two example values of type list(int):
val nil_int : list(int) = fold(inj[Nil] ())
val one_int : list(int) = fold(inj[Cons] (1, nil_int))

Here, nil_int is the empty list and one_int is a list containing a single integer, 1.
One way to lower syntactic cost is to define the following polymorphic values, called

the list value constructors, which abstract away the necessary folds and injections:
val Nil : list(’a) = fold(inj[Nil] ())
fun Cons(x : ’a * list(’a)) : list(’a) => fold(inj[Cons] x)

In fact, VerseML generates constructors like these automatically.2 Using these list value
constructors, we can equivalently express the values above as follows:
val nil_int : list(int) = Nil
val one_int = Cons (1, Nil)

In SML, constructors like these are the only means by which a value of a datatype can be
introduced – folding and injection operators are not exposed directly to programmers.

2A more general mechanism that allows values to be generated from type definitions is beyond the
scope of our work on TLMs.

18

As such, it is not possible to construct a value of a type like list(int) in a context-
independent manner, i.e. in contexts where the value constructors have been shadowed
or are not bound. This will become relevant in the next section and in Chapter 3.

Values of recursive type, labeled sum type and product type are deconstructed by
pattern matching. For example, we can write the polymorphic map function, which
constructs a list by applying a given function to each item in a given list, as follows:

fun map (f : ’a -> ’b) (xs : list(’a)) : list(’b) =>
match xs with
| fold(inj[Nil] ()) => Nil
| fold(inj[Cons] (y, ys)) => Cons (f y, map f ys)
end

The primitive pattern forms above are drawn like the corresponding primitive value
forms (though it is important to keep in mind that the syntactic overlap is superficial
– patterns and expressions are distinct sorts of trees.) To lower syntactic cost, VerseML
automatically inserts folds, injections and trivial arguments into patterns of constructor
form, i.e. those of the form Lbl and Lbl pwhere Lbl is a capitalized label and p is another
pattern:3

fun map (f : ’a -> ’b) (xs : list(’a)) : list(’b) =>
match xs with
| Nil => Nil
| Cons (y, ys) => Cons (f y, map f ys)
end

We group the type and value definitions above, as well as some other standard utility
functions like append, into a module List : LIST, where LIST is the signature defined in
Figure 2.1. These definitions are not privileged in any way by the language definition.
In particular, there are no list-specific derived forms built in to the textual syntax of
VerseML. We will show how TLMs allow programmers to achieve a similar syntax for
lists over the next several chapters.

signature LIST =
sig
type list(’a) = rec(self => Nil + Cons of ’a * self)
val Nil : list(’a)
val Cons : ’a * list(’a) -> list(’a)
val map : (’a -> ’b) -> list(’a) -> list(’b)
val append : list(’a) -> list(’a) -> list(’a)
(* ... *)

end

Figure 2.1: Definition of the LIST signature

3Pattern TLMs, introduced in Chapter 4, could be used to manually achieve a similar syntax for any
particular type, or in Chapter 5, across a particular family of types, but because this syntactic sugar is
useful for all recursive labeled sum types, we build it primitively into VerseML.

19

2.3.2 Regular Expressions

A regular expression, or regex, is a description of a regular language [129]. Regexes arise
with some frequency in fields like natural language processing and bioinformatics.

Recursive Sums One way to encode regular expressions in VerseML is as values of the
recursive labeled sum type abbreviated rx in Figure 2.2.

type rx = rec(rx => Empty + Str of string + Seq of rx * rx +
Or of rx * rx + Star of rx)

Figure 2.2: Definition of the recursive labeled sum type rx

Assuming the automatically generated value constructors as in Sec. 2.3.1, we can
construct a regex that matches the strings "A", "T", "G" or "C" (i.e. DNA bases) as follows:
Or(Str "A", Or(Str "T", Or(Str "G", Str "C")))

Given a value of type rx, we can deconstruct it by pattern matching, again as in
Sec. 2.3.1. For example, the function is_dna_rx defined in Figure 2.3 detects regular
expressions that match DNA sequences.

fun is_dna_rx(r : rx) : boolean =>
match r with
| Str "A" => True
| Str "T" => True
| Str "G" => True
| Str "C" => True
| Seq (r1, r2) => (is_dna_rx r1) andalso (is_dna_rx r2)
| Or (r1, r2) => (is_dna_rx r1) andalso (is_dna_rx r2)
| Star(r’) => is_dna_rx r’
| _ => False
end

Figure 2.3: Pattern matching over regexes in VerseML

Abstract Types Encoding regexes as values of type rx is straightforward, but there are
reasons why one might not wish to expose this encoding to clients directly.

First, regexes are usually identified up to their reduction to a normal form. For
example, Seq(Empty, Str "A") has normal form Str("A"). It can be useful for regexes
with the same normal form to be indistinguishable from the perspective of client code.
(The details of regex normalization are not important for our purposes, so we omit them.)

Second, it can be useful for performance reasons to maintain additional data alongside
each regex (e.g. a corresponding finite automaton.) In fact, there may be many ways
to represent regexes, each with different performance trade-offs, so we would like to
provide a choice of representations behind a common interface.

20

To achieve these goals, we turn to the VerseML module system, which is based directly
on the SML module system [37, 90] (which originates in early work by MacQueen [84].)
In particular, let us define the signature abbreviated RX in Figure 2.4.

1 (* abstract regex unfoldings *)
2 type u(’a) = UEmpty + UStr of string + USeq of ’a * ’a +
3 UOr of ’a * ’a + UStar of ’a
4

5 signature RX =
6 sig
7 type t (* abstract *)
8

9 (* constructors *)
10 val Empty : t
11 val Str : string -> t
12 val Seq : t * t -> t
13 val Or : t * t -> t
14 val Star : t -> t
15

16 (* produces the normal unfolding *)
17 val unfold_norm : t -> u(t)
18 end
19

20 module R1 : RX = struct (* ... *) end
21 module R2 : RX = struct (* ... *) end

Figure 2.4: The RX signature and two example implementations

The clients of any module R that has been sealed by RX, e.g. R1 or R2 in Figure 2.4,
manipulate regexes as values of type R.t using the interface specified by RX. For example,
a client can construct a regex matching DNA bases by projecting the value constructors
out of R and applying them as follows:
R.Or(R.Str "A", R.Or(R.Str "T", R.Or (R.Str "G", R.Str "C")))

Because the identity of the representation type R.t is held abstract by the signature, the
only way for a client to construct a value of this type is through the values that RX specifies
(i.e. we have defined an abstract data type (ADT) [81].) Consequently, representation
invariants need only be established locally within each module.

Similarly, clients cannot interrogate the structure of a value r : R.t directly. Instead,
the signature specifies a function R.unfold_norm that produces the normal unfolding of
a given regex, i.e. a value of type u(R.t) that exposes only the outermost form of the
regex in normal form (this normal form invariant is specified only as an unenforced side
condition that implementations are expected to obey, as is common practice in languages
like ML.) Clients can pattern match over the normal unfolding in the familiar manner, as
shown in Figure 2.5.

The normal unfolding suffices in situations where a client needs to examine only the
outermost structure of a regex. However, in general, a client may want to pattern match
more deeply into a regex. There are various ways to approach this problem.

21

fun is_dna_rx ’(r : R.t) : boolean =>
match R.unfold_norm r with
| UStr "A" => True
| UStr "T" => True
| UStr "G" => True
| UStr "C" => True
| USeq (r1, r2) => (is_dna_rx ’ r1) andalso (is_dna_rx ’ r2)
| UOr (r1, r2) => (is_dna_rx ’ r1) andalso (is_dna_rx ’ r2)
| UStar r’ => is_dna_rx ’ r’
| _ => False
end

Figure 2.5: Pattern matching over normal unfoldings of regexes

functor RXUtil(R : RX) =
struct
fun unfold_norm2(r : R.t) : u(u(R.t)) => (* ... *)

fun view(r : R.t) : rx =>
match R.unfold_norm r with
| UEmpty => Empty
| UStr s => Str s
| USeq (r1, r2) => Seq (view r1, view r2)
| UOr (r1, r2) => Or (view r1, view r2)
| UStar r => Star (view r)
end

(* ... *)
end

Figure 2.6: The definition of RXUtil

One approach is to define auxiliary functions that construct n-deep unfoldings of r,
where n is the deepest level at which the client wishes to expose the normal structure of
the regex. For example, it is easy to define a function unfold_norm2 : R.t -> u(u(R.t))
in terms of R.unfold_norm that allows pattern matching to depth 2.4

Another approach is to completely unfold a value of type t by applying a function
view : R.t -> rx that recursively applies R.unfold_norm to exhaustion. The type rx was
defined in Figure 2.2. Computing the complete unfolding (also called the view) can have
higher dynamic cost than computing an incomplete unfolding of appropriate depth, but
it is also a simpler approach (i.e. lower cognitive cost can justify higher dynamic cost.)

Typically, utility functions like unfold_norm2 and view are defined in a functor (i.e. a
function at the level of modules) like RXUtil in Figure 2.6, so that they need only be
defined once, rather than separately for each module R : RX. The client can instantiate
the functor by applying it to their choice of module as follows:
module RU = RXUtil(R)

4Defining an unfolding generic in n is a more subtle problem that is beyond the scope of this work.

22

2.4 Existing Approaches

The definitions in the previous section adequately encode the semantics of lists and
regular expressions, but they are not particularly convenient. Our task in this section
is to consider various mechanisms of syntactic control, i.e. mechanisms that can be
deployed to help to decrease the syntactic cost of expressions and patterns involving
these constructs (without changing their meaning.)

We begin in Sec. 2.4.1 by considering standard abstraction mechanisms available in
languages like ML. We then consider a system of dynamic quotation parsing available in
some dialects of ML in Sec. 2.4.2.

These methods give library providers only limited control over form and operate at
“run-time.” To gain more precise control over form at “compile-time”, a library provider,
or another interested party, can define a “library-specific” syntax dialect using a syntax
definition system. The next several sections consider various syntax definition systems:

• In Sec. 2.4.3, we consider infix operator definition systems.
• In Sec. 2.4.4, we consider somewhat more expressive mixfix systems.
• In Sec. 2.4.5, we consider grammar-based syntax definition systems.
• In Sec. 2.4.6, we consider parser combinator systems.

The systems in Sec. 2.4.5 and Sec. 2.4.6 give essentially complete control over form to
their users. We give examples of dialects that can be constructed using these systems in
Sec. 2.4.7. Then, in Sec. 2.4.8, we discuss the difficulties that programmers can expect to
encounter if they use these systems when programming in the large (as a follow-up to
what was discussed in Section 1.2.1.)

An alternative approach is to leave the syntax of the language fixed but allow pro-
grammers to contextually repurpose existing forms using a term rewriting system. We
consider non-local term rewriting systems in Sec. 2.4.9 and local term rewriting systems,
which are also known as macro systems, in Sec. 2.4.10.

2.4.1 Standard Abstraction Mechanisms

The simplest way to decrease syntactic cost is to capture idioms using the standard
abstraction mechanisms of our language, e.g. functions and modules.

We already saw examples of this approach in the previous section. For example, we
defined the list value constructors, which capture the idioms of list construction. Such
definitions are common enough that VerseML generates them automatically. We also
defined a utility functor for regexes, RXUtil, in Figure 2.6. As more idioms involving
regexes arise, the library provider can capture them by adding additional definitions to
this functor. For example, the library provider might add the definition of a value that
matches single digits to RXUtil as follows:

val digit = R.Or(R.Str "0", R.Or(R.Str "1", ...))

Similarly, the library provider might define a function repeat : R.t -> int -> R.t that
constructs a regex by sequentially repeating the given regex a given number of times

23

(not shown.) Using these definitions, a client can define a regex that matches U.S. social
security numbers (SSNs) as follows:

val dash = R.Str "-"
val repeat_d = RU.repeat RU.digit
val ssn = R.Seq(repeat_d 3, R.Seq(dash , R.Seq(repeat_d 2,

R.Seq(dash , repeat_d 4))))

The syntactic cost of this program fragment is lower than the syntactic cost of the
equivalent program fragment that applies the regex value constructors directly.

One limitation of this approach is that there is no standard way to capture idioms at
the level of patterns. Pattern synonyms have been informally explored in some languages,
e.g. in an experimental extension of Haskell implemented by GHC [1] and in the Ωmega
language [116], but these are limited in that arbitrary computations cannot be performed.

Another limitation is that this approach does not give library providers control over
form. For example, we cannot “approximate” SML-style derived list forms using only
auxiliary values like those above. Similarly, consider the textual syntax for regexes
defined in the POSIX standard [7]. Under this syntax, the regex that matches DNA bases
is drawn as follows:

A|T|G|C

Similarly, the regex that matches SSNs is drawn:

\d\d\d-\d\d-\d\d\d\d

or

\d{3}-\d{2}-\d{4}

These drawings have substantially lower syntactic cost than the drawings of the cor-
responding VerseML encodings shown above. Data suggests that most professional
programmers are familiar with POSIX regex forms [96]. These programmers would likely
agree that the POSIX forms have lower cognitive cost as well.

Dynamic String Parsing

We might attempt to approximate the POSIX standard regex syntax by defining a function
parse : string -> R.t in RXUtil that parses a VerseML string representation of a POSIX
regex form, producing a regular expression value or raising an exception if the input is
malformed with respect to the POSIX specification. Given this function, a client could
construct the regex matching DNA bases as follows:

RU.parse "A|T|G|C"

This approach, which we refer to as dynamic string parsing, has several limitations:
1. First, there are syntactic conflicts between standard string escape sequences and

standard regex escape sequences. For example, the following is not a well-formed
drawing according to the textual syntax of SML (and many other languages):

val ssn = RU.parse "\d\d\d-\d\d-\d\d\d\d" (* ERROR *)

24

In practice, most parsers report an error message like the following:5

error: illegal escape character

In a small lab study, we observed that even experienced programmers made this
class of mistake and could not quickly diagnose the problem and determine a
workaround if they had not used a regex library recently [96].
The workaround – escaping all backslashes – nearly doubles syntactic cost here:
val ssn = RU.parse "\\d\\d\\d-\\d\\d-\\d\\d\\d\\d"

Some languages build in alternative “raw” string forms that leave escape sequences
uninterpreted. For example, OCaml supports alternative string literals delimited
by matching marked curly braces, e.g.
val ssn = RU.parse {rx|\d\d\d-\d\d-\d\d\d\d|rx}

2. The next limitation is that dynamic string parsing does not capture the idioms of
compositional regex construction. For example, the function lookup_rx in Figure
2.7 constructs a regex from the given string and another regex. We cannot apply
RU.parse to redraw this function equivalently, but at lower syntactic cost.

fun lookup_rx(name : string) =>
R.Seq(R.Str name , R.Seq(R.Str ": ", ssn))

Figure 2.7: Compositional construction of a regex

We will describe derived forms that do capture the idioms of compositional regex
construction in Sec. 2.4.5 (in particular, we will compare Figure 2.7 to 2.9.)
Dynamic string parsing cannot capture the idioms of list construction for the same
reason – list expressions can contain sub-expressions.

3. Using strings to introduce regexes also creates a cognitive hazard for programmers
who are coincidentally working with other data of type string. For example,
consider the following naïvely “more readable definition of lookup_rx”, where the
infix operator ^means string concatenation:
fun lookup_rx_insecure(name : string) =>
RU.parse (name ^ {rx|: \d\d\d-\d\d-\d\d\d\d|rx})

or equivalently, given the regex ssn as above and an auxiliary function RU.to_string
that can compute the string representation of a given regex:
fun lookup_rx_insecure(name : string) =>
RU.parse (name ^ ": " ^ (RU.to_string ssn))

Both lookup_rx and lookup_rx_insecure have the same type, string -> R.t, and
behave identically at many inputs, particularly the “typical” inputs (i.e. alphabetic
strings.) It is only when lookup_rx_insecure is applied to a string that parses as

5This is the error message that javac produces. When compiling an analagous expression using SML
of New Jersey (SML/NJ), we encounter a more confusing error message: Error: unclosed string.

25

a regex that matches other strings that it behaves incorrectly (i.e. differently from
lookup_rx.)
In applications that query sensitive data, mistakes like this lead to injection attacks,
which are among the most common and catastrophic security threats today [10].
This problem is fundamentally attributable to the programmer making a mistake in
a misguided effort to decrease syntactic cost. However, the availability of a better
approach for decreasing syntactic cost would help make this class of mistakes less
common [22].

4. The final problem is that regex parsing does not occur until the call to RU.parse is
dynamically evaluated. For example, the malformed regex form in the program
fragment below will only trigger an exception when this expression is evaluated
during the full moon:

match moon_phase with
Full => RU.parse "(GC" | _ => (* ... *)
end

Malformed string encodings of regexes can sometimes be discovered by testing,
though empirical data gathered from large open source projects suggests that many
malformed regexes remain undetected by test suites “in the wild” [121].
One workaround is for the programmer to lift all such calls where the argument
is a string literal out to the top level of the program, so that the exception is
raised every time the program is evaluated. There is a cognitive penalty associated
with moving the description of a regex away from its use site (but for statically
determined regexes, this might be an acceptable trade-off.) For regexes constructed
compositionally, this may not be possible.
Another approach is to perform a static analysis that attempts to discover mal-
formed statically determined regexes wherever they appear [121].

5. Finally, to reiterate, this approach is not suitable for abbreviating patterns.
Difficulties like these arise whenever a programmer attempts to deploy dynamic

string parsing as a solution to the problem of high syntactic cost. (There are, of course,
legitimate applications of dynamic string parsing that are not motivated by the desire
to decrease syntactic cost, e.g. when parsing string encodings of regexes received as
dynamic input to the program.)

2.4.2 Dynamic Quotation Parsing

Some syntax dialects of ML, e.g. a syntax dialect that can be activated by toggling a
compiler flag in SML/NJ [6, 119], define quotation literals, which are derived forms for
expressions of type ’a frag listwhere ’a frag is defined as follows:

datatype ’a frag = QUOTE of string | ANTIQUOTE of ’a

Quotation literals are delimited by backticks, e.g. ‘A|T|G|C‘ is the same as writing
[QUOTE "A|T|G|C"]. Expressions of variable or parenthesized form that appear prefixed

26

by a caret in the body of a quotation literal are parsed out and appear wrapped in the
ANTIQUOTE constructor, e.g. ‘GC^(dna_rx)GC‘ is the same as writing:

[QUOTE "GC", ANTIQUOTE dna_rx , QUOTE "GC"]

Unlike dynamic string parsing, dynamic quotation parsing allows library providers to
capture idioms involving subexpressions. For example:

• The regex library provider can define a function qparse : R.t frag list -> R.t
in RXUtil that parses the given fragment list according to the POSIX standard
extended to support antiquotation, producing a regex value or raising an exception
if the fragment list cannot be parsed. Appyling this function to the examples above
produces the corresponding regex values at lower syntactic cost:

val dna = RU.qparse ‘A|T|G|C‘
val bisI = RU.qparse ‘GC^(dna_rx)GC‘

• The list library provider can also define a function qparse : ’a frag list -> ’a list
in the Listmodule that constructs a list from a quoted list:

List.qparse ‘[^(x + y), ^y, ^z]‘

There remain some problems with dynamic quotation parsing:
1. The library provider cannot specify alternative outer delimiters or antiquotation

delimiters – backticks and the caret, respectively, are the only choices in SML/NJ.
This is problematic for regexes, for example, because the caret has a different
meaning in the POSIX standard.

2. Another problem is that all antiquoted values within a quotation literal must be
of the same type. If, for example, we sought to support both spliced regexes and
spliced strings in quoted regexes, we would need to define an auxiliary sum type
in RXUtil and the client would need to wrap each antiquoted expression with a call
to the corresponding constructor to mark its type. For example, lookup_rxwould
be drawn as follows (assuming suitable definitions of RU.QS and RU.QR, not shown):

fun lookup_rx(string : name) =>
RU.qparse ’ ‘^(RU.QS name): ^(RU.QR reading)‘

Similarly, if we sought to support quoted lists where the tail is explicitly given by
the client (following OCaml’s revised syntax [80]), clients would need to apply
marking constructors to each antiquoted expression:

List.qparse ‘[^(List.V x), ^(List.V y) :: ^(List.VS zs)]‘

Marking constructors increase syntactic cost (rather substantially in such examples.)

3. As with dynamic string parsing, parsing occurs dynamically. We cannot use the
trick of lifting all calls to qparse to the top level because the arguments are not closed
string literals. At best, we can lift these calls out as far as the binding structure
allows, i.e. into the earliest possible “dynamic phase.” Parse errors are detected
only when this phase is entered, and the dynamic cost of parsing is incurred each
time this phase is entered. For example, List.qparse is called n times below, where
n is the length of input:

27

List.map (fn x => List.qparse ‘[^x, ^(2 * x)] ‘) input

One way to detect parse errors early and reduce the dynamic cost of parsing is to
use a system of staged partial evaluation [72]. For example, if we integrated Davies’
temporal logic based approach into our language [34], we could rewrite the list
example above as follows:

List.map (fn x => prev (List.sqparse
‘[^(next x), ^(next (2 * x))] ‘)) input

Here, the operator prev causes the call to List.sqparse to be evaluated in the
previous stage. List.sqparse differs from List.qparse in that the antiquoted values
in the input must be encapsulated expressions from the next stage, indicated by the
next operator. The return value is also an encapsulated expression from the next
stage. By composing this value with prev, we achieve the desired staging. Other
systems, e.g. MetaML [115] and MacroML [53], provide similar staging primitives.
The main problem with this approach is that it incurs substantial annotation over-
head. Here, the staged call to List.sqparse has higher syntactic cost than if we had
simply manually applied Nil and Cons. This problem is compounded if marking
constructors like those described above are needed.

4. Finally, quotation parsing, like the other approaches considered so far, helps only
with the problem of abbreviating expressions. It provides no solution to the problem
of abbreviating patterns (because parse functions compute values, not patterns.)

Due to these problems, VerseML does not build in quotation literals.6

2.4.3 Fixity Directives

We will now consider various syntax definition systems.
The simplest syntax definition systems allow programmers to introduce new infix

operators. For example, the syntax definition system integrated into Standard ML allows
the programmer to designate :: as a right-associative infix operator at precedence level 5
by placing the following directive in the program text:

infixr 5 ::

This directive causes expressions of the form e1 :: e2 to desugar to op:: (e1, e2), i.e.
the variable op:: is applied to the pair (e1, e2). Given that op:: is a list value constructor
in SML, this expression constructs a list with head e1 and tail e2.

The fixity directive above also causes patterns of the form p1 :: p2 to desugar to
op:: (p1, p2), i.e. to pattern constructor application. Again, because op:: is a list pattern
constructor in SML, the desugaring of this pattern matches lists where the head matches
p1 and the tail matches p2. (If we had used the identifier Cons, rather than op::, in the
definition of the list datatype, we would never be able to use the :: operator in list
patterns because SML does not support pattern synonyms.)

6In fact, quotation syntax can be expressed using parametric TLMs, which are the topic of Chapter 5.

28

1 infix 5 ::
2 infix 6 <*>
3 infix 4 <|>
4

5 functor RXOps(R : RX) =
6 struct
7 structure RU = RXUtil(R)
8 val op:: = R.Seq
9 val op <*> = RU.repeat
10 val op <|> = R.Or
11 end

Figure 2.8: Fixity declarations and related bindings for RX

Figure 2.8 shows three fixity declarations related to our regex library together with
a functor RXOps that binds the corresponding identifiers to the appropriate functions.
Assuming that a library packaging system has brought the fixity declarations and the
definition of RXOps from Figure 2.8 into scope, we can instantiate RXOps and then open this
instantiated module to bring the necessary bindings into scope as follows:
structure ROps = RXOps(R)
open ROps

We can now draw the previous examples equivalently as follows:
val dna = (R.Str "A") <|> (R.Str "T") <|> (R.Str "G") <|>

(R.Str "C")
val ssn = (RU.digit)<*>3 :: (RU.digit)<*>2 :: (RU.digit)<*>4
fun lookup_rx(name : string) =>
(Str name) :: (Str ": ") :: ssn

This demonstrates two other problems with this approach.
First, it grants only limited control over form – we cannot express the POSIX forms in

this way, only ad hoc (and in this case, rather poor) approximations thereof.
Second, there can be syntactic conflicts between libraries. Here, both the list library

and the regex library have defined a fixity directive for the :: operator, but each specifies
a different associativity. As such, clients cannot use both forms in the same scope. There is
no mechanism that allows a client to explicitly qualify an infix operator as referring to the
fixity directive from a particular library – fixity directives are not exported from modules
or otherwise integrated into the binding structure of SML (libraries are extralinguistic
packaging constructs, distinct from modules.)

Formally, each fixity directive induces a dialect of the subset of SML’s textual syntax
that does not allow the declared identifier to appear in prefix position. When two such
dialects are combined, the resulting dialect is not necessarily a dialect of both of the
constituent dialects (one fixity declaration overrides the other, according to the order in
which the dialects were combined.)

Due to these limitations, VerseML does not inherit this mechanism from SML (the
infix operators that are available in VerseML, like ^ for string concatenation, have a fixed
precedence, associativity and desugaring.)

29

2.4.4 Mixfix Syntax Definitions

Fixity directives do not give direct control over desugaring – the desugaring of a binary
operator form introduced by a fixity directive is always of function application or pattern
constructor application form. “Mixfix” syntax definition systems generalize SML-style
fixity directives in that newly defined forms can contain any number of sub-trees (rather
than just two) and their desugarings are determined by a programmer-defined rewriting.

The simplest of these systems, e.g. Griffin’s system of notational definitions [58],
later variations on this system with stronger theoretical properties [126], and the syntax
definition system integrated into the Agda programming language [33], support only
forms that contain a fixed number of sub-trees, e.g. if _ then _ else _. We cannot
define SML-style derived list forms using these systems, because list forms can contain
any number of sub-trees.

More advanced notational definition systems support new forms that contain n-ary
sequences of sub-trees separated by a given token. For example, Coq’s notation system
[87] can be used to express list syntax as follows:

Notation " [] " := nil (format "[]") : list_scope.
Notation " [x] " := (cons x nil) : list_scope.
Notation " [x ; y ; .. ; z] " :=
(cons x (cons y .. (cons z nil) ..)) : list_scope.

Here, the final declaration handles a sequence of n > 1 semi-colon separated trees.
Even under these systems, we cannot define POSIX-style regex syntax. The problem

is that we can only extend the syntax of the existing sorts of trees, e.g. types, expressions
and patterns. We cannot define new sorts of trees, with their own distinct syntax. For
example, we cannot define a new sort for regular expressions, where sequences of
characters are not recognized as Coq identifiers but rather as regex character sequences.

As with other mechanisms for defining syntax dialects, we cannot reason modularly
about syntactic determinism. The Coq manual acknowledges this [87]:

Mixing different symbolic notations in [the] same text may cause serious parsing
ambiguity.

To help library clients manage conflicts when they arise, most of these systems
include various precedence mechanisms. For example, Agda supports a system of
directed acyclic precedence graphs [33] (this is related to earlier work by Aasa where a
complete precedence graph was necessary [12].) In Coq, the programmer can associate
notation definitions with named “scopes”, e.g. list_scope in the example above. A
scope can be activated or deactivated explicitly using scope directives to control the
availability of notation definitions. The innermost scope has the highest precedence. In
some situations, Coq is able to use type information to activate a scope implicitly. Mixfix
syntax definition systems that use types more directly to disambiguate from several
possibilities have also been developed [91, 137]. These only reduce the likelihood of a
conflict – they do not eliminate the possibility entirely.

Aasa et al. developed a system whereby each constructor of a datatype definition
could have its own syntax [11, 13]. This syntax was delimited from the rest of the
language using a fixed quotation-antiquotation system like that described in Sec. 2.4.2.

30

Parsing was integrated into the type inference mechanism of the language. However,
this system is also not expressive enough to handle POSIX regex syntax, again because
it forces an immediate, one-to-one correspondence between constructors and syntactic
forms. For example, it is not possible to treat arbitrary character sequences as regex
character sequences, which are governed by the Str constructor. It is also not possible to
capture idioms that do not correspond immediately to datatype constructor application
(e.g. idioms involving modules.)

2.4.5 Grammar-Based Syntax Definition Systems

Many syntax definition systems are oriented around formal grammars [68]. Formal
grammars have been studied since at least the time of Pãnini, who developed a grammar
for Sanskrit in or around the 4th century BCE [71].

Context-free grammars (CFGs) were first used to define the textual syntax of a major
programming language – Algol 60 – by Backus [92]. Since then, countless other syntax
definition systems oriented around CFGs have emerged. In these systems a syntax
definition consists of a CFG (perhaps from some restricted class of CFGs) equipped
with various auxiliary definitions (e.g. a lexer definition in many systems) and logic for
computing an output value (e.g. a tree) based on the determined form of the source text.

Perhaps the most established CFG-based syntax definition systems within the ML
ecosystem are ML-Lex and ML-Yacc, which are distributed with SML/NJ [127], and
Camlp4, which was (until recently) integrated into the OCaml system (in recent releases
of the OCaml system, it has been deprecated in favor of a simpler system, ppx, that we
discuss in the next section) [80]. In these systems, the output is an ML value computed by
ML functions that appear associated with productions in the grammar (these functions
are referred to as the semantic actions.)

The syntax definition formalism (SDF) [65] is a syntactic formalism for describing
CFGs. SDF is used by a number of syntax definition systems, e.g. the Spoofax “language
workbench” [76]. These systems commonly use Stratego, a rule-based rewriting language,
as the language that output logic is written in [132]. SugarJ is an extension of Java that
allows programmers to define and combine fragments of SDF+Stratego-based syntax
definitions directly from within the program text [43]. SugarHaskell is a similar system
based on Haskell [44] and Sugar* simplifies the task of defining similar extensions
of other languages [41]. SoundExt and SugarFOmega add the requirement that new
derived forms must come equipped with derived typing rules [82]. The system must
be able to verify that the rewrite rules are sound with respect to these derived typing
rules (their verification system defers to the proof search facilities of PLT-Redex [46].)
SoundX generalizes this idea to other base languages, and adds the ability to define
type-dependent rewritings [83]. We will say more about SoundExt/SugarFOmega and
SoundX when we discuss abstract reasoning under syntax dialects below.

Copper implements a CFG-based syntax definition system that uses a context-aware
scanner [138]. We will say more about Copper when we discuss modular reasoning
about syntactic determinism below.

31

Some other syntax definition systems are instead oriented around parsing expression
grammars (PEGs) [50]. PEGs are similar to CFGs, distinguished mainly in that they are
deterministic by construction (by allowing only for explicitly prioritized choice between
alternative parses.) Packrat parsers implement PEGs [51].

2.4.6 Parser Combinator Systems
Parser combinator systems specify a functional interface for defining parsers, together with
various functions that generate new parsers from existing parsers and other values (these
functions are referred to as the parser combinators) [69]. In some cases, the composition of
various parser combinators can be taken as definitional (as opposed to the usual view,
where a parser is an implementation of a syntax definition.)

For example, Hutton describes a system where parsers are functions of some type in
the following parametric type family:

type parser(’c, ’t) = list(’c) -> list(’t * list(’c))

Here, a parser is a function that takes a list of (abstract) characters and returns a list of
valid parses, each of which consists of an (abstract) output (e.g. a tree) and a list of the
characters that were not consumed. An input is ambiguous if this function returns more
than one parse. A deterministic parser is one that never returns more than one parse.
The non-deterministic choice combinator alt has the following signature:

val alt : parser(’c, ’t) -> parser(’c, ’t) -> parser(’c, ’t)

The alt combinator combines the two given parsers by applying them both to the input
and appending the lists that they return.

Various alternative designs that better control dynamic cost or that maintain other
useful properties have also been described. For example, Hutton and Meijer describe a
parser combinator system in monadic style [70]. Okasaki has described an alternative
design that uses continuations to control cost [95].

Some systems use a layer of directives placed in the source text to control parser
invocation. For example, in Racket’s reader macro system, the programmer can direct
the initial token reader to shift control to a given parser when a designated directive
or token is seen [48, 49]. Honu is another reader based system, which uses a simple
syntactic pattern language to initially “enforest” the token stream, i.e. to turn it into a
simple tree structure, before passing it to the parser [107].

2.4.7 Examples of Syntax Dialects
Now that we have given an overview of a number of syntax definition systems, let us
consider two specific examples of syntax dialects to motivate our subsequent discussion
of the problems with the dialect oriented approach.

Example 1: Vrx
Using any of the more general syntax definition systems described in the two previous
sections, we can define a dialect of VerseML’s textual syntax called Vrx that builds in
derived regex forms.

32

val ssn = /\d\d\d-\d\d-\d\d\d\d/
fun lookup_rx(name : string) => /@name: %ssn/

Figure 2.9: Derived regex expression forms in Vrx

fun is_dna_rx(r : rx) : boolean =>
match r with
| /A/ => True
| /T/ => True
| /G/ => True
| /C/ => True
| /%(r1)%(r2)/ => (is_dna_rx r1) andalso (is_dna_rx r2)
| /%(r1)|%(r2)/ => (is_dna_rx r1) andalso (is_dna_rx r2)
| /%(r)*/ => is_dna_rx r’
| _ => False
end

Figure 2.10: Derived regex pattern forms in Vrx

In particular, Vrx extends the syntax of expressions with derived regex literals, which are
delimited by forward slashes, e.g. /A|T|G|C/. The desugaring of this form is equivalent
to the following if we assume that Or and Str stand for the corresponding constructors
of the recursive labeled sum type rx that was defined in Figure 2.2:

Or(Str "A", Or (Str "T", Or (Str "G", Str "C")))

Of course, it is unreasonable to assume that Or and Str are bound appropriately at every
use site. In order to maintain context independence, the desugaring instead applies the
explicit fold and inj operators as discussed in Sec. 2.3.1.7

Vrx also supports regex literals that contain subexpressions. These capture the idioms
that arise when constructing regex values compositionally. For example, the definition
of lookup_rx in Figure 2.9 is equivalent to the definition of lookup_rx that was given in
Figure 2.7. The prefix @ followed by the identifier name causes the expression name to
appear in the desugaring as if wrapped in the Str constructor, and the prefix % followed
by the identifier ssn causes ssn to appear in the desugaring directly. We refer to the
expressions that appear inside literal forms as spliced expressions.

To splice in an expression that is not of variable form, e.g. a function application, we
must delimit it with parentheses: /@(capitalize name)/.

Finally, Vrx extends the syntax of patterns with analagous derived regex pattern literals.
For example, the definition of is_dna_rx in Figure 2.10 is equivalent to the definition of
is_dna_rx that was given in Figure 2.3. Notice that the variables bound by the patterns
in Figure 2.10 appear inside spliced patterns.

7In SML, where datatypes are abstract and explicit fold and injection operators are not exposed, it
is more difficult to maintain context independence. We would need to provide a module containing
the constructors as a “syntactic argument” to each form – we describe this technique as it relates to our
modular encoding of regexes in Example 2 below.

33

fun is_dna_rx ’(r : R.t) : boolean =>
match R.unfold_norm r with
| /A/ => True
| /T/ => True
| /G/ => True
| /C/ => True
| /%(r1)%(r2)/ => (is_dna_rx ’ r1) andalso (is_dna_rx ’ r2)
| /%(r1)|%(r2)/ => (is_dna_rx ’ r1) andalso (is_dna_rx ’ r2)
| /%(r)*/ => is_dna_rx r’
| _ => False
end

Figure 2.11: Derived regex unfolding pattern forms in VRX

Example 2: VRX

In Sec. 2.3.2, we also considered a more sophisticated formulation of our regex library
organized around the signature RX defined in Figure 2.4. Let us define another dialect
of VerseML’s textual syntax called VRX that defines derived forms whose desugarings
involve modules that implement RX. For this to work in a context-independent manner,
these forms must take the particular module that is to appear in the desugaring as a
spliced subterm. For example, in the following program fragment, the module R is
“passed into” each derived form for use in its desugaring:

val ssn = R./\d\d\d-\d\d\d\d-\d\d\d/
fun lookup_rx ’(name : string) => R./@name: %ssn/

The desugaring of the body of lookup_rx’ is:

R.Seq(R.Str(name), R.Seq(R.Str ": ", ssn))

This desugaring logic is context-independent because the constructors are explicitly
qualified (i.e. Seq and Str are component labels here, not variables.) The only variables
that appear in the desugaring are R, name and ssn. All of these were specified by the client
at the use site, so they are subject to renaming.

Recall that RX specifies a function unfold_norm : t -> u(t) for computing the normal
unfolding of the given regex. VRX defines derived forms for patterns matching values of
types in the type family u(’a). These are used in the definition of is_dna_rx’ given in
Figure 2.11.

2.4.8 Problems with Syntax Dialects

Conservatively Combining Syntax Dialects

Notice that the derived regex pattern forms that appear in Figure 2.11 are identical to
those that appear in Figure 2.10. Their desugarings are, however, different. In particular,
the patterns in Figure 2.11 match values of type u(’a), whereas the patterns in Figure
2.10 match values of type rx.

34

fun is_dna_rx ’(r : R.t) : boolean =>
match R.unfold_norm r with
| $cmu_edu_comar_rx $u/A/ => True
| $cmu_edu_comar_rx $u/T/ => True
| $cmu_edu_comar_rx $u/G/ => True
| $cmu_edu_comar_rx $u/C/ => True
(* and so on *)
| _ => False
end

Figure 2.12: Using URI-based grammar names together with marking tokens to avoid
syntactic conflicts

It would be useful to have derived forms for values of type rx available even when we
are working with the modular encoding of regexes, because we have defined a function
view : R.t -> rx in RXUtil. This brings us to the first of the two main problems with
the dialect-oriented approach, already described in Chapter 1: there is no good way to
conservatively combine Vrx and VRX. In particular, any such “combined dialect” will
either fail to conserve determinism (because the forms overlap), or the combined dialect
will not be a dialect of both of the constituent dialects, i.e. some of the forms from one
dialect will “shadow” the overlapping forms from the other dialect (depending on the
order in which they were combined [50].)

In response to this problem, Schwerdfeger and Van Wyk have developed a modular
analysis that accepts only deterministic extensions of a base LALR(1) grammar where
all new forms must start with a “marking” terminal symbol and obey certain other
constraints related to the follow sets of the base grammar’s non-terminals [111, 112]. By
relying on a context-aware scanner (a feature of Copper [138]) to transfer control when
the marking terminals are seen, extensions of a base grammar that pass this analysis and
specify disjoint sets of marking terminals can be combined without introducing conflict.

For the two dialects just considered, these conditions are not satisfied. If we modify
the grammar of VRX so that, for example, the regex literal forms are marked with $r and
the regex unfolding forms are marked with $u, the analysis will accept both grammars,
and the combine-time disjointness check will pass, solving our immediate problem at
only a small cost. However, a conflict could still arise later when a client combines these
extensions with another extension that also uses the marking terminals $r, $u or /.

The solution proposed by Schwerdfeger and Van Wyk [111, 112] is 1) to allow for
the grammar’s name to be used as an additional syntactic prefix when a conflict arises,
and 2) to adopt a naming convention for grammars based on the Internet domain name
system (or some similar coordinating system) that makes conflicts unlikely. For example,
Figure 2.12 shows how a client would need to draw is_dna_rx’ if a conflict arose. Clearly,
this drawing has higher syntactic cost than the drawing in Figure 2.11. Moreover, there is
no simple way for clients to selectively control this cost by defining scoped abbreviations
for marking tokens or grammar names (as one does for types, modules or values that
are exported from deeply nested modules) because this mechanism is purely syntactic,
i.e. agnostic to the binding structure of the language. A facility for defining unscoped

35

abbreviations of marking tokens at combine-time could partially alleviate this cost.
Another approach aimed at making conflicts less likely, though not impossible, is

to use types to choose from amongst several possible parses. Some approaches require
generating the full parse forest before typechecking proceeds, e.g. the MetaBorg system [21].
This approach is inefficient, particularly when a large number of grammars have been
composed. The method of type-oriented island parsing integrates parsing and typechecking
so that disambiguation occurs as early as possible [118].

A more radical approach would be to insist that programmers use a language composi-
tion editor like Eco [36]. Language composition editors allow programmers to explicitly
switch from one syntax to another with an editor command. This is an instance of the
more general concept of structure editing (also called structured editing, projectional editing
or syntax-directed editing.) This concept, pioneered by the Cornell Program Synthesizer
[128], has various costs and benefits, summarized in [133]. In this work, our interest is in
text-based syntax, but we consider structure editors as future work in Sec. 8.3.

Abstract Reasoning About Derived Forms

In addition to the difficulties of conservatively combining syntax dialects, there are
a number of other difficulties related to the fact that there is often no useful notion
of syntactic abstraction that a programmer can rely on to reason about an unfamiliar
derived form. The programmer may need to examine the desugaring, the desugaring
logic or even the definitions of all of the constituent dialects, to definitively answer
the questions given in Sec. 1.2.1. These questions were stated relative to a particular
example involving the query processing language K. Here, we generalize from that
example to develop an informal classification of the properties that programmers might
have difficulty reasoning about in analagous situations. In each case, we will discuss
exceptional systems where these difficulties are ameliorated or avoided entirely.

Responsibility It is not always straightforward to determine which constituent dialect
is responsible for any particular derived form.

The system implemented by Copper [111, 112] is an exception, in that the mark-
ing terminal (and the grammar name, if necessary) allows clients to search across the
constituent dialect definitions for the corresponding declaration without needing to
understand any of them deeply.

Segmentation It is not always possible to segment a derived form such that each
segment consists either of a spliced base language term (which we have drawn in black
in the examples in this document) or a sequence of characters that are parsed otherwise
(which we have drawn in color.) Even when a segmentation exists, determining it is not
always straightforward.

For example, consider a production in a grammar that looks like this:

start <- "%(" verseml_exp ")"

36

The name of the non-terminal verseml_exp suggests that it will match any VerseML
expression, but it is not certain that this is the case. Moreover, even if we know that this
non-terminal matches VerseML expressions, it is not certain that the output logic will
insert that expression as-is into the desugaring – it may instead only examine its form, or
transform it in some way (in which case highlighting it as a spliced expression might be
misleading.)

Systems that support the generation of editor plug-ins, such as Spoofax [76] and
Sugarclipse for SugarJ [42], can generate syntax coloring logic from an annotated gram-
mar definition, which often give programmers some indication of where a spliced term
occurs. However, there is no definitive information about segmentation in how the editor
displays the derived form. (Moreover, these editor plug-ins can themselves conflict, even
if the syntax itself is deterministic.)

Capture The desugaring of a derived form might place spliced terms under binders.
These binders are not visible in the program text, but can shadow those that are. As a
result, the spliced terms will inadvertently capture these expansion-internal bindings.
This significantly obscures the binding structure of the program.

For derived forms that desugar to module-level definitions (e.g. to one or more val
definitions), a desugaring might also introduce exported module components that are
similarly invisible in the text. This can cause non-local capture when a client opens that
module into scope.

In most cases, capture is inadvertent. For example, a desugaring might bind an
intermediate value to some temporary variable, tmp. This can cause problems at use sites
where tmp is bound. It is easy to miss this problem in testing (particularly if the types of
both bindings are compatible.)

In some syntax dialects, capture is by design. For example, in (Sugar)Haskell, do
notation for monadic values operates as a new binding construct [44]. For programmers
who are familiar with do notation, this can be useful. But when a programmer encounters
an unfamiliar form, this forces them to determine whether it similarly is designed as a
new binding construct. A simple grammar provides no information about capture.

In most systems, it is possible for dialect providers to generate identifiers that are
guaranteed to be fresh at the use site. If dialect providers are disciplined about using
this mechanism, they can prevent capture. However, this is awkward and most systems
provide no guarantee that the dialect provider maintained this freshness discipline [45].

To enforce a prohibition on capture, the system must be integrated into or otherwise
made aware of the binding structure of the language. For example, some of the language-
integrated mixfix systems discussed above, e.g. Coq’s notation system [87], enforce a
prohibition on capture by alpha-renaming desugarings as necessary. Erdweg et al. have
developed a formalism for directly describing the “binding structure” of program text, as
well as contextual transformations that use these descriptions to rename the identifiers
that appear in a desugaring to avoid capture [45, 110].

37

Context Dependence If the desugaring of a derived form assumes that certain iden-
tifiers are bound at the application site (e.g. to particular values, or to values of some
particular type), we refer to the desugaring as being context dependent.

Context dependent desugarings take control over naming away from clients. More-
over, it is difficult to determine the assumptions that a desugaring is making. As such, it
becomes difficult to reason about whether renaming an identifier or moving a binding is
a meaning-preserving transformation.

In our examples above, we maintained context independence as a “courtesy” by
explicitly applying the fold and inj operators, or by taking the module for use in the
desugaring as a “syntactic argument”.

To enforce context independence, the system must be aware of binding structure
and have some way to distinguish those subterms of a desugaring that originate in the
text at the use site (which should have access to bindings at the use site) from those
that do not (which should only have access to bindings internal to the desugaring.) For
example, language-integrated mixfix systems, e.g. Coq’s notation system, use a simple
rewriting system to compute desugarings, so they satisfy these requirements and can
enforce context independence. Coq gives desugarings access only to the bindings visible
where the notation was defined.

More flexible systems where desugarings are computed functionally, or language-
external systems that have no understanding of binding structure, do not enforce context
independence.

Typing Finally, it is not always clear what type an expression drawn in derived form
has, or what type of value that a pattern drawn in derived form matches. Similarly, it is
not always straightforward to determine what type a spliced expression has, or what
type of value that a spliced pattern matches.

SoundExt/SugarFomega [83] and SoundX [110] allow dialect providers to define
derived typing rules alongside derived forms and desugaring rules. These systems
automatically verify that the desugaring rules are sound with respect to these derived
typing rules. This ensures that type errors are never reported in terms of the desugaring
(which is the stated goal of their work.) However, this helps only to a limited extent
in answering the questions just given. In particular, the programmer must first assign
Responsibility (which is difficult for the reasons just given.) Next, the programmer must
identify the spliced terms (which is difficult because these systems to not make it easy to
reason about Segmentation, as just described.) Then, the programmer must construct
a derivation using the relevant derived typing rules. Finally, the programmer must
traverse the derivation to find out where the spliced terms appear within it to answer
questions about their type. Even for relatively simple base languages, like System
Fω, understanding a typing derivation requires significantly more effort and expertise
than programmers usually need.8 For languages like ML, the judgement forms are

8At CMU, we teach ML to all first-year students (in 15-150 – Functional Programming.) However,
understanding a judgmental specification of a language like System Fω involves skills that are taught only
to some third and fourth year students (in 15-312 – Principles of Programming Languages.)

38

substantially more complex (no one has yet attempted to apply the SoundX methodology
to a language as large as ML.)

Systems like MetaBorg that require that the type of a derived form be known from
context so that disambiguation can occur (see above) also address the problem of deter-
mining the type of a derived expression or pattern form as a whole. However, it is not
always clear what the types of the spliced terms within these derived forms should be.

2.4.9 Non-Local Term Rewriting Systems

Another approach is to leave the textual syntax of the language fixed, but repurpose it for
novel ends using a term rewriting system. Term rewriting systems transform syntactically
well-formed terms into other syntactically well-formed terms (unlike syntax definition
systems, which operate on the program text.)

Non-local term rewriting systems typically operate over an entire compilation unit
(e.g. a file). For example, one could define a preprocessor that rewrites every string literal
that is followed by the comment (*rx*) to the corresponding expression (or pattern) of
type rx. For example, the following expression would be rewritten to a regex expression,
with dna treated as a spliced subexpression as described in the previous section:
"GC%(dna)GC"(*rx*)

OCaml 4.02 introduced preprocessor extension (ppx) points into its textual syntax [80].
Extension points serve as markers for the benefit of a non-local term rewriting system.
They are less ad hoc than comments, in that each extension point is associated with a
single term in a well-defined way, and the compiler gives an error if any extension points
remain after preprocessing is complete. For example, in the following program fragment,
let%lwt (x, y) = f in x + y

the %lwt annotation on the let expression is recognized by a preprocessor distributed
with Lwt, a lightweight threading library. This preprocessor rewrites this fragment to:
Lwt.bind f (fun (x, y) -> x + y)

The OCaml system is distributed with a library called ppx_tools that simplifies the task
of writing preprocessors that operate on terms annotated with extension points.

There are a number of other systems that support non-local term rewriting. For
example, the GHC compiler for Haskell [74] and the xoc compiler for C [29] both support
user-defined non-local rewritings.

These systems present several difficulties with abstract reasoning, many of which are
directly analagous to those that syntax definition systems present:

1. Conflict: Different preprocessors may recognize the same markers or code patterns.

2. Responsibility: It is not always clear which preprocessor handles each rewritten
form.

3. Localization: A non-local term rewriting system might insert code anywhere in
the program, complicating reasoning efforts.

4. Segmentation: It is not always clear where spliced terms appear inside rewritten
string literal forms.

39

5. Capture: The rewriting might place terms under binders that shadow bindings
visible in the program text.

6. Context Dependence: The rewriting might assume that certain identifiers are
bound at particular locations, making it difficult to reason about refactoring.

7. Typing: It is not always clear what type the rewriting of a marked form will have
(if indeed the rewriting happens to be local.) Similarly, the type that terms that
appear within the rewritten form should have is often unclear.

2.4.10 Term-Rewriting Macro Systems

Macro systems are language-integrated local term rewriting systems, i.e. they allow
programmers to designate functions that implement rewritings as macros. Clients apply
macros directly to terms (e.g. expressions, patterns and other sorts of terms.). The
rewritten term is known as the expansion of the macro application.

Macro systems do not suffer from problems related to reasoning about Conflict,
Responsibility and Localization described above because macros are applied explicitly
and operate locally.

Naïve macro systems, like the earliest variants of the LISP macro system [64], early
compile-time quotation expanders in ML [86], Template Haskell macros [117] and GHC
quasiquotes [85], do not escape from the remaining problems described above, because
they can generate arbitrary code for insertion at the macro application site. For example,
it is possible in early LISP dialects and in these other less disciplined modern macro
systems to define a macro rx! that can be applied to rewrite a string form containing a
spliced subexpression to a regex:

(rx! "GC%(dna)GC")

The problem with these systems is that without examining the macro’s implementation
or the generated expansion, there is no way to reason about Segmentation, Capture,
Context Dependence or Typing.9

The problem of Capture was addressed by the design of Scheme’s hygienic macro
system [15, 28, 40, 66, 67, 77], which automatically alpha-renames identifiers bound in the
expansion so that they do not shadow those that appear at the macro application site.

The problem of Context Dependence is typically confronted by allowing macro
expansions to explicitly refer only to those bindings in scope at the macro definition site.
These references are preserved even if the identifiers involved have been shadowed at
the macro application site [15, 28, 40]. Any references to application site bindings must
originate in one of the macro’s arguments. There are two problems with this approach:

1. It does not make explicit which of the definition site bindings the expansions
generated by a macro might refer to, so reasoning abstractly about the renaming of
definition site bindings remains problematic.

9It is not enough that the generated expansions be typechecked – it must be possible for the user to
reason about what the type of the expansion is.

40

2. Preventing access to the application site bindings makes defining a macro like
rx! impossible, because spliced subexpressions (like dna above) do not appear
as subexpressions of an argument to rx! – they are parsed out of a string literal
programmatically. From the perspective of the macro system, such spliced subex-
pressions are indistinguishable from inappropriate references to bindings tracked
by the application site context.
The only choice, then, is to repurpose other forms that do contain subexpressions.
For example, the macro might repurpose infix operators that usually have a differ-
ent meaning, e.g. ^:

(rx! ("GC" ^ dna ^ "GC"))

This is rather confusing, in that it appears that string concatenation is occuring
when that is not the case – rx! is simply repurposing the infix ^ form.

The problem of reasoning about Typing is relatively understudied, because most
research on macro systems has been done in languages in the LISP tradition that do not
define a rich static semantics.

Herman and Wand’s calculus of macros [66, 67] does use a type system to reason
about the binding structure of the expansion that a macro generates, but the expansions
themselves are not written in a language with rich type structure.

Some macro systems for languages with non-trivial type structure, like Template
Haskell [117], do not support reasoning about types in that the guarantee is only that the
expansion is well-typed – clients cannot reason about what that type is.

Other macro systems, like MacroML [53, 115], support reasoning about typing, but
these systems are staging macro systems, rather than term-rewriting macro systems, meaning
that the macro does not have access to the syntax tree of the arguments at all. Staging
macros cannot be used for syntactic control – macro application syntactically coincides
with function application. These macro systems are instead motivated primarily by
concerns about performance.

The Scala macro system is a notable example of a term-rewriting macro system that
does allow reasoning about typing [23]. In particular, Scala’s “black box” macros include
type annotations on the arguments. We are not aware of a typed macro system that has
been integrated into a language with an ML-style module system. The main problem
with Scala’s macro system, then, is that it does not give us enough syntactic control – we
must repurpose Scala’s existing syntactic forms, as discussed in point 2 above.

41

42

Chapter 3

Simple Expression TLMs (seTLMs)

In the remainder of this work, we will develop a system of typed literal macros (TLMs).
Briefly, TLMs offer substantially greater syntactic flexibility as compared to typed term
rewriting macros a la Scala, while 1) guaranteeing that a segmentation can always be
produced; 2) enforcing a prohibition on capture; 3) enforcing a strong form of context
independence and 4) maintaining the ability to reason abstractly about types. We will
establish these reasoning principles formally, ultimately in a system with an ML-style
module system in Chapter 5. We will begin, however, in this chapter with a simpler
calculus of expressions and types. The TLMs available in this calculus are called simple
expression TLMs (seTLMs).

3.1 Simple Expression TLMs By Example

We begin in this section with a “tutorial-style” introduction to seTLMs in VerseML. Sec.
3.2 then formally defines a reduced dialect of VerseML called miniVerseSE. This will serve
as a “conceptually minimal” core calculus of TLMs, in the style of the simply typed
lambda calculus.

3.1.1 TLM Application

The following VerseML expression, drawn textually, is of TLM application form. Here, a
TLM named $rx is applied to the generalized literal form /A|T|G|C/:

$rx /A|T|G|C/

Generalized literal forms are left unparsed according to the context-free syntax of
VerseML. Several other outer delimiters are also available, as summarized in Figure
3.1. The client is free to choose any of these for use with any TLM, as long as the literal
body (shown in green above) satisfies the requirements stated in Figure 3.1. For example,
we could have equivalently written the example above as $rx ‘A|T|G|C‘. (In fact, this
would have been convenient if we had wanted to express a regex containing forward
slashes but not backticks.)

43

1 ’body cannot contain an apostrophe ’
2 ‘body cannot contain a backtick ‘
3 [body cannot contain unmatched square brackets]
4 {|body cannot contain unmatched barred curly braces |}
5 /body cannot contain a forward slash/
6 \body cannot contain a backslash\

Figure 3.1: Generalized literal forms available for use in VerseML’s textual syntax. The
characters in green indicate the literal bodies and describe how the literal body is con-
strained by the form shown on that line. The Wyvern language defines additional forms,
including whitespace-delimited forms [97] and multipart forms [98], but for simplicity
we leave these out of VerseML.

It is only during the subsequent typed expansion phase that the applied TLM parses
the body of the literal form to generate a proto-expansion. The language then validates
this proto-expansion according to criteria that we will describe in Sec. 3.1.5. If proto-
expansion validation succeeds, the language generates the final expansion (or more con-
cisely, simply the expansion) of the TLM application. The behavior of the program is
determined by its expansion.

For example, the expansion of the TLM application above is equivalent to the follow-
ing expression when the regex value constructors Or and Str are in scope:

Or(Str "A", Or(Str "T", Or(Str "G", Str "C")))

To avoid the assumption that the variables Or and Str are in scope at the TLM application
site, the expansion actually uses the explicit fold and inj operators, as described in
Sec. 2.3.1. In fact, the proto-expansion validation process enforces this notion of context
independence – we will return to proto-expansion validation below. (We will show how
TLM parameters can reduce the awkwardness of this requirement in Chapter 5.)

3.1.2 TLM Definitions

The definition of $rx takes the following form:

syntax $rx at rx by
static fn(b : body) -> parse_result(proto_expr) =>
(* regex literal parser here *)

end

Every seTLM definition consists of a TLM name, here $rx, a type annotation, here at rx,
and a parse function between by and end. TLM definitions follow standard scoping
rules – unless an in clause is provided, the definition is in scope until the end of the
enclosing declaration (e.g. the enclosing function or module.) We will consider how
TLM definitions are packaged into libraries in Chapter 6.

All TLM names must begin with the dollar symbol ($), which distinguishes them from
variables. This is inspired by the Rust macro system, which uses post-fix exclamation
points (!) to distinguish macro identifiers [5].

44

type body = string

type segment = {startIdx : int , endIdx : int} (* inclusive *)
type parse_result(’a) = ParseError of {

msg : string , loc : segment
}

+ Success of ’a

Figure 3.2: Definitions of body, segment and parse_result. These type definitions are
given in the VerseML prelude, which is a small collection of definitions available ambi-
ently.

The parse function is a static function delegated responsibility over parsing the literal
bodies of the literal forms to which the TLM is applied. Static functions, marked by the
static keyword, are applied during the typed expansion process, so they cannot refer to
the surrounding variable bindings (because those variables stand for dynamic values.)
For now, we will simply assume that static functions are closed and do not themselves
make use of TLMs (we will eliminate these impractical limitations in Chapter 6.)

Every seTLM parse function must have type body -> parse_result(proto_expr). The
input type, body, classifies encodings of literal bodies. In VerseML, literal bodies are
sequences of characters, so it suffices to define body as an abbreviation for the string
type, as shown in Figure 3.2.1 The return type is a labeled sum type, defined by applying
the type function parse_result defined in Figure 3.2, that distinguishes between parse
errors and successful parses.2 Let us consider these two possibilities in turn.

Parse Errors If the parse function determines that the literal body is not well-formed
(according to whatever syntax definition that it implements), it returns:

inj[ParseError]({msg=emsg, loc=eloc})

where emsg is an error message and eloc is a value of type segment, defined in Figure
3.2, that designates a segment of the literal body as the location of the error [131]. This
information is for use by VerseML compilers when reporting the error to the programmer.

Successful Parses If parsing succeeds, the parse function returns

inj[Success](eproto)

where eproto is called the encoding of the proto-expansion.
For expression TLMs, proto-expansions are proto-expressions, which are encoded as

VerseML values of the type proto_expr defined in Figure 3.3. Most of the variants defined
by proto_expr are individually uninteresting – they encode VerseML’s various expression

1In languages where the surface syntax is not textual, bodywould have a different definition, but we
leave explicit consideration of such languages as future work (see Sec. 8.3.)

2parse_result is defined as a type function because in Chapter 4, we will introduce pattern TLMs,
which generate patterns rather than expressions.

45

type proto_typ = rec(proto_typ =>
TyVar of var_t

+ Arrow of proto_typ * proto_typ
+ (* ... *)
+ SplicedT of segment)

type proto_expr = rec(proto_expr =>
Var of var_t

+ Fn of var_t * proto_typ * proto_expr
+ Ap of proto_expr * proto_expr
+ (* ... *)
+ SplicedE of segment * proto_typ)

Figure 3.3: Abbreviated definitions proto_typ and proto_expr in the VerseML prelude.
We assume some suitable type var_t exists, not shown.

forms (just as in a compiler, c.f. SML/NJ’s Visible Compiler library [120].) Expressions
can mention types, so we also need to define a type proto_typ in Figure 3.3. As we enrich
our language in later chapters, we will need to define more encodings like these, for
other sorts of trees. The only non-standard classes are SplicedT and SplicedE – these are
references to spliced unexpanded types and expressions, which we will return to when we
consider splicing in Sec. 3.1.3 below.

The definitions of proto_typ and proto_expr are recursive labeled sum types to sim-
plify our exposition, but we could have chosen alternative encodings, e.g. based on
abstract binding trees [62], with only minor modifications to our semantics. Indeed,
when we formally define seTLMs in Sec. 3.2, we abstract over the particular encoding.

3.1.3 Splicing

As described thusfar, TLMs operate just like term-rewriting macros over string literals.
TLMs therefore do not cause difficulties related to reasoning about Conflict, Respon-
sibility or Localization, for exactly the reasons discussed in Sec. 2.4.10. TLMs differ
from term-rewriting macros in that they support splicing out arbitrary types and expressions
(including those that may themselves involve TLM applications) from within literal
bodies in a reasonable manner. For example, the program fragment from Figure 2.9 can
be expressed using the $rx TLM as follows:

val ssn = $rx /\d\d\d-\d\d-\d\d\d\d/
fun lookup_rx(name: string) => $rx /@name: %ssn/

The expressions name and ssn on the second line appear spliced within the literal body,
so we call them spliced expressions.

When $rx’s parse function determines that a subsequence of the literal body should
be taken as a spliced expression (here, by recognizing the characters @ or % followed by a
variable or parenthesized expression), it does not directly insert the syntax tree of that
expression into the encoding of the expansion. Instead, the TLM must refer to the spliced

46

expression by its relative location within the literal body using the SplicedE variant of
proto_expr. In particular, the SplicedE variant requires a value of type segment, which
indicates the zero-indexed location of the spliced expression relative to the start of the
literal body provided to the parse function. The SplicedE variant also requires a value of
type proto_typ, which indicates the type that the spliced expression is expected to have.
For example, the proto-expansion generated by $rx for the literal body on the second
line above, if written in a textual syntax for proto-expressions where references to spliced
expressions are spliced<startIdx; endIndex; ty>, is:

Seq(Str(spliced <1; 4; string >),
Seq(Str ": ", spliced <8; 10; rx >))

Here, spliced<1; 4; string> refers to the spliced string expression name by location and
spliced<8; 10; rx> refers to the spliced regex expression ssn by location. (For clarity
of exposition, we again use the regex value constructors to abbreviate applications of
the fold and inj operators and use the type abbreviation rx. In fact, given only the
mechanisms introduced in this chapter, these abbreviations would need to be explicitly
included in each proto-expansion.)

Proto-types can make reference to spliced types by using the SplicedT variant of
proto_typ analagously.

Requiring that the TLM refer to spliced terms indirectly in this manner prevents
it from “forging” a spliced expression (i.e. claiming that an expression is a spliced
expression when it does not appear in the literal body.) This will be formally critical to
being able to reason abstractly about segmentation, capture and context-independence,
as we will detail below.

3.1.4 Segmentations

The segmentation of a proto-expression is the finite set of references to spliced terms
within the proto-expression. For example, the summary of the proto-expression above is
the finite set containing only spliced<1; 4; string> and spliced<8; 10; rx>.

The semantics checks that all of the locations in the segmentation are 1) in bounds
relative to the literal body; 2) non-overlapping; and 3) used at a consistent sort and type.
This resolves the problem of Segmentation described in Secs. 2.4.9-2.4.10, i.e. every
literal body in a well-typed program has a well-defined segmentation.

A program editor or pretty-printer can communicate the segmentation information
to the programmer, e.g. by coloring non-spliced segments green as is our convention in
this document:

val ssn = $rx /\d\d\d-\d\d-\d\d\d\d/
fun lookup_rx(name: string) => $rx /@name: %ssn/

A program editor or pretty-printer can also communicate the type of each spliced
term, as indicated in the segmentation, to the programmer upon request (for example,
the Emacs and Vim packages for working with OCaml defer to the Merlin tool when the
programmer requests the type of an expression [2].)

47

3.1.5 Proto-Expansion Validation

Three potential problems described in Secs. 2.4.9-2.4.10 remain: those related to reasoning
abstractly about Capture, Context Dependence and Typing. Addressing these problems
is the purpose of the proto-expansion validation process.

Capture

Proto-expansion validation ensures that spliced terms have access only to the bindings
that appear at the application site – spliced terms cannot capture the bindings that appear
in the proto-expansion. For example, suppose that $rx generated a proto-expansion of
the following form (drawn as above):

let tmp = (* ... expansion -internal tmp ... *) in
Seq(tmp , spliced <1; 3; rx >)

Naïvely, the binding of the variable tmp here could shadow bindings of tmp that appear
at the application site within the indicated spliced expression. For example, consider the
following application site:

let tmp = (* ... application site tmp ... *) in
$rx /%tmp/

Here, the application site binding of tmp would be shadowed by the “invisible” binding
of tmp in the expansion of the TLM application.

To address this problem, proto-expansion validation enforces a prohibition on capture.
This prohibition on capture can be silently enforced by implicitly alpha-varying the
bindings in the proto-expansion as needed, as in hygienic term-rewriting macro systems
(cf. Sec. 2.4.10.) For example, the expansion of the example above might take the
following form:

let tmp = (* ... application site tmp ... *) in
let tmp ’ = (* ... expansion -internal tmp ... *) in
Seq(tmp ’, tmp)

Notice that the expansion-internal binding of tmp has been alpha-varied to tmp’ to avoid
shadowing the application site binding of tmp. As such, the reference to tmp in the spliced
expression refers, as intended, to the application site binding of tmp.

For TLM providers, the benefit of this mechanism is that they can name the variables
used internally within expansions freely, without worrying about whether their chosen
identifiers might shadow those that a client might have used at the application site. There
is no need for a user-facing mechanism that generates “fresh variables”.

TLM clients can, in turn, reliably reason about binding within every spliced expression
without examining the expansion that the spliced expression appears within.

The trade-off is that this prevents library providers from defining alternative binding
forms. For example, Haskell’s derived form for monadic commands (i.e. do-notation)
supports binding the result of executing a command to a variable that is then available in
the subsequent commands in a command sequence. In VerseML, this cannot be expressed
in the same way. Values can be communicated from the expansion to a spliced expression

48

only via function arguments. We will return to this example when we consider other
possible points in this design space in Sec. 8.3.7.

Context Dependence

The proto-expansion validation process also ensures that variables that appear in the
proto-expansion do not refer to bindings that appear at the TLM definition or applica-
tion site. In other words, expansions must be completely context independent – a TLM
definition can make no assumptions about the application site context.

A minimal example of a “broken” TLM that does not generate context-independent
proto-expansions is given below:

syntax $bad1 at rx by
static fn(_) => Success (Var "x")

end

The proto-expansion that this TLM generates (for every literal body) refers to a variable
x that is not bound within the expansion. If proto-expansion validation permitted such
a proto-expansion, it would be well-typed only under those application site typing
contexts where x is bound. This “hidden assumption” makes reasoning about binding
and renaming difficult, so this proto-expansion is deemed invalid (even when $bad1 is
applied where x is coincidentally bound.)

Of course, this prohibition does not extend into the spliced terms in a proto-expansion
– spliced terms appear at the application site, so they can justifiably refer to application
site bindings. The client’s ability to hold the expansion abstract is retained. We saw
examples of spliced terms that referred to variables bound at the application site – name
and ssn – in Sec. 3.1.3. Because proto-expansions refer to spliced terms indirectly, and
forging is impossible, enforcing context independence is straightforward – we need only
that the proto-expansion itself be closed, without considering the spliced terms.

This prohibition on context dependence explains why the expansion generated by the
TLM application in Sec. 3.1.1 cannot make use of the regex value constructors, e.g. Str
and Or, directly. (In Chapter 5, we will relax this restriction to allow proto-expansions to
access explicit parameters.)

Collectively, we refer to the prohibition on capture and the prohibition on context
dependence as hygiene properties, by conceptual analogy to corresponding properties in
term-rewriting macro systems (see Sec. 2.4.10.) The novelty here comes from the fact that
spliced terms are being extracted from an initially unparsed sequence of characters.

Typing

Finally, proto-expansion validation maintains a reasonable typing discipline by:
1. checking each spliced expression against the type indicated in the summary; and

2. checking to ensure that the generated expansion is of the type specified in the
TLM’s type annotation. For example, the type annotation on $rx is at rx, so proto-
expansion validation ensures that the final expansion is of type rx.

49

This addresses the problem of reasoning abstractly about Typing described in Secs.
2.4.9-2.4.10, i.e.:

1. determining the type that a spliced expression must have requires only the infor-
mation in the summary of the proto-expansion (rather than complete knowledge
of the proto-expansion); and

2. determining the type of an expansion requires examining only the type annotation
on the TLM definition (much as determining the type of a function application
requires examining only the type of the function.)

3.1.6 Final Expansion

The result of proto-expansion validation is the final expansion, which is simply the proto-
expansion with references to spliced terms replaced with their own final expansions.
For example, the final expansion of the body of lookup_rx is equivalent to the following,
assuming that the regex value constructors were defined (not shown):

Seq(Str(name), Seq(Str ": ", ssn))

3.1.7 Comparison to the Dialect-Oriented Approach

Let us compare the VerseML TLM $rx to Vrx, the hypothetical syntactic dialect of VerseML
with support for derived forms for values of type rx described in Sec. 2.4.7.

Both Vrx and $rx give programmers the ability to use the same standard POSIX syntax
for constructing regexes, extended with the same syntax for splicing in strings and other
regexes. Using $rx, however, we incur the additional syntactic cost of explicitly applying
the $rx TLM each time we wish to use regex syntax. This cost does not grow with the size
of the regex, so it would only be significant in programs that involve a large number of
small regexes (which do, of course, exist.) In Chapter 7 we will consider a design where
even this syntactic cost can be eliminated in positions where the type is known to be rx.

The benefit of the TLM-based approach is that we can easily define other TLMs to use
alongside the $rx TLM without needing to consider the possibility of syntactic conflict.
Furthermore, programmers can rely on the binding discipline and the typing discipline
enforced by proto-expansion validation to reason about programs, including those that
contain unfamiliar forms. Put pithily, VerseML helps programmers avoid “conflict and
confusion”.

3.2 miniVerseSE

To make the intuitions developed in the previous section precise, we will now introduce
a reduced dialect of VerseML called miniVerseSE that supports seTLMs. The full defini-
tion of miniVerseSE is given in Appendix B for reference. In the exposition below, we
will reproduce only particularly noteworthy rules and proof cases. Rule and theorem
numbers below refer to corresponding rules and theorems in the appendix.

50

Sort Operational Form Description
Typ τ ::= t variable

parr(τ; τ) partial function
all(t.τ) polymorphic
rec(t.τ) recursive
prod[L]({i ↪→ τi}i∈L) labeled product
sum[L]({i ↪→ τi}i∈L) labeled sum

Exp e ::= x variable
lam{τ}(x.e) abstraction
ap(e; e) application
tlam(t.e) type abstraction
tap{τ}(e) type application
fold(e) fold
unfold(e) unfold
tpl[L]({i ↪→ ei}i∈L) labeled tuple
prj[`](e) projection
inj[`](e) injection
case[L](e; {i ↪→ xi.ei}i∈L) case analysis

Figure 3.4: Syntax of the miniVerseSE expanded language (XL)

3.2.1 Overview

miniVerseSE consists of a language of unexpanded expressions (the unexpanded language,
or UL) defined by typed expansion to a language of expanded expressions (the expanded
language, or XL.) We will begin with a brief overview of the standard XL before turning
our attention to the UL in the remainder of this chapter.

3.2.2 Syntax of the Expanded Language

The syntax chart in Figure 3.4 defines the syntax of types, τ, and (expanded) expressions,
e. Metavariables x range over expression variables, t over type variables, ` over labels
and L over finite sets of labels. Types and expanded expressions are ABTs identified up
to α-equivalence in the usual manner (our typographic conventions are adapted from
PFPL, and summarized in Appendix A.1.) To emphasize that programmers never draw
expanded terms directly, and to clearly distinguish expanded terms from unexpanded
terms, we do not define a stylized or textual syntax for expanded terms.

The XL forms a standard pure functional language with support for partial functions,
quantification over types, recursive types, labeled product types and labeled sum types.
The reader is directed to PFPL [62] (or another text on type systems, e.g. TAPL [102]) for
a detailed introductory account of these standard constructs. We will tersely summarize
the statics and dynamics of the XL in the next two subsections, respectively.

51

3.2.3 Statics of the Expanded Language

The statics of the XL is defined by hypothetical judgements of the following form:

Judgement Form Description
∆ ` τ type τ is a type
∆ Γ ` e : τ e is assigned type τ

The type formation judgement, ∆ ` τ type, is inductively defined by Rules (B.1). The typing
judgement, ∆ Γ ` e : τ, is inductively defined by Rules (B.2).

Type formation contexts, ∆, are finite sets of hypotheses of the form t type. Empty finite
sets are written ∅, or omitted entirely within judgements, and non-empty finite sets are
written as comma-separated finite sequences identified up to exchange and contraction.
We write ∆, t type when t type /∈ ∆ for ∆ extended with the hypothesis t type.

Typing contexts, Γ, are finite functions that map each variable x ∈ dom(Γ), where
dom(Γ) is a finite set of variables, to the hypothesis x : τ, for some τ. Empty typing
contexts are written ∅, or omitted entirely within judgements, and non-empty typing
contexts are written as finite sequences of hypotheses identified up to exchange and
contraction. We write Γ, x : τ, when x /∈ dom(Γ), for the extension of Γ with a mapping
from x to x : τ, and Γ ∪ Γ′ when dom(Γ) ∩ dom(Γ′) = ∅ for the typing context mapping
each x ∈ dom(Γ) ∪ dom(Γ′) to x : τ if x : τ ∈ Γ or x : τ ∈ Γ′.

These judgements validate standard lemmas, defined in Appendix B.1: Weakening,
Substitution and Decomposition.

3.2.4 Structural Dynamics

The structural dynamics (a.k.a. the structural operational semantics [104]) of miniVerseSE is
defined as a transition system by judgements of the following form:

Judgement Form Description
e 7→ e′ e transitions to e′

e val e is a value

We also define auxiliary judgements for iterated transition, e 7→∗ e′, and evaluation, e ⇓ e′.
Definition B.6 (Iterated Transition). Iterated transition, e 7→∗ e′, is the reflexive, transitive
closure of the transition judgement, e 7→ e′.
Definition B.7 (Evaluation). e ⇓ e′ iff e 7→∗ e′ and e′ val.

Our subsequent developments do not require making reference to particular rules in
the structural dynamics (because TLMs operate statically), so we do not reproduce the
rules here. Instead, it suffices to state the following conditions.

The Canonical Forms condition characterizes well-typed values. Satisfying this
condition requires an eager (a.k.a. by-value) formulation of the dynamics.
Condition B.8 (Canonical Forms). If ` e : τ and e val then:

1. If τ = parr(τ1; τ2) then e = lam{τ1}(x.e′) and x : τ1 ` e′ : τ2.
2. If τ = all(t.τ′) then e = tlam(t.e′) and t type ` e′ : τ′.

52

Sort Stylized Form Description
UTyp τ̂ ::= t̂ identifier

τ̂ ⇀ τ̂ partial function
∀t̂.τ̂ polymorphic
µt̂.τ̂ recursive
〈{i ↪→ τ̂i}i∈L〉 labeled product
[{i ↪→ τ̂i}i∈L] labeled sum

UExp ê ::= x̂ identifier
ê : τ̂ ascription
let val x̂ = ê in ê value binding
λx̂:τ̂.ê abstraction
ê(ê) application
Λt̂.ê type abstraction
ê[τ̂] type application
fold(ê) fold
unfold(ê) unfold
〈{i ↪→ êi}i∈L〉 labeled tuple
ê · ` projection
inj[`](ê) injection
case ê {i ↪→ x̂i.êi}i∈L case analysis
syntax â at τ̂ by static e in ê seTLM definition
â ‘b‘ seTLM application

Figure 3.5: Syntax of the miniVerseSE unexpanded language (UL).

3. If τ = rec(t.τ′) then e = fold(e′) and ` e′ : [rec(t.τ′)/t]τ′ and e′ val.
4. If τ = prod[L]({i ↪→ τi}i∈L) then e = tpl[L]({i ↪→ ei}i∈L) and ` ei : τi and ei val for

each i ∈ L.
5. If τ = sum[L]({i ↪→ τi}i∈L) then for some label set L′ and label ` and type τ′, we have

that L = L′, ` and τ = sum[L′, `]({i ↪→ τi}i∈L′ ; ` ↪→ τ′) and e = inj[`](e′) and
` e′ : τ′ and e′ val.

The Preservation condition ensures that evaluation preserve typing.
Condition B.9 (Preservation). If ` e : τ and e 7→∗ e′ then ` e′ : τ.

The Progress condition ensures that evaluating a well-typed expanded expression
cannot “get stuck”:
Condition B.10 (Progress). If ` e : τ then either e val or there exists an e′ such that e 7→ e′.

Together, these two conditions constitute the Type Safety Condition.

3.2.5 Syntax of the Unexpanded Language

A miniVerseSE program ultimately evaluates as a well-typed expanded expression. How-
ever, the programmer does not construct this expanded expression directly. Instead,
the programmer constructs an unexpanded expression, ê, which might contain unexpanded
types, τ̂. Figure 3.5 defines the relevant forms.

53

Unexpanded types and expressions are not abstract binding trees – we do not define
notions of renaming, alpha-equivalence or substitution for unexpanded terms. This
is because unexpanded expressions remain “partially parsed” due to the presence of
literal bodies, b, from which spliced terms might be extracted during typed expansion.
In fact, unexpanded types and expressions do not involve variables at all, but rather
type identifiers, t̂, and expression identifiers, x̂. Identifiers are given meaning by expansion
to variables during typed expansion, as we will see below. This distinction between
identifiers and variables will be technically crucial.

Most of the unexpanded forms in Figure 3.5 mirror the expanded forms. We refer to
these as the common forms. The mapping from expanded forms to common unexpanded
forms is defined explicitly in Appendix B.2.1.

In addition to the stylized syntax given in Figure 3.5, there is also a context-free textual
syntax for the UL. Giving a complete definition of the context-free textual syntax as, e.g.,
a context-free grammar, risks digression into details that are not critical to our purposes
here. The paper on Wyvern defines a textual syntax for a similar system [97]. Instead,
we need only posit the existence of partial metafunctions parseUTyp(b) and parseUExp(b)
that go from character sequences, b, to unexpanded types and expressions, respectively.
Condition B.11 (Textual Representability).

1. For each τ̂, there exists b such that parseUTyp(b) = τ̂.
2. For each ê, there exists b such that parseUExp(b) = ê.

3.2.6 Typed Expansion

Unexpanded expressions, and the unexpanded types therein, are checked and expanded
simultaneously according to the typed expansion judgements:

Judgement Form Description
∆̂ ` τ̂ τ type τ̂ has well-formed expansion τ

∆̂ Γ̂ `Ψ̂ ê e : τ ê has expansion e of type τ

Type Expansion

Unexpanded type formation contexts, ∆̂, are of the form 〈D; ∆〉, i.e. they consist of a type
identifier expansion context, D, paired with a standard type formation context, ∆.

A type identifier expansion context, D, is a finite function that maps each type identifier
t̂ ∈ dom(D) to the hypothesis t̂ t, for some type variable t. We write D] t̂ t for the
type identifier expansion context that maps t̂ to t̂ t and defers to D for all other type
identifiers (i.e. the previous mapping is updated.)

We define ∆̂, t̂ t type when ∆̂ = 〈D; ∆〉 as an abbreviation of

〈D] t̂ t; ∆, t type〉
The type expansion judgement, ∆̂ ` τ̂ τ type, is inductively defined by Rules (B.5).

The first three of these rules are reproduced below:

∆̂, t̂ t type ` t̂ t type
(B.5a)

54

∆̂ ` τ̂1 τ1 type ∆̂ ` τ̂2 τ2 type

∆̂ ` τ̂1 ⇀ τ̂2 parr(τ1; τ2) type
(B.5b)

∆̂, t̂ t type ` τ̂ τ type

∆̂ ` ∀t̂.τ̂ all(t.τ) type
(B.5c)

To develop an intuition for how type identifier expansion operates, it is instructive to
inspect the derivation of the expansion of the unexpanded type ∀t̂.∀t̂.t̂:

〈t̂ t2; t1 type, t2 type〉 ` t̂ t2 type
(B.5a)

〈t̂ t1; t1 type〉 ` ∀t̂.t̂ all(t2.t2) type
(B.5c)

〈∅; ∅〉 ` ∀t̂.∀t̂.t̂ all(t1.all(t2.t2)) type
(B.5c)

Notice that when Rule (B.5c) is applied, the type identifier expansion context is extended
(when the outermost binding is encountered) or updated (at all inner bindings) and the
type formation context is simultaneously extended with a (necessarily fresh) hypothesis.
Without this mechanism, expansions for unexpanded types with shadowing, like this
minimal example, would not exist, because by definition we cannot extend a type forma-
tion context with a variable it already mentions, nor implicitly α-vary the unexpanded
type to sidestep this problem in the usual manner.

The Type Expansion Lemma establishes that the expansion of an unexpanded type is
a well-formed type.
Lemma B.25 (Type Expansion). If 〈D; ∆〉 ` τ̂ τ type then ∆ ` τ type.
Proof. By rule induction over Rules (B.5). In each case, we apply the IH to or over each
premise, then apply the corresponding type formation rule in Rules (B.1).

Typed Expression Expansion

Unexpanded typing contexts, Γ̂, are, similarly, of the form 〈G; Γ〉, where G is an expression
identifier expansion context, and Γ is a typing context. An expression identifier expansion
context, G, is a finite function that maps each expression identifier x̂ ∈ dom(G) to
the hypothesis x̂ x, for some expression variable, x. We write G] x̂ x for the
expression identifier expansion context that maps x̂ to x̂ x and defers to G for all other
expression identifiers (i.e. the previous mapping is updated.) We define Γ̂, x̂ x : τ
when Γ̂ = 〈G; Γ〉 as an abbreviation of

〈G] x̂ x; Γ, x : τ〉

The typed expression expansion judgement, ∆̂ Γ̂ `Ψ̂ ê e : τ, is inductively defined by
Rules (B.6). Before covering these rules, let us state the main theorem of interest: that
typed expansion results in a well-typed expanded expression.
Theorem B.29 (Typed Expression Expansion). If 〈D; ∆〉〈G; Γ〉`Ψ̂ ê e : τ then ∆ Γ ` e : τ.

55

Common Forms Rules (B.6a) through (B.6m) handle unexpanded expressions of com-
mon form, as well as ascriptions and let binding. The first five of these rules are repro-
duced below:

∆̂ Γ̂, x̂ x : τ `Ψ̂ x̂ x : τ
(B.6a)

∆̂ ` τ̂ τ type ∆̂ Γ̂ `Ψ̂ ê e : τ

∆̂ Γ̂ `Ψ̂ ê : τ̂ e : τ
(B.6b)

∆̂ Γ̂ `Ψ̂ ê1 e1 : τ1 ∆̂ Γ̂, x̂ x : τ1 `Ψ̂ ê2 e2 : τ2

∆̂ Γ̂ `Ψ̂ let val x̂ = ê1 in ê2 ap(lam{τ1}(x.e2); e1) : τ2
(B.6c)

∆̂ ` τ̂ τ type ∆̂ Γ̂, x̂ x : τ `Ψ̂ ê e : τ′

∆̂ Γ̂ `Ψ̂ λx̂:τ̂.ê lam{τ}(x.e) : parr(τ; τ′)
(B.6d)

∆̂ Γ̂ `Ψ̂ ê1 e1 : parr(τ; τ′) ∆̂ Γ̂ `Ψ̂ ê2 e2 : τ

∆̂ Γ̂ `Ψ̂ ê1(ê2) ap(e1; e2) : τ′
(B.6e)

The rules for the remaining expressions of common form are entirely straightfor-
ward, mirroring the corresponding typing rules, i.e. Rules (B.2). The type assigned
in the conclusion of each rule is identical to the type assigned in the conclusion of the
corresponding typing rule. The seTLM context, Ψ̂, passes opaquely through these rules
(we will define seTLM contexts below.) As such, the corresponding cases in the proof
of Theorem B.29 are by application of the induction hypothesis and the corresponding
typing rule.

seTLM Definition and Application The two remaining typed expansion rules, Rules
(B.6n) and (B.6o), govern the seTLM definition and application forms. They are defined
in the next two subsections, respectively.

3.2.7 seTLM Definitions

The seTLM definition form is

syntax â at τ̂ by static eparse in ê

An unexpanded expression of this form defines an seTLM identified as â with unexpanded
type annotation τ̂ and parse function eparse for use within ê.

Rule (B.6n) defines typed expansion of this form:

∆̂ ` τ̂ τ type ∅ ∅ ` eparse : parr(Body; ParseResultSE)
eparse ⇓ e′parse ∆̂ Γ̂ `Ψ̂,â a↪→setlm(τ; e′parse)

ê e : τ′

∆̂ Γ̂ `Ψ̂ syntax â at τ̂ by static eparse in ê e : τ′
(B.6n)

The premises of this rule can be understood as follows, in order:

56

1. The first premise expands the unexpanded type annotation.

2. The second premise checks that the parse function, eparse, is a closed expanded
function3 of the following type:

parr(Body; ParseResultSE)

The type abbreviated Body classifies encodings of literal bodies, b. The mapping
from literal bodies to values of type Body is defined by the body encoding judgement
b ↓Body ebody. An inverse mapping is defined by the body decoding judgement
ebody ↑Body b.

Judgement Form Description
b ↓Body e b has encoding e
e ↑Body b e has decoding b

Rather than defining Body explicitly, and these judgements inductively against that
definition (which would be tedious and uninteresting), it suffices to define the
following condition, which establishes an isomorphism between literal bodies and
values of type Body mediated by the judgements above.
Condition B.16 (Body Isomorphism).

(a) For every literal body b, we have that b ↓Body ebody for some ebody such that ` ebody :
Body and ebody val.

(b) If ` ebody : Body and ebody val then ebody ↑Body b for some b.
(c) If b ↓Body ebody then ebody ↑Body b.
(d) If ` ebody : Body and ebody val and ebody ↑Body b then b ↓Body ebody.
(e) If b ↓Body ebody and b ↓Body e′body then ebody = e′body.

(f) If ` ebody : Body and ebody val and ebody ↑Body b and ebody ↑Body b′ then b = b′.
The return type of the parse function, ParseResultSE, abbreviates a labeled sum
type that distinguishes parse errors from successful parses:4

LSE
def
= ParseError, SuccessE

ParseResultSE
def
= sum[LSE](ParseError ↪→ 〈〉, SuccessE ↪→ PrExpr)

The type abbreviated PrExpr classifies encodings of proto-expressions, è (pronounced
“grave e”.) The syntax of proto-expressions, defined in Figure 3.6, will be described
when we describe proto-expansion validation in Sec. 3.2.9. The mapping from
proto-expressions to values of type PrExpr is defined by the proto-expression encoding
judgement, è ↓PrExpr e. An inverse mapping is defined by the proto-expression decoding
judgement, e ↑PrExpr è.

3In Chapter 6, we add the machinery necessary for parse functions that are neither closed nor yet
expanded.

4In VerseML, the ParseError constructor of parse_result required an error message and an error
location, but we omit these in our formalization for simplicity.

57

Judgement Form Description
è ↓PrExpr e è has encoding e
e ↑PrExpr è e has decoding è

Again, rather than picking a particular definition of PrExpr and defining the judge-
ments above inductively against it, we only state the following condition, which
establishes an isomorphism between values of type PrExpr and proto-expressions.
Condition B.22 (Proto-Expression Isomorphism).

(a) For every è, we have è ↓PrExpr eproto for some eproto such that ` eproto : PrExpr and
eproto val.

(b) If ` eproto : PrExpr and eproto val then eproto ↑PrExpr è for some è.
(c) If è ↓PrExpr eproto then eproto ↑PrExpr è.
(d) If ` eproto : PrExpr and eproto val and eproto ↑PrExpr è then è ↓PrExpr eproto.
(e) If è ↓PrExpr eproto and è ↓PrExpr e′proto then eproto = e′proto.

(f) If ` eproto : PrExpr and eproto val and eproto ↑PrExpr è and eproto ↑PrExpr è′ then è = è′.
3. The third premise of Rule (B.6n) evaluates the parse function to a value.

4. The final premise of Rule (B.6n) extends the seTLM context, Ψ̂, with the newly
determined seTLM definition, and proceeds to assign a type, τ′, and expansion, e,
to ê. The conclusion of Rule (B.6n) assigns this type and expansion to the seTLM
definition as a whole.
seTLM contexts, Ψ̂, are of the form 〈A; Ψ〉, where A is a TLM identifier expansion
context and Ψ is a seTLM definition context.
A TLM identifier expansion context, A, is a finite function mapping each TLM identi-
fier â ∈ dom(A) to the TLM identifier expansion, â a, for some TLM name, a. We
writeA] â a for the TLM identifier expansion context that maps â to â a, and
defers to A for all other TLM identifiers (i.e. the previous mapping is updated.)
An seTLM definition context, Ψ, is a finite function mapping each TLM name
a ∈ dom(Ψ) to an expanded seTLM definition, a ↪→ setlm(τ; eparse), where τ is
the seTLM’s type annotation, and eparse is its parse function. We write Ψ, a ↪→
setlm(τ; eparse) when a /∈ dom(Ψ) for the extension of Ψ that maps a to a ↪→
setlm(τ; eparse).

We define Ψ̂, â a ↪→ setlm(τ; eparse), when Ψ̂ = 〈A; Ψ〉, as an abbreviation of

〈A] â a; Ψ, a ↪→ setlm(τ; eparse)〉

We distinguish TLM identifiers, â, from TLM names, a, for much the same reason
that we distinguish type and expression identifiers from type and expression
variables: in order to support TLM definitions identified in the same way as a
previously defined TLM definition, without an implicit renaming convention.

58

3.2.8 seTLM Application

The unexpanded expression form for applying an seTLM named â to a literal form with
literal body b is:

â ‘b‘

This stylized form uses backticks to delimit the literal body, but other generalized literal
forms, like those described in Figure 3.1, could also be included as derived forms in the
textual syntax.

The typed expansion rule governing seTLM application is below:

Ψ̂ = Ψ̂′, â a ↪→ setlm(τ; eparse)
b ↓Body ebody eparse(ebody) ⇓ inj[SuccessE](eproto) eproto ↑PrExpr è

seg(è) segments b ∅ ∅ `∆̂; Γ̂; Ψ̂; b è e : τ

∆̂ Γ̂ `Ψ̂ â ‘b‘ e : τ
(B.6o)

The premises of Rule (B.6o) can be understood as follows, in order:
1. The first premise ensures that â has been defined and extracts the type annotation

and parse function.

2. The second premise determines the encoding of the literal body, ebody. This term is
closed per Condition B.16.

3. The third premise applies the parse function eparse to the encoding of the literal
body. The parse function is closed by well-formedness of Ψ̂ (which, in turn, is
maintained by the TLM definition rule, Rule (B.6n), described above).
If parsing succeeds, i.e. a value of the form inj[SuccessE](eproto) results from
evaluation, then eproto will be a value of type PrExpr (assuming a well-formed
seTLM context, by application of the Preservation assumption, Assumption B.9.)
We call eproto the encoding of the proto-expansion.
If the parse function produces a value labeled ParseError, then typed expansion
fails. No rule is necessary to handle this case.

4. The fourth premise decodes the encoding of the proto-expansion to produce the
proto-expansion, è, itself.

5. The fifth premise determines a segmentation, seg(è), and ensures that it is valid
with respect to b. In particular, the predicate ψ segments b checks that each segment
in ψ, has non-negative length and is within bounds of b, and that the segments in
ψ do not overlap and operate at a consistent sort and type. The definition of this
predicate is given in Appendix B.3.1.

6. The final premise of Rule (B.6o) validates the proto-expansion and simultaneously
generates the final expansion, e, which appears in the conclusion of the rule. The
proto-expression validation judgement is discussed next.

59

Sort Operational Form Stylized Form Description
PrTyp τ̀ ::= t t variable

prparr(τ̀; τ̀) τ̀ ⇀ τ̀ partial function
prall(t.τ̀) ∀t.τ̀ polymorphic
prrec(t.τ̀) µt.τ̀ recursive
prprod[L]({i ↪→ τ̀i}i∈L) 〈{i ↪→ τ̀i}i∈L〉 labeled product
prsum[L]({i ↪→ τ̀i}i∈L) [{i ↪→ τ̀i}i∈L] labeled sum
splicedt[m; n] splicedt[m; n] spliced type ref.

PrExp è ::= x x variable
prasc{τ̀}(è) è : τ̀ ascription
prletval(è; x.è) let val x = è in è value binding
prlam{τ̀}(x.è) λx:τ̀.è abstraction
prap(è; è) è(è) application
prtlam(t.è) Λt.è type abstraction
prtap{τ̀}(è) è[τ̀] type application
prfold(è) fold(è) fold
prunfold(è) unfold(è) unfold
prtpl{L}({i ↪→ èi}i∈L) 〈{i ↪→ èi}i∈L〉 labeled tuple
prprj[`](è) è · ` projection
prinj[`](è) inj[`](è) injection
prcase[L](è; {i ↪→ xi.èi}i∈L) case è {i ↪→ xi.èi}i∈L case analysis
splicede[m; n; τ̀] splicede[m; n; τ̀] spliced expr. ref.

Figure 3.6: Syntax of miniVerseSE proto-types and proto-expressions.

60

3.2.9 Syntax of Proto-Expansions

Figure 3.6 defines the syntax of proto-types, τ̀, and proto-expressions, è. Proto-types and
-expressions are ABTs identified up to α-equivalence in the usual manner.

Each expanded form maps onto a proto-expansion form. We refer to these as the
common proto-expansion forms. The mapping is given explicitly in Appendix B.3.

There are two “interesting” proto-expansion forms, highlighted in yellow in Figure
3.6: a proto-type form for references to spliced unexpanded types, splicedt[m; n], and a
proto-expression form for references to spliced unexpanded expressions, splicede[m; n; τ̀],
where m and n are natural numbers.

3.2.10 Proto-Expansion Validation

The proto-expansion validation judgements validate proto-types and proto-expressions and
simultaneously generate their final expansions.

Judgement Form Description
∆ `T τ̀ τ type τ̀ has well-formed expansion τ
∆ Γ `E è e : τ è has expansion e of type τ

Type splicing scenes, T, are of the form ∆̂; b and expression splicing scenes, E, are of the
form ∆̂; Γ̂; Ψ̂; b. We write ts(E) for the type splicing scene constructed by dropping the
unexpanded typing context and seTLM context from E:

ts(∆̂; Γ̂; Ψ̂; b) = ∆̂; b

The purpose of splicing scenes is to “remember”, during the proto-expansion validation
process, the unexpanded type formation context, ∆̂, unexpanded typing context, Γ̂,
seTLM context, Ψ̂, and the literal body, b, from the seTLM application site (cf. Rule
(B.6o) above.) These structures will be necessary to validate the references to spliced
unexpanded types and expressions that appear within the proto-expansion.

Proto-Type Validation

The proto-type validation judgement, ∆ `T τ̀ τ type, is inductively defined by Rules
(B.9).

Common Forms Rules (B.9a) through (B.9f) validate proto-types of common form.
These rules, like the rules for common unexpanded type forms, mirror the corresponding
type formation rules, i.e. Rules (B.1). The type splicing scene,T, passes opaquely through
these rules. The first three of these are reproduced below.

∆, t type `T t t type
(B.9a)

61

∆ `T τ̀1 τ1 type ∆ `T τ̀2 τ2 type

∆ `T prparr(τ̀1; τ̀2) parr(τ1; τ2) type
(B.9b)

∆, t type `T τ̀ τ type

∆ `T prall(t.τ̀) all(t.τ) type
(B.9c)

Notice that in Rule (B.9a), only type variables tracked by ∆, the expansion’s local
type validation context, are well-formed. Type variables tracked by the application site
unexpanded type formation context, which is a component of the type splicing scene, T,
are not validated.

References to Spliced Types The only proto-type form that does not correspond to
a type form is splicedt[m; n], which is a reference to a spliced unexpanded type, i.e. it
indicates that an unexpanded type should be parsed out from the literal body, which
appears in the type splicing scene T, beginning at position m and ending at position n,
where m and n are natural numbers. Rule (B.9g) governs this form:

parseUTyp(subseq(b; m; n)) = τ̂ 〈D; ∆app〉 ` τ̂ τ type ∆ ∩ ∆app = ∅

∆ `〈D;∆app〉; b splicedt[m; n] τ type
(B.9g)

The first premise of this rule extracts the indicated subsequence of b using the partial
metafunction subseq(b; m; n) and parses it using the partial metafunction parseUTyp(b),
which was characterized in Sec. 3.2.5, to produce the spliced unexpanded type itself, τ̂.

The second premise of Rule (B.9g) performs type expansion of τ̂ under the application
site unexpanded type formation context, 〈D; ∆app〉, which is a component of the type
splicing scene. The hypotheses in the expansion’s local type formation context, ∆, are
not made available to τ.

The third premise of Rule (B.9g) imposes the constraint that the proto-expansion’s
type formation context, ∆, be disjoint from the application site type formation context,
∆app. This premise can always be discharged by α-varying the proto-expansion that the
reference to the spliced type appears within.

Together, these two premises enforce the injunction on type variable capture as
described in Sec. 3.1.5 – the TLM provider can choose type variable names freely within
a proto-expansion. We will consider this formally in Sec. 3.2.11 below.

Rules (B.9) validate the following lemma, which establishes that the final expansion
of a valid proto-type is a well-formed type under the combined type formation context.
Lemma B.26 (Proto-Expansion Type Validation). If ∆ `〈D;∆app〉; b τ̀ τ type and ∆ ∩
∆app = ∅ then ∆ ∪ ∆app ` τ type.

Proto-Expression Validation

The proto-expression validation judgement, ∆ Γ `E è e : τ, is defined mutually inductively
with the typed expansion judgement by Rules (B.10) as follows.

62

Common Forms Rules (B.10a) through (B.10m) validate proto-expressions of common
form, as well as ascriptions and let binding. Once again, the rules for common forms
mirror the typing rules, i.e. Rules (B.2). The expression splicing scene, E, passes opaquely
through these rules. The first five of these rules are reproduced below:

∆ Γ, x : τ `E x x : τ
(B.10a)

∆ `ts(E) τ̀ τ type ∆ Γ `E è e : τ

∆ Γ `E prasc{τ̀}(è) e : τ
(B.10b)

∆ Γ `E è1 e1 : τ1 ∆ Γ, x : τ1 `è2 e2 τ2 :

∆ Γ `E prletval(è1; x.è2) ap(lam{τ1}(x.e2); e1) : τ2
(B.10c)

∆ `ts(E) τ̀ τ type ∆ Γ, x : τ `E è e : τ′

∆ Γ `E prlam{τ̀}(x.è) lam{τ}(x.e) : parr(τ; τ′)
(B.10d)

∆ Γ `E è1 e1 : parr(τ; τ′) ∆ Γ `E è2 e2 : τ

∆ Γ `E prap(è1; è2) ap(e1; e2) : τ′
(B.10e)

Notice that in Rule (B.10a), only variables tracked by the proto-expansion typing con-
text, Γ, are validated. Variables in the application site unexpanded typing context, which
appears within the expression splicing scene E, are not validated. This achieves context
independence as described in Sec. 3.1.5 – seTLMs cannot impose “hidden constraints” on
the application site unexpanded typing context, because the variable bindings at the
application site are not directly available to proto-expansions. We will consider this
formally in Sec. 3.2.11 below.

References to Spliced Unexpanded Expressions The only proto-expression form that
does not correspond to an expanded expression form is splicede[m; n; τ̀], which is a
reference to a spliced unexpanded expression, i.e. it indicates that an unexpanded expression
should be parsed out from the literal body beginning at position m and ending at position
n. Rule (B.10n) governs this form:

∅ `ts(E) τ̀ τ type E = 〈D; ∆app〉; 〈G; Γapp〉; Ψ̂; b
parseUExp(subseq(b; m; n)) = ê 〈D; ∆app〉 〈G; Γapp〉 `Ψ̂ ê e : τ

∆ ∩ ∆app = ∅ dom(Γ) ∩ dom(Γapp) = ∅

∆ Γ `E splicede[m; n; τ̀] e : τ
(B.10n)

The premises of this rule can be understood as follows:
1. The first premise of this rule validates and expands the type annotation. This type

must be context independent.

2. The second premise of this rule serves simply to reveal the components of the
expression splicing scene.

63

3. The third premise of this rule extracts the indicated subsequence of b using the
partial metafunction subseq(b; m; n) and parses it using the partial metafunction
parseUExp(b), characterized in Sec. 3.2.5, to produce the referenced spliced unex-
panded expression, ê.

4. The fourth premise of Rule (B.10n) performs typed expansion of ê assuming the
application site contexts that appear in the expression splicing scene. Notice that
the hypotheses in ∆ and Γ are not made available to ê.

5. The fifth premise of Rule (B.10n) imposes the constraint that the proto-expansion’s
type formation context, ∆, be disjoint from the application site type formation
context, ∆app. Similarly, the sixth premise requires that the proto-expansion’s
typing context, Γ, be disjoint from the application site typing context, Γapp. These
two premises can always be discharged by α-varying the proto-expression that the
reference to the spliced unexpanded expression appears within. Together, these
premises enforce the prohibition on capture as described in Sec. 3.1.5 – the TLM
provider can choose variable names freely within a proto-expansion, because the
language prevents them from shadowing those at the application site. Again, we
will consider this formally in Sec. 3.2.11 below.

3.2.11 Metatheory

Typed Expansion

Let us now consider Theorem B.29, which was mentioned at the beginnning of Sec. 3.2.6
and is reproduced below:
Theorem B.29 (Typed Expression Expansion). If 〈D; ∆〉〈G; Γ〉`Ψ̂ ê e : τ then ∆ Γ ` e : τ.

To prove this theorem, we must prove the following stronger theorem, because the
proto-expression validation judgement is defined mutually inductively with the typed
expansion judgement:
Theorem B.28 (Typed Expansion (Full)).

1. If 〈D; ∆〉 〈G; Γ〉 `〈A;Ψ〉 ê e : τ then ∆ Γ ` e : τ.

2. If ∆ Γ `〈D;∆app〉; 〈G;Γapp〉; 〈A;Ψ〉; b è e : τ and ∆ ∩ ∆app = ∅ and dom(Γ) ∩ dom(Γapp) =
∅ then ∆ ∪ ∆app Γ ∪ Γapp ` e : τ.

Proof. By mutual rule induction over Rules (B.6) and Rules (B.10). The full proof is given
in Appendix B.4.3. We will reproduce the interesting cases below.

The proof of part 1 proceeds by inducting over the typed expansion assumption. The
only interesting cases are those related to seTLM definition and application, reproduced
below. In the following cases, let ∆̂ = 〈D; ∆〉 and Γ̂ = 〈G; Γ〉 and Ψ̂ = 〈A; Ψ〉.
Case (B.6n). We have

(1) ê = syntax â at τ̂′ by static eparse in ê′ by assumption
(2) ∆̂ ` τ̂′ τ′ type by assumption
(3) ∅ ∅ ` eparse : parr(Body; ParseResultSE) by assumption
(4) ∆̂ Γ̂ `Ψ̂,â a↪→setlm(τ′; eparse)

ê′ e : τ by assumption

64

(5) ∆ ` τ′ type by Lemma B.25 to (2)
(6) ∆ Γ ` e : τ by IH, part 1(a) on (4)

Case (B.6o). We have
(1) ê = â ‘b‘ by assumption
(2) A = A′, â a by assumption
(3) Ψ = Ψ′, a ↪→ setlm(τ; eparse) by assumption
(4) b ↓Body ebody by assumption
(5) eparse(ebody) ⇓ inj[SuccessE](eproto) by assumption
(6) eproto ↑PrExpr è by assumption

(7) ∅ ∅ `∆̂; Γ̂; Ψ̂; b è e : τ by assumption
(8) ∅ ∩ ∆ = ∅ by finite set

intersection
(9) ∅ ∩ dom(Γ) = ∅ by finite set

intersection
(10) ∅ ∪ ∆ ∅ ∪ Γ ` e : τ by IH, part 2 on (7),

(8), and (9)
(11) ∆ Γ ` e : τ by finite set and finite

function identity over
(10)

The proof of part 2 proceeds by induction over the proto-expression validation
assumption. The only interesting case governs references to spliced expressions. In the
following cases, let ∆̂app = 〈D; ∆app〉 and Γ̂app = 〈G; Γapp〉 and Ψ̂ = 〈A; Ψ〉.
Case (B.10n).

(1) è = splicede[m; n; τ̀] by assumption
(2) E = 〈D; ∆app〉; 〈G; Γapp〉; Ψ̂; b by assumption
(3) ∅ `ts(E) τ̀ τ type by assumption
(4) parseUExp(subseq(b; m; n)) = ê by assumption
(5) ∆̂app Γ̂app `Ψ̂ ê e : τ by assumption
(6) ∆ ∩ ∆app = ∅ by assumption
(7) dom(Γ) ∩ dom(Γapp) = ∅ by assumption
(8) ∆app Γapp ` e : τ by IH, part 1 on (5)
(9) ∆ ∪ ∆app Γ ∪ Γapp ` e : τ by Lemma B.2 over ∆

and Γ and exchange
on (8)

The mutual induction can be shown to be well-founded by showing that the following
numeric metric on the judgements that we induct over is decreasing:

‖∆̂ Γ̂ `Ψ̂ ê e : τ‖ = ‖ê‖

‖∆ Γ `∆̂app; Γ̂app; Ψ̂; b è e : τ‖ = ‖b‖

where ‖b‖ is the length of b and ‖ê‖ is the sum of the lengths of the literal bodies in ê
(see Appendix B.2.1.)

65

The only case in the proof of part 1 that invokes part 2 is Case (B.6o). There, we have
that the metric remains stable:

‖∆̂ Γ̂ `Ψ̂ â ‘b‘ e : τ‖

=‖∅ ∅ `∆̂; Γ̂; Ψ̂; b è e : τ‖
=‖b‖

The only case in the proof of part 2 that invokes part 1 is Case (B.10n). There,
we have that parseUExp(subseq(b; m; n)) = ê and the IH is applied to the judgement
∆̂app Γ̂app `Ψ̂ ê e : τ where ∆̂app = 〈D; ∆app〉 and Γ̂app = 〈G; Γapp〉 and Ψ̂ = 〈A; Ψ〉.
Because the metric is stable when passing from part 1 to part 2, we must have that it is
strictly decreasing in the other direction:

‖∆̂app Γ̂app `Ψ̂ ê e : τ‖ < ‖∆ Γ `∆̂app; Γ̂app; Ψ̂; b splicede[m; n; τ̀] e : τ‖

i.e. by the definitions above,
‖ê‖ < ‖b‖

This is established by appeal to the following two conditions. The first condition
states that an unexpanded expression constructed by parsing a textual sequence b is
strictly smaller, as measured by the metric defined above, than the length of b, because
some characters must necessarily be used to invoke a TLM and delimit each literal body.
Condition B.12 (Expression Parsing Monotonicity). If parseUExp(b) = ê then ‖ê‖ < ‖b‖.

The second condition simply states that subsequences of b are no longer than b.
Condition B.17 (Body Subsequencing). If subseq(b; m; n) = b′ then ‖b′‖ ≤ ‖b‖.

Combining these two conditions, we have that ‖ê‖ < ‖b‖ as needed.

Abstract Reasoning Principles

The following theorem summarizes the abstract reasoning principles that programmers
can rely on when applying an seTLM. A descripition of each named clause is given
in-line below.
Theorem B.32 (seTLM Abstract Reasoning Principles). If 〈D; ∆〉 〈G; Γ〉 `Ψ̂ â ‘b‘ e : τ
then:

1. (Typing 1) Ψ̂ = Ψ̂′, â a ↪→ setlm(τ; eparse) and ∆ Γ ` e : τ

The type of the expansion is consistent with the type annotation on the seTLM
definition.

2. b ↓Body ebody
3. eparse(ebody) ⇓ inj[SuccessE](eproto)

4. eproto ↑PrExpr è
5. (Segmentation) seg(è) segments b

The segmentation determined by the proto-expansion actually segments the lit-
eral body (i.e. each segment is in-bounds and the segments are non-overlapping.)

6. seg(è) = {splicedt[m′i; n′i]}0≤i<nty ∪ {splicede[mi; ni; τ̀i]}0≤i<nexp

66

7. (Typing 2) {〈D; ∆〉 ` parseUTyp(subseq(b; m′i; n′i)) τ′i type}0≤i<nty and {∆ `
τ′i type}0≤i<nty

Each spliced type has a well-formed expansion at the application site.
8. (Typing 3) {∅ `〈D;∆〉; b τ̀i τi type}0≤i<nexp and {∆ ` τi type}0≤i<nexp

Each type annotation on a reference to a spliced expression has a well-formed
expansion at the application site.

9. (Typing 4) {〈D; ∆〉 〈G; Γ〉 `Ψ̂ parseUExp(subseq(b; mi; ni)) ei : τi}0≤i<nexp and
{∆ Γ ` ei : τi}0≤i<nexp

Each spliced expression has a well-typed expansion consistent with its type
annotation.

10. (Capture Avoidance) e = [{τ′i /ti}0≤i<nty , {ei/xi}0≤i<nexp]e
′ for some {ti}0≤i<nty and

{xi}0≤i<nexp and e′

The final expansion can be decomposed into a term with variables in place of each
spliced type or expression. The expansions of these spliced types and expressions
can be substituted into this term in the standard capture avoiding manner.

11. (Context Independence) fv(e′) ⊂ {ti}0≤i<nty ∪ {xi}0≤i<nexp

The aforementioned decomposed term makes no mention of bindings in the
application site context.

Proof. The proof, which involves auxiliary lemmas about the decomposition of proto-
types and proto-expressions, is given in Appendix B.4.4.

This style of specifying the hygiene properties builds directly on the standard notion
of capture-avoiding substitution for general ABTs. Prior work on hygiene for macro sys-
tems has instead explicitly specified how fresh variables are generated during expansion
(e.g. [67].) Our formal approach appears therefore to be more elegant in this regard.

67

68

Chapter 4

Simple Pattern TLMs (spTLMs)

In Chapter 3, our interest was in situations where the programmer needed to construct
(a.k.a. introduce) a value. In this chapter, we consider situations where the programmer
needs to deconstruct (a.k.a. eliminate) a value by pattern matching. For example, consider
again the recursive labeled sum type rx defined in Figure 2.2. We can pattern match over
a value r of type rx using VerseML’s match construct as shown in the example below:

1 fun is_seq(r : rx) =>
2 match r with
3 Seq(Str(name), Seq(Str ": ", ssn)) => Some (name , ssn)
4 | _ => None
5 end

Match expressions consist of a scrutinee, here r, and a sequence of rules separated by
vertical bars, |, in the textual syntax. Each rule consists of a pattern and an expression
called the corresponding branch, separated by a double arrow, =>, in the textual syntax.
During evaluation, the value of the scrutinee is matched against each pattern sequentially.
If a match occurs, evaluation proceeds along the corresponding branch.

A variable can appear at most once in a valid pattern. In the corresponding branch,
the variable stands for the value it matched. For example, on Line 3 above, the pattern

Seq(Str(name), Seq(Str ": ", ssn))

matches values with the following structure:

Seq(Str(e1), Seq(Str ": ", e2))

where e1 is a value of type string and e2 is a value of type rx. The variables name and ssn
stand for the values of e1 and e2, respectively, in the corresponding branch expression.

On Line 4 above, the pattern _ is the wildcard pattern – it matches any value, like the
variable pattern, but binds no variables.

The behavior of the match construct when no pattern in the rule sequence matches a
value is to raise an exception indicating match failure. It is possible to statically determine
whether match failure is possible (i.e. whether there exist values of the scrutinee that do
not match any pattern in the rule sequence.) A rule sequence that cannot lead to match
failure is said to be exhaustive. Compilers warn the programmer when a rule sequence

69

is non-exhaustive. In the example above, our use of the wildcard pattern ensures that
match failure cannot occur.

It is also possible to statically decide when a rule is redundant relative to the preceding
rules. For example, if we add another rule at the end of the match expression above, it
will be redundant because all values match the wildcard pattern. Again, compilers warn
the programmer when a rule is redundant.

Nested pattern matching generalizes the projection and case analysis operators (i.e.
the eliminators) for products and sums (cf. miniVerseSE from the previous section.)

In Sec. 2.3.2, we considered a hypothetical dialect of VerseML called Vrx with derived
regex pattern forms. In this dialect, we can express the example above at lower syntactic
cost using standard POSIX regex syntax extended with pattern splicing forms:

1 fun f(r : rx) =>
2 match r with
3 /@name: %ssn/ => Some (name , ssn)
4 | _ => None
5 end

This dialect-oriented approach has problems, as discussed in Chapter 2.4.8.
Expression TLMs – introduced in Chapter 3 – can decrease the syntactic cost of

constructing a value, but expressions are syntactically and semantically distinct from
patterns, so we cannot simply apply an expression TLM within a pattern.1 We need a
new (albeit closely related) construct – the pattern TLM. In this chapter, we consider only
simple pattern TLMs (spTLMs), i.e. pattern TLMs that generate patterns that match
values of a single specified type, like rx. In Chapter 5, we will consider both expression
and pattern TLMs that specify type and module parameters (peTLMs and ppTLMs).

The organization of the remainder of this chapter mirrors that of Chapter 3. We
begin in Sec. 4.1 with a “tutorial-style” introduction to spTLMs in VerseML. Then, in
Sec. 4.2, we define an extension of miniVerseSE called miniVerseS that makes the intuitions
developed in Sec. 4.1 mathematically precise.

4.1 Simple Pattern TLMs By Example

4.1.1 Usage

The VerseML function f defined at the beginning of this chapter can be expressed at
lower syntactic cost by applying an spTLM named $rx as follows:

1 fun f(r : rx) =>
2 match r with
3 $rx /@name: %ssn/ => Some (name , ssn)
4 | _ => None
5 end

1The fact that certain concrete expression and pattern forms coincidentally overlap is immaterial to this
fundamental distinction.

70

Like expression TLMs, pattern TLMs are applied to generalized literal forms (see Figure
3.1.) During the typed expansion phase, the applied pattern TLM parses the body of the
literal form to generate a proto-expansion. The language validates the proto-expansion
according to criteria that we will establish in Sec. 4.1.5. If validation succeeds, the
language generates the final expansion (or more concisely, simply the expansion) of the
pattern. The expansion of the unexpanded pattern $rx /@name: %ssn/ from the example
above is the following pattern:

Seq(Str(name), Seq(Str ": ", ssn))

The checks for exhaustiveness and redundancy are performed post-expansion.
For convenience, the programmer can specify a TLM at the outset of a sequence

of rules that is applied to every outermost generalized literal form. For example, the
function is_dna_rx from Figure 2.3 and Figure 2.10 can be expressed using the spTLM
$rx as follows:

1 fun is_dna_rx(r : rx) : boolean =>
2 match r using $rx with
3 | /A/ => True
4 | /T/ => True
5 | /G/ => True
6 | /C/ => True
7 | /%(r1)%(r2)/ => (is_dna_rx r1) andalso (is_dna_rx r2)
8 | /%(r1)|%(r2)/ => (is_dna_rx r1) andalso (is_dna_rx r2)
9 | /%(r)*/ => is_dna_rx r’
10 | _ => False
11 end

4.1.2 Definition

The definition of the pattern TLM $rx shown being applied in the examples above takes
the following form:

syntax $rx at rx for patterns by
static fn(b : body) : parse_result(proto_pat) =>
(* regex pattern parser here *)

end

This definition first names the pattern TLM $rx. Pattern TLM names, like expression
TLM names, must begin with the dollar sign ($) to distinguish them from labels. Pattern
TLM names and expression TLM names are tracked separately, i.e. an expression TLM
and a pattern TLM can have the same name without conflict (as is the case here – the
expression TLM that was described in Sec. 3.1.2 is also named $rx.)

The sort qualifier for patterns indicates that this is a pattern TLM definition, rather
than an expression TLM definition (the sort qualifier for expressions can be written for
expression TLMs, though when the sort qualifier is omitted this is the default.) Defining
both an expression TLM and a pattern TLM with the same name at the same type is a
common idiom, so VerseML defines a derived form for combining their definitions:

71

type proto_pat = rec(proto_pat =>
(* no variable pattern form *)
Wild

+ (* ... *)
+ SplicedP of segment * proto_typ)

Figure 4.1: Abbreviated definition of proto_pat in the VerseML prelude.

syntax $rx at rx for expressions by
static fn(body : body) : parse_result(proto_expr) =>
(* regex expression parser here *)

for patterns by
static fn(body : body) : parse_result(proto_pat) =>
(* regex pattern parser here *)

end

Pattern TLMs, like expression TLMs, must specify a static parse function. For pattern
TLMs, the parse function must be of type body -> parse_result(proto_pat), where body
and parse_result are defined as in Figure 3.2.

The type proto_pat, defined in Figure 4.1, is analagous to the types proto_expr and
proto_typ defined in Figure 3.3. This type classifies encodings of proto-patterns. Every
pattern form has a corresponding proto-pattern form, with the exception of variable
patterns (for reasons explained in Sec. 4.1.5 below.) There is also an additional constructor,
SplicedP, to allow a proto-pattern to refer indirectly to spliced patterns by their location
within the literal body.

4.1.3 Splicing

Spliced patterns are unexpanded patterns that appear directly within the literal body of
another unexpanded pattern. For example, name and ssn appear within the unexpanded
pattern $rx /@name: %ssn/. When the parse function determines that a subsequence of
the literal body should be taken as a spliced pattern (here, by recognizing the characters
@ or % followed by a variable or parenthesized pattern), it can refer to it within the proto-
expansion that it computes using the SplicedP variant of the proto_pat type shown in
Figure 4.1. This variant takes a value of type segment because proto-patterns refer to
spliced patterns indirectly by their position within the literal body. This prevents pattern
TLMs from “forging” a spliced pattern (i.e. claiming that some pattern is a spliced
pattern, even though it does not appear in the literal body.) Like references to spliced
expressions, each reference to a spliced pattern must also specify a type.

The proto-expansion generated by the pattern TLM $rx for the example above, if
written in a hypothetical concrete syntax where references to spliced patterns are written
spliced<startIdx; endIdx; ty>, is:

Seq(Str(spliced <1; 4; string >),
Seq(Str ": ", spliced <8; 10; rx >))

72

Here, spliced<1; 4; string> refers to the string subpattern name by location, and simi-
larly, spliced<8; 10; rx> refers to the regex subpattern ssn by location.

4.1.4 Segmentations

The segmentation of a proto-pattern is the finite set of references to spliced types or pat-
terns. As with references to spliced expressions, the language checks that the references
to spliced terms in a proto-expansion 1) are within bounds of the literal body; 2) are
non-overlapping; and 3) operate at a consistent sort and type.

4.1.5 Proto-Expansion Validation

After the pattern TLM generates a proto-expansion, the language must validate it to
generate a final expansion. This also serves to maintain a reasonable type and binding
discipline.

Typing

To maintain a reasonable type discipline, proto-expansion validation checks:
1. that each spliced pattern matches values of the type indicated in the summary; and

2. that the final expansion matches values of the type specified in the type annotation
on the pattern TLM definition, e.g. the type rx above.

Hidden Bindings

To maintain a useful binding discipline, i.e. to allow programmers to reason about
variable binding without examining TLM expansions directly, the validation process
allows variable patterns to occur only in spliced patterns (just as variables bound at the
use site can only appear in spliced expressions when using an expression TLM.) Indeed,
there is no constructor for the type proto_pat corresponding to a variable pattern. This
prohibition on “hidden bindings” is beneficial because the client can rely on the fact that
no variables other than those that appear directly within the pattern at the application
site are bound in the corresponding branch expression. This prohibition on hidden
bindings is analagous to the prohibition on capture discussed in Sec. 3.1.5 (differing in
that it is concerned with the bindings visible to the corresponding branch expression,
rather than to spliced expressions.)

4.1.6 Final Expansion

If validation succeeds, the semantics generates the final expansion of the pattern where the
references to spliced patterns in the proto-pattern have been replaced by their respective
final expansions. For example, the final expansion of $rx /@name: %ssn/ is:

Seq(Str(name), Seq(Str ": ", ssn))

73

Sort Operational Form Description
Typ τ ::= · · · (see Figure 3.4)
Exp e ::= · · · (see Figure 3.4)

match[n](e; {ri}1≤i≤n) match
Rule r ::= rule(p.e) rule
Pat p ::= x variable pattern

wildp wildcard pattern
foldp(p) fold pattern
tplp[L]({i ↪→ pi}i∈L) labeled tuple pattern
injp[`](p) injection pattern

Figure 4.2: Syntax of the miniVerseS expanded language (XL)

4.2 miniVerseS

To make the intuitions developed in the previous section about pattern TLMs precise, we
now introduce miniVerseS, a reduced dialect of VerseML with support for both seTLMs
and spTLMs. Like miniVerseSE, miniVerseS consists of an unexpanded language (UL) defined
by typed expansion to a standard expanded language (XL). The full definition of miniVerseS
is given in Appendix B superimposed upon the definition of miniVerseSE. We will focus
on the rules specifically related to pattern matching and spTLMs below.

Our formulation of pattern matching is adapted from Harper’s formulation in Practi-
cal Foundations for Programming Languages, First Edition [61].

4.2.1 Syntax of the Expanded Language

Figure 4.2.1 defines the syntax of the miniVerseS expanded language (XL), which consists of
types, τ, expanded expressions, e, expanded rules, r, and expanded patterns, p. The miniVerseS
XL differs from the miniVerseSE XL only by the addition of the pattern matching operator
and related forms.2

The main syntactic feature of note is that the rule form places a pattern, p, in the
binder position:

rule(p.e)

This can be understood as binding all of the variables in p for use within e. A small
technical note: the ABT renaming meta-operation (which underlies the notion of alpha-
equivalence) requires that these variables appear as a sequence. Rather than redefining
this metaoperation explicitly, we implicitly determine such a sequence by performing
a depth-first traversal, with traversal of the labeled tuple pattern form, tplp[L]({i ↪→
pi}i∈L), relying on some (arbitrary) total ordering on labels.

2The projection and case analysis operators can be defined in terms of the match operator, but to
simplify the appendix, we leave them in place.

74

4.2.2 Statics of the Expanded Language

The statics of the XL is defined by judgements of the following form:

Judgement Form Description
∆ ` τ type τ is a well-formed type
∆ Γ ` e : τ e is assigned type τ
∆ Γ ` r : τ Z⇒ τ′ r takes values of type τ to values of type τ′

∆ ` p : τ
Γ p matches values of type τ and generates hypotheses Γ

The types of miniVerseS are exactly those of miniVerseSE, described in Sec. 3.2, so the
type formation judgement, ∆ ` τ type, is inductively defined by Rules (B.1) as before.

The typing judgement, ∆ Γ ` e : τ, assigns types to expressions and is inductively
defined by Rules (B.2), which consist of:

• The typing rules of miniVerseSE, i.e. Rules (B.2a) through (B.2k).
• The following rule for match expressions:

∆ Γ ` e : τ {∆ Γ ` ri : τ Z⇒ τ′}1≤i≤n

∆ Γ ` match[n](e; {ri}1≤i≤n) : τ′
(B.2l)

The first premise of Rule (B.2l) assigns a type, τ, to the scrutinee, e. The second premise
then ensures that each rule ri, for 1 ≤ i ≤ n, takes values of type τ to values of the
type of the match expression as a whole, τ′, according to the rule typing judgement,
∆ Γ ` r : τ Z⇒ τ′, which is defined mutually with Rules (B.2) by the following rule:

∆ ` p : τ
Γ′ ∆ Γ ∪ Γ′ ` e : τ′

∆ Γ ` rule(p.e) : τ Z⇒ τ′
(B.3)

The first premise invokes the pattern typing judgement, ∆ ` p : τ
Γ′, to check that the
pattern, p, matches values of type τ (defined assuming ∆), and to gather the typing
hypotheses that the pattern generates in a typing context, Γ′. (Algorithmically, the typing
context is the “output” of the pattern typing judgement.) The second premise of Rule
(B.3) extends the incoming typing context, Γ, with the hypotheses generated by pattern
typing, Γ, and checks the branch expression, e, against the branch type, τ′.

The pattern typing judgement is inductively defined by Rules (B.4). Rule (B.4a)
specifies that a variable pattern, x, matches values of any type, τ, and generates the
hypothesis that x has type τ:

∆ ` x : τ
x : τ
(B.4a)

Rule (B.4b) specifies that a wildcard pattern also matches values of any type, τ, but
wildcard patterns generate no hypotheses:

∆ ` wildp : τ
∅
(B.4b)

Rule (B.4c) specifies that a fold pattern, foldp(p), matches values of the recursive type
rec(t.τ) if p matches values of a single unrolling of the recursive type, [rec(t.τ)/t]τ:

∆ ` p : [rec(t.τ)/t]τ
Γ
∆ ` foldp(p) : rec(t.τ)
Γ

(B.4c)

75

Rule (B.4d) specifies that a labeled tuple pattern matches values of the labeled product
type prod[L]({i ↪→ τi}i∈L). Labeled tuple patterns, tplp[L]({i ↪→ pi}i∈L), specify a
subpattern pi for each label i ∈ L. The premise checks each subpattern pi against the
corresponding type τi, generating hypotheses Γi. The conclusion of the rule gathers these
hypotheses into a single pattern typing context, ∪i∈LΓi:

{∆ ` pi : τi
Γi}i∈L

∆ ` tplp[L]({i ↪→ pi}i∈L) : prod[L]({i ↪→ τi}i∈L)
∪i∈L Γi
(B.4d)

The definition of typing context extension, applied iteratively here, implicitly requires
that the pattern typing contexts Γi be mutually disjoint, i.e.

{{dom(Γi) ∩ dom(Γj) = ∅}j∈L\i}i∈L

Finally, Rule (B.4e) specifies that an injection pattern, injp[`](p), matches values of
labeled sum types of the form sum[L, `]({i ↪→ τi}i∈L; ` ↪→ τ), i.e. labeled sum types that
define a case for the label `. The pattern p must match value of type τ and generate
hypotheses Γ:

∆ ` p : τ
Γ
∆ ` injp[`](p) : sum[L, `]({i ↪→ τi}i∈L; ` ↪→ τ)
Γ

(B.4e)

4.2.3 Structural Dynamics

The structural dynamics of miniVerseS is defined as a transition system, and is organized
around judgements of the following form:

Judgement Form Description
e 7→ e′ e transitions to e′

e val e is a value
e matchfail e raises match failure

We also define auxiliary judgements for iterated transition, e 7→∗ e′, and evaluation, e ⇓ e′.
Definition B.6 (Iterated Transition). Iterated transition, e 7→∗ e′, is the reflexive, transitive
closure of the transition judgement, e 7→ e′.
Definition B.7 (Evaluation). e ⇓ e′ iff e 7→∗ e′ and e′ val.

As in Sec. 3.2.4, our subsequent developments do not make mention of particular
rules in the dynamics, nor do they make mention of other judgements, not listed above,
that are used only for defining the dynamics of the match operator, so we do not produce
these details here. Instead, it suffices to state the following conditions.

The Canonical Forms condition, which characterizes well-typed values, is identical to
the corresponding condition in the structural dynamics of miniVerseSE, i.e. Condition B.8.

The Preservation condition ensures that evaluation preserves typing, and is again
identical to the corresponding condition in the structural dynamics of miniVerseSE.
Condition B.9 (Preservation). If ` e : τ and e 7→ e′ then ` e′ : τ.

76

The Progress condition ensures that evaluation of a well-typed expanded expression
cannot “get stuck”. We must consider the possibility of match failure in this condition.
Condition B.10 (Progress). If ` e : τ then either e val or e matchfail or there exists an e′ such
that e 7→ e′.

Together, these two conditions constitute the Type Safety Condition.
We do not define the semantics of exhaustiveness and redundancy checking here,

because these can be checked post-expansion (but see [61] for a formal account.)

4.2.4 Syntax of the Unexpanded Language

The syntax of the miniVerseS unexpanded language (UL) extends the syntax of the
miniVerseSE unexpanded language as shown in Figure 4.3.

Sort Stylized Form Description
UTyp τ̂ ::= · · · (see Figure 3.5)
UExp ê ::= · · · (see Figure 3.5)

match ê {r̂i}1≤i≤n match
syntax â at τ̂ for patterns by static e in ê spTLM definition

URule r̂ ::= p̂⇒ ê match rule
UPat p̂ ::= x̂ identifier pattern

_ wildcard pattern
fold(p̂) fold pattern
〈{i ↪→ p̂i}i∈L〉 labeled tuple pattern
inj[`](p̂) injection pattern
â ‘b‘ spTLM application

Figure 4.3: Syntax of the miniVerseS unexpanded language

As in miniVerseSE, each expanded form has a corresponding unexpanded form. We
refer to these as the common forms. The correspondence is defined in Appendix B.2.1.
There are two forms related specifically to spTLMs, highlighted in yellow above: the
spTLM definition form and the spTLM application form.

In addition to the stylized syntax given in Figure 3.5, there is also a context-free textual
syntax for the UL. Again, we need only posit the existence of partial metafunctions
parseUTyp(b), parseUExp(b) and parseUPat(b) that go from character sequences, b, to
unexpanded types, expressions and patterns, respectively.
Condition B.11 (Textual Representability).

1. For each τ̂, there exists b such that parseUTyp(b) = τ̂.
2. For each ê, there exists b such that parseUExp(b) = ê.
3. For each p̂, there exists b such that parseUPat(b) = p̂.

77

4.2.5 Typed Expansion

Unexpanded terms are checked and expanded simultaneously according to the typed
expansion judgements:

Judgement Form Description
∆̂ ` τ̂ τ type τ̂ has well-formed expansion τ

∆̂ Γ̂ `Ψ̂; Φ̂ ê e : τ ê has expansion e of type τ

∆̂ Γ̂ `Ψ̂; Φ̂ r̂ r : τ Z⇒ τ′ r̂ has expansion r taking values of type τ to values of type τ′

∆̂ `Φ̂ p̂ p : τ
̂Γ p̂ has expansion p matching against τ generating hypotheses Γ̂

Type Expansion

The type expansion judgement, ∆̂ ` τ̂ τ type, is inductively defined by Rules (B.5) as
before.

Typed Expression, Rule and Pattern Expansion

The typed expression expansion judgement, ∆̂ Γ̂ `Ψ̂; Φ̂ ê e : τ, and the typed rule expansion
judgement, ∆̂ Γ̂ `Ψ̂; Φ̂ r̂ r : τ Z⇒ τ′ are defined mutually inductively by Rules (B.6) and
Rule (B.7). The typed pattern expansion judgement, ∆̂ `Φ̂ p̂ p : τ
̂Γ, is inductively
defined by Rules (B.8).

Rules (B.6a) through (B.6o) are adapted directly from miniVerseSE, differing only in
that the spTLM context, Φ̂, passes opaquely through them.

There is one new common unexpanded expression form in miniVerseS: the unex-
panded match form. Rule (B.6p) governs this form:

∆̂ Γ̂ `Φ̂; Ψ̂ ê e : τ {∆̂ Γ̂ `Ψ̂; Φ̂ r̂i ri : τ Z⇒ τ′}1≤i≤n

∆̂ Γ̂ `Ψ̂; Φ̂ match ê {r̂i}1≤i≤n match[n](e; {ri}1≤i≤n) : τ′
(B.6p)

The typed rule expansion judgement is defined by Rule (B.7), below:

∆̂ `Φ̂ p̂ p : τ
〈G ′; Γ′〉 ∆̂ 〈G] G ′; Γ ∪ Γ′〉 `Ψ̂; Φ̂ ê e : τ′

∆̂ 〈G; Γ〉 `Ψ̂; Φ̂ urule(p̂.ê) rule(p.e) : τ Z⇒ τ′
(B.7)

Because unexpanded terms mention only expression identifiers, which are given meaning
by expansion to variables, the pattern typing rules must generate both an identifier
expansion context, G ′, and a typing context, Γ′. In the second premise of the rule
above, we update the “incoming” identifier expansion context, G, with the new identifier
expansions, G ′, and correspondingly, extend the “incoming” typing context, Γ, with the
new typing hypotheses, Γ′.

Rules (B.8a) through (B.8e), reproduced below, define typed expansion of unexpanded
patterns of common form.

∆̂ `Φ̂ x̂ x : τ
〈x̂ x; x : τ〉
(B.8a)

78

∆̂ `Φ̂ _ wildp : τ
〈∅; ∅〉
(B.8b)

∆̂ `Φ̂ p̂ p : [rec(t.τ)/t]τ
̂Γ

∆̂ `Φ̂ fold(p̂) foldp(p) : rec(t.τ)
̂Γ
(B.8c)

τ = prod[L]({i ↪→ τi}i∈L)

{∆̂ `Φ̂ p̂i pi : τi
̂Γi}i∈L

∆̂ `Φ̂ 〈{i ↪→ p̂i}i∈L〉 tplp[L]({i ↪→ pi}i∈L) : τ
]i∈L Γ̂i
(B.8d)

∆̂ `Φ̂ p̂ p : τ
̂Γ

∆̂ `Φ̂ inj[`](p̂) injp[`](p) : sum[L, `]({i ↪→ τi}i∈L; ` ↪→ τ)
̂Γ
(B.8e)

Again, the unexpanded and expanded pattern forms in the conclusion correspond and
the premises correspond to those of the corresponding pattern typing rule, i.e. Rules
(B.4a) through (B.4e), respectively. The spTLM context, Φ̂, passes through these rules
opaquely. In Rule (B.8d), the conclusion of the rule collects all of the identifier expansions
and hypotheses generated by the subpatterns. We define Γ̂i as shorthand for 〈Gi; Γi〉 and
]i∈LΓ̂i as shorthand for

〈]i∈LGi;∪i∈LΓi〉
By the definition of iterated extension of finite functions, we implicitly have that no
identifiers or variables can be duplicated, i.e. that

{{dom(Gi) ∩ dom(Gj) = ∅}j∈L\i}i∈L

and
{{dom(Γi) ∩ dom(Γj) = ∅}j∈L\i}i∈L

spTLM Definition and Application Two rules remain: Rules (B.6q) and (B.8f), which
define spTLM definition and application, respectively. These rules are defined in the
next two subsections, respectively.

4.2.6 spTLM Definition

The spTLM definition form is

syntax â at τ̂ for patterns by static eparse in ê

An unexpanded expression of this form defines a spTLM identified as â with unexpanded
type annotation τ̂ and parse function eparse for use within ê.

Rule (B.6q) defines typed expansion of spTLM definitions:

∆̂ ` τ̂ τ type ∅ ∅ ` eparse : parr(Body; ParseResultSP)
eparse ⇓ e′parse ∆̂ Γ̂ `Ψ̂; Φ̂,â a↪→sptlm(τ; e′parse)

ê e : τ′

∆̂ Γ̂ `Ψ̂; Φ̂ syntax â at τ̂ for patterns by static eparse in ê e : τ′
(B.6q)

This rule is similar to Rule (B.6n), which governs seTLM definitions. The premises of this
rule can be understood as follows, in order:

79

1. The first premise expands the unexpanded type annotation.

2. The second premise checks that the parse function, eparse, is a closed expanded
function of the following type:

parr(Body; ParseResultSE)

The assumed type Body is characterized as before by Condition B.16.
ParseResultSP, like ParseResultSE, abbreviates a labeled sum type that distin-
guishes parse errors from successful parses:

LSP
def
= ParseError, SuccessP

ParseResultSP
def
= sum[LSP](ParseError ↪→ 〈〉, SuccessP ↪→ PrPat)

The type abbreviated PrPat classifies encodings of proto-patterns, p̀. The syntax of
proto-patterns, defined in Figure 4.4, will be described when we describe proto-
expansion validation in Sec. 4.2.8. The mapping from proto-patterns to values of
type PrPat is defined by the proto-pattern encoding judgement, p̀ ↓PrPat e. An inverse
mapping is defined by the proto-pattern decoding judgement, e ↑PrPat p̀.

Judgement Form Description
p̀ ↓PrPat e p̀ has encoding e
e ↑PrPat p̀ e has decoding p̀

Again, rather than picking a particular definition of PrPat and defining the judge-
ments above inductively against it, we only state the following condition, which
establishes an isomorphism between values of type PrPat and proto-patterns.
Condition B.23 (Proto-Pattern Isomorphism).

(a) For every p̀, we have p̀ ↓PrPat eproto for some eproto such that ` eproto : PrPat and
eproto val.

(b) If ` eproto : PrPat and eproto val then eproto ↑PrPat p̀ for some p̀.
(c) If p̀ ↓PrPat eproto then eproto ↑PrPat p̀.
(d) If ` eproto : PrPat and eproto val and eproto ↑PrPat p̀ then p̀ ↓PrPat eproto.
(e) If p̀ ↓PrPat eproto and p̀ ↓PrPat e′proto then eproto = e′proto.

(f) If ` eproto : PrPat and eproto val and eproto ↑PrPat p̀ and eproto ↑PrPat p̀′ then p̀ = p̀′.
3. The third premise of Rule (B.6q) evaluates the parse function to a value.

4. The final premise of Rule (B.6q) extends the spTLM context, Φ̂, with the newly
determined spTLM definition, and proceeds to assign a type, τ′, and expansion, e,
to ê. The conclusion of Rule (B.6q) assigns this type and expansion to the spTLM
definition as a whole.
spTLM contexts, Φ̂, are of the form 〈A; Φ〉, where A is a TLM identifier expansion
context, defined previously, and Φ is a spTLM definition context.

80

An spTLM definition context, Φ, is a finite function mapping each TLM name
a ∈ dom(Φ) to an expanded spTLM definition, a ↪→ sptlm(τ; eparse), where τ is
the spTLM’s type annotation, and eparse is its parse function. We write Φ, a ↪→
sptlm(τ; eparse) when a /∈ dom(Φ) for the extension of Φ that maps a to a ↪→
sptlm(τ; eparse). We define Φ̂, â a ↪→ sptlm(τ; eparse), when Φ̂ = 〈A; Φ〉, as an
abbreviation of

〈A] â a; Φ, a ↪→ sptlm(τ; eparse)〉

4.2.7 spTLM Application

The unexpanded pattern form for applying an spTLM named â to a literal form with
literal body b is:

â ‘b‘

This stylized form is identical to the stylized form for seTLM application, differing in
that appears within the syntax of unexpanded patterns, p̂, rather than unexpanded
expressions, ê.

Rule (B.8f), below, governs spTLM application.

Φ̂ = Φ̂′, â a ↪→ sptlm(τ; eparse)
b ↓Body ebody eparse(ebody) ⇓ inj[SuccessP](eproto) eproto ↑PrPat p̀

seg(p̀) segments b p̀ p : τ
∆̂; Φ̂; b Γ̂

∆̂ `Φ̂ â ‘b‘ p : τ
̂Γ
(B.8f)

This rule is similar to Rule (B.6o), which governs seTLM application. Its premises can be
understood as follows, in order:

1. The first premise ensures that â has been defined and extracts the type annotation
and parse function.

2. The second premise determines the encoding of the literal body, ebody.

3. The third premise applies the parse function eparse to the encoding of the literal
body. If parsing succeeds, then eproto will be a value of type PrPat (assuming a well-
formed spTLM context, by application of the Preservation assumption, Assumption
B.9.) We call eproto the encoding of the proto-expansion.
If the parse function produces a value labeled ParseError, then typed expansion
fails. No rule is necessary to handle this case.

4. The fourth premise decodes the encoding of the proto-expansion to produce the
proto-expansion, p̀, itself.

5. The fifth premise ensures that the proto-expansion induces a valid segmentation of
b, i.e. that the spliced pattern locations are within bounds and non-overlapping.

6. The final premise of Rule (B.6o) validates the proto-expansion and simultaneously
generates the final expansion, e, and generates hypotheses Γ̂, which appear in the
conclusion of the rule. The proto-pattern validation judgement is discussed next.

81

4.2.8 Syntax of Proto-Expansions

Sort Operational Form Stylized Form Description
PrTyp τ̀ ::= · · · · · · (see Figure 3.6)
PrExp è ::= · · · · · · (see Figure 3.6)

prmatch[n](è; {r̀i}1≤i≤n) match è {r̀i}1≤i≤n match
PrRule r̀ ::= prrule(p.è) p⇒ è rule
PrPat p̀ ::= prwildp _ wildcard pattern

prfoldp(p) fold(p) fold pattern
prtplp[L]({i ↪→ p̀i}i∈L) 〈{i ↪→ p̀i}i∈L〉 labeled tuple pattern
prinjp[`](p̀) inj[`](p̀) injection pattern
splicedp[m; n; τ̀] splicedp[m; n; τ̀] spliced pattern ref.

Figure 4.4: Syntax of miniVerseS proto-expansions

Figure 4.4 defines the syntax of proto-types, τ̀, proto-expressions, è, proto-rules, r̀,
and proto-patterns, p̀. Proto-expansion terms are identified up to α-equivalence in the
usual manner.

Each expanded form, with the exception of the variable pattern form, maps onto a
proto-expansion form. We refer to these collectively as the common proto-expansion forms.
The mapping is given explicitly in Appendix B.3.

The main proto-expansion form of interest here, highlighted in yellow, is the proto-
pattern form for references to spliced unexpanded patterns.

4.2.9 Proto-Expansion Validation

The proto-expansion validation judgements validate proto-expansion terms and simultane-
ously generate their final expansions.

Judgement Form Description
∆ `T τ̀ τ type τ̀ has well-formed expansion τ
∆ Γ `E è e : τ è has expansion e of type τ
∆ Γ `E r̀ r : τ Z⇒ τ′ r̀ has expansion r taking values of type τ to values of type τ′

p̀ p : τ
P Γ̂ p̀ has expansion p matching against τ generating assumptions Γ̂

Type splicing scenes, T, are of the form ∆̂; b. Expression splicing scenes, E, are of the
form ∆̂; Γ̂; Ψ̂; Φ̂; b. Pattern splicing scenes, P, are of the form ∆̂; Φ̂; b. As in miniVerseSE,
their purpose is to “remember”, during proto-expansion validation, the contexts and the
literal body from the TLM application site (cf. Rules (B.6o) and (B.8f)), because these are
necessary to validate references to spliced terms. We write ts(E) for the type splicing
scene constructed by dropping unnecessary contexts from E:

ts(∆̂; Γ̂; Ψ̂; Φ̂; b) = ∆̂; b

82

Proto-Type Validation

The proto-type validation judgement, ∆ `T τ̀ τ type, is inductively defined by Rules
(B.9), which were already described in Sec. 3.2.10.

Proto-Expansion Expression and Rule Validation

The proto-expression validation judgement, ∆ Γ `E è e : τ, and the proto-rule validation
judgement, ∆ Γ `E r̀ r : τ Z⇒ τ′, are defined mutually inductively with Rules (B.6) and
Rule (B.7) by Rules (B.10) and Rule (B.11), respectively.

Rules (B.10a) through (B.10n) were described in Sec. 3.2.10. Rule (B.10o) governs
match proto-expressions:

∆ Γ `E è e : τ {∆ Γ `E r̀i ri : τ Z⇒ τ′}1≤i≤n

∆ Γ `E prmatch[n](è; {r̀i}1≤i≤n) match[n](e; {ri}1≤i≤n) : τ′
(B.10o)

Rule (B.11) governs proto-rules:

∆ ` p : τ
Γ ∆ Γ ∪ Γ `E è e : τ′

∆ Γ `E prrule(p.è) rule(p.e) : τ Z⇒ τ′
(B.11)

Notice that proto-rules bind expanded patterns, rather than proto-patterns. This is
because proto-rules appear in proto-expressions, which are generated by seTLMs. Proto-
patterns are generated exclusively by spTLMs.

Proto-Pattern Validation

spTLMs generate candidate expansions of proto-pattern form, as described in Sec. 4.2.7.
The proto-pattern validation judgement, p̀ p : τ
P Γ̂, which appears as the final premise
of Rule (B.8f), validates proto-patterns and simultaneously generates the final expansion,
p, and the unexpanded typing hypotheses Γ̂.

The proto-pattern validation judgement is defined mutually inductively with Rules
(B.8) by Rules (B.12), reproduced below.

prwildp wildp : τ
P 〈∅; ∅〉
(B.12a)

p̀ p : [rec(t.τ)/t]τ
P Γ̂

prfoldp(p̀) foldp(p) : rec(t.τ)
P Γ̂
(B.12b)

τ = prod[L]({i ↪→ τi}i∈L)

{ p̀i pi : τi

P Γ̂i}i∈L

prtplp[L]({i ↪→ p̀i}i∈L) tplp[L]({i ↪→ pi}i∈L) : τ
P]i∈LΓ̂i
(B.12c)

p̀ p : τ
P Γ̂

prinjp[`](p̀) injp[`](p) : sum[L, `]({i ↪→ τi}i∈L; ` ↪→ τ)
P Γ̂
(B.12d)

83

∅ `∆̂; b τ̀ τ type parseUPat(subseq(b; m; n)) = p̂ ∆̂ `Φ̂ p̂ p : τ
̂Γ

splicedp[m; n; τ̀] p : τ
∆̂; Φ̂; b Γ̂
(B.12e)

Rules (B.12a) through (B.12d) govern proto-patterns of common form, and behave
like the corresponding pattern typing rules, i.e. Rules (B.4b) through (B.4e). Rule (B.12e)
governs references to spliced unexpanded patterns. The first premise validates the type
annotation. The second premise parses the indicated subsequence of the literal body,
b, to produce the referenced unexpanded pattern, p̂, and the third premise types and
expands p̂ under the spTLM context Φ̂ from the spTLM application site, generating the
hypotheses Γ̂. These are the hypotheses generated in the conclusion of the rule.

Hypotheses can be generated only by spliced subpatterns, so there is no proto-
pattern form corresponding to variable patterns. This achieves the prohibition on hidden
bindings described in Sec. 4.1.5. We consider this invariant formally below.

4.2.10 Metatheory

The following theorem establishes that typed pattern expansion produces an expanded
pattern that matches values of the specified type and generates the specified hypotheses.
We must mutually state the corresponding proposition about proto-patterns, because the
relevant judgements are mutually defined.
Theorem B.27 (Typed Pattern Expansion).

1. If 〈D; ∆〉 `〈A;Φ〉 p̂ p : τ
〈G; Γ〉 then ∆ ` p : τ
Γ.

2. If p̀ p : τ
〈D;∆〉; 〈A;Φ〉; b 〈G; Γ〉 then ∆ ` p : τ
Γ.
Proof. By mutual rule induction on Rules (B.8) and Rules (B.12). The full proof is given
in Appendix B.4.2. We will reproduce only the interesting cases below.

1. The only interesting case in the proof of part 1 is the case for spTLM application. In
the following, let ∆̂ = 〈D; ∆〉 and Γ̂ = 〈G; Γ〉 and Φ̂ = 〈A; Φ〉.
Case (B.8f).

(1) p̂ = â ‘b‘ by assumption
(2) A = A′, â a by assumption
(3) Φ = Φ′, a ↪→ sptlm(τ; eparse) by assumption
(4) b ↓Body ebody by assumption
(5) eparse(ebody) ⇓ inj[SuccessP](eproto) by assumption
(6) eproto ↑PrPat p̀ by assumption

(7) p̀ p : τ
∆̂; 〈A;Φ〉; b 〈G; Γ〉 by assumption
(8) ∆ ` p : τ
Γ by IH, part 2 on (7)

2. The only interesting case in the proof of part 2 is the case for spliced patterns. In
the following, let Γ̂ = 〈G; Γ〉 and ∆̂ = 〈D; ∆〉 and Φ̂ = 〈A; Φ〉.
Case (B.12e).

(1) p̀ = splicedp[m; n; τ̀] by assumption
(2) ∅ `∆̂; b τ̀ τ type by assumption
(3) parseUExp(subseq(b; m; n)) = p̂ by assumption

84

(4) ∆̂ `Φ̂ p̂ p : τ
̂Γ by assumption
(5) ∆ ` p : τ
Γ by IH, part 1 on (4)

The mutual induction can be shown to be well-founded by showing that the following
numeric metric on the judgements that we induct on is decreasing:

‖∆̂ `Φ̂ p̂ p : τ
̂Γ‖ = ‖ p̂‖

‖ p̀ p : τ
∆̂; Φ̂; b Γ̂‖ = ‖b‖

where ‖b‖ is the length of b and ‖ p̂‖ is the sum of the lengths of the literal bodies in p̂
(see Appendix B.2.1.)

The only case in the proof of part 1 that invokes part 2 is Case (B.8f). There, we have
that the metric remains stable:

‖∆̂ `Φ̂ â ‘b‘ p : τ
̂Γ‖

=‖ p̀ p : τ
∆̂; Φ̂; b Γ̂‖
=‖b‖

The only case in the proof of part 2 that invokes part 1 is Case (B.12e). There,
we have that parseUPat(subseq(b; m; n)) = p̂ and the IH is applied to the judgement
∆̂ `Φ̂ p̂ p : τ
̂Γ. Because the metric is stable when passing from part 1 to part 2, we
must have that it is strictly decreasing in the other direction:

‖∆̂ `Φ̂ p̂ p : τ
̂Γ‖ < ‖splicedp[m; n; τ̀] p : τ
∆̂; Φ̂; b Γ̂‖

i.e. by the definitions above,
‖ p̂‖ < ‖b‖

This is established by appeal to Condition B.17, which states that subsequences of
b are no longer than b, and the following condition, which states that an unexpanded
pattern constructed by parsing a textual sequence b is strictly smaller, as measured by
the metric defined above, than the length of b, because some characters must necessarily
be used to apply the pattern TLM and delimit each literal body.
Condition B.13 (Pattern Parsing Monotonicity). If parseUPat(b) = p̂ then ‖ p̂‖ < ‖b‖.

Combining Conditions B.17 and B.13, we have that ‖ê‖ < ‖b‖ as needed.

Finally, the following theorem establishes that typed expression and rule expansion
produces expanded expressions and rules of the same type under the same contexts.
Again, it must be stated mutually with the corresponding theorem about candidate
expansion expressions and rules because the judgements are mutually defined.
Theorem 4.9 (Typed Expansion).

1. (a) If 〈D; ∆〉 〈G; Γ〉 `Ψ̂; Φ̂ ê e : τ then ∆ Γ ` e : τ.
(b) If 〈D; ∆〉 〈G; Γ〉 `Ψ̂; Φ̂ r̂ r : τ Z⇒ τ′ then ∆ Γ ` r : τ Z⇒ τ′.

2. (a) If ∆ Γ `〈D;∆app〉; 〈G;Γapp〉; Ψ̂; Φ̂; b è e : τ and ∆ ∩ ∆app = ∅ and dom(Γ) ∩
dom(Γapp) = ∅ then ∆ ∪ ∆app Γ ∪ Γapp ` e : τ.

85

(b) If ∆ Γ `〈D;∆app〉; 〈G;Γapp〉; Ψ̂; Φ̂; b r̀ r : τ Z⇒ τ′ and ∆ ∩ ∆app = ∅ and dom(Γ) ∩
dom(Γapp) = ∅ then ∆ ∪ ∆app Γ ∪ Γapp ` r : τ Z⇒ τ′.

Proof. By mutual rule induction on Rules (B.6), Rule (B.7), Rules (B.10) and Rule (B.11).
The full proof is given in Appendix B.4. We will reproduce only the cases that have to do
with pattern matching below.

1. In the following cases, let ∆̂ = 〈D; ∆〉 and Γ̂ = 〈G; Γ〉.
(a) The only cases in the proof of part 1(a) that have to do with pattern match-

ing are the cases involving the unexpanded match expression and spTLM
definition.
Case (B.6p).

(1) ê = match ê′ {r̂i}1≤i≤n by assumption
(2) e = match[n](e′; {ri}1≤i≤n) by assumption
(3) ∆̂ Γ̂ `Ψ̂; Φ̂ ê′ e′ : τ′ by assumption
(4) {∆̂ Γ̂ `Ψ̂; Φ̂ r̂i ri : τ′ Z⇒ τ}1≤i≤n by assumption
(5) ∆ Γ ` e′ : τ′ by IH, part 1(a) on (3)
(6) {∆ Γ ` ri : τ′ Z⇒ τ}1≤i≤n by IH, part 1(b) over

(4)
(7) ∆ Γ ` match[n](τ; e′){ri}1≤i≤n : τ by Rule (B.2l) on (5)

and (6)

Case (B.6q).
(1) ê = syntax â at τ̂′ for patterns by static eparse in ê′

by assumption
(2) ∆̂ ` τ̂′ τ′ type by assumption
(3) ∅ ∅ ` eparse : parr(Body; ParseResultSP) by assumption
(4) ∆̂ Γ̂ `Ψ̂; Φ̂,â a↪→sptlm(τ′; eparse)

ê′ e : τ by assumption

(5) ∆ ` τ′ type by Lemma B.25 to (2)
(6) ∆ Γ ` e : τ by IH, part 1(a) on (4)

(b) There is only one case.
Case (B.7).

(1) r̂ = p̂⇒ ê by assumption
(2) r = rule(p.e) by assumption
(3) ∆̂ `Φ̂ p̂ p : τ
〈A′; Γ′〉 by assumption
(4) ∆̂ 〈A]A′; Γ ∪ Γ′〉 `Ψ̂; Φ̂ ê e : τ′ by assumption
(5) ∆ ` p : τ
Γ′ by Theorem B.27, part

1 on (3)
(6) ∆ Γ ∪ Γ′ ` e : τ′ by IH, part 1(a) on (4)
(7) ∆ Γ ` rule(p.e) : τ Z⇒ τ′ by Rule (B.3) on (5)

and (6)
2. In the following, let ∆̂ = 〈D; ∆app〉 and Γ̂ = 〈G; Γapp〉.

(a) The only case in the proof of part 2(a) that has to do with pattern matching is
the case involving the match proto-expression.

86

Case (B.10o).
(1) è = prmatch[n](è′; {r̀i}1≤i≤n) by assumption
(2) e = match[n](e′; {ri}1≤i≤n) by assumption
(3) ∆ Γ `∆̂; Γ̂; Ψ̂; Φ̂; b è′ e′ : τ′ by assumption
(4) {∆ Γ `∆̂; Γ̂; Ψ̂; Φ̂; b r̀i ri : τ′ Z⇒ τ}1≤i≤n by assumption
(5) ∆ ∩ ∆app = ∅ by assumption
(6) dom(Γ) ∩ dom(Γapp) = ∅ by assumption
(7) ∆ ∪ ∆app Γ ∪ Γapp ` e′ : τ′ by IH, part 2(a) on (3),

(5) and (6)
(8) ∆ ∪ ∆app Γ ∪ Γapp ` r : τ′ Z⇒ τ by IH, part 2(b) on (4),

(5) and (6)
(9) ∆ ∪ ∆app Γ ∪ Γapp ` match[n](e′; {ri}1≤i≤n) : τ

by Rule (B.2l) on (7)
and (8)

(b) There is only one case.

Case (B.11).
(1) r̀ = prrule(p.è) by assumption
(2) r = rule(p.e) by assumption
(3) ∆ ` p : τ
Γ by assumption
(4) ∆ Γ ∪ Γ `∆̂; Γ̂; Ψ̂; Φ̂; b è e : τ′ by assumption
(5) ∆ ∩ ∆app = ∅ by assumption
(6) dom(Γ) ∩ dom(Γ) = ∅ by identification

convention
(7) dom(Γapp) ∩ dom(Γ) = ∅ by identification

convention
(8) dom(Γ) ∩ dom(Γapp) = ∅ by assumption
(9) dom(Γ ∪ Γ) ∩ dom(Γapp) = ∅ by standard finite set

definitions and
identities on (6), (7)
and (8)

(10) ∆ ∪ ∆app Γ ∪ Γ ∪ Γapp ` e : τ′ by IH, part 2(a) on (4),
(5) and (9)

(11) ∆ ∪ ∆app Γ ∪ Γapp ∪ Γ ` e : τ′ by exchange of Γ and
Γapp on (10)

(12) ∆ ∪ ∆app Γ ∪ Γapp ` rule(p.e) : τ Z⇒ τ′ by Rule (B.3) on (3)
and (11)

The mutual induction can be shown to be well-founded essentially as described in
Sec. 3.2.11. Appendix B.4 gives the complete details.

87

Abstract Reasoning Principles

The following theorem summarizes the abstract reasoning principles available to pro-
grammers when applying an spTLM. Descriptions of labeled clauses are given inline.
Theorem B.34 (spTLM Abstract Reasoning Principles). If ∆̂ `Φ̂ â ‘b‘ p : τ
̂Γ where
∆̂ = 〈D; ∆〉 and Γ̂ = 〈G; Γ〉 then all of the following hold:

1. (Typing 1) Φ̂ = Φ̂′, â a ↪→ sptlm(τ; eparse) and ∆ ` p : τ
Γ
The final expansion matches values of the type specified by the spTLM’s type
annotation.

2. b ↓Body ebody
3. eparse(ebody) ⇓ inj[SuccessP](eproto)

4. eproto ↑PrPat p̀
5. (Segmentation) seg(p̀) segments b

The segmentation determined by the proto-expansion actually segments the lit-
eral body (i.e. each segment is in-bounds and the segments are non-overlapping.)

6. seg(p̀) = {splicedt[n′i; m′i]}0≤i<nty ∪ {splicedp[mi; ni; τ̀i]}0≤i<npat

7. (Typing 2) {∆̂ ` parseUTyp(subseq(b; m′i; n′i)) τ′i type}0≤i<nty and {∆ ` τ′i type}0≤i<nty

Each spliced type has a well-formed expansion at the application site.
8. (Typing 3) {∅ `∆̂; b τ̀i τi type}0≤i<npat and {∆ ` τi type}0≤i<npat

Each type annotation on a reference to a spliced pattern has a well-formed
expansion at the application site.

9. (Typing 4) {∆̂ `Φ̂ parseUPat(subseq(b; mi; ni)) pi : τi
〈Gi; Γi〉}0≤i<npat and {∆ `
pi : τi
Γi}0≤i<npat

Each spliced pattern has a well-typed expansion that matches values of the type
indicated by the corresponding type annotation in the segmentation.

10. (No Hidden Bindings) G =
⊎

0≤i<npat Gi and Γ =
⋃

0≤i<npat Γi

The hypotheses generated by the TLM application are exactly those generated by
the spliced patterns.

Proof. The proof relies on a lemma about decomposing proto-patterns. The proof is given
in Appendix B.4.4.

88

Chapter 5

Parametric TLMs (pTLMs)

You know me, I gotta put in a big tree.
— Bob Ross, The Joy of Painting

This chapter introduces parametric TLMs (pTLMs). Parametric TLMs can be defined over
a parameterized family of types, rather than just a single type, and the expansions that
they generate can refer to supplied type and module parameters.

This chapter is organized like the preceding chapters. We begin in Sec. 5.1 by
introducing parametric TLMs by example in VerseML. In particular, we discuss type
parameters in Sec. 5.1.1 and module parameters in Sec. 5.1.2. We then develop a reduced
calculus of parametric TLMs, miniVerseP, in Sec. 5.2.

5.1 Parametric TLMs By Example

5.1.1 Type Parameters

Recall from Sec. 2.3.1 the definition of the type-parameterized family of list types:

type list(’a) = rec(self => Nil + Cons of ’a * self)

Figure 5.1 defines a parametric expression TLM (peTLM) and a parametric pattern TLM
(ppTLM), both named $list. These TLMs operate uniformly over this family of types.

1 syntax $list(’a) at list(’a) for expressions by
2 static fn(b : body) : parse_result(proto_expr) => (* ... *)
3 and for patterns by
4 static fn(b : body) : parse_result(proto_pat) => (* ... *)
5 end

Figure 5.1: The type-parameterized $list TLMs.

Line 1 specifies a single type parameter, ’a. This type parameter appears in the type
annotation, which establishes that:

89

1. The peTLM $list, when applied to a type T and a generalized literal form, can only
generate expansions of type list(T).

2. The ppTLM $list, when applied to a type T and a generalized literal form, can
only generate expansions that match values of type list(T).

For example, we can apply $list to int and a generalized literal form delimited by
square brackets as follows:
val x = $list int [x, y :: xs]

The parse function (elided above for concision) segments the literal body into spliced
expressions. The trailing spliced expression is prefixed by two colons (::), which the
TLM takes to mean that it should be the tail of the list. The final expansion of the example
above is equivalent to the following when the list value constructors are in scope:
val x = Cons(x, Cons(y, xs))

As in the preceding chapters, the expansion itself must use the explicit fold and inj
operators rather than the list value constructors Cons and Nil due to the prohibition on
context dependence.

5.1.2 Module Parameters

We can finally address the inconvenience of needing to use explicit fold and inj operators
by defining a module-parameterized TLM.

Recall that in Figure 2.1, we defined a signature LIST that exported the definition of
list and specified the list value constructors (and some other values.) The definition
of $list’ shown in Figure 5.2 takes modules matching this signature as an additional
parameter.

syntax $list ’ (L : LIST) ’a at ’a L.list for expressions by
static fn(b : body) : parse_result(proto_expr) => (* ... *)

for patterns by
static fn(b : body) : parse_result(proto_pat) => (* ... *)

end

Figure 5.2: The type- and module-parameterized $list’ TLMs

We can apply $list’ to the module List and the type int as follows:
val y = $list ’ List int [3, 4, 5]
val x = $list ’ List int [1, 2 :: y]

The expansion is:
val y = List.Cons(3, List.Cons(4, List.Cons(5, List.Nil)))
val x = List.Cons(1, List.Cons(2, y))

There is no need to use explicit fold and inj operators in this expansion, because the
expansion projects the constructors out of the provided module parameter. The TLM itself
did not assume that the module would be named List (internally, the proto-expansion
refers to it as L.)

90

This makes matters simpler for the TLM provider, but there is a syntactic cost as-
sociated with supplying a module parameter at each TLM application site. To reduce
this cost, VerseML supports partial parameter application in TLM abbreviations. For
example, we can define $list by partially applying $list’ as follows:
let syntax $list = $list ’ List

(This abbreviates both the expression and pattern TLMs – sort qualifiers can be added to
restrict the abbreviation if desired.)

Module parameters also allow us to define TLMs that operate uniformly over module-
parameterized families of abstract types. For example, the module-parameterized TLM
$r defined in Figure 5.3 supports the POSIX regex syntax for any type R.t where R : RX.

1 syntax $r(R : RX) at R.t by
2 static fn(b : body) : parse_result(proto_expr) => (* ... *)
3 end

Figure 5.3: The module-parameterized TLM $r

For example, given R1 : RX, we can apply $r as follows:
let dna = $r R1 /A|T|G|C/

The final expansion of this term is:
let dna = R1.Or(R1.Str "A", R1.Or(R1.Str "T",

R1.Or(R1.Str "G", R1.Str "C")))

To be clear: parameters are available to the generated expansion, but they are not
available to the parse function that generates the expansion. For example, the following
TLM definition is not well-typed because it refers to M from within the parse function:
syntax $badM(M : A) at T by
static fn(b : body) => let x = M.x in (* ... *)

end

(In the next chapter, we will define a mechanism that gives parse functions access to a
common static environment.)

5.2 miniVerseP

We will now define a reduced dialect of VerseML called miniVerseP that supports paramet-
ric expression and pattern TLMs (peTLMs and ppTLMs.) This language, like miniVerseS,
consists of an unexpanded language (UL) defined by typed expansion to an expanded
language (XL). The full definition of miniVerseP is given in Appendix C – we will detail
only particularly interesting constructs below.

5.2.1 Syntax of the Expanded Language (XL)

Figure 5.4 defines the syntax of the expanded module language. Figure 5.5 defines the
syntax of the expanded type construction language. Figure 5.6 defines the syntax of the
expanded expression language.

91

Sort Operational Form Description
Sig σ ::= sig{κ}(u.τ) signature
Mod M ::= X module variable

struct(c; e) structure
seal{σ}(M) seal
mlet{σ}(M; X.M) definition

Figure 5.4: Syntax of signatures and module expressions in miniVerseP

Sort Operational Form Description
Kind κ ::= k kind variable

darr(κ; u.κ) dependent function
unit nullary product
dprod(κ; u.κ) dependent product
Type type
S(τ) singleton

Con c, τ ::= u construction variable
t type variable
abs(u.c) abstraction
app(c; c) application
triv trivial
pair(c; c) pair
prl(c) left projection
prr(c) right projection
parr(τ; τ) partial function
all{κ}(u.τ) polymorphic
rec(t.τ) recursive
prod[L]({i ↪→ τi}i∈L) labeled product
sum[L]({i ↪→ τi}i∈L) labeled sum
con(M) construction component

Figure 5.5: Syntax of kinds and constructions in miniVerseP. By convention, we choose
the metavariable τ for constructions that, in well-formed terms, must necessarily be of
kind T, and the metavariable c otherwise. Similarly, we use construction variables t to
stand for constructions of kind T, and construction variables u otherwise. Kind variables,
k, are necessary only for the metatheory.

92

Sort Operational Form Description
Exp e ::= x variable

lam{τ}(x.e) abstraction
ap(e; e) application
clam{κ}(u.e) construction abstraction
cap{c}(e) construction application
fold(e) fold
unfold(e) unfold
tpl[L]({i ↪→ ei}i∈L) labeled tuple
prj[`](e) projection
inj[`](e) injection
match[n](e; {ri}1≤i≤n) match
val(M) value component

Rule r ::= rule(p.e) rule
Pat p ::= x variable pattern

wildp wildcard pattern
foldp(p) fold pattern
tplp[L]({i ↪→ pi}i∈L) labeled tuple pattern
injp[`](p) injection pattern

Figure 5.6: Syntax of expanded expressions, rules and patterns in miniVerseP

5.2.2 Statics of the Expanded Language

The module and type construction languages are based closely on those defined by
Harper in PFPL [62]. These languages, in turn, are based on the languages developed
by Lee et al. [79], and also by Dreyer [37]. All of these incorporate Stone and Harper’s
dependent singleton kinds formalism to track type identity [123]. The expression language
is similar to that of miniVerseS, defined in Chapter 4.

The statics of the expanded language is defined by a collection of judgements that we
organize into three groups.

The first group of judgements, which we refer to as the statics of the expanded module
language, define the statics of expanded signatures and module expressions.

Judgement Form Description
Ω ` σ sig σ is a signature
Ω ` σ ≡ σ′ σ and σ′ are definitionally equal signatures
Ω ` σ <: σ′ σ is a sub-signature of σ′

Ω ` M : σ M matches σ
Ω ` M mval M is, or stands for, a module value

The second group of judgements, which we refer to as the statics of the expanded type
construction language, define the statics of expanded kinds and constructions.

93

Judgement Form Description
Ω ` κ kind κ is a kind
Ω ` κ ≡ κ′ κ and κ′ are definitionally equal kinds
Ω ` κ <:: κ′ κ is a subkind of κ′

Ω ` c :: κ c has kind κ
Ω ` c ≡ c′ :: κ c and c′ are equivalent as constructions of kind κ

The third group of judgements, which we refer to as the statics of the expanded expression
language, define the statics of types, expanded expressions, rules and patterns. Types are
constructions of kind Type. We use the metavariable τ rather than c for types.

Judgement Form Description
Ω ` τ <: τ′ τ is a subtype of τ′

Ω ` e : τ e is assigned type τ
Ω ` r : τ Z⇒ τ′ r takes values of type τ to values of type τ′

Ω ` p : τ
Ω′ p matches values of type τ and generates hypotheses Ω′

A unified context, Ω, is a finite function over module, expression and construction
variables. We write

• Ω, X : σ when X /∈ dom(Ω) and Ω ` σ sig for the extension of Ω with a mapping
from X to the hypothesis X : σ.

• Ω, x : τ when x /∈ dom(Ω) and Ω ` τ :: Type for the extension of Ω with a
mapping from x to the hypothesis x : τ

• Ω, u :: κ when u /∈ dom(Ω) and Ω ` κ kind for the extension of Ω with a mapping
from u to the hypothesis u :: κ

A well-formed unified context is one that can be constructed by some sequence of such
extensions, starting from the empty context, ∅. We identify unified contexts up to
exchange and contraction in the usual manner.

The complete set of rules is given in Appendix C.1.2. A comprehensive introductory
account of these constructs is beyond the scope of this work (see [62].) Instead, let us
summarize the key features of the expanded language by example.

Modules take the form struct(c; e), following a phase-splitting approach – the con-
struction components of the module are “tupled” into a single construction component,
c, and the value components of the module are “tupled” into a single value component,
e [63]. Signatures, σ, are also split in this way – a single kind, κ, classifies the construction
component and a single type, τ, classifies the value component of the classified module.
The type can refer to the construction component through a mediating construction
variable, u. The key rule is reproduced below:

Ω ` c :: κ Ω ` e : [c/u]τ
Ω ` struct(c; e) : sig{κ}(u.τ)

(C.4c)

For example, consider the VerseML signature and the corresponding miniVerseP sig-
nature in Figure 5.7. The kind on the right (Lines 1-3) is a dependent product kind and the
type (Lines 4-5) is a product type. Let us consider these in turn.

94

1 sig
2 type t
3 type t’ = t * t
4 val x : t
5 val y : t -> t’
6 end

sig{dprod(
Type; t.
S(prod[1; 2](1 ↪→ t; 2 ↪→ t)))

}(u.prod[x; y](x ↪→ prl(u);
y ↪→ parr(prl(u); prr(u)))

)

Figure 5.7: A VerseML signature and the corresponding miniVerseP signature

On Lines 2-3 (left), we specified an abstract type component t, and then a translucent
type component t’ equal to t * t. Abstract type components have kind Type, so the first
component of the dependent product kind is Type (Line 2, right). The construction vari-
able t stands for the first component in the second component of the dependent product
kind. The second component is not held abstract, so it is classified by a corresponding
singleton kind, rather than by the kind Type (Line 3, right). A singleton kind S(τ) classifies
only those types definitionally equal to τ. A subkinding system is necessary to ensure
that constructions of singleton kind can appear where a construction of kind Type is
needed – the key rule is reproduced below:

Ω ` τ :: Type
Ω ` S(τ) <:: Type

(C.8e)

Lines 4-5 (right) define a product type that classifies the value component of matching
modules. The construction variable u stands for the construction component of the
matching module. The left- and right-projection operations prl(c) and prr(c) on the
right correspond to t and t’ on the left. (In practice, we would use labeled dependent
product kinds, but for simplicity, we stick to binary dependent product kinds here.)

Consider another example: the VerseML LIST signature from Figure 2.1, partially
reproduced below:
1 sig
2 type list(’a) = rec(self => Nil + Cons of ’a * self)
3 val Nil : list(’a)
4 val Cons : ’a * list(’a) -> list(’a)
5 (* ... *)
6 end

This signature corresponds to the miniVerseP signature σLIST defined in Figure 5.8.
Here, the signature specifies only a single construction component, so no tupling of

the construction component is necessary. This single construction component is a type
function, so it has dependent function kind: the argument kind is Type and the return
kind is a singleton kind, because the type function is not abstract. (Had we held the type
function abstract, its kind would instead be darr(Type; _.Type).)

At the top level, a program consists of a module expression, M. The module let
binding form allows the programmer to bind a module to a module variable, X:

Ω ` M : σ Ω ` σ′ sig Ω, X : σ ` M′ : σ′

Ω ` mlet{σ′}(M; X.M′) : σ′
(C.4e)

95

σLIST
def
= sig{κLIST}(list.τLIST)

κLIST
def
= darr(Type; α.S(rec(sel f .sum[Llist](

Nil ↪→ prod[]();
Cons ↪→ prod[1; 2](1 ↪→ α; 2 ↪→ sel f)))))

Llist
def
= Nil, Cons

τLIST
def
= prod[Llist](

Nil ↪→ all{Type}(α.app(list; α));
Cons ↪→ all{Type}(α.parr(
prod[1; 2](1 ↪→ α; 2 ↪→ app(list; α));
app(list; α))))

Figure 5.8: The miniVerseP encoding of the LIST signature

The construction projection form, con(M), allows us to refer to the construction
component of M within a construction appearing in M′. The kinding rule for this form is
reproduced below:

Ω ` M mval Ω ` M : sig{κ}(u.τ)
Ω ` con(M) :: κ

(C.9o)

Similarly, the value projection form, val(M), projects out the value component of M
within an expression appearing in M′. The typing rule for this form is reproduced below:

Ω ` M mval Ω ` M : sig{κ}(u.τ)
Ω ` val(M) : [con(M)/u]τ

(C.12m)

The first premise of both of these rules requires that M be, or stand for, a module value,
according to the following rules:

Ω ` struct(c; e) mval
(C.5a)

Ω, X : σ ` X mval
(C.5b)

The reason for this restriction has to do with the sealing operation:

Ω ` σ sig Ω ` M : σ

Ω ` seal{σ}(M) : σ
(C.4d)

Sealing enforces representation independence – the abstract construction components of a
sealed module are not treated as equivalent to those of any other sealed module within
the program. In other words, sealing is generative. The module value restriction above
achieves this behavior by simple syntactic means – a sealed module is not a module
value, so all sealed modules have to be bound to distinct module variables.

The judgements above obey standard lemmas, including Weakening, Substitution
and Decomposition (see Appendix C.1.2.)

96

We omit certain features of the ML module system in miniVerseP, such as its sup-
port for hierarchical modules and functors. Our formulation also does not support
“width” subtyping and subkinding for simplicity. These are straightforward extensions
of miniVerseP, but because their inclusion would not change the semantics of parametric
TLMs, we did not include them (see [62] for a discussion of these features.)

5.2.3 Structural Dynamics

The structural dynamics of modules is defined as a transition system, and is organized
around judgements of the following form:

Judgement Form Description
M 7→ M′ M transitions to M′

M val M is a module value
M matchfail M raises match failure

The structural dynamics of expressions is also defined as a transition system, and is
organized around judgements of the following form:

Judgement Form Description
e 7→ e′ e transitions to e′

e val e is a value
e matchfail e raises match failure

We also define auxiliary judgements for iterated transition, e 7→∗ e′, and evaluation,
e ⇓ e′, of expressions.
Definition C.6 (Iterated Transition). Iterated transition, e 7→∗ e′, is the reflexive, transitive
closure of the transition judgement, e 7→ e′.
Definition C.7 (Evaluation). e ⇓ e′ iff e 7→∗ e′ and e′ val.

As in previous chapters, our subsequent developments do not make mention of
particular rules in the dynamics, so we do not produce these details here. Instead, it
suffices to state the following conditions.

The Preservation condition ensures that evaluation preserves typing.
Condition C.10 (Preservation).

1. If ` M : σ and M 7→ M′ then ` M : σ.
2. If ` e : τ and e 7→ e′ then ` e′ : τ.
The Progress condition ensures that evaluation of a well-typed expanded expression

cannot “get stuck”. We must consider the possibility of match failure in this condition.
Condition C.11 (Progress).

1. If ` M : σ then either M val or M matchfail or there exists an M′ such that M 7→ M′.
2. If ` e : τ then either e val or e matchfail or there exists an e′ such that e 7→ e′.
Together, these two conditions constitute the Type Safety Condition.

97

Sort Stylized Form Description
USig σ̂ ::= Jû :: κ̂; τ̂K signature
UMod M̂ ::= X̂ module identifier

Jĉ; êK structure
M̂ � σ̂ seal
(let X̂ = M̂ in M̂) : σ̂ definition
syntax â at ρ̂ for expressions by static e in M̂ peTLM definition
let syntax â = ε̂ for expressions in M̂ peTLM binding
syntax â at ρ̂ for patterns by static e in M̂ ppTLM definition
let syntax â = ε̂ for patterns in M̂ ppTLM binding

Figure 5.9: Syntax of unexpanded module expressions and signatures in miniVerseP

Sort Stylized Form Description
UKind κ̂ ::= (û :: κ̂)→ κ̂ dependent function

⟪⟫ nullary product
(û :: κ̂)× κ̂ dependent product
T type
[=τ̂] singleton

UCon ĉ, τ̂ ::= û construction identifier
t̂
ĉ :: κ̂ ascription
λû.ĉ abstraction
c(c) application
⟪⟫ trivial
⟪ĉ, ĉ⟫ pair
ĉ · l left projection
ĉ · r right projection
τ̂ ⇀ τ̂ partial function
∀(û :: κ̂).τ̂ polymorphic
µt̂.τ̂ recursive
〈{i ↪→ τ̂i}i∈L〉 labeled product
[{i ↪→ τ̂i}i∈L] labeled sum
X̂ · c construction component

Figure 5.10: Syntax of unexpanded kinds and constructions in miniVerseP

98

Sort Stylized Form Description
UExp ê ::= x̂ identifier

ê : τ̂ ascription
let val x̂ = ê in ê value binding
λx̂:τ̂.ê abstraction
ê(ê) application
Λû::κ̂.ê construction abstraction
ê[ĉ] construction application
fold(ê) fold
unfold(ê) unfold
〈{i ↪→ êi}i∈L〉 labeled tuple
ê · ` projection
inj[`](ê) injection
match ê {r̂i}1≤i≤n match
X̂ · v value component
ε̂ ‘b‘ peTLM application

URule r̂ ::= p̂⇒ ê match rule
UPat p̂ ::= x̂ identifier pattern

_ wildcard pattern
fold(p̂) fold pattern
〈{i ↪→ p̂i}i∈L〉 labeled tuple pattern
inj[`](p̂) injection pattern
ε̂ ‘b‘ ppTLM application

Figure 5.11: Syntax of unexpanded expressions, rules and patterns in miniVerseP

Sort Stylized Form Description
UMType ρ̂ ::= τ̂ type annotation

∀X̂:σ̂.ρ̂ module parameterization
UMExp ε̂ ::= â TLM identifier reference

ΛX̂:σ̂.ε̂ module abstraction
ε̂(X̂) module application

Figure 5.12: Syntax of unexpanded TLM types and expressions in miniVerseP

99

Sort Operational Form Description
MType ρ ::= type(τ) type annotation

allmods{σ}(X.ρ) module parameterization
MExp ε ::= defref[a] TLM definition reference

absmod{σ}(X.ε) module abstraction
apmod{M}(ε) module application

Figure 5.13: Syntax of TLM types and expressions in miniVerseP

5.2.4 Syntax of the Unexpanded Language

The syntax of the unexpanded language is defined in Figures 5.9 through 5.13.
Each expanded form, with three exceptions, has a corresponding unexpanded form.

We refer to these as the common forms. The correspondence is defined in Appendix C.2.1.
Kind variables, k, are one exception. Kind variables are used only in the metatheory.
The other two exceptions are constructions of the form con(M) and expressions

of the form val(M) where M is of the form struct(c; e). Projection out of a module
expression of the form struct(c; e) was supported in the XL only because this is needed
to give the language a conventional structural dynamics. Programmers refer to modules
exclusively through module identifiers in unexpanded programs.

In addition to the common forms, there are several forms related to pTLMs, high-
lighted in yellow in these figures. We need syntax for unexpanded TLM types, ρ̂, and
unexpanded TLM expressions, ε̂, to support parameterization and parameter application.
Internally, these expand to TLM expressions, ε, and TLM types, ρ, respectively.

There is also a context-free textual syntax for the UL. For our purposes, we need only
posit the existence of partial metafunctions that satisfy the following condition.
Condition C.12 (Textual Representability). All of the following must hold:

1. For each κ̂, there exists b such that parseUKind(b) = κ̂.
2. For each ĉ, there exists b such that parseUCon(b) = ĉ.
3. For each ê, there exists b such that parseUExp(b) = ê.
4. For each p̂, there exists b such that parseUPat(b) = p̂.

5.2.5 Typed Expansion

Typed expansion is defined by six groups of judgements. In these judgements, unexpanded
unified contexts, Ω̂, take the form 〈M;D;G; Ω〉, whereM is a module identifier expansion
context, D is a construction identifier expansion context, G is an expression identifier expansion
context and Ω is a unified context. Identifier expansion contexts are defined in Appendix
C.2.2 and conceptually operate as described in Sec. 3.2, mapping identifiers to variables.

The first group of judgements defines signature and module expansion.

Judgement Form Description
Ω̂ ` σ̂ σ sig σ̂ has well-formed expansion σ

Ω̂ `Ψ̂;Φ̂ M̂ M : σ M̂ has expansion M matching σ

100

The second group of judgements defines kind and construction expansion.

Judgement Form Description
Ω̂ ` κ̂ κ kind κ̂ has well-formed expansion κ

Ω̂ ` ĉ c :: κ ĉ has expansion c of kind κ

The third group of judgements defines expression, rule and pattern expansion.

Judgement Form Description
Ω̂ `Ψ̂;Φ̂ ê e : τ ê has expansion e of type τ

Ω̂ `Ψ̂;Φ̂ r̂ r : τ Z⇒ τ′ r̂ has expansion r taking values of type τ to values of type τ′

Ω̂ `Φ̂ p̂ p : τ
̂Ω′ p̂ has expansion p matching at τ generating hypotheses Ω̂′

The judgements above are defined by the rules given in Appendix C.2.2. Most of
these rules simply serve to “mirror” corresponding rules in the statics of the XL, as was
described in Sec. 3.2. The interesting rules, governing the forms highlighted in yellow,
will be reproduced as we discuss them below.

The remaining judgements assign meaning to TLM types and expressions. We will
detail these below. In particular, the fourth group of judgements define TLM type and
expression expansion.

Judgement Form Description
Ω̂ ` ρ̂ ρ tlmty ρ̂ has well-formed expansion ρ

Ω̂ `Exp
Ψ̂

ε̂ ε @ ρ ε̂ has peTLM expression expansion ε at ρ

Ω̂ `Pat
Ψ̂

ε̂ ε @ ρ ε̂ has ppTLM expression expansion ε at ρ

The fifth group of judgements define the statics of TLM expressions.

Judgement Form Description
Ω ` ρ tlmty ρ is a TLM type
Ω `ExpΨ ε @ ρ ε is a peTLM expression at ρ
Ω `PatΦ ε @ ρ ε is a ppTLM expression at ρ

The sixth group of judgements define the dynamics of TLM expressions.

Judgement Form Description
Ω `ExpΨ ε 7→ ε′ peTLM expression ε transitions to ε′

Ω `PatΨ ε 7→ ε′ ppTLM expression ε transitions to ε′

Ω `ExpΨ ε normal ε is a normal peTLM expression
Ω `PatΨ ε normal ε is a normal ppTLM expression

We define the multi-step transition judgements Ω `ExpΨ ε 7→∗ ε′ and Ω `PatΦ ε 7→∗ ε′

as the reflexive transitive closures of the corresponding transition judgements. We also
define the peTLM expression normalization judgement Ω `ExpΨ ε ⇓ ε′ iff Ω `ExpΨ ε 7→∗

ε′ and Ω `ExpΨ ε′ normal. Similarly, we define the ppTLM expression normalization
judgement Ω `PatΦ ε ⇓ ε′ iff Ω `PatΦ ε 7→∗ ε′ and Ω `PatΦ ε′ normal.

101

5.2.6 TLM Definitions

TLMs are scoped to module expressions. (Adding support for TLM definitions scoped
to a single expression would be a straightforward exercise, so we omit the details for
simplicity.)

peTLM Definitions

The rule governing peTLM definitions is reproduced below:

Ω̂ ` ρ̂ ρ tlmty ∅ ` eparse : parr(Body; ParseResult(PPrExpr))
eparse ⇓ e′parse Ω̂ `〈A]â↪→defref[a];Ψ,a↪→petlm(ρ;e′parse)〉;Φ̂ M̂ M : σ

Ω̂ `〈A;Ψ〉;Φ̂ syntax â at ρ̂ for expressions by static eparse in M̂ M : σ
(C.16f)

peTLM definitions differ from ueTLM definitions in that the unexpanded type anno-
tation is an unexpanded TLM type, ρ̂, rather than an unexpanded type, τ̂. This unexpanded
TLM type determines the parameterization of the TLM. The first premise of the rule
above expands the unexpanded TLM type to produce a TLM type, ρ. The straightforward
rules governing TLM type expansion are reproduced below.

Ω̂ ` τ̂ τ :: Type

Ω̂ ` τ̂ type(τ) tlmty
(C.22a)

Ω̂ ` σ̂ σ sig Ω̂, X̂ X : σ ` ρ̂ ρ tlmty

Ω̂ ` ∀X̂:σ̂.ρ̂ allmods{σ}(X.ρ) tlmty
(C.22b)

Rule (C.22a) defines quantification over modules matching a given signature. There is
no mechanism for quantification over types in the calculus because it can be understood
as quantification over a module with a single type component.

The second premise of Rule (C.16f) checks that the parse function is of the appropriate
type. The types Body and ParseResult(PPrExpr) are characterized in Appendix C.2.2.
The type PPrExpr classifies encodings of parameterized proto-expressions, which we will
return to when we discuss TLM application below.

The third premise of Rule (C.16f) evaluates the parse function to a value.
The final premise of Rule (C.16f) extends the peTLM context, Ψ̂, which consists of a

TLM identifier expansion context, A, and a peTLM definition context, Ψ. A peTLM definition
context maps TLM names, a, to an expanded peTLM definition, a ↪→ petlm(ρ; eparse),
where ρ is the TLM type determined from the annotation and eparse is its parse function.
A TLM identifier context maps TLM identifiers, â, to TLM expressions, ε. In this case, the
TLM expression is simply a reference to the newly introduced TLM definition, defref[a].
We discuss the other TLM expression forms when we discuss TLM abbreviations below.

102

ppTLM Definitions

The rule governing ppTLM definitions is similar, and is reproduced below:

Ω̂ ` ρ̂ ρ tlmty ∅ ` eparse : parr(Body; ParseResult(PPrPat))
eparse ⇓ e′parse Ω̂ `Ψ̂;〈A]â↪→defref[a];Φ,a↪→pptlm(ρ;e′parse)〉 M̂ M : σ

Ω̂ `Ψ̂;〈A;Φ〉 syntax â at ρ̂ for patterns by static eparse in M̂ M : σ
(C.16h)

This rule differs from Rule (C.16f) in the type of the parse function and in the fact that
the ppTLM context, Φ̂, rather than the peTLM context, is updated.

5.2.7 TLM Abbreviations

It is possible to abbreviate a complex TLM expression by binding it to a TLM identifier.

peTLM Abbreviations

The rule governing peTLM abbreviations is reproduced below:

Ω̂ `Exp〈A;Ψ〉 ε̂ ε @ ρ Ω̂ `〈A]â↪→ε;Ψ〉;Φ̂ M̂ M : σ

Ω̂ `〈A;Ψ〉;Φ̂ let syntax â = ε̂ for expressions in M̂ M : σ
(C.16g)

Here, ε̂ is an unexpanded TLM expression. The first premise of the rule above expands it,
producing a TLM expression ε at TLM type ρ. The second premise updates the peTLM
identifier expansion context with this TLM expression.

The rules below govern peTLM expression expansion. The first rule handles the base
case, when the unexpanded TLM expression is a TLM identifier, â, by looking it up in
A and determining its TLM type according to the TLM expression typing judgement,
Ω `ExpΨ ε @ ρ (which mirrors the rules below, and is defined in Appendix C.2.2.)

Ω `ExpΨ ε @ ρ

〈M;D;G; Ω〉 `Exp〈A,â↪→ε;Ψ〉 â ε @ ρ
(C.23a)

The following rule allows a peTLM expression to itself abstract over a module. (This
is necessary to support abbreviated application of parameters other than the first.)

Ω̂ ` σ̂ σ sig Ω̂, X̂ X : σ `Exp
Ψ̂

ε̂ ε @ ρ

Ω̂ `Exp
Ψ̂

ΛX̂:σ̂.ε̂ absmod{σ}(X.ε) @ allmods{σ}(X.ρ)
(C.23b)

The final rule defines the semantics of parameter application.

Ω̂ `Exp
Ψ̂

ε̂ ε @ allmods{σ}(X′.ρ) Ω̂ `Ψ̂;Φ̂ X̂ X : σ

Ω̂ `Exp
Ψ̂

ε̂(X̂) apmod{X}(ε) @ [X/X′]ρ
(C.23c)

103

ppTLM Abbreviations

The rule governing ppTLM abbreviations is analagous:

Ω̂ `Pat〈A;Φ〉 ε̂ ε @ ρ Ω̂ `Ψ̂;〈A]â↪→ε;Φ〉 M̂ M : σ

Ω̂ `Ψ̂;〈A;Φ〉 let syntax â = ε̂ for patterns in M̂ M : σ
(C.16i)

The ppTLM expression expansion judgement appearing as the first premise is defined
analagously to the peTLM expression expansion judgement defined above, differing only
in that the rule for TLM identifiers consults the ppTLM context rather than the peTLM
context. The rules are reproduced in Appendix C.2.2.

5.2.8 TLM Application

peTLM Application

The rule for applying an unexpanded peTLM expression ε̂ to a generalized literal form
with body b is reproduced below:

Ω̂ = 〈M;D;G; Ωapp〉 Ψ̂ = 〈A; Ψ〉
Ω̂ `Exp

Ψ̂
ε̂ ε @ type(τfinal) Ωapp `ExpΨ ε ⇓ εnormal

tlmdef(εnormal) = a Ψ = Ψ′, a ↪→ petlm(ρ; eparse)
b ↓Body ebody eparse(ebody) ⇓ inj[SuccessE](epproto) epproto ↑PPrExpr ė

Ωapp `ExpΨ ė#εnormal è ? type(τproto) a ω : Ωparams

Ωparams `ω:Ωparams; Ω̂; b seg(è) segments b Ωparams `ω:Ωparams; Ω̂; Ψ̂; Φ̂; b è e : τproto

Ω̂ `Ψ̂;Φ̂ ε̂ ‘b‘ [ω]e : [ω]τproto
(C.19p)

The first two premises simply deconstruct Ω̂ and Ψ̂. Next, we expand ε̂ according to
the unexpanded peTLM expression expansion rules that we already described above.
The resulting TLM expression, ε, must be defined at a type (i.e. no quantification must
remain.)

The fourth premise performs peTLM expression normalization. Normalization is defined
in terms of a simple structural dynamics with two stepping rules:

Ω `ExpΨ ε 7→ ε′

Ω `ExpΨ apmod{X}(ε) 7→ apmod{X}(ε′)
(C.29a)

Ω `ExpΨ apmod{X}(absmod{σ}(X′.ε)) 7→ [X/X′]ε
(C.29b)

The peTLM expression normal forms are defined as follows:

Ω `ExpΨ,a↪→petlm(ρ;eparse)
defref[a] normal

(C.35a)

104

Ω `ExpΨ absmod{σ}(X.ε) normal
(C.35b)

ε 6= absmod{σ}(X′.ε′) Ω `ExpΨ ε normal

Ω `ExpΨ apmod{X}(ε) normal
(C.35c)

Normalization leaves only those parameter applications that cannot be reduced away
immediately, i.e. those specified by the original TLM definition.

The TLM definition at the root of the normalized TLM expression is extracted by
the third row of premises in Rule (C.19p). The first of these appeals to the following
metafunction to produce the TLM definition’s name.

tlmdef(defref[a]) = a (C.28a)
tlmdef(absmod{σ}(X.ε)) = tlmdef(ε) (C.28b)

tlmdef(apmod{X}(ε)) = tlmdef(ε) (C.28c)

The second premise on the third row then looks up this name within Ψ.
The fourth row of premises in Rule (C.19p) 1) encode the body as a value of the type

Body; 2) apply the parse function; and 3) decode the result, producing a parameterized
proto-expression, ė. Parameterized proto-expressions, ė, are ABTs that serve to introduce
the parameter bindings into a proto-expression, è. The operational and stylized syntax of
parameterized proto-expression is given in Figure 5.14.

Sort Operational Form Stylized Form Description
PPrExpr ė ::= prexp(è) è proto-expression

prbindmod(X.ė) ΛX.ė module binding

Figure 5.14: Syntax of parameterized proto-expressions in miniVerseP

There must be one binder in ė for each TLM parameter specified by tlmdef(εnormal).
(VerseML inserts these binders automatically as a convenience, but we consider only
the underlying mechanism in this core calculus.) The judgement on the fifth row of
Rule (C.19p) then deparameterizes ė by peeling away these binders to produce 1) the
underlying proto-expression, è, with the variables that stand for the parameters free;
2) a corresponding deparameterized type, τproto, that uses the same free variables to
stand for the parameters; 3) a substitution, ω, that pairs the applied parameters from
εnormal with the corresponding variables generated when peeling away the binders in
ė; and 4) a corresponding parameter context, Ωparams, that tracks the signatures of these
variables. The two rules governing the proto-expression deparameterization judgement
are reproduced below:

Ωapp `ExpΨ,a↪→petlm(ρ;eparse)
prexp(è)#defref[a] è ? ρ a ∅ : ∅

(C.37a)

Ωapp `ExpΨ ė#ε è ? allmods{σ}(X.ρ) a ω : Ω X /∈ dom(Ωapp)

Ωapp `ExpΨ prbindmod(X.ė)#apmod{X′}(ε) è ? ρ a (ω, X′/X) : (Ω, X : σ)
(C.37b)

105

This judgement can be pronounced “when applying peTLM ε, ė has deparameterization
è leaving ρ with parameter substitution ω”. Notice from Rule (C.37b) that every module
binding in ė must pair with a corresponding module parameter application. More-
over, the variables standing for parameters must not appear in Ωapp, i.e. dom(Ωparams)
must be disjoint from dom(Ωapp) (this requirement can always be discharged by alpha-
variation.)

The final row of premises in Rule (C.19p) performs proto-expansion validation. This
involves first checking that the segmentation of è is valid. Segmentation validation
is contextual because kind and type equivalence are contextual (see Appendix C.3.1
for details.) After checking the segmentation, the next premise checks that the proto-
expansion is well-typed under the parameter context, Ωparam (rather than the empty
context, as was the case in miniVerseS.) The conclusion of the rule applies the parameter
substitution, ω, to the resulting expression and the deparameterized type it was checked
against.

ppTLM Application

The rule governing ppTLM application is similar:

Ω̂ = 〈M;D;G; Ωapp〉 Φ̂ = 〈A; Φ〉
Ω̂ `PatΦ̂ ε̂ ε @ type(τfinal) Ωapp `PatΦ ε ⇓ εnormal
tlmdef(εnormal) = a Φ = Φ′, a ↪→ pptlm(ρ; eparse)

b ↓Body ebody eparse(ebody) ⇓ inj[SuccessP](epproto) epproto ↑PPrPat ṗ
Ωapp `PatΦ ṗ#εnormal p̀ ? type(τproto) a ω : Ωparams

Ωparams `ω:Ωparams; Ω̂; b seg(p̀) segments b p̀ p : τproto
ω:Ωparams; Ω̂; Φ̂; b Ω̂′

Ω̂ `Φ̂ ε̂ ‘b‘ p : [ω]τproto
̂Ω′
(C.21g)

Although patterns themselves cannot make reference to surrounding bindings, the
type annotations on spliced patterns can, so we need the notion of a parameterized proto-
pattern, ṗ, and a corresponding deparameterization judgement. The necessary definitions,
which are analagous to those given above for peTLMs, are given in Appendix C.2.2.

5.2.9 Syntax of Proto-Expansions

Figure 5.15 defines the syntax of proto-kinds, κ̀ and proto-constructions, c̀. Figure 5.16
defines the syntax of proto-expressions, è, proto-rules, r̀, and proto-patterns, p̀. All of
these are ABTs.

The mapping from expanded forms to proto-expansion forms is given in Appendix
C.3. The only “interesting” forms are the forms for references to spliced unexpanded
terms, highlighted in yellow in Figure 5.15 and Figure 5.16.

106

Sort Operational Form Stylized Form Description
PrKind κ̀ ::= prdarr(κ̀; u.κ̀) (u :: κ̀)→ κ̀ dependent function

prunit ⟪⟫ nullary product
prdprod(κ̀; u.κ̀) (u :: κ̀)× κ̀ dependent product
prType T type
prS(τ̀) [=τ̀] singleton
splicedk[m; n] splicedk[m; n] spliced kind

PrCon c̀, τ̀ ::= u u construction variable
t t type variable
prabs(u.c̀) λu.c̀ abstraction
prapp(c̀; c̀) c̀(c̀) application
prtriv ⟪⟫ trivial
prpair(c̀; c̀) ⟪c̀, c̀⟫ pair
prprl(c̀) c̀ · l left projection
prprr(c̀) c̀ · r right projection
prparr(τ̀; τ̀) τ̀ ⇀ τ̀ partial function
prall{κ̀}(u.τ̀) ∀(u :: κ̀).τ̀ polymorphic
prrec(t.τ̀) µt.τ̀ recursive
prprod[L]({i ↪→ τ̀i}i∈L) 〈{i ↪→ τ̀i}i∈L〉 labeled product
prsum[L]({i ↪→ τ̀i}i∈L) [{i ↪→ τ̀i}i∈L] labeled sum
prcon(X) X · c construction component
splicedc[m; n; κ̀] splicedc[m; n; κ̀] spliced construction

Figure 5.15: Syntax of proto-kinds and proto-constructions in miniVerseP

107

Sort Operational Form Stylized Form Description
PrExp è ::= x x variable

prasc{τ̀}(è) è : τ̀ ascription
prletval(è; x.è) let val x = è in è value binding
prlam{τ̀}(x.è) λx:τ̀.è abstraction
prap(è; è) è(è) application
prclam{κ̀}(u.è) Λu::κ̀.è construction abstraction
prcap{c̀}(è) è[c̀] construction application
prfold(è) fold(è) fold
prunfold(è) unfold(è) unfold
prtpl{L}({i ↪→ èi}i∈L) 〈{i ↪→ èi}i∈L〉 labeled tuple
prprj[`](è) è · ` projection
prinj[`](è) inj[`](è) injection
prmatch[n](è; {r̂i}1≤i≤n) match è {r̀i}1≤i≤n match
prval(X) X · v value component
splicede[m; n; τ̀] splicede[m; n; τ̀] spliced expression

PrRule r̀ ::= prrule(p.è) p⇒ è rule
PrPat p̀ ::= prwildp _ wildcard pattern

prfoldp(p) fold(p) fold pattern
prtplp[L]({i ↪→ p̀i}i∈L) 〈{i ↪→ p̀i}i∈L〉 labeled tuple pattern
prinjp[`](p̀) inj[`](p̀) injection pattern
prval(X) X · v value component
splicedp[m; n; τ̀] splicedp[m; n; τ̀] spliced pattern

Figure 5.16: Syntax of proto-expressions, proto-rules and proto-patterns in miniVerseP

108

5.2.10 Proto-Expansion Validation

Proto-expansion validation operates essentially as described in Sec. 3.2.10. It is governed
by two groups of judgements. The first group of judgements defines proto-kind and
proto-construction validation.

Judgement Form Description
Ω `C κ̀ κ kind κ̀ has well-formed expansion κ
Ω `C c̀ c :: κ c̀ has expansion c of kind κ

The second group of judgements defines proto-expression, proto-rule and proto-
pattern validation.

Judgement Form Description
Ω `E è e : τ è has expansion e of type τ
Ω `E r̀ r : τ Z⇒ τ′ r̀ has expansion r taking values of type τ to values of type τ′

p̀ p : τ
P Ω̂ p̀ has expansion p matching against τ generating hypotheses Ω̂

Expression splicing scenes, E, are of the form ω : Ωparams; Ω̂; Ψ̂; Φ̂; b, construction
splicing scenes, C, are of the form ω : Ωparams; Ω̂; b, and pattern splicing scenes, P, are of
the form ω : Ωparams; Ω̂; Φ̂; b. Their purpose is to “remember”, during proto-expansion
validation, the contexts and literal bodies from the TLM application site (cf. Rules
(C.19p) and (C.21g) above), because these are necessary to validate references to spliced
terms. They also keep around the parameter substitution and corresponding context,
ω : Ωparams, because type/kind annotations on spliced terms need to be able to access
parameters (but not expansion-local bindings.) We write cs(E) for the construction
splicing scene constructed by dropping the TLM contexts from E:

cs(ω : Ωparams; Ω̂; Ψ̂; Φ̂; b) = ω : Ωparams; Ω̂; b

The rules governing references to spliced terms are reproduced below:

parseUKind(subseq(b; m; n)) = κ̂ Ω̂ ` κ̂ κ kind

Ω̂ = 〈M;D;G; Ωapp〉 dom(Ω) ∩ dom(Ωapp) = ∅

Ω `ω:Ωparams; Ω̂; b splicedk[m; n] κ kind
(C.39f)

C = ω : Ωparams; Ω̂; b Ωparams `C κ̀ κ kind

parseUCon(subseq(b; m; n)) = ĉ Ω̂ ` ĉ c :: [ω]κ
Ω̂ = 〈M;D;G; Ωapp〉 dom(Ω) ∩ dom(Ωapp) = ∅

Ω `C splicedc[m; n; κ̀] c :: κ
(C.40p)

E = ω : Ωparams; Ω̂; Ψ̂; Φ̂; b Ωparams `cs(E) τ̀ τ :: Type
parseUExp(subseq(b; m; n)) = ê Ω̂ `Ψ̂;Φ̂ ê e : [ω]τ

Ω̂ = 〈M;D;G; Ωapp〉 dom(Ω) ∩ dom(Ωapp) = ∅

Ω `E splicede[m; n; τ̀] e : τ
(C.41p)

109

Ωparams `ω:Ωparams; Ω̂; b τ̀ τ :: Type
parseUPat(subseq(b; m; n)) = p̂ Ω̂ `Φ̂ p̂ p : [ω]τ
̂Ω′

splicedp[m; n; τ̀] p : τ
ω:Ωparams; Ω̂; Φ̂; b Ω̂′
(C.43e)

Notice that the kind/type annotations on spliced terms can refer to the provided
parameters, but not to bindings local to the expansion. The parameter substitution, ω,
must be applied after expanding the annotations because the parameter names are not
bound at the application site.

5.2.11 Metatheory

A more detailed account of the metatheory is given in Appendix C.4. We will summarize
the key theorems below.

TLM Expression Evaluation

The following theorems establish a notion of TLM type safety based on preservation and
progress for TLM expression evaluation.
Theorem C.28 (peTLM Preservation). If Ω `ExpΨ ε @ ρ and Ω `ExpΨ ε 7→ ε′ then Ω `ExpΨ
ε′ @ ρ.
Theorem C.31 (ppTLM Preservation). If Ω `PatΦ ε @ ρ and Ω `PatΦ ε 7→ ε′ then Ω `PatΦ
ε′ @ ρ.
Theorem C.34 (peTLM Progress). If Ω `ExpΨ ε @ ρ then either Ω `ExpΨ ε 7→ ε′ for some ε′ or
Ω `ExpΨ ε normal.
Theorem C.35 (ppTLM Progress). If Ω `PatΦ ε @ ρ then either Ω `PatΦ ε 7→ ε′ for some ε′ or
Ω `PatΦ ε normal.

Typed Expansion

There are also a number of theorems that establish that typed expansion generates a
well-typed expansion.

The top-level theorem is the typed expansion theorem for modules.
Theorem C.45 (Module Expansion). If 〈M;D;G; Ω〉 `Ψ̂;Φ̂ M̂ M : σ then Ω ` M : σ.

(The proof of this theorem requires proving the corresponding theorems about the
other typed expansion judgements, as well as the proto-expansion validation judgements
– see Appendix C.4.)

peTLM Abstract Reasoning Principles

The following theorem summarizes the abstract reasoning principles available to pro-
grammers when applying a peTLM. Descriptions of labeled clauses are given inline.
Theorem C.48 (peTLM Abstract Reasoning Principles). If Ω̂ `Ψ̂;Φ̂ ε̂ ‘b‘ e : τ then:

1. Ω̂ = 〈M;D;G; Ωapp〉

110

2. Ψ̂ = 〈A; Ψ〉
3. (Typing 1) Ω̂ `Exp

Ψ̂
ε̂ ε @ type(τ′) and Ωapp ` e : τ′ for τ′ such that Ωapp ` τ′ <: τ

The type of the expansion is consistent with the type annotation on the peTLM
definition.

4. Ωapp `ExpΨ ε ⇓ εnormal
5. tlmdef(εnormal) = a
6. Ψ = Ψ′, a ↪→ petlm(ρ; eparse)

7. b ↓Body ebody
8. eparse(ebody) ⇓ inj[SuccessE](epproto)

9. epproto ↑PPrExpr ė
10. Ωapp `ExpΨ ė#εnormal è ? type(τproto) a ω : Ωparams

11. (Segmentation) Ωparams `ω:Ωparams; Ω̂; b seg(è) segments b
The segmentation determined by the proto-expansion actually segments the
literal body (i.e. each segment is in-bounds and the segments are non-overlapping
and operate at consistent sorts, kinds and types.)

12. Ωparams `ω:Ωparams; Ω̂; Ψ̂; Φ̂; b è e′ : τproto
13. e = [ω]e′

14. τ = [ω]τproto
15. seg(è) = {splicedk[mi; ni]}0≤i<nkind ∪ {splicedc[m

′
i; n′i; κ̀′i]}0≤i<ncon ∪

{splicede[m′′i ; n′′i ; τ̀i]}0≤i<nexp

16. (Kinding 1) {Ω̂ ` parseUKind(subseq(b; mi; ni)) κi kind}0≤i<nkind and {Ωapp `
κi kind}0≤i<nkind

Each spliced kind has a well-formed expansion at the application site.
17. (Kinding 2) {Ωparams `ω:Ωparams; Ω̂; b κ̀′i κ′i kind}0≤i<ncon and {Ωapp ` [ω]κ′i kind}0≤i<ncon

Each kind annotation on a spliced construction has a well-formed expansion at
the application site.

18. (Kinding 3) {Ω̂ ` parseUCon(subseq(b; m′i; n′i)) ci :: [ω]κ′i}0≤i<ncon and {Ωapp `
ci :: [ω]κ′i}0≤i<ncon

Each spliced construction is well-kinded consistent with its kind annotation.
19. (Kinding 4) {Ωparams `ω:Ωparams; Ω̂; b τ̀i τi :: Type}0≤i<nexp and {Ωapp ` [ω]τi ::
Type}0≤i<nexp

Each type annotation on a spliced expression has a well-formed expansion at the
application site.

20. (Typing 2) {Ω̂ `Ψ̂;Φ̂ parseUExp(subseq(b; m′′i ; n′′i)) ei : [ω]τi}0≤i<nexp and {Ωapp `
ei : [ω]τi}0≤i<nexp

Each spliced expression is well-typed consistent with its type annotation.
21. (Capture Avoidance) e = [{κi/ki}0≤i<nkind , {ci/ui}0≤i<ncon , {ei/xi}0≤i<nexp , ω]e′′ for

some e′′ and fresh {ki}0≤i<nkind and fresh {ui}0≤i<ncon and fresh {xi}0≤i<nexp

The final expansion can be decomposed into a term with variables in place of each
spliced kind, construction, expression and parameter. The expansions of these

111

spliced kinds, constructions and expressions, as well as the provided parameters,
can be substituted into this term in the standard capture avoiding manner.

22. (Context Independence)

fv(e′′) ⊂ {ki}0≤i<nkind ∪ {ui}0≤i<ncon ∪ {xi}0≤i<nexp ∪ dom(Ωparams)

The decomposed term is independent of the application site context.

ppTLM Abstract Reasoning Principles

The following theorem summarizes the abstract reasoning principles available to pro-
grammers when applying a ppTLM. Descriptions of labeled clauses are given inline.
Theorem C.50 (ppTLM Abstract Reasoning Principles). If Ω̂ `Φ̂ ε̂ ‘b‘ p : τ
̂Ω′ then:

1. Ω̂ = 〈M;D;G; Ωapp〉
2. Φ̂ = 〈A; Φ〉
3. (Typing 1) Ω̂ `Pat

Φ̂
ε̂ ε @ type(τ′) and Ωapp ` p : τ′
Ω̂′ for τ′ such that

Ωapp ` τ′ <: τ

The final expansion matches values of the type specified by the ppTLM’s type
annotation.

4. Ωapp `PatΦ ε ⇓ εnormal
5. tlmdef(εnormal) = a
6. Φ = Φ′, a ↪→ pptlm(ρ; eparse)
7. b ↓Body ebody
8. eparse(ebody) ⇓ inj[SuccessP](epproto)

9. epproto ↑PPrPat ṗ
10. Ωapp `PatΦ ṗ#εnormal p̀ ? type(τproto) a ω : Ωparams

11. (Segmentation) Ωparams `ω:Ωparams; Ω̂; b seg(p̀) segments b
The segmentation determined by the proto-expansion actually segments the
literal body (i.e. each segment is in-bounds and the segments are non-overlapping
and operate at consistent sorts, kinds and types.)

12. p̀ p : τproto
ω:Ωparams; Ω̂; Φ̂; b Ω̂′

13. τ′ = [ω]τproto
14. seg(è) = {splicedk[mi; ni]}0≤i<nkind ∪ {splicedc[m

′
i; n′i; κ̀′i]}0≤i<ncon ∪

{splicedp[m′′i ; n′′i ; τ̀i]}0≤i<npat

15. (Kinding 1) {Ω̂ ` parseUKind(subseq(b; mi; ni)) κi kind}0≤i<nkind and {Ωapp `
κi kind}0≤i<nkind

Each spliced kind has a well-formed expansion at the application site.
16. (Kinding 2) {Ωparams `ω:Ωparams; Ω̂; b κ̀′i κ′i kind}0≤i<ncon and {Ωapp ` [ω]κ′i kind}0≤i<ncon

Each kind annotation on a spliced construction has a well-formed expansion at
the application site.

17. (Kinding 3) {Ω̂ ` parseUCon(subseq(b; m′i; n′i)) ci :: [ω]κ′i}0≤i<ncon and {Ωapp `
ci :: [ω]κ′i}0≤i<ncon

112

Each spliced construction is well-kinded consistent with its kind annotation.
18. (Kinding 4) {Ωparams `ω:Ωparams; Ω̂; b τ̀i τi :: Type}0≤i<npat and {Ωapp ` [ω]τi ::
Type}0≤i<npat

Each type annotation on a spliced expression has a well-formed expansion at the
application site.

19. (Typing 2) {Ω̂ `Φ̂ parseUPat(subseq(b; m′′i ; n′′i)) pi : [ω]τi
〈∅; ∅;Gi; Ωi〉}0≤i<npat

and {Ωapp ` pi : [ω]τi
Ωi}0≤i<npat

Each spliced pattern has a well-typed expansion that matches values of the type
indicated by the corresponding type annotation in the splice summary.

20. (No Hidden Bindings) Ω̂′ = 〈∅; ∅;
⊎

0≤i<npat Gi;
⋃

0≤i<npat Ωi〉
The hypotheses generated by the TLM application are exactly those generated by
the spliced patterns.

113

114

Chapter 6

Static Evaluation

In the previous chapters, we have assumed that the parse functions in TLM definitions are
closed expanded expressions. This is unrealistic in practice – writing a parser generally
requires access to various libraries. Moreover, the parse function might itself be written
more concisely using TLMs. In this chapter, we address these problems by introducing a
static environment shared between parse functions.

6.1 Static Values

Figure 6.1 shows an example of a module, ParserCombos (see Sec. 2.4.6). The static
qualifier indicates that this module is bound for use within the parse functions of the
subsequent TLM definitions.

1 static module ParserCombos =
2 struct
3 type parser(’c, ’t) = list(’c) -> list(’t * list(’c))
4 val alt : parser(’c, ’t) -> parser(’c, ’t) -> parser(’c, ’t)
5 (* ... *)
6 end
7

8 syntax $a at T by
9 static fn(b) =>
10 (* ... *) ParserCombos.alt (* ... *)
11 end
12

13 syntax $b at T’ by
14 static fn(b) =>
15 (* ... *) ParserCombos.alt (* ... *)
16 end
17

18 val y = (* ParserCombos CANNOT be used here *)

Figure 6.1: Binding a static module for use within parse functions

115

The values that arise during the the evaluation of parse functions do not need to
persist from “compile-time” to “run-time”, so we do not need a full staged computation
system [125]. Instead, a sequence of static bindings operates like a lexically-scoped
read-evaluate-print loop (REPL), in that each static expression is evaluated immediately
and the evaluated values are tracked by a static environment.

6.2 Applying TLMs Within TLM Definitions

TLMs and TLM abbreviations can also be qualified with the static keyword, which
marks them for use within subsequent static expressions and patterns. Let us consider
some examples of particular relevance to TLM providers.

6.2.1 Quasiquotation

TLMs must generate values of type proto_expr or proto_pat. Constructing values of
these types explicitly can have high syntactic cost. To decrease this cost, we can define
TLMs that provide support for quasiquotation syntax (similar to that built in to languages
like Lisp [18] and Scala [114]):
static syntax $proto_expr at proto_expr by static fn(b) =>
(* proto -expression quasiquotation parser here *)

end

static syntax $proto_typ at proto_typ by static fn(b) =>
(* proto -type quasiquotation parser here *)

end

For example, the following expression:
val gx = $proto_expr ‘g(x)‘

is more concise than its expansion:
val gx = App(Var ’g’, Var ’x’)

Anti-quotation, i.e. splicing in an expression of type proto_expr (or proto_pat), is per-
formed by prefixing a variable or parenthesized expression with %:
val fgx = $proto_expr ‘f(%gx)‘

The expansion of this term is:
val fgx = App(Var ’f’, gx)

6.2.2 Grammar-Based Parser Generators

In Sec. 2.4.5, we discussed a number of grammar-based parser generators. Abstractly, a
parser generator is a module matching the signature PARSEGEN defined in Figure 6.2. Let
us assume a module P : PARSEGEN and a grammar of spliced unexpanded expressions
that have a given type annotation, spliced_uexp : proto_typ -> P.grammar(proto_expr),
in the discussion below.

116

1 signature PARSEGEN = sig
2 type grammar(’a)
3 (* ... operations on grammars ... *)
4 type parser(’a) = string -> parse_result(’a)
5 val generate : grammar(’a) -> parser(’a)
6 end

Figure 6.2: A signature for parser generators. The type function parse_result was
defined in Figure 3.3.

Rather than constructing a grammar using various operations (whose specifications
are elided in PARSEGEN), we wish to use a syntax for grammars that follows standard
conventions. We can do so by defining a static parametric TLM $grammar:

static syntax $grammar (P : PARSEGEN) ’a at P.grammar(’a) by
static fn(b) => (* ... *)

end

Using these definitions, we might define a TLM for regexes (implementing a subset
of the POSIX regex syntax for simplicity) as shown in Figure 6.3.

1 static module RS : RX = (* ... *)
2 static module RU = RXUtil(RS)
3 syntax $rx(R : RX) at R.t by static
4 P.generate ($grammar P proto_expr {|
5 start <- ""
6 fn () => $proto_expr ‘R.Empty‘
7 start <- "(" start ")"
8 fn e => e
9 token str_tok
10 RU.parse "[^(@$]+" (* cannot use $rx within its own def *)
11 start <- str_tok
12 fn s => $proto_expr ‘R.Str %(str_to_proto_strlit s)‘
13 start <- start start
14 fn e1 e2 => $proto_expr ‘R.Seq (%e1, %e2)‘
15 start <- start "|" start
16 fn e1 e2 => $proto_expr ‘R.Or (%e1, %e2)‘
17 start <- start "*"
18 fn e => $proto_expr ‘R.Star %e‘
19

20 using spliced_uexp ($proto_typ ‘R.t ‘) as spliced_rx
21 start <- "%{" spliced_rx "}"
22 fn e => e
23

24 using spliced_uexp ($proto_typ ‘string ‘) as spliced_str
25 start <- "${" spliced_str "}"
26 fn e => $proto_expr ‘R.Str %(e)‘
27 |})
28 end

Figure 6.3: A grammar-based definition of $rx

117

6.3 Library Management

In the examples above, we explicitly qualified various definitions with the static key-
word to make them available within static values. This captures the essential nature of
the problem of static evaluation, but in practice, we would like to be able to use libraries
within both static values and standard values as needed without duplicating code. This
can be achieved by a library manager.

For example, a language-external library manager for VerseML similar to SML/NJ’s
CM [19] could support a static qualifier on imported libraries, which would place the
definitions exported by the imported library into the static phase of the library being
defined. In particular, a library definition in such a compilation manager might look like
this:

Library
(* ... exported module , signature and TLM names ... *)

is
(* ... files defining those exports ... *)

(* imports: *)
static parsegen.cm

A similar approach could be taken for languages the incorporate library management
directly into the syntax of programs, e.g. Scala [94]:

static import edu.cmu.comar.parsegen

For the sake of generality and simplicity, we will leave the details of library and
compilation management out of our formal developments (following the approach
taken in the definition of Standard ML [90].) The problem of packaging macros into
components has been studied for term-rewriting macros [31].

An alternative design that allows for the explicit lowering of standard-phase bindings
to the static phase has been proposed for OCaml [139].

6.4 miniVersePH

We will now formalize the mechanisms just discussed by developing a reduced calculus,
miniVersePH. This calculus is defined identically to miniVerseP with the exception of the
syntax and semantics of unexpanded module expressions, M̂, so we assume all of the
definitions that were given in Appendix C without restating them.

6.4.1 Syntax of Unexpanded Modules

The syntax of unexpanded modules is defined in Figure 6.4. The parts of this figure
that differ from Figure 5.9 are highlighted in yellow. Each binding form has a phase
annotation, ϕ, and parse functions are now unexpanded expressions, ê, rather than
expanded expressions, e. In the textual syntax, the phase annotation standard is assumed
when no phase annotation has been given.

118

Sort Stylized Form Description
Phase ϕ ::= standard standard phase

static static phase
UMod M̂ ::= X̂ module identifier

Jĉ; êK structure
M̂ � σ̂ seal
(ϕ let X̂ = M̂ in M̂) : σ̂ definition
ϕ syntax â at ρ̂ for expressions by static ê in M̂ peTLM definition
ϕ let syntax â = ε̂ for expressions in M̂ peTLM binding
ϕ syntax â at ρ̂ for patterns by static ê in M̂ ppTLM definition
ϕ let syntax â = ε̂ for patterns in M̂ ppTLM binding

Figure 6.4: Syntax of unexpanded modules in miniVersePH

6.4.2 Module Expansion

The module expansion judgement in miniVersePH takes the following form:

Judgement Form Description
Ω̂ `Σ

Ψ̂;Φ̂
M̂ M : σ M̂ has expansion M matching σ

The difference here is that there is now a static environment, Σ. Static environments
take the form ω : Ω̂; Ψ̂; Φ̂, where ω is a substitution.

The static environment passes opaquely through the subsumption rule and the rules
governing module identifiers, structures and sealing:

Ω̂ `Σ
Ψ̂;Φ̂ M̂ M : σ Ω̂ ` σ <: σ′

Ω̂ `Σ
Ψ̂;Φ̂ M̂ M : σ′

(6.1a)

Ω̂, X̂ X : σ `Σ
Ψ̂;Φ̂ X̂ X : σ

(6.1b)

Ω̂ ` ĉ c :: κ Ω̂ `Ψ̂;Φ̂ ê e : [c/u]τ

Ω̂ `Σ
Ψ̂;Φ̂ Jĉ; êK struct(c; e) : sig{κ}(u.τ)

(6.1c)

Ω̂ ` σ̂ σ sig Ω̂ `Σ
Ψ̂;Φ̂ M̂ M : σ

Ω̂ `Σ
Ψ̂;Φ̂ M̂ � σ̂ seal{σ}(M) : σ

(6.1d)

Each binding form in the syntax of M̂ is qualified with a phase, ϕ, which is either
standard or static. The static environment passes opaquely through the standard

119

phase module let binding construct:

Ω̂ `Σ
Ψ̂;Φ̂ M̂ M : σ Ω̂ ` σ̂′ σ′ sig

Ω̂, X̂ X : σ `Σ
Ψ̂;Φ̂ M̂′ M′ : σ′

Ω̂ `Σ
Ψ̂;Φ̂ (standard let X̂ = M̂ in M̂′) : σ̂′ mlet{σ′}(M; X.M′) : σ′

(6.1e)

The rule for the static phase module let binding construct, on the other hand, calls
for the module expression being bound to be evaluated to a module value under the
current environment. The substitution and corresponding unexpanded context is then
extended with this module value:

Σ = ω : Ω̂S; Ψ̂S; Φ̂S
Ω̂S `Σ

Ψ̂S;Φ̂S
M̂ M : σ [ω]M ⇓ M′

Ω̂ ` σ̂′ σ′ sig Ω̂ `ω,M′/X:Ω̂S,X̂ X:σ;Ψ̂S;Φ̂S
Ψ̂;Φ̂

M̂′ M′ : σ′

Ω̂ `Σ
Ψ̂;Φ̂ (static let X̂ = M̂ in M̂′) : σ̂′ M′ : σ′

(6.1f)

The standard peTLM definition construct is governed by the following rule:

Ω̂ ` ρ̂ ρ tlmty Σ = ω : Ω̂S; Ψ̂S; Φ̂S
Ω̂S `Ψ̂S;Φ̂S

êparse eparse : parr(Body; ParseResult(PPrExpr))
[ω]eparse ⇓ e′parse Ω̂ `Σ

〈A]â↪→defref[a];Ψ,a↪→petlm(ρ;e′parse)〉;Φ̂
M̂ M : σ

Ω̂ `Σ
〈A;Ψ〉;Φ̂ standard syntax â at ρ̂ for expressions by static êparse in M̂ M : σ

(6.1g)
The difference here is that the parse function is an unexpanded (rather than an expanded)
expression. It is expanded under the static environment’s unified context, Ω̂S. Then the
substitution, ω, is applied to the resulting expanded parse function before it is added to
the peTLM context.

The static peTLM definition construct operates similarly, differing only in that the
static environment’s peTLM context is extended, rather than the standard peTLM context:

Ω̂ ` ρ̂ ρ tlmty Σ = ω : Ω̂S; Ψ̂S; Φ̂S Ψ̂S = 〈AS; ΨS〉
Ω̂S `Ψ̂S;Φ̂S

êparse eparse : parr(Body; ParseResult(PPrExpr))

[ω]eparse ⇓ e′parse Ω̂ `ω:Ω̂S;〈AS]â↪→defref[a];ΨS,a↪→petlm(ρ;e′parse)〉;Φ̂S

Ψ̂;Φ̂
M̂ M : σ

Ω̂ `Σ
Ψ̂;Φ̂ static syntax â at ρ̂ for expressions by static êparse in M̂ M : σ

(6.1h)

The static environment passes opaquely through the standard peTLM abbreviation
construct:

Ω̂ `Exp〈A;Ψ〉 ε̂ ε @ ρ Ω̂ `Σ
〈A]â↪→ε;Ψ〉;Φ̂ M̂ M : σ

Ω̂ `Σ
〈A;Ψ〉;Φ̂ standard let syntax â = ε̂ for expressions in M̂ M : σ

(6.1i)

120

The static peTLM abbreviation construct updates the static peTLM identifier expan-
sion context, AS:

Ω̂ `Exp〈A;Ψ〉 ε̂ ε @ ρ

Σ = ω : Ω̂S; Ψ̂S; Φ̂S Ψ̂S = 〈AS; ΨS〉
Ω̂ `ω:ΩS;〈AS]â↪→ε;ΨS〉;Φ̂S

Ψ̂;Φ̂
M̂ M : σ

Ω̂ `Σ
Ψ̂;Φ̂ static let syntax â = ε̂ for expressions in M̂ M : σ

(6.1j)

The rules governing ppTLM definitions and abbreviations are analagous:

Ω̂ ` ρ̂ ρ tlmty Σ = ω : Ω̂S; Ψ̂S; Φ̂S
Ω̂S `Ψ̂S;Φ̂S

êparse eparse : parr(Body; ParseResult(PPrPat))
[ω]eparse ⇓ e′parse Ω̂ `Σ

Ψ̂;〈A]â↪→defref[a];Φ,a↪→pptlm(ρ;e′parse)〉
M̂ M : σ

Ω̂ `Σ
Ψ̂;〈A;Φ〉 standard syntax â at ρ̂ for patterns by static êparse in M̂ M : σ

(6.1k)

Ω̂ ` ρ̂ ρ tlmty Σ = ω : Ω̂S; Ψ̂S; Φ̂S Φ̂S = 〈AS; ΦS〉
Ω̂S `Ψ̂S;Φ̂S

êparse eparse : parr(Body; ParseResult(PPrPat))

[ω]eparse ⇓ e′parse Ω̂ `ω:Ω̂S;Ψ̂S;〈AS]â↪→defref[a];ΦS,a↪→pptlm(ρ;eparse)〉
Ψ̂;Φ̂

M̂ M : σ

Ω̂ `Σ
Ψ̂;Φ̂ static syntax â at ρ̂ for patterns by static êparse in M̂ M : σ

(6.1l)

Ω̂ `Pat〈A;Φ〉 ε̂ ε @ ρ Ω̂ `Σ
Ψ̂;〈A]â↪→ε;Φ〉 M̂ M : σ

Ω̂ `Σ
Ψ̂;〈A;Φ〉 standard let syntax â = ε̂ for patterns in M̂ M : σ

(6.1m)

Ω̂ `Pat〈A;Φ〉 ε̂ ε @ ρ

Σ = ω : Ω̂S; Ψ̂S; Φ̂S Φ̂S = 〈AS; ΦS〉
Ω̂ `ω:Ω̂S;Ψ̂S;〈AS]â↪→ε;ΦS〉

Ψ̂;Φ̂
M̂ M : σ

Ω̂ `Σ
Ψ̂;Φ̂ static let syntax â = ε̂ for patterns in M̂ M : σ

(6.1n)

6.4.3 Metatheory

The metatheorem having to do with unexpanded module expressions was the Module
Expansion theorem, Theorem C.45. This theorem continues to hold in miniVersePH.
Theorem 6.1 (Module Expansion). If 〈M;D;G; Ω〉 `Σ

Ψ̂;Φ̂
M̂ M : σ then Ω ` M : σ.

Proof. By rule induction over Rules (6.1). In the following, let Ω̂ = 〈M;D;G; Ω〉.
Case (6.1a).

(1) Ω̂ `Ψ̂;Φ̂ M̂ M : σ′ by assumption
(2) Ω̂ ` σ′ <: σ by assumption

121

(3) Ω ` M : σ′ by IH on (1)
(4) Ω ` M : σ by Rule (C.4a) on (3)

and (2)
Case (6.1b) through (6.1f). In each of these cases, we apply the IH over each module

expansion premise, Theorem C.44 over each expression expansion premise and The-
orem C.36 over each construction expansion premise, then apply the corresponding
signature matching rule in Rules (C.4) and weakening as needed.

Case (6.1g) through (6.1n). In each of these cases, we apply the IH to the module expan-
sion premise.

The rest of the metatheory is identical to that of miniVerseP.

122

Chapter 7

TLM Implicits

When applying a TLM, library clients must explicitly prefix each literal form with a TLM
name and, in some cases, several parameters. In situations where the client is repeatedly
applying a TLM to small literal forms, this can itself be costly. For example, list literals
are often small, so applying $intlist repeatedly can be distracting and syntactically
costly.

To further lower the syntactic cost of using TLMs, so that it compares to the syntactic
cost of using derived forms built primitively into a language, VerseML allows clients
to designate, for any type, one expression TLM and one pattern TLM as that type’s
designated TLMs within a delimited scope. When VerseML’s local type inference system
encounters a generalized literal form not prefixed by a TLM name (an unadorned literal
form), it implicitly applies the TLM designated at the type that the expression or pattern
is being checked against. This chapter will introduce TLM implicits first by example in
Sec. 7.1 and then formally in Sec. 7.2.

7.1 TLM Implicits By Example

7.1.1 Designation and Usage

On Lines 1-2 of Figure 7.1, the client has designated the expression TLM $rx for implicit
application to unadorned literal forms being checked against type rx, like the unadorned
literal form on Line 5.

Similarly, on Line 3 of Figure 7.1 the client has designated the pattern TLM $rx for
implicit application to unadorned pattern literal forms matching values of type rx, like
the pattern form on Line 8.

Type annotations on TLM designations are technically redundant – the definition of
the designated TLM determines the designated type. Annotations are included in our
examples for readability.

Expression and pattern TLMs need not be designated together, nor have the same
name if they are. However, this is a common idiom, so for convenience, VerseML also
provides a derived designation form that combines the two designations in Figure 7.1:

123

1 implicit syntax
2 $rx at rx for expressions
3 $rx at rx for patterns
4 in
5 val ssn : rx = /\d\d\d-\d\d-\d\d\d\d/
6 fun name_from_example_rx(r : rx) : option(string) =>
7 match r with
8 /@name: %_/ => Some name
9 | _ => None
10 end

Figure 7.1: An example of simple TLM implicits in VerseML

implicit syntax $rx at rx in (* ... *) end

7.1.2 Analytic and Synthetic Positions

During typed expansion of a subexpression, e′, of an expresssion, e, we say that e′

appears in analytic position if the type that e′ must have is determined by the surrounding
context and its position within e. For example, an expression appearing as a function
argument is in analytic position because the function’s type determines the argument’s
type. Similarly, an expression may appear in analytic position due to a type ascription,
either directly on the expression, or on a binding, as on Line 5 above.

If the type that e′ must be assigned is not determined by the surrounding context – i.e.
e′ must be examined to synthesize its type – we instead say that the expression appears
in a synthetic position. For example, a top-level expression, or an expression being bound
without a type ascription, appears in synthetic position.

An expression of unadorned literal form is valid only in analytic position, because
its type must be known to be able to determine the designated TLM that will control its
expansion. For example, typed expansion of the following expression will fail because
an expression of unadorned literal form appears in synthetic position:

val ssn = /\d\d\d-\d\d-\d\d\d\d/ (* INVALID *)

Patterns can always be of unadorned literal form in VerseML, because the scrutinee
of a match expression is always in synthetic position, and so the type of value that each
pattern appearing within the match expression must match is always known.

7.2 Bidirectional miniVerseS

To formalize TLM implicits, we will now develop a reduced calculus called Bidirectional
miniVerseS. The full definition of this calculus is given in Appendix D. We choose to base
our calculus on the simpler miniVerseS calculus, rather than miniVerseP, to communicate
the essential character of TLM implicits. Section 7.3 briefly considers the small changes

124

Sort Stylized Form Description
UTyp τ̂ ::= · · · (as in miniVerseS)
UExp ê ::= · · · (as in miniVerseS)

implicit syntax â for expressions in ê seTLM designation
implicit syntax â for patterns in ê spTLM designation
/b/ seTLM unadorned literal

URule r̂ ::= · · · (as in miniVerseS)
UPat p̂ ::= · · · (as in miniVerseS)

/b/ spTLM unadorned literal

Figure 7.2: Syntax of unexpanded terms in Bidirectional miniVerseS

that would be necessary to incorporate the same mechanism into a bidirectionally typed
variant of miniVerseP.

7.2.1 Expanded Language

The Bidirectional miniVerseS expanded language (XL) is the same as the miniVerseS XL,
which was described in Sections 4.2.1 through 4.2.3.

7.2.2 Syntax of the Unexpanded Language

The syntax of the Bidirectional miniVerseS unexpanded language (UL) extends the syntax
of the miniVerseS UL as shown in Figure 7.2.

As in miniVerseS, there is also a textual syntax for the UL, characterized by the follow-
ing condition:
Condition D.1 (Textual Representability).

1. For each τ̂, there exists b such that parseUTyp(b) = τ̂.
2. For each ê, there exists b such that parseUExp(b) = ê.
3. For each p̂, there exists b such that parseUPat(b) = p̂.

7.2.3 Bidirectionally Typed Expansion

Unexpanded terms are checked and expanded simultaneously according to the bidirec-
tionally typed expansion judgements:

Judgement Form Description
∆̂ ` τ̂ τ type τ̂ has well-formed expansion τ

∆̂ Γ̂ `Ψ̂;Φ̂ ê e⇒ τ ê has expansion e synthesizing type τ

∆̂ Γ̂ `Ψ̂;Φ̂ ê e⇐ τ ê has expansion e when analyzed against type τ

∆̂ Γ̂ `Ψ̂;Φ̂ r̂ r ⇐ τ Z⇒ τ′ r̂ has expansion r and takes values of type τ to values of
type τ′ when τ′s is provided for analysis

∆̂ `Φ̂ p̂ p : τ
̂Γ p̂ has expansion p and type τ and generates hypotheses Γ̂

125

Type Expansion

Unexpanded type formation contexts, ∆̂, were defined in Sec. 3.2.6. The type expansion
judgement, ∆̂ ` τ̂ τ type, is inductively defined as in miniVerseS by Rules (B.5).

Bidirectionally Typed Expression and Rule Expansion

In order to clearly define the semantics of TLM implicits, we must make a judgmental
distinction between type synthesis and type analysis. In the former, the type is determined
from the term, while in the latter, the type is presumed known. Type systems that make
this distinction are called bidirectional type systems [103]. (Pierce characterizes the idea as
folklore predating his paper.)

The typed expression expansion judgements, ∆̂ Γ̂ `Ψ̂;Φ̂ ê e ⇒ τ, for type synthesis,
and ∆̂ Γ̂ `Ψ̂;Φ̂ ê e ⇐ τ, for type analysis, and the typed rule expansion judgement,
∆̂ Γ̂ `Ψ̂;Φ̂ r̂ r ⇐ τ Z⇒ τ′, are defined mutually inductively by Rules (D.1), Rules (D.2)
and Rule (D.3), respectively. We will reproduce only certain “interesting” rules below –
the appendix gives the complete set of rules.

Subsumption Type analysis subsumes type synthesis according to the following rule
of subsumption:

∆̂ Γ̂ `Ψ̂;Φ̂ ê e⇒ τ

∆̂ Γ̂ `Ψ̂;Φ̂ ê e⇐ τ
(D.2a)

In other words, when a type can be synthesized for an unexpanded expression, that
unexpanded expression can also be analyzed against that type, producing the same
expansion.

Type Ascription A type ascription can be placed on an unexpanded expression to specify
the type that it should be analyzed against.

∆̂ ` τ̂ τ type ∆̂ Γ̂ `Ψ̂;Φ̂ ê e⇐ τ

∆̂ Γ̂ `Ψ̂;Φ̂ ê : τ̂ e⇒ τ
(D.1b)

Variables Unexpanded typing contexts, Γ̂, were defined in Sec. 3.2.6. Identifiers that
appear in Γ̂ have the expansion and synthesize the type that Γ̂ assigns to them.

∆̂ Γ̂, x̂ x : τ `Ψ̂;Φ̂ x̂ x ⇒ τ
(D.1a)

Value Binding We define let-binding of a value in synthetic or analytic position primi-
tively in Bidirectional miniVerseS. The following rules govern this construct.

∆̂ Γ̂ `Ψ̂;Φ̂ ê e⇒ τ ∆̂ Γ̂, x̂ x : τ `Ψ̂;Φ̂ ê′ e′ ⇒ τ′

∆̂ Γ̂ `Ψ̂;Φ̂ let val x̂ = ê in ê′ ap(lam{τ}(x.e′); e)⇒ τ′
(D.1c)

126

∆̂ Γ̂ `Ψ̂;Φ̂ ê e⇒ τ ∆̂ Γ̂, x̂ x : τ `Ψ̂;Φ̂ ê′ e′ ⇐ τ′

∆̂ Γ̂ `Ψ̂;Φ̂ let val x̂ = ê in ê′ ap(lam{τ}(x.e′); e)⇐ τ′
(D.2b)

Functions Functions with an argument type annotation can appear in synthetic posi-
tion.

∆̂ ` τ̂1 τ1 type ∆̂ Γ̂, x̂ x : τ1 `Ψ̂;Φ̂ ê e⇒ τ2

∆̂ Γ̂ `Ψ̂;Φ̂ λx̂:τ̂1.ê lam{τ1}(x.e)⇒ parr(τ1; τ2)
(D.1d)

(In addition to such “half annotated” functions [27], it would be straightforward to
include unannotated functions, λx̂.ê, which can appear only in analytic position. We
leave these out for simplicity.)

Function applications can appear in synthetic position. The argument is analyzed
against the argument type synthesized by the function.

∆̂ Γ̂ `Ψ̂;Φ̂ ê1 e1 ⇒ parr(τ2; τ) ∆̂ Γ̂ `Ψ̂;Φ̂ ê2 e2 ⇐ τ2

∆̂ Γ̂ `Ψ̂;Φ̂ ê1(ê2) ap(e1; e2)⇒ τ
(D.1e)

Pattern Matching The following rule governs match expressions, which must appear
in analytic position.

∆̂ Γ̂ `Ψ̂;Φ̂ ê e⇒ τ {∆̂ Γ̂ `Ψ̂;Φ̂ r̂i ri ⇐ τ Z⇒ τ′}1≤i≤n

∆̂ Γ̂ `Ψ̂;Φ̂ match ê {r̂i}1≤i≤n match[n](e; {ri}1≤i≤n)⇐ τ′
(D.2g)

The typed rule expansion judgement is defined by the following rule:

∆̂ `Φ̂ p̂ p : τ
〈G ′; Γ′〉 〈D; ∆〉 〈G] G ′; Γ ∪ Γ′〉 `Ψ̂;Φ̂ ê e⇐ τ′

〈D; ∆〉 〈G; Γ〉 `Ψ̂;Φ̂ p̂⇒ ê rule(p.e)⇐ τ Z⇒ τ′
(D.3)

(In this simple calculus, it would also be possible to allow match expressions to appear
in synthetic position – all of the branches would need to synthesize the same type. In a
language with richer notions of type equality and subtyping, this requires greater care.
To avoid this orthogonal concern, we do not formally consider this case.)

The pattern expansion judgement, ∆̂ `Φ̂ p̂ p : τ
̂Γ, is inductively defined by
Rules (D.4), and operates as described in Chapter 4. There is one new rule, governing
the newly introduced unadorned pattern literal form. We will return to this rule below.

Other Shared Forms Other constructs of shared form have similar bidirectional rules,
given in the appendix.

TLMs seTLM contexts, Ψ̂, take the form

〈A; Ψ; I〉

127

and spTLM contexts, Φ̂, take the form

〈A; Φ; I〉

where TLM identifier expansion contexts, A, seTLM definition contexts, Ψ, and spTLM
definition contexts, Φ, are defined as in miniVerseS. TLM implicit designation contexts, I ,
are new to Bidirectional miniVerseS and defined below.

Before considering TLM implicits, let us briefly review the rules for defining and
explicitly applying TLMs. These rules are nearly identical to their counterparts in
miniVerseS, differing only in that they have been made bidirectional.

TLMs can be defined in synthetic or analytic position. The rules for seTLMs are
reproduced below (the rules for spTLMs are analagous – see appendix.)

∆̂ ` τ̂ τ type ∅ ∅ ` eparse : parr(Body; ParseResultSE)
eparse ⇓ e′parse ∆̂ Γ̂ `Ψ̂,â a↪→setlm(τ; e′parse);Φ̂

ê e⇒ τ′

∆̂ Γ̂ `Ψ̂;Φ̂ syntax â at τ̂ for expressions {eparse} in ê e⇒ τ′
(D.1k)

∆̂ ` τ̂ τ type ∅ ∅ ` eparse : parr(Body; ParseResultSE)
eparse ⇓ e′parse ∆̂ Γ̂ `Ψ̂,â a↪→setlm(τ; e′parse);Φ̂

ê e⇐ τ′

∆̂ Γ̂ `Ψ̂;Φ̂ syntax â at τ̂ for expressions {eparse} in ê e⇐ τ′
(D.2h)

The rule for explicitly applying an seTLM is reproduced below:

Ψ̂ = Ψ̂′, â a ↪→ setlm(τ; eparse)
b ↓Body ebody eparse(ebody) ⇓ SuccessE · eproto eproto ↑PrExpr è

seg(è) segments b ∅ ∅ `∆̂; Γ̂; Ψ̂; Φ̂; b è e⇐ τ

∆̂ Γ̂ `Ψ̂;Φ̂ â ‘b‘ e⇒ τ
(D.1l)

Similarly, the rule for explicitly applying an spTLM is reproduced below:

Φ̂ = Φ̂′, â a ↪→ sptlm(τ; eparse)
b ↓Body ebody eparse(ebody) ⇓ SuccessP · eproto eproto ↑PrPat p̀

seg(p̀) segments b p̀ p : τ
∆; Φ̂; b Γ̂

∆̂ `Φ̂ â ‘b‘ p : τ
̂Γ
(D.4f)

TLM Implicits TLM implicit designation contexts, I , are finite functions that map each
type τ ∈ dom(I) to the TLM designation τ ↪→ a, for some TLM name a. We write
I] τ ↪→ a for the TLM designation context that maps τ to τ ↪→ a and defers to I for all
other types (i.e. the previous designation, if any, is updated).

The following rules governs seTLM designation in synthetic and analytic position,
respectively:

128

Ψ̂ = 〈A] â a; Ψ, a ↪→ setlm(τ; eparse); I〉
∆̂ Γ̂ `〈A]â a;Ψ,a↪→setlm(τ; eparse);I]τ↪→a〉;Φ̂ ê e⇒ τ′

∆̂ Γ̂ `Ψ̂;Φ̂ implicit syntax â for expressions in ê e⇒ τ′
(D.1m)

Ψ̂ = 〈A] â a; Ψ, a ↪→ setlm(τ; eparse); I〉
∆̂ Γ̂ `〈A]â a;Ψ,a↪→setlm(τ; eparse);I]τ↪→a〉;Φ̂ ê e⇐ τ′

∆̂ Γ̂ `Ψ̂;Φ̂ implicit syntax â for expressions in ê e⇐ τ′
(D.2i)

Similarly, the following rules govern spTLM designation in synthetic and analytic
position, respectively:

Φ̂ = 〈A] â a; Φ, a ↪→ sptlm(τ; eparse); I〉
∆̂ Γ̂ `Ψ̂;〈A]â a;Φ,a↪→sptlm(τ; eparse);I]τ↪→a〉 ê e⇒ τ′

∆̂ Γ̂ `Ψ̂;Φ̂ implicit syntax â for patterns in ê e⇒ τ′
(D.1o)

Φ̂ = 〈A] â a; Φ, a ↪→ sptlm(τ; eparse); I〉
∆̂ Γ̂ `Ψ̂;〈A]â a;Φ,a↪→sptlm(τ; eparse);I]τ↪→a〉 ê e⇐ τ′

∆̂ Γ̂ `Ψ̂;Φ̂ implicit syntax â for patterns in ê e⇐ τ′
(D.2l)

The following rule determines the TLM designated at the type that the expression of
unadorned literal form is being analyzed against and applies it implicitly:

Ψ̂ = 〈A; Ψ, a ↪→ setlm(τ; eparse); I] τ ↪→ a〉
b ↓Body ebody eparse(ebody) ⇓ SuccessE · eproto eproto ↑PrExpr è

seg(è) segments b ∅ ∅ `∆̂; Γ̂; Ψ̂; Φ̂; b è e⇐ τ

∆̂ Γ̂ `Ψ̂;Φ̂ /b/ e⇐ τ
(D.2j)

Similarly, the following rule determines the TLM designated at the type that the
pattern of unadorned literal form is matching against and applies it implicitly:

Φ̂ = 〈A; Φ, a ↪→ sptlm(τ; eparse); I , τ ↪→ a〉
b ↓Body ebody eparse(ebody) ⇓ SuccessP · eproto eproto ↑PrPat p̀

seg(p̀) segments b p̀ p : τ
∆̂; Φ̂; b Γ̂

∆̂ `Φ̂ /b/ p : τ
̂Γ
(D.4g)

7.2.4 Bidirectional Proto-Expansion Validation

The syntax of proto-expansions was defined in Sec. 4.2.8.
The bidirectional proto-expansion validation judgements validate proto-terms and simul-

taneously generate their final expansions.

129

Judgement Form Description
∆ `T τ̀ τ type τ̀ has well-formed expansion τ
∆ Γ `E è e⇒ τ è has expansion e synthesizing type τ
∆ Γ `E è e⇐ τ è has expansion e when analyzed against type τ
∆ Γ `E r̀ r ⇐ τ Z⇒ τ′ r̀ has expansion r taking values of type τ to values of type τ′

p̀ p : τ
P Γ̂ p̀ has expansion p matching against τ generating assumptions Γ̂

These judgements are defined by rules given in Appendix D.3.2. Most rules follow the
corresponding typed expansion rule. The main rule of interest here is the rule governing
references to spliced expressions, reproduced below:

∅ `ts(E) τ̀ τ type E = 〈D; ∆app〉; 〈G; Γapp〉; Ψ̂; Φ̂; b
parseUExp(subseq(b; m; n)) = ê 〈D; ∆app〉 〈G; Γapp〉 `Ψ̂;Φ̂ ê e⇐ τ

∆ ∩ ∆app = ∅ dom(Γ) ∩ dom(Γapp) = ∅

∆ Γ `E splicede[m; n; τ̀] e⇒ τ
(D.5k)

This rule is similar to Rule (B.10n), which governed references to spliced expressions in
miniVerseS. Notice that here, the unexpanded expression ê is analyzed against the type τ.

7.2.5 Metatheory

Bidirectional miniVerseS enjoys metatheoretic properties analagous to those established
for miniVerseS. We state these properties below – the proofs are given in Appendix D.4.

The following theorem establishes that typed pattern expansion produces an ex-
panded pattern that matches values of the specified type and generates the same hypothe-
ses. It must be stated mutually with the corresponding theorem about proto-patterns,
because the judgements are mutually defined.
Theorem D.9 (Typed Pattern Expansion).

1. If 〈D; ∆〉 `〈A;Φ;I〉 p̂ p : τ
〈G; Γ〉 then ∆ ` p : τ
Γ.

2. If p̀ p : τ
〈D;∆〉; 〈A;Φ〉; b 〈G; Γ〉 then ∆ ` p : τ
Γ.
The following theorem establishes that bidirectionally typed expression and rule

expansion produces expanded expressions and rules of the appropriate type under the
appropriate contexts. These statements must be stated mutually with the corresponding
statements about birectional proto-expression and proto-rule validation because the
judgements are mutually defined.
Theorem D.10 (Typed Expression and Rule Expansion).

1. (a) If 〈D; ∆〉 〈G; Γ〉 `Ψ̂;Φ̂ ê e⇒ τ then ∆ Γ ` e : τ.
(b) If 〈D; ∆〉 〈G; Γ〉 `Ψ̂;Φ̂ ê e⇐ τ and ∆ ` τ type then ∆ Γ ` e : τ.
(c) If 〈D; ∆〉 〈G; Γ〉 `Ψ̂;Φ̂ r̂ r ⇐ τ Z⇒ τ′ and ∆ ` τ′ type then ∆ Γ ` r : τ Z⇒ τ′.

2. (a) If ∆ Γ `〈D;∆app〉; 〈G;Γapp〉; Ψ̂; Φ̂; b è e ⇒ τ and ∆ ∩ ∆app = ∅ and dom(Γ) ∩
dom(Γapp) = ∅ then ∆ ∪ ∆app Γ ∪ Γapp ` e : τ.

(b) If ∆ Γ `〈D;∆app〉; 〈G;Γapp〉; Ψ̂; Φ̂; b è e ⇐ τ and ∆ ` τ type and ∆ ∩ ∆app = ∅ and
dom(Γ) ∩ dom(Γapp) = ∅ then ∆ ∪ ∆app Γ ∪ Γapp ` e : τ.

130

(c) If ∆ Γ `〈D;∆app〉; 〈G;Γapp〉; Ψ̂; Φ̂; b r̀ r ⇐ τ Z⇒ τ′ and ∆ ` τ′ type and ∆ ∩ ∆app = ∅
and dom(Γ) ∩ dom(Γapp) = ∅ then ∆ ∪ ∆app Γ ∪ Γapp ` r : τ Z⇒ τ′.

The following theorem establishes abstract reasoning principles for implicitly applied
expression TLMs. These are analagous to those described in Section 3.2.11 for explicitly
applied expression TLMs.
Theorem D.13 (seTLM Abstract Reasoning Principles - Implicit Application). If

〈D; ∆〉 〈G; Γ〉 `Ψ̂;Φ̂ /b/ e⇐ τ

then:
1. (Typing 1) Ψ̂ = 〈A; Ψ, a ↪→ setlm(τ; eparse); I] τ ↪→ a〉 and ∆ Γ ` e : τ

2. b ↓Body ebody
3. eparse(ebody) ⇓ inj[SuccessE](eproto)

4. eproto ↑PrExpr è
5. (Segmentation) seg(è) segments b
6. seg(è) = {splicedt[m′i; n′i]}0≤i<nty ∪ {splicede[mi; ni; τ̀i]}0≤i<nexp

7. (Typing 2) {〈D; ∆〉 ` parseUTyp(subseq(b; m′i; n′i)) τ′i type}0≤i<nty and {∆ `
τ′i type}0≤i<nty

8. (Typing 3) {∅ `〈D;∆〉; b τ̀i τi type}0≤i<nexp and {∆ ` τi type}0≤i<nexp

9. (Typing 4) {〈D; ∆〉 〈G; Γ〉 `Ψ̂;Φ̂ parseUExp(subseq(b; mi; ni)) ei ⇐ τi}0≤i<nexp and
{∆ Γ ` ei : τi}0≤i<nexp

10. (Capture Avoidance) e = [{τ′i /ti}0≤i<nty , {ei/xi}0≤i<nexp]e
′ for some {ti}0≤i<nty and

{xi}0≤i<nexp and e′

11. (Context Independence) fv(e′) ⊂ {ti}0≤i<nty ∪ {xi}0≤i<nexp

Similarly, the following theorem establishes abstract reasoning principles for implic-
itly applied pattern TLMs. These are analagous to those described in Sec. 4.2.10 for
explicitly applied pattern TLMs.
Theorem D.16 (spTLM Abstract Reasoning Principles - Implicit Application). If

∆̂ `Φ̂ /b/ p : τ
̂Γ

where ∆̂ = 〈D; ∆〉 and Γ̂ = 〈G; Γ〉 then all of the following hold:
1. (Typing 1) Φ̂ = 〈A; Φ, a ↪→ sptlm(τ; eparse); I , τ ↪→ a〉 and ∆ ` p : τ
Γ
2. b ↓Body ebody
3. eparse(ebody) ⇓ inj[SuccessP](eproto)

4. eproto ↑PrPat p̀
5. (Segmentation) seg(p̀) segments b
6. seg(p̀) = {splicedt[n′i; m′i]}0≤i<nty ∪ {splicedp[mi; ni; τ̀i]}0≤i<npat

7. (Typing 2) {∆̂ ` parseUTyp(subseq(b; m′i; n′i)) τ′i type}0≤i<nty and {∆ ` τ′i type}0≤i<nty

8. (Typing 3) {∅ `∆̂; b τ̀i τi type}0≤i<npat and {∆ ` τi type}0≤i<npat

9. (Typing 4) {∆̂ `Φ̂ parseUPat(subseq(b; mi; ni)) pi : τi
̂Γi}0≤i<npat

10. (No Hidden Bindings) Γ̂ =
⊎

0≤i<npat Γ̂i

131

7.3 Parametric TLM Implicits

Incorporating simple implicits into a bidirectionally typed dialect of miniVerseP would
require that the implicit context, I , be a finite function from equivalence classes of types
to TLM expressions, ε (rather than from syntactic types, τ, to TLM names, a.)

We consider a more sophisticated mechanism that allows a TLM implicit designation
itself to operate over a parameterized family of types as future work in Sec. 8.3.5.

132

Chapter 8

Discussion & Conclusion

8.1 Summary of Contributions

In summary, typed literal macros (TLMs) allow library providers to programmatically
control the parsing and expansion of generalized expression and pattern literal forms. A
proto-expansion validation step allows a TLM client to reason about types, binding and
segmentation abstractly, i.e. without examining the macro definition or the generated
expansion in complete detail. Instead, the client needs only to be made aware of the type
annotation on the applied TLM and the splice summary of the generated proto-expansion,
which locates and assigns a type to each spliced term within the literal body. This
information can be communicated to the client using secondary notation (e.g. colors)
together with a simple type inspection service similar to that available in many program
editors today.

This work developed a series of progressively more sophisticated core calculi in order
to formally characterize the mechanisms of TLM definition and application and the
associated abstract reasoning principles. In particular:

1. Chapters 3 and 4 developed miniVerseS, which communicates the central concepts
of typed expansion and proto-expansion validation for simple expression and
pattern TLMs, respectively. It also showed how we can formally establish the
abstract reasoning principles available to TLM clients. The reasoning principles
related to binding relied on the standard notion of capture-avoiding substitution
(for ABTs), rather than on a macro-specific mechanism for fresh variable generation
as in other formal accounts of macro systems (notably, the work of Herman and
Wand [66, 67].)

2. Chapter 5 then developed miniVerseP, which added type and module parameters.
These enrich the TLM type discipline to allow a single TLM to operate across a
parameterized family of types. They also allow TLMs to refer to external bindings
through module parameters, rather than requiring that all external references go
through spliced terms. Support for partial application in higher-order abbreviations
lowers the syntactic cost of this explicit parameter-passing style.

3. Chapter 6 developed miniVersePH, which adds a static environment shared between

133

TLM definitions. This makes the job of the TLM provider easier, by giving them
access to libraries, including those that themselves export TLM definitions. We gave
examples of TLMs that are useful for defining other TLMs, including quasiquotation
TLMs and a grammar-based parser generator. We also briefly discussed how TLMs
interact with library management systems.

4. Finally, Chapter 7 developed Bidirectional miniVerseS, which supports a mechanism
of TLM implicits that further decreases the syntactic cost of applying a TLM while
retaining the essential reasoning principles developed in the previous chapters.

8.2 Summary of Related Work
Chapter 2 gave a detailed account of the various existing mechanisms of syntactic control.
In this section, we briefly compare TLMs to this related work more directly.

Compared to dialect-oriented mechanisms of syntactic control, i.e. mechanisms that
allow providers to form a new syntax dialect by extending the context-free syntax of a
language, TLMs provide clients with stronger abstract reasoning principles. In particular:

1. Conflict: Clients attempting to combine general syntax dialects that have been
found to be individually free of syntactic conflicts cannot be sure that the combined
dialect will be free of syntactic conflicts. Only a system described by Schwerdfeger
and Van Wyk allows reasoning modularly about conflicts, but for a restricted class
of syntax dialects [111, 112]. In contrast, TLM providers can reason modularly
about syntactic conflicts because the context-free syntax of the language is fixed.

2. Responsibility: Clients using a combined syntax dialect cannot easily determine
which constituent dialect is responsible for any given form. In contrast, TLM clients
can reason about responsibility by following the binding structure of the language
in the usual manner.

3. Segmentation: Clients of a syntax dialect cannot accurately determine which
segments of the program text appear directly in the desugaring. In contrast, TLM
clients can reason about segmentation by inspecting the splice summary. The
information in a splice summary can be communicated straightforwardly by a
program editor using secondary notation (e.g. colors.) The system guarantees that
spliced segments are non-overlapping.

4. Typing: Clients of a syntax dialect cannot reason abstractly about types. In contrast,
TLM clients clients can determine the type of any expansion by inspecting the
parameter and type declarations on the TLM definition. The parse function and
the expansion itself need not be inspected, i.e. these details can be held abstract.
The splice summary also gives types for each spliced expression or pattern. This
information can be communicated upon request by the type inspection service of a
program editor.

5. Binding: Clients of a context-free syntax dialect cannot be sure that the desugaring
is context-independent and that spliced terms are capture avoiding. In contrast,
TLM clients can be sure that the expansion is completely context-independent and

134

that spliced terms are capture-avoiding.

Some existing typed term-rewriting macro systems, notably the Scala macro system
[23], address most of these problems but sacrifice syntactic control by requiring that
the macro repurpose what existing syntactic forms are otherwise defined. String literal
forms cannot be repurposed flexibly because terms cannot be spliced hygienically out
of string literal bodies. TLMs solve this problem by distinguishing spliced segments
explicitly within the generated proto-expansions. This allows the language to selectively
give spliced terms access to application-site bindings during proto-expansion validation,
while requiring that the remainder of the proto-expansion be context-independent.

This work also provides the first type-theoretic account of a hygienic typed macro
system integrated into a language with support for structural pattern matching and an
ML-style module system. Let us consider some related work to justify this assertion.

• The Scala macro system has not been formally specified as of this writing.
• The macro calculus of Herman and Wand [66, 67] uses types only to make manifest

the binding structure of the generated expansion. The language that expansions
are written in does not have an ML-style type structure.
Their calculus uses tree locations, which originate in the early work of Gorn [55], to
identify macro arguments by their location within the macro argument list. These
tree locations are conceptually reminiscent of our spliced segment references, which
identify spliced terms by their lexical location within the literal body. However,
the tree locations serve a different purpose in Herman and Wand’s calculus –
they distinguish symbolic arguments that will appear in binding positions in the
expansion. In our system, there is no way for spliced identifiers to appear in
binding position (but see Sec. 8.3.7 for further discussion of this point.) Spliced
segment references instead serve to distinguish segments that appear as sub-terms
in the proto-expansion from those parsed in some other way.
Additionally, their calculus explicitly specifies the mechanism for fresh variable
generation during expansion, whereas our approach relies on the standard type-
theoretic notions of implicit alpha-variation and capture-avoiding substitution (for
general ABTs.) This significantly simplifies our calculi.
Finally, their calculus defines term representations and quasiquotation primitively
because the binding structure of the expansion must be manifest in the type of the
macro. In our work, the parse functions can perform arbitrary computations on
simpler term representations – there is no need to define quasiquotation primitively
or encode the binding structure of term representations in their types. This is
possible because we enforce a stronger notion of context-independence – not even
definition-site bindings are available directly to expansions.

• It is also worth mentioning MacroML [53]. MacroML is only a staging macro
system, i.e. it does not give the macro access to the syntax (parsed or unparsed)
of the provided arguments but rather requires that it treat them parametically.
As such, MacroML does not qualify as a mechanism of syntactic control (staging
is motivated primarily by performance considerations.) MacroML also does not

135

support pattern matching or ML-style modules.
• Finally, the predecessor to the systems introduced in this work was the system of

type-specific languages (TSLs) that was defined in a previous paper [97]. That work
introduced generalized literal forms and gave a bidirectionally typed protocol for
type-directed parse function invocation. This work progresses beyond that work in
several ways.
Most obviously, this work allows explicit TLM application. Different TLMs can
therefore be defined at the same type without conflict. A subsequent short paper
proposed explicit application of simple expression TLMs in a bidirectional typed
setting, but did not provide any formal details [98]. We do not assume a bidirec-
tionally typed language when discussing explicit application (see Sec. 8.3.3 below
for more discussion on type inference.) Moreover, TLMs are not associated directly
with named type definitions, like TSLs, but rather can operate at any type.
Our mechanism of TLM implicits, described in Chapter 7, also differs from TSLs
in that implicit designations are orthogonal to the type abbreviation mechanism.
Clients are free to differentially control implicit designations as desired within a
lexically scoped portion of a program.
Another distinction is that the metatheory presented in the earlier work establishes
only the ability to reason abstractly about types. It does not establish the remaining
abstract reasoning principles that have been a major focus of this work. In particular,
there is no formal notion of hygiene (though it is discussed informally), and the
mechanism does not guarantee that a valid segmentation will exist, nor associate
types with segments.
Finally, the prior work on TSLs did not consider the mechanisms of pattern match-
ing, parameterized types, modules, parametric expansions or static evaluation. All
of these are important for integration into an ML-like functional language.

8.3 Limitations & Future Research Directions

Let us conclude with a discussion of the present limitations of our work. When possible,
we outline future research that might resolve these limitations.

8.3.1 Integration Into a Full-Scale Functional Language Definition

We left many orthogonal language features out of our calculi, for the sake of simplicity
and to focus our exposition on our novel contributions. We leave the work of integrating
TLMs into a full-scale functional language definition as future work. We hope that this
work will serve to guide a variety of different efforts in this direction.

8.3.2 Integration Into Languages From Other Design Traditions

We conjecture that all of the mechanisms we have described could be integrated into
dependently typed functional languages, e.g. Coq [87], but leave the necessary technical

136

developments as future work.
The mechanisms described in Chapter 3 and Chapter 6 could also be adapted for

use in languages from the imperative and object-oriented traditions without difficulty.
These languages do not typically support structural pattern matching, so the mechanism
in Chapter 4 may not be relevant. Parametric TLMs as described in Chapter 5 require
an ML-style module system, i.e. a system where types and values are packaged into
modules, and these modules are classified by signatures. However, it may be possible to
define a variant of this mechanism that treats type and value parameters separately (the
difficulty being that the type of value parameters may mention prior type parameters.)

The mechanism of TLM implicits introduced in Chapter 7 assumes a bidirectionally
typed unexpanded language. A number of full-scale languages are bidirectionally typed,
notably including Scala [94]. However, Scala, like many other object-oriented languages,
supports subtyping. Subtyping would complicate the question of implicit TLM dispatch,
because there may be designations at multiple supertypes of a given type.

Various forms of ad hoc polymorphism, e.g. function/method overloading or type
classes [59], would also complicate the question of implicit TLM dispatch. One approach
that may be worth exploring in future work would associate implicits with a type class,
rather than with an individual type.

TLMs could also be adapted for use in dynamic languages like Racket by eliminating
the type annotation (thereby treating the language as “uni-typed” [62, 113].) In such a
language (and even in a language with richer type structure), it could be useful to allow
TLM providers to annotate a TLM with a dynamic contract governing all generated
expansions [47].

8.3.3 Constraint-Based Type Inference

ML uses a constraint-based type inference system a la Damas-Milner [32]. We conjecture
that the mechanisms described up through Chapter 6 are compatible with such a system
– most simply, by generating the constraints from the final expansion. Actually, it should
be possible to perform type inference abstractly, using only the information in the splice
summary. We leave the evaluation of this conjecture as future work.

The mechanism of TLM implicits developed in Chapter 7 assumed a bidirectional
type system, i.e. one that only locally infers types [103]. It may be possible to integrate
implicit TLM dispatch with a constraint-based type inference system, but the approach
to take is less clear. We leave the exploration of this question as future work.

8.3.4 Module Expression Syntax Macros

We did not consider situations where a library client wants to define syntactic sugar for
module expressions matching a given signature. It should be possible to “replicate” the
mechanisms developed up through Chapter 6 at the level of module expressions without
difficulty. Implicit dispatch would be problematic at the module level because signatures
are related by a notion of subtyping.

137

A similar approach might be considered for syntax macros at the level of types (or,
more generally, constructions.) However, for an ML-like language where all types are
classified by a single kind, type-level TLMs would obscure the identity of the type. This,
in turn, might obscure the type structure of the program too much to be useful.

8.3.5 Parameterized Implicit Designations

The mechanism of TLM implicits developed in Chapter 7 allows the client to designate a
TLM at a single type. A more sophisticated mechanism would allow for parameterization
of the TLM implicit designation itself, so that it could operate across a parameterized
family of types. For example, we may want to be able to implicitly apply the parametric
TLM $list’ at all list types, with the parameters determined implicitly from the type
supplied for analysis.

Naïvely, we might imagine a designation that quantifies over modules, L, and types,
’a, like this:

implicit syntax (L : LIST) ’a => $list ’ L ’a in (* ... *) end

When encountering an unadorned literal form, the implicit dispatch mechanism must
instantiate each implicit parameter from the type provided for analysis. The problem
is that there does not always exist a unique such instantiation. For example, the type
expression list(int) makes no reference to any module matching the LIST signature,
and there may be many such modules in context, so we cannot uniquely instantiate L.

To solve this problem, we would need to define a unique normal form that serves as a
representative for each equivalence class of types. A designation is deemed invalid if the
normal form of its type does not mention every designation parameter. For example, the
normal form of L.list(’a) does not mention L (because LIST.list is not abstract), so the
implicit designation above can simply be deemed invalid.

The following designation does not require instantiating a module variable, so it
would be valid under this restriction (recalling that $list was defined as a synonym for
$list’ List):

implicit syntax ’a => $list ’a in (* ... *) end

The normal form of an abstract type would necessarily mention a module path, so
the following parametric designation would also be valid:

implicit syntax (R : RX) => $r R in (* ... *) end

It may be possible to use Crary’s method for representing terms of the dependent
singleton calculus in a beta-normal, eta-long form for this purpose [30]. Defining pattern
matching over types of normal form, and incorporating this mechanism into the implicit
dispatch mechanism, is left as future work.

8.3.6 Exportable Implicit Designations

Implicit designations cannot be exported from a library, because different libraries might
define conflicting designations. This can be inconvenient for clients.

138

This restriction is perhaps too severe in cases where the designation is at an abstract
type generated from within the same library. In such situation, it would be safe to export
an implicit designation because no other library could do the same.

8.3.7 Controlled Capture

The prohibition on capture makes it impossible to define new binding constructs. For
example, consider Haskell’s do-notation for monadic structures:

do x1 <- action1
x2 <- action2
action3 x1 x2

This desugars to:

action1 >>= \ x1 -> action2 >>= \ x2 -> action3 x1 x2

where >>= is infix application of the bind function and \ x1 -> e is Haskell’s syntax for
lambda abstraction.

If we naïvely attempted to define something like do-notation using a TLM, the
prohibition on capture would prevent x1 from being visible within action2.

Completely relaxing the prohibition on capture would be unreasonable. Instead, we
conjecture that there are two important constraints that need to be enforced:

1. Identifiers that can be captured by spliced terms must themselves appear in the
literal body. This leaves control over naming entirely to the client programmer.

2. The splice summary must state which of these are available to each spliced term.
The prior work of Herman and Wand developed mechanisms to support these sorts

of examples [66, 67]. We leave integrating related mechanisms into a system of TLMs as
future work. We also leave open the question of how an editor should best convey the
set of available identifiers within a spliced term to the programmer.

8.3.8 Type-Aware Splicing

Although typed expansion generalizes typing, there is no mechanism by which the
expansion can branch based on the type synthesized by a spliced term. Recent work
by Lorenzen and Erdweg on type-dependent desugarings gives some examples where
branching according to the type of a spliced term might be useful [83]. Developing a
reasonable extension of our TLM mechanism for doing so is left as future work.

8.3.9 TLM Application in Proto-Expansions

Proto-expansions are abstract binding trees in our work, so it is not possible to ap-
ply TLMs within proto-expansions. This might occasionally be inconvenient for TLM
providers. Developing the machinery necessary to be able to take TLMs as parameters
and apply TLMs in proto-expansions is left as future work.

139

8.3.10 Mechanically Reasoning About Parse Functions

A correct parse function never returns an encoding of a proto-expansion that fails proto-
expansion validation. This invariant cannot be enforced by the simple type systems we
have considered in this work. Using a proof assistant, it would be possible to verify that
a parse function generates only encodings of valid proto-expansions. Alternatively, in a
dependently typed setting, the type of the parse function itself could be enriched so as to
enforce this invariant intrinsically. We leave the details of this approach as future work.

A related problem is that a parse function might diverge. Again, we can either prove
that the parse function does not diverge extrinsically, or define the parse function using
a total language.

Parse functions implement some intended syntax definition. It would be useful to be
able to state the syntax definition separately as a formal structure, and then prove that
the parse function implements it correctly. In fact, in most cases, it should be possible to
generate the parse function directly from the syntax definition using a parser generator.
In this case, it would be useful to be able to mechanically prove the parser generator
correct.

It would also be useful to develop the notion of an splice summary specification, i.e.
a specification of the splice summary that should result from a well-formed string.
This could be combined with a grammar like the one shown in Figure 6.3, with the
non-terminals representing spliced terms annotated with types.

8.3.11 Refactoring Unexpanded Terms

A crucial distinction is between identifiers, which appear in unexpanded terms, and
variables, which appear in expanded terms. Variables are given meaning by substitution,
and ABTs are identified only up to renaming of bound variables. In contrast, identifiers
are given meaning only by expansion to variables and there is no notion of renaming or
substitution. Unexpanded terms are not evaluated directly, so there is no need for these
operations to assign static and dynamic meaning to programs.

It would, however, be useful to support identifier renaming and substitution opera-
tions for the purposes of automatic refactoring [89]. The simplest solution would be to
use the splice summaries to locate spliced terms, and then perform the renaming directly
within the literal body. The problem is that there is no guarantee that the parse function
will produce an alpha-equivalent expansion after such a renaming operation has been
performed. Similar concerns about invariance come up for other kinds of refactorings.

There are three approaches one might take to avoid this problem. The simplest
approach is for the renaming operation to re-run the parse function and check that the
expansion it generates is related to the previously generated expansion as expected.
Alternatively, we might seek to mechanically verify that the parse function is invariant
to refactoring, either intrinsically or extrinsically as discussed in Sec. 8.3.10. A third
approach would be to require that the TLM be defined using a grammar formalism that
precludes inspection of the form of spliced expressions by construction. Exploration of
these approaches is a promising avenue for future work.

140

8.3.12 Integration with Editor Services

Program editors often seek to provide feedback to the programmer about the syntax
and semantics of the program being written. Questions remain about how various
editor services should interact with TLMs. In the examples in this document, we colored
spliced terms black and all other segments of a literal body some other uniform color (e.g.
green.) A more sophisticated approach would allow the TLM to define its own syntax
highlighting logic governing these non-spliced segments.

Another concern has to do with performance: naïvely, a program editor would need
to re-run the corresponding parse function on each edit that modified a literal body.
Ideally, it should be possible to incrementally compute the resulting change to the splice
summary as a function of the change to the literal body [54]. The generated expansions
are context-independent, so there should be ample opportunity for caching.

Finally, we considered only reasoning principles for well-formed, well-typed pro-
grams. However, programmers often produce ill-formed or ill-typed programs. It is often
useful to have error recovery heuristics that can be applied to provide useful feedback to
the programmer in these circumstances. Error recovery within generalized literal forms
might need the assistance of the TLM.

8.3.13 Pretty Printing

We considered only the task of defining expressions and patterns using alternative
syntactic forms. It is also generally useful to be able to “pretty print” (or “unparse”)
values of a given type using the same syntactic conventions, e.g. when using a REPL.
It may be useful to explicitly associate a pretty-printer with a type using a mechanism
closely related to our mechanism of TLM implicits. To avoid inconsistencies between the
parsed syntax and the pretty-printed syntax, it is useful to generate both a parser and a
pretty-printer from the same syntax definition, e.g. as described by van den Brand and
Visser [130] and implemented by many syntax definition systems.

There has also been some prior work on resugaring, i.e. retaining syntactic sugar while
stepping through the evaluation of an expression [105, 106]. Extending these techniques
to support syntactic forms defined via TLMs is left as future work.

8.3.14 Structure Editing

In this work, we assumed have that the surface syntax that the programmer interacts with
is textual. However, there is an alternative approach: structure editors (a.k.a. structured
editors, syntax-directed editors, projectional editors) allow for a surface syntax that is
tree-shaped, with holes standing for branches of the tree that have yet to be constructed.
The programmer interacts with a projection of this tree structure using a language of edit
actions. There are a number of prominent examples of structure editors, starting with the
Cornell Program Synthesizer [128]. In recent work, we have developed a type-theoretic
foundation for structure editing by assigning static meaning to terms with holes, and
formally defining a type-aware action semantics [99]. TLMs could be incorporated into

141

such a system with some modifications. In particular, the TLM would need to define a
visual representation as well as an interaction model for a projection of an expression or
pattern. Every state that the projection can be in would need to map onto an expansion.
Spliced segments in such a system would correspond to holes that appear within the
projection. Detailing this system of “typed projection macros” is left as future work. We
elaborated on this idea in a recent “vision paper” [100].

8.4 Concluding Remarks

Strong abstract reasoning principles dramatically increase the usability of a programming
language by allowing the programmer to ignore (i.e. hold abstract) certain details when
reasoning about the behavior of a program. Similarly, syntactic sugar that captures the
idioms common to an application domain more concisely or naturally can dramatically
increase the usability of a programming language by decreasing the cognitive cost of
producing and examining programs. This work aimed to show that these considerations
need not be in opposition – it is possible, if formal care is taken, to define a programming
language with a reasonably programmable syntax.

142

LATEX Sources and Errata

The LATEX sources for this document can be found at the following URL:
https://github.com/cyrus-/thesis

The latest version of this document can be downloaded from the following URL:
http://www.cs.cmu.edu/~comar/omar-thesis.pdf

Any errors or omissions can be reported using GitHub’s issue tracker, or by sending an
email to the author:

comar@cs.cmu.edu

Any changes to this document that occur after the final dissertation has been submitted
to the university will be summarized below.

1. There was a minor syntax highlighting mistake in Figure 1.9.

143

https://github.com/cyrus-/thesis
http://www.cs.cmu.edu/~comar/omar-thesis.pdf
comar@cs.cmu.edu

144

Appendix

145

Appendix A

Conventions

A.1 Typographic Conventions

We adopt PFPL’s typographic conventions for operational forms throughout the paper
[62]. In particular, the names of operators and indexed families of operators are written
in typewriter font, indexed families of operators specify indices within [braces], and
term arguments are grouped arbitrarily (roughly, by sort) using {curly braces} and
(rounded braces). We write p.e for expressions binding the variables that appear in the
pattern p.

We write {i ↪→ τi}i∈L for a sequence of arguments τi, one for each i ∈ L, and similarly
for arguments of other valences. Operations that are parameterized by label sets, e.g.
prod[L]({i ↪→ τi}i∈L), are identified up to mutual reordering of the label set and the
corresponding argument sequence. Similarly, we write {i ↪→ Ji}i∈L for the finite set of
derivations Ji for each i ∈ L.

We write {ri}1≤i≤n for sequences of n ≥ 0 rule arguments, and similarly for other
finite sequences.

Empty finite sets and finite functions are written ∅, or omitted entirely within judge-
ments, and non-empty finite sets and finite functions are written as comma-separated
sequences identified up to exchange and contraction.

147

148

Appendix B

miniVerseSE and miniVerseS

This section defines miniVerseS, the language of Chapter 4. The language of Chapter 3,
miniVerseSE, can be recovered by omitting the segments typeset in a gray backgrounds
below.

149

B.1 Expanded Language (XL)

B.1.1 Syntax

Sort Operational Form Description
Typ τ ::= t variable

parr(τ; τ) partial function
all(t.τ) polymorphic
rec(t.τ) recursive
prod[L]({i ↪→ τi}i∈L) labeled product
sum[L]({i ↪→ τi}i∈L) labeled sum

Exp e ::= x variable
lam{τ}(x.e) abstraction
ap(e; e) application
tlam(t.e) type abstraction
tap{τ}(e) type application
fold(e) fold
unfold(e) unfold
tpl[L]({i ↪→ ei}i∈L) labeled tuple
prj[`](e) projection
inj[`](e) injection
case[L](e; {i ↪→ xi.ei}i∈L) case analysis
match[n](e; {ri}1≤i≤n) match

Rule r ::= rule(p.e) rule
Pat p ::= x variable pattern

wildp wildcard pattern
foldp(p) fold pattern
tplp[L]({i ↪→ pi}i∈L) labeled tuple pattern
injp[`](p) injection pattern

B.1.2 Statics

Type formation contexts, ∆, are finite sets of hypotheses of the form t type. We write ∆, t type
when t type /∈ ∆ for ∆ extended with the hypothesis t type.

Typing contexts, Γ, are finite functions that map each variable x ∈ dom(Γ), where
dom(Γ) is a finite set of variables, to the hypothesis x : τ, for some τ. We write Γ, x : τ,
when x /∈ dom(Γ), for the extension of Γ with a mapping from x to x : τ, and Γ∪ Γ′ when
dom(Γ) ∩ dom(Γ′) = ∅ for the typing context mapping each x ∈ dom(Γ) ∪ dom(Γ′)
to x : τ if x : τ ∈ Γ or x : τ ∈ Γ′. We write ∆ ` Γ ctx if every type in Γ is well-formed
relative to ∆.
Definition B.1 (Typing Context Formation). ∆ ` Γ ctx iff for each hypothesis x : τ ∈ Γ, we
have ∆ ` τ type.

150

∆ ` τ type τ is a well-formed type

∆, t type ` t type
(B.1a)

∆ ` τ1 type ∆ ` τ2 type

∆ ` parr(τ1; τ2) type
(B.1b)

∆, t type ` τ type

∆ ` all(t.τ) type
(B.1c)

∆, t type ` τ type

∆ ` rec(t.τ) type
(B.1d)

{∆ ` τi type}i∈L

∆ ` prod[L]({i ↪→ τi}i∈L) type
(B.1e)

{∆ ` τi type}i∈L

∆ ` sum[L]({i ↪→ τi}i∈L) type
(B.1f)

∆ Γ ` e : τ e is assigned type τ

∆ Γ, x : τ ` x : τ
(B.2a)

∆ ` τ type ∆ Γ, x : τ ` e : τ′

∆ Γ ` lam{τ}(x.e) : parr(τ; τ′)
(B.2b)

∆ Γ ` e1 : parr(τ; τ′) ∆ Γ ` e2 : τ

∆ Γ ` ap(e1; e2) : τ′
(B.2c)

∆, t type Γ ` e : τ

∆ Γ ` tlam(t.e) : all(t.τ)
(B.2d)

∆ Γ ` e : all(t.τ) ∆ ` τ′ type

∆ Γ ` tap{τ′}(e) : [τ′/t]τ
(B.2e)

∆ Γ ` e : [rec(t.τ)/t]τ
∆ Γ ` fold(e) : rec(t.τ)

(B.2f)

∆ Γ ` e : rec(t.τ)
∆ Γ ` unfold(e) : [rec(t.τ)/t]τ

(B.2g)

{∆ Γ ` ei : τi}i∈L

∆ Γ ` tpl[L]({i ↪→ ei}i∈L) : prod[L]({i ↪→ τi}i∈L)
(B.2h)

151

∆ Γ ` e : prod[L, `]({i ↪→ τi}i∈L; ` ↪→ τ)

∆ Γ ` prj[`](e) : τ
(B.2i)

∆ Γ ` e : τ

∆ Γ ` inj[`](e) : sum[L, `]({i ↪→ τi}i∈L; ` ↪→ τ)
(B.2j)

∆ Γ ` e : sum[L]({i ↪→ τi}i∈L) {∆ Γ, xi : τi ` ei : τ}i∈L

∆ Γ ` case[L](e; {i ↪→ xi.ei}i∈L) : τ
(B.2k)

∆ Γ ` e : τ {∆ Γ ` ri : τ Z⇒ τ′}1≤i≤n

∆ Γ ` match[n](e; {ri}1≤i≤n) : τ′
(B.2l)

∆ Γ ` r : τ Z⇒ τ′ r takes values of type τ to values of type τ′

∆ ` p : τ
Γ′ ∆ Γ ∪ Γ′ ` e : τ′

∆ Γ ` rule(p.e) : τ Z⇒ τ′
(B.3)

Rule (B.3) is defined mutually inductively with Rules (B.2).
∆ ` p : τ
Γ p matches values of type τ and generates hypotheses Γ

∆ ` x : τ
x : τ
(B.4a)

∆ ` wildp : τ
∅
(B.4b)

∆ ` p : [rec(t.τ)/t]τ
Γ
∆ ` foldp(p) : rec(t.τ)
Γ

(B.4c)

{∆ ` pi : τi
Γi}i∈L

∆ ` tplp[L]({i ↪→ pi}i∈L) : prod[L]({i ↪→ τi}i∈L)
∪i∈L Γi
(B.4d)

∆ ` p : τ
Γ
∆ ` injp[`](p) : sum[L, `]({i ↪→ τi}i∈L; ` ↪→ τ)
Γ

(B.4e)

Metatheory

The rules above are syntax-directed, so we assume an inversion lemma for each rule
as needed without stating it separately or proving it explicitly. The following standard
lemmas also hold.

The Weakening Lemma establishes that extending the context with unnecessary
hypotheses preserves well-formedness and typing.
Lemma B.2 (Weakening).

152

1. If ∆ ` τ type then ∆, t type ` τ type.
2. (a) If ∆ Γ ` e : τ then ∆, t type Γ ` e : τ.

(b) If ∆ Γ ` r : τ Z⇒ τ′ then ∆, t type Γ ` r : τ Z⇒ τ′.
3. (a) If ∆ Γ ` e : τ and ∆ ` τ′′ type then ∆ Γ, x : τ′′ ` e : τ.

(b) If ∆ Γ ` r : τ Z⇒ τ′ and ∆ ` τ′′ type then ∆ Γ, x : τ′′ ` r : τ Z⇒ τ′.
4. If ∆ ` p : τ
Γ then p : τ
Γ.

Proof Sketch.
1. By rule induction over Rules (B.1).
2. By mutual rule induction over Rules (B.2) and Rule (B.3) , and part 1.
3. By mutual rule induction over Rules (B.2) and Rule (B.3) , and part 1.
4. By rule induction over Rules (B.4).

The pattern typing judgement is linear in the pattern typing context, i.e. it does not obey
weakening of the pattern typing context. This is to ensure that the pattern typing context
captures exactly those hypotheses generated by a pattern, and no others.

The Substitution Lemma establishes that substitution of a well-formed type for a type
variable, or an expanded expression of the appropriate type for an expanded expression
variable, preserves well-formedness and typing.
Lemma B.3 (Substitution).

1. If ∆, t type ` τ type and ∆ ` τ′ type then ∆ ` [τ′/t]τ type.
2. (a) If ∆, t type Γ ` e : τ and ∆ ` τ′ type then ∆ [τ′/t]Γ ` [τ′/t]e : [τ′/t]τ.

(b) If ∆, t type Γ ` r : τ Z⇒ τ′′ and ∆ ` τ′ type then ∆ [τ′/t]Γ ` [τ′/t]r : [τ′/t]τ Z⇒
[τ′/t]τ′′.

3. (a) If ∆ Γ, x : τ′ ` e : τ and ∆ Γ ` e′ : τ′ then ∆ Γ ` [e′/x]e : τ.
(b) If ∆ Γ, x : τ′ ` r : τ Z⇒ τ′′ and ∆ Γ ` e′ : τ′′ then ∆ Γ ` [e′/x]r : τ Z⇒ τ′′.

Proof Sketch.
1. By rule induction over Rules (B.1).
2. By mutual rule induction over Rules (B.2) and Rule (B.3) .
3. By mutual rule induction over Rules (B.2) and Rule (B.3) .

The Decomposition Lemma is the converse of the Substitution Lemma.
Lemma B.4 (Decomposition).

1. If ∆ ` [τ′/t]τ type and ∆ ` τ′ type then ∆, t type ` τ type.
2. (a) If ∆ [τ′/t]Γ ` [τ′/t]e : [τ′/t]τ and ∆ ` τ′ type then ∆, t type Γ ` e : τ.

(b) If ∆ [τ′/t]Γ ` [τ′/t]r : [τ′/t]τ Z⇒ [τ′/t]τ′′ and ∆ ` τ′ type then ∆, t type Γ ` r :
τ Z⇒ τ′′.

3. (a) If ∆ Γ ` [e′/x]e : τ and ∆ Γ ` e′ : τ′ then ∆ Γ, x : τ′ ` e : τ.
(b) If ∆ Γ ` [e′/x]r : τ Z⇒ τ′′ and ∆ Γ ` e′ : τ′ then ∆ Γ, x : τ′ ` r : τ Z⇒ τ′′.

Proof Sketch.

153

1. By rule induction over Rules (B.1) and case analysis over the definition of substitu-
tion. In all cases, the derivation of ∆ ` [τ′/t]τ type does not depend on the form of
τ′.

2. By mutual rule induction over Rules (B.2) and Rule (B.3) and case analysis over the
definition of substitution. In all cases, the derivation of ∆ [τ′/t]Γ ` [τ′/t]e : [τ′/t]τ
or ∆ [τ′/t]Γ ` [τ′/t]r : [τ′/t]τ Z⇒ [τ′/t]τ′′ does not depend on the form of τ′.

3. By mutual rule induction over Rules (B.2) and Rule (B.3) and case analysis over
the definition of substitution. In all cases, the derivation of ∆ Γ ` [e′/x]e : τ
or ∆ Γ ` [e′/x]r : τ Z⇒ τ′′ does not depend on the form of e′.

Lemma B.5 (Pattern Regularity). If ∆ ` p : τ
Γ and ∆ ` τ type then ∆ ` Γ ctx and
patvars(p) = dom(Γ).
Proof. By rule induction over Rules (B.4).
Case (B.4a).

(1) p = x by assumption
(2) Γ = x : τ by assumption
(3) ∆ ` τ type by assumption
(4) ∆ ` x : τ ctx by Definition B.1 on

(3)
(5) fv(p) = dom(Γ) = {x} by definition

Case (B.4b).
(1) p = wildp by assumption
(2) Γ = ∅ by assumption
(3) ∆ ` ∅ ctx by Definition B.1
(4) patvars(p) = dom(Γ) = ∅ by definition

Case (B.4d).
(1) p = tplp[L]({i ↪→ pi}i∈L) by assumption
(2) τ = prod[L]({i ↪→ τi}i∈L) by assumption
(3) Γ = ∪i∈LΓi by assumption
(4) {∆ ` pi : τi
Γi}i∈L by assumption
(5) ∆ ` prod[L]({i ↪→ τi}i∈L) type by assumption
(6) {∆ ` τi type}i∈L by Inversion of Rule

(B.1e) on (5)
(7) {∆ ` Γi ctx}i∈L by IH over (4) and (6)
(8) {patvars(pi) = dom(Γi)}i∈L by IH over (4) and (6)
(9) ∆ ` ∪i∈LΓi ctx by Definition B.1 over

(7), then Definition B.1
iteratively

(10) patvars(p) = dom(Γ) = ∅ by definition and (8)

154

Case (B.4e).
(1) p = injp[`](p′) by assumption
(2) τ = sum[L, `]({i ↪→ τi}i∈L; ` ↪→ τ′) by assumption
(3) ∆ ` sum[L, `]({i ↪→ τi}i∈L; ` ↪→ τ′) type by assumption
(4) ∆ ` p′ : τ′
Γ by assumption
(5) ∆ ` τ′ type by Inversion of Rule

(B.1f) on (3)
(6) ∆ ` Γ ctx by IH on (4) and (5)
(7) patvars(p′) = dom(Γ) by IH on (4) and (5)
(8) patvars(p) = dom(Γ) by definition and (7)

B.1.3 Structural Dynamics
The structural dynamics is specified as a transition system, and is organized around
judgements of the following form:

Judgement Form Description
e 7→ e′ e transitions to e′

e val e is a value
e matchfail e raises match failure

We also define auxiliary judgements for iterated transition, e 7→∗ e′, and evaluation, e ⇓ e′.
Definition B.6 (Iterated Transition). Iterated transition, e 7→∗ e′, is the reflexive, transitive
closure of the transition judgement, e 7→ e′.
Definition B.7 (Evaluation). e ⇓ e′ iff e 7→∗ e′ and e′ val.

Our subsequent developments do not make mention of particular rules in the dynam-
ics, nor do they make mention of other judgements, not listed above, that are used only
for defining the dynamics of the match operator, so we do not produce these details here.
Instead, it suffices to state the following conditions.
Condition B.8 (Canonical Forms). If ` e : τ and e val then:

1. If τ = parr(τ1; τ2) then e = lam{τ1}(x.e′) and x : τ1 ` e′ : τ2.
2. If τ = all(t.τ′) then e = tlam(t.e′) and t type ` e′ : τ′.
3. If τ = rec(t.τ′) then e = fold(e′) and ` e′ : [rec(t.τ′)/t]τ′ and e′ val.
4. If τ = prod[L]({i ↪→ τi}i∈L) then e = tpl[L]({i ↪→ ei}i∈L) and ` ei : τi and ei val for

each i ∈ L.
5. If τ = sum[L]({i ↪→ τi}i∈L) then for some label set L′ and label ` and type τ′, we have

that L = L′, ` and τ = sum[L′, `]({i ↪→ τi}i∈L′ ; ` ↪→ τ′) and e = inj[`](e′) and
` e′ : τ′ and e′ val.

Condition B.9 (Preservation). If ` e : τ and e 7→ e′ then ` e′ : τ.
Condition B.10 (Progress). If ` e : τ then either e val or e matchfail or there exists an e′ such
that e 7→ e′.

155

B.2 Unexpanded Language (UL)

B.2.1 Syntax

Stylized Syntax

Sort Stylized Form Description
UTyp τ̂ ::= t̂ identifier

τ̂ ⇀ τ̂ partial function
∀t̂.τ̂ polymorphic
µt̂.τ̂ recursive
〈{i ↪→ τ̂i}i∈L〉 labeled product
[{i ↪→ τ̂i}i∈L] labeled sum

UExp ê ::= x̂ identifier
ê : τ̂ ascription
let val x̂ = ê in ê value binding
λx̂:τ̂.ê abstraction
ê(ê) application
Λt̂.ê type abstraction
ê[τ̂] type application
fold(ê) fold
unfold(ê) unfold
〈{i ↪→ êi}i∈L〉 labeled tuple
ê · ` projection
inj[`](ê) injection
case ê {i ↪→ x̂i.êi}i∈L case analysis
syntax â at τ̂ by static e in ê seTLM definition
â ‘b‘ seTLM application
match ê {r̂i}1≤i≤n match
syntax â at τ̂ for patterns by static e in ê spTLM definition

URule r̂ ::= p̂⇒ ê match rule
UPat p̂ ::= x̂ identifier pattern

_ wildcard pattern
fold(p̂) fold pattern
〈{i ↪→ p̂i}i∈L〉 labeled tuple pattern
inj[`](p̂) injection pattern
â ‘b‘ spTLM application

156

Body Lengths We write ‖b‖ for the length of b. The metafunction ‖ê‖ computes the
sum of the lengths of expression literal bodies in ê:

‖x̂‖ = 0
‖ê : τ̂‖ = ‖ê‖
‖let val x̂ = ê1 in ê2‖ = ‖ê1‖+ ‖ê2‖
‖λx̂:τ̂.ê‖ = ‖ê‖
‖ê1(ê2)‖ = ‖ê1‖+ ‖ê2‖
‖Λt̂.ê‖ = ‖ê‖
‖ê[τ̂]‖ = ‖ê‖
‖fold(ê)‖ = ‖ê‖
‖unfold(ê)‖ = ‖ê‖
‖〈{i ↪→ êi}i∈L〉‖ = ∑i∈L ‖êi‖
‖` · ê‖ = ‖ê‖
‖inj[`](ê)‖ = ‖ê‖
‖case ê {i ↪→ x̂i.êi}i∈L‖ = ‖ê‖+ ∑i∈L ‖êi‖
‖syntax â at τ̂ by static eparse in ê‖ = ‖ê‖
‖â ‘b‘‖ = ‖b‖
‖match ê {r̂i}1≤i≤n‖ = ‖ê‖+ ∑1≤i≤n ‖ri‖
‖syntax â at τ̂ for patterns by static eparse in ê‖ = ‖ê‖

and ‖r̂‖ computes the sum of the lengths of expression literal bodies in r̂:

‖ p̂⇒ ê‖ = ‖ê‖

Similarly, the metafunction ‖ p̂‖ computes the sum of the lengths of the pattern literal
bodies in p̂:

‖x̂‖ = 0
‖fold(p̂)‖ = ‖ p̂‖

‖〈{i ↪→ p̂i}i∈L〉‖ = ∑
i∈L
‖ p̂i‖

‖inj[`](p̂)‖ = ‖ p̂‖
‖â ‘b‘‖ = ‖b‖

Common Unexpanded Forms Each expanded form maps onto an unexpanded form.
We refer to these as the common forms. In particular:

• Each type variable, t, maps onto a unique type identifier, written t̂.
• Each type, τ, maps onto an unexpanded type, U (τ), as follows:

U (t) = t̂
U (parr(τ1; τ2)) = U (τ1) ⇀ U (τ2)

U (all(t.τ)) = ∀t̂.U (τ)

157

U (rec(t.τ)) = µt̂.U (τ)
U (prod[L]({i ↪→ τi}i∈L)) = 〈{i ↪→ U (τi)}i∈L〉
U (sum[L]({i ↪→ τi}i∈L)) = [{i ↪→ U (τi)}i∈L]

• Each expression variable, x, maps onto a unique expression identifier, written x̂.
• Each expanded expression, e, maps onto an unexpanded expression, U (e), as

follows:
U (x) = x̂

U (lam{τ}(x.e)) = λx̂:U (τ).U (e)
U (ap(e1; e2)) = U (e1)(U (e2))
U (tlam(t.e)) = Λt̂.U (e)
U (tap{τ}(e)) = U (e)[U (τ)]
U (fold(e)) = fold(U (e))

U (unfold(e)) = unfold(U (e))
U (tpl[L]({i ↪→ ei}i∈L)) = 〈{i ↪→ U (ei)}i∈L〉

U (prj[`](e)) = U (e) · `
U (inj[`](e)) = inj[`](U (e))

U (match[n](e; {ri}1≤i≤n)) = match U (e) {U (ri)}1≤i≤n

• Each expanded rule, r, maps onto an unexpanded rule, U (r), as follows:

U (rule(p.e)) = urule(U (p).U (e))

• Each expanded pattern, p, maps onto the unexpanded pattern, U (p), as follows:

U (x) = x̂
U (wildp) = uwildp

U (foldp(p)) = ufoldp(U (p))
U (tplp[L]({i ↪→ pi}i∈L)) = utplp[L]({i ↪→ U (pi)}i∈L)

U (injp[`](p)) = uinjp[`](U (p))

Textual Syntax

In addition to the stylized syntax, there is also a context-free textual syntax for the UL.
For our purposes, we need only posit the existence of partial metafunctions parseUTyp(b)
and parseUExp(b) and parseUPat(b) .
Condition B.11 (Textual Representability).

1. For each τ̂, there exists b such that parseUTyp(b) = τ̂.
2. For each ê, there exists b such that parseUExp(b) = ê.
3. For each p̂, there exists b such that parseUPat(b) = p̂.
We also impose the following technical conditions .

Condition B.12 (Expression Parsing Monotonicity). If parseUExp(b) = ê then ‖ê‖ < ‖b‖.

158

Condition B.13 (Pattern Parsing Monotonicity). If parseUPat(b) = p̂ then ‖ p̂‖ < ‖b‖.

B.2.2 Type Expansion

Unexpanded type formation contexts, ∆̂, are of the form 〈D; ∆〉, i.e. they consist of a type
identifier expansion context, D, paired with a type formation context, ∆.

A type identifier expansion context, D, is a finite function that maps each type identifier
t̂ ∈ dom(D) to the hypothesis t̂ t, for some type variable t. We write D] t̂ t for the
type identifier expansion context that maps t̂ to t̂ t and defers to D for all other type
identifiers (i.e. the previous mapping is updated.)

We define ∆̂, t̂ t type when ∆̂ = 〈D; ∆〉 as an abbreviation of

〈D] t̂ t; ∆, t type〉

Definition B.14 (Unexpanded Type Formation Context Formation). ` 〈D; ∆〉 utctx iff for
each t̂ t type ∈ D we have t type ∈ ∆.

∆̂ ` τ̂ τ type τ̂ has well-formed expansion τ

∆̂, t̂ t type ` t̂ t type
(B.5a)

∆̂ ` τ̂1 τ1 type ∆̂ ` τ̂2 τ2 type

∆̂ ` uparr(τ̂1; τ̂2) parr(τ1; τ2) type
(B.5b)

∆̂, t̂ t type ` τ̂ τ type

∆̂ ` uall(t̂.τ̂) all(t.τ) type
(B.5c)

∆̂, t̂ t type ` τ̂ τ type

∆̂ ` urec(t̂.τ̂) rec(t.τ) type
(B.5d)

{∆̂ ` τ̂i τi type}i∈L

∆̂ ` uprod[L]({i ↪→ τ̂i}i∈L) prod[L]({i ↪→ τi}i∈L) type
(B.5e)

{∆̂ ` τ̂i τi type}i∈L

∆̂ ` usum[L]({i ↪→ τ̂i}i∈L) sum[L]({i ↪→ τi}i∈L) type
(B.5f)

B.2.3 Typed Expression Expansion

Contexts

Unexpanded typing contexts, Γ̂, are, similarly, of the form 〈G; Γ〉, where G is an expression
identifier expansion context, and Γ is a typing context. An expression identifier expansion
context, G, is a finite function that maps each expression identifier x̂ ∈ dom(G) to the
hypothesis x̂ x, for some expression variable, x. We write G] x̂ x for the expression

159

identifier expansion context that maps x̂ to x̂ x and defers to G for all other expression
identifiers (i.e. the previous mapping is updated.)

We define Γ̂, x̂ x : τ when Γ̂ = 〈G; Γ〉 as an abbreviation of

〈G] x̂ x; Γ, x : τ〉

Definition B.15 (Unexpanded Typing Context Formation). ∆ ` 〈G; Γ〉 uctx iff ∆ ` Γ ctx
and for each x̂ x ∈ G, we have x ∈ dom(Γ).

Body Encoding and Decoding

An assumed type abbreviated Body classifies encodings of literal bodies, b. The mapping
from literal bodies to values of type Body is defined by the body encoding judgement
b ↓Body ebody. An inverse mapping is defined by the body decoding judgement ebody ↑Body b.

Judgement Form Description
b ↓Body e b has encoding e
e ↑Body b e has decoding b

The following condition establishes an isomorphism between literal bodies and values
of type Body mediated by the judgements above.
Condition B.16 (Body Isomorphism).

1. For every literal body b, we have that b ↓Body ebody for some ebody such that ` ebody : Body
and ebody val.

2. If ` ebody : Body and ebody val then ebody ↑Body b for some b.
3. If b ↓Body ebody then ebody ↑Body b.
4. If ` ebody : Body and ebody val and ebody ↑Body b then b ↓Body ebody.
5. If b ↓Body ebody and b ↓Body e′body then ebody = e′body.
6. If ` ebody : Body and ebody val and ebody ↑Body b and ebody ↑Body b′ then b = b′.
We also assume a partial metafunction, subseq(b; m; n), which extracts a subsequence

of b starting at position m and ending at position n, inclusive, where m and n are natural
numbers. The following condition is technically necessary.
Condition B.17 (Body Subsequencing). If subseq(b; m; n) = b′ then ‖b′‖ ≤ ‖b‖.

Parse Results

The type abbreviated ParseResultSE, and an auxiliary abbreviation used below, is de-
fined as follows:

LSE
def
= ParseError, SuccessE

ParseResultSE
def
= sum[LSE](ParseError ↪→ 〈〉, SuccessE ↪→ PrExpr)

160

The type abbreviated ParseResultSP, and an auxiliary abbreviation used below, is
defined as follows:

LSP
def
= ParseError, SuccessP

ParseResultSE
def
= sum[LSP](ParseError ↪→ 〈〉, SuccessP ↪→ PrPat)

seTLM Contexts

seTLM contexts, Ψ̂, are of the form 〈A; Ψ〉, where A is a TLM identifier expansion context
and Ψ is a seTLM definition context.

A TLM identifier expansion context, A, is a finite function mapping each TLM identifier
â ∈ dom(A) to the TLM identifier expansion, â a, for some TLM name, a. We write
A] â a for the TLM identifier expansion context that maps â to â a, and defers to
A for all other TLM identifiers (i.e. the previous mapping is updated.)

An seTLM definition context, Ψ, is a finite function mapping each TLM name a ∈
dom(Ψ) to an expanded seTLM definition, a ↪→ setlm(τ; eparse), where τ is the seTLM’s
type annotation, and eparse is its parse function. We write Ψ, a ↪→ setlm(τ; eparse) when
a /∈ dom(Ψ) for the extension of Ψ that maps a to a ↪→ setlm(τ; eparse). We write
∆ ` Ψ seTLMs when all the type annotations in Ψ are well-formed assuming ∆, and the
parse functions in Ψ are closed and of the appropriate type.
Definition B.18 (seTLM Definition Context Formation). ∆ ` Ψ seTLMs iff for each a ↪→
setlm(τ; eparse) ∈ Ψ, we have ∆ ` τ type and ∅ ∅ ` eparse : parr(Body; ParseResultSE).
Definition B.19 (seTLM Context Formation). ∆ ` 〈A; Ψ〉 seTLMctx iff ∆ ` Ψ seTLMs and
for each â a ∈ A we have a ∈ dom(Ψ).

We define Ψ̂, â a ↪→ setlm(τ; eparse), when Ψ̂ = 〈A; Φ〉, as an abbreviation of

〈A] â a; Ψ, a ↪→ setlm(τ; eparse)〉

spTLM Contexts

spTLM contexts, Φ̂, are of the form 〈A; Φ〉, whereA is a TLM identifier expansion context,
defined above, and Φ is a spTLM definition context.

An spTLM definition context, Φ, is a finite function mapping each TLM name a ∈
dom(Φ) to an expanded seTLM definition, a ↪→ sptlm(τ; eparse), where τ is the spTLM’s
type annotation, and eparse is its parse function. We write Φ, a ↪→ sptlm(τ; eparse) when
a /∈ dom(Φ) for the extension of Φ that maps a to a ↪→ sptlm(τ; eparse). We write
∆ ` Φ spTLMs when all the type annotations in Φ are well-formed assuming ∆, and the
parse functions in Φ are closed and of the appropriate type.
Definition B.20 (spTLM Definition Context Formation). ∆ ` Φ spTLMs iff for each a ↪→
sptlm(τ; eparse) ∈ Φ, we have ∆ ` τ type and ∅ ∅ ` eparse : parr(Body; ParseResultSP).
Definition B.21 (spTLM Context Formation). ∆ ` 〈A; Φ〉 spTLMctx iff ∆ ` Φ spTLMs
and for each â a ∈ A we have a ∈ dom(Φ).

161

We define Φ̂, â a ↪→ sptlm(τ; eparse), when Φ̂ = 〈A; Φ〉, as an abbreviation of

〈A] â a; Φ, a ↪→ sptlm(τ; eparse)〉

Typed Expression Expansion

∆̂ Γ̂ `Ψ̂;Φ̂ ê e : τ ê has expansion e of type τ

∆̂ Γ̂, x̂ x : τ `Ψ̂;Φ̂ x̂ x : τ
(B.6a)

∆̂ ` τ̂ τ type ∆̂ Γ̂ `Ψ̂;Φ̂ ê e : τ

∆̂ Γ̂ `Ψ̂;Φ̂ ê : τ̂ e : τ
(B.6b)

∆̂ Γ̂ `Ψ̂;Φ̂ ê1 e1 : τ1 ∆̂ Γ̂, x̂ x : τ1 `Ψ̂;Φ̂ ê2 e2 : τ2

∆̂ Γ̂ `Ψ̂;Φ̂ let val x̂ = ê1 in ê2 ap(lam{τ1}(x.e2); e1) : τ2
(B.6c)

∆̂ ` τ̂ τ type ∆̂ Γ̂, x̂ x : τ `Ψ̂;Φ̂ ê e : τ′

∆̂ Γ̂ `Ψ̂;Φ̂ λx̂:τ̂.ê lam{τ}(x.e) : parr(τ; τ′)
(B.6d)

∆̂ Γ̂ `Ψ̂;Φ̂ ê1 e1 : parr(τ; τ′) ∆̂ Γ̂ `Ψ̂;Φ̂ ê2 e2 : τ

∆̂ Γ̂ `Ψ̂;Φ̂ ê1(ê2) ap(e1; e2) : τ′
(B.6e)

∆̂, t̂ t type Γ̂ `Ψ̂;Φ̂ ê e : τ

∆̂ Γ̂ `Ψ̂;Φ̂ Λt̂.ê tlam(t.e) : all(t.τ)
(B.6f)

∆̂ Γ̂ `Ψ̂;Φ̂ ê e : all(t.τ) ∆̂ ` τ̂′ τ′ type

∆̂ Γ̂ `Ψ̂;Φ̂ ê[τ̂′] tap{τ′}(e) : [τ′/t]τ
(B.6g)

∆̂ Γ̂ `Ψ̂;Φ̂ ê e : [rec(t.τ)/t]τ

∆̂ Γ̂ `Ψ̂;Φ̂ fold(ê) fold(e) : rec(t.τ)
(B.6h)

∆̂ Γ̂ `Ψ̂;Φ̂ ê e : rec(t.τ)

∆̂ Γ̂ `Ψ̂;Φ̂ unfold(ê) unfold(e) : [rec(t.τ)/t]τ
(B.6i)

{∆̂ Γ̂ `Ψ̂;Φ̂ êi ei : τi}i∈L

∆̂ Γ̂ `Ψ̂;Φ̂ 〈{i ↪→ êi}i∈L〉 tpl[L]({i ↪→ ei}i∈L) : prod[L]({i ↪→ τi}i∈L)
(B.6j)

∆̂ Γ̂ `Ψ̂;Φ̂ ê e : prod[L, `]({i ↪→ τi}i∈L; ` ↪→ τ)

∆̂ Γ̂ `Ψ̂;Φ̂ ê · ` prj[`](e) : τ
(B.6k)

162

∆̂ Γ̂ `Ψ̂;Φ̂ ê e : τ′

∆̂ Γ̂ `Ψ̂;Φ̂ inj[`](ê) inj[`](e) : sum[L, `]({i ↪→ τi}i∈L; ` ↪→ τ′)
(B.6l)

∆̂ Γ̂ `Ψ̂;Φ̂ ê e : sum[L]({i ↪→ τi}i∈L) {∆̂ Γ̂, x̂i xi : τi `Ψ̂;Φ̂ êi ei : τ}i∈L

∆̂ Γ̂ `Ψ̂;Φ̂ case ê {i ↪→ x̂i.êi}i∈L case[L](e; {i ↪→ xi.ei}i∈L) : τ

(B.6m)

∆̂ ` τ̂ τ type ∅ ∅ ` eparse : parr(Body; ParseResultSE)
eparse ⇓ e′parse ∆̂ Γ̂ `Ψ̂,â a↪→setlm(τ; e′parse)

ê e : τ′

∆̂ Γ̂ `Ψ̂;Φ̂ syntax â at τ̂ by static eparse in ê e : τ′
(B.6n)

Ψ̂ = Ψ̂′, â a ↪→ setlm(τ; eparse)
b ↓Body ebody eparse(ebody) ⇓ inj[SuccessE](eproto) eproto ↑PrExpr è

seg(è) segments b ∅ ∅ `∆̂; Γ̂; Ψ̂; Φ̂; b è e : τ

∆̂ Γ̂ `Ψ̂;Φ̂ â ‘b‘ e : τ
(B.6o)

∆̂ Γ̂ `Ψ̂;Φ̂ ê e : τ {∆̂ Γ̂ `Ψ̂; Φ̂ r̂i ri : τ Z⇒ τ′}1≤i≤n

∆̂ Γ̂ `Ψ̂;Φ̂ match ê {r̂i}1≤i≤n match[n](e; {ri}1≤i≤n) : τ′
(B.6p)

∆̂ ` τ̂ τ type ∅ ∅ ` eparse : parr(Body; ParseResultSP)
eparse ⇓ e′parse ∆̂ Γ̂ `Ψ̂; Φ̂,â a↪→sptlm(τ; e′parse)

ê e : τ′

∆̂ Γ̂ `Ψ̂; Φ̂ syntax â at τ̂ for patterns by static eparse in ê e : τ′
(B.6q)

∆̂ Γ̂ `Ψ̂; Φ̂ r̂ r : τ Z⇒ τ′ r̂ has expansion r taking values of type τ to values of type τ′

∆̂ `Φ̂ p̂ p : τ
〈G ′; Γ′〉 ∆̂ 〈G] G ′; Γ ∪ Γ′〉 `Ψ̂; Φ̂ ê e : τ′

∆̂ 〈G; Γ〉 `Ψ̂; Φ̂ urule(p̂.ê) rule(p.e) : τ Z⇒ τ′
(B.7)

Typed Pattern Expansion

∆̂ `Φ̂ p̂ p : τ
̂Γ p̂ has expansion p matching against τ generating hypotheses Γ̂

∆̂ `Φ̂ x̂ x : τ
〈x̂ x; x : τ〉
(B.8a)

∆̂ `Φ̂ _ wildp : τ
〈∅; ∅〉
(B.8b)

163

∆̂ `Φ̂ p̂ p : [rec(t.τ)/t]τ
̂Γ

∆̂ `Φ̂ fold(p̂) foldp(p) : rec(t.τ)
̂Γ
(B.8c)

τ = prod[L]({i ↪→ τi}i∈L)

{∆̂ `Φ̂ p̂i pi : τi
̂Γi}i∈L

∆̂ `Φ̂ 〈{i ↪→ p̂i}i∈L〉 tplp[L]({i ↪→ pi}i∈L) : τ
]i∈L Γ̂i
(B.8d)

∆̂ `Φ̂ p̂ p : τ
̂Γ

∆̂ `Φ̂ inj[`](p̂) injp[`](p) : sum[L, `]({i ↪→ τi}i∈L; ` ↪→ τ)
̂Γ
(B.8e)

Φ̂ = Φ̂′, â a ↪→ sptlm(τ; eparse)
b ↓Body ebody eparse(ebody) ⇓ inj[SuccessP](eproto) eproto ↑PrPat p̀

seg(p̀) segments b p̀ p : τ
∆̂; Φ̂; b Γ̂

∆̂ `Φ̂ â ‘b‘ p : τ
̂Γ
(B.8f)

In Rule (B.8d), Γ̂i is shorthand for 〈Gi; Γi〉 and]i∈LΓ̂i is shorthand for

〈]i∈LGi;∪i∈LΓi〉

164

B.3 Proto-Expansion Validation

B.3.1 Syntax of Proto-Expansions

Sort Operational Form Stylized Form Description
PrTyp τ̀ ::= t t variable

prparr(τ̀; τ̀) τ̀ ⇀ τ̀ partial function
prall(t.τ̀) ∀t.τ̀ polymorphic
prrec(t.τ̀) µt.τ̀ recursive
prprod[L]({i ↪→ τ̀i}i∈L) 〈{i ↪→ τ̀i}i∈L〉 labeled product
prsum[L]({i ↪→ τ̀i}i∈L) [{i ↪→ τ̀i}i∈L] labeled sum
splicedt[m; n] splicedt[m; n] spliced type ref.

PrExp è ::= x x variable
prasc{τ̀}(è) è : τ̀ ascription
prletval(è; x.è) let val x = è in è value binding
prlam{τ̀}(x.è) λx:τ̀.è abstraction
prap(è; è) è(è) application
prtlam(t.è) Λt.è type abstraction
prtap{τ̀}(è) è[τ̀] type application
prfold(è) fold(è) fold
prunfold(è) unfold(è) unfold
prtpl{L}({i ↪→ èi}i∈L) 〈{i ↪→ èi}i∈L〉 labeled tuple
prprj[`](è) è · ` projection
prinj[`](è) inj[`](è) injection
prcase[L](è; {i ↪→ xi.èi}i∈L) case è {i ↪→ xi.èi}i∈L case analysis
splicede[m; n; τ̀] splicede[m; n; τ̀] spliced expr. ref.
prmatch[n](è; {r̀i}1≤i≤n) match è {r̀i}1≤i≤n match

PrRule r̀ ::= prrule(p.è) p⇒ è rule
PrPat p̀ ::= prwildp _ wildcard pattern

prfoldp(p̀) fold(p̀) fold pattern
prtplp[L]({i ↪→ p̀i}i∈L) 〈{i ↪→ p̀i}i∈L〉 labeled tuple pattern
prinjp[`](p̀) inj[`](p̀) injection pattern
splicedp[m; n; τ̀] splicedp[m; n; τ̀] spliced pattern ref.

Common Proto-Expansion Terms

Each expanded term, except variable patterns, maps onto a proto-expansion term. We
refer to these as the common proto-expansion terms. In particular:

165

• Each type, τ, maps onto a proto-type, P(τ), as follows:

P(t) = t
P(parr(τ1; τ2)) = prparr(P(τ1);P(τ2))
P(all(t.τ)) = prall(t.P(τ))
P(rec(t.τ)) = prrec(t.P(τ))

P(prod[L]({i ↪→ τi}i∈L)) = prprod[L]({i ↪→ P(τi)}i∈L)
P(sum[L]({i ↪→ τi}i∈L)) = prsum[L]({i ↪→ P(τi)}i∈L)

• Each expanded expression, e, maps onto a proto-expression, P(e), as follows:

P(x) = x
P(lam{τ}(x.e)) = prlam{P(τ)}(x.P(e))
P(ap(e1; e2)) = prap(P(e1);P(e2))
P(tlam(t.e)) = prtlam(t.P(e))
P(tap{τ}(e)) = prtap{P(τ)}(P(e))
P(fold(e)) = prfold(P(e))

P(unfold(e)) = prunfold(P(e))
P(tpl[L]({i ↪→ ei}i∈L)) = prtpl{L}({i ↪→ P(ei)}i∈L)

P(inj[`](e)) = prinj[`](P(e))
P(match[n](e; {ri}1≤i≤n)) = prmatch[n](P(e); {P(ri)}1≤i≤n)

• Each expanded rule, r, maps onto the proto-rule, P(r), as follows:

P(rule(p.e)) = prrule(p.P(e))

Notice that proto-rules bind expanded patterns, not proto-patterns. This is because
proto-rules appear in proto-expressions, which are generated by seTLMs. It would
not be sensible for an seTLM to splice a pattern out of a literal body.

• Each expanded pattern, p, except for the variable patterns, maps onto a proto-
pattern, P(p), as follows:

P(wildp) = prwildp
P(foldp(p)) = prfoldp(P(p))

P(tplp[L]({i ↪→ pi}i∈L)) = prtplp[L]({i ↪→ P(pi)}i∈L)

P(injp[`](p)) = prinjp[`](P(p))

Proto-Expression Encoding and Decoding

The type abbreviated PrExpr classifies encodings of proto-expressions. The mapping from
proto-expressions to values of type PrExpr is defined by the proto-expression encoding
judgement, è ↓PrExpr e. An inverse mapping is defined by the proto-expression decoding
judgement, e ↑PrExpr è.

166

Judgement Form Description
è ↓PrExpr e è has encoding e
e ↑PrExpr è e has decoding è

Rather than picking a particular definition of PrExpr and defining the judgements
above inductively against it, we only state the following condition, which establishes an
isomorphism between values of type PrExpr and proto-expressions.

Condition B.22 (Proto-Expression Isomorphism).

1. For every è, we have è ↓PrExpr eproto for some eproto such that ` eproto : PrExpr and eproto val.

2. If ` eproto : PrExpr and eproto val then eproto ↑PrExpr è for some è.

3. If è ↓PrExpr eproto then eproto ↑PrExpr è.

4. If ` eproto : PrExpr and eproto val and eproto ↑PrExpr è then è ↓PrExpr eproto.

5. If è ↓PrExpr eproto and è ↓PrExpr e′proto then eproto = e′proto.

6. If ` eproto : PrExpr and eproto val and eproto ↑PrExpr è and eproto ↑PrExpr è′ then è = è′.

Proto-Pattern Encoding and Decoding

The type abbreviated PrPat classifies encodings of proto-patterns. The mapping from
proto-patterns to values of type PrPat is defined by the proto-pattern encoding judgement,
p̀ ↓PrPat p. An inverse mapping is defined by the proto-expression decoding judgement,
p ↑PrPat p̀.

Judgement Form Description
p̀ ↓PrPat p p̀ has encoding p
p ↑PrPat p̀ p has decoding p̀

Again, rather than picking a particular definition of PrPat and defining the judge-
ments above inductively against it, we only state the following condition, which estab-
lishes an isomorphism between values of type PrPat and proto-patterns.
Condition B.23 (Proto-Pattern Isomorphism).

1. For every p̀, we have p̀ ↓PrPat eproto for some eproto such that ` eproto : PrPat and eproto val.
2. If ` eproto : PrPat and eproto val then eproto ↑PrPat p̀ for some p̀.
3. If p̀ ↓PrPat eproto then eproto ↑PrPat p̀.
4. If ` eproto : PrPat and eproto val and eproto ↑PrPat p̀ then p̀ ↓PrPat eproto.
5. If p̀ ↓PrPat eproto and p̀ ↓PrPat e′proto then eproto = e′proto.
6. If ` eproto : PrPat and eproto val and eproto ↑PrPat p̀ and eproto ↑PrPat p̀′ then p̀ = p̀′.

167

Segmentations

The segmentation, ψ, of a proto-type, seg(τ̀) or proto-expression, seg(è), is the finite set of
references to spliced types and expressions that it mentions.

seg(t) = ∅
seg(prparr(τ̀1; τ̀2)) = seg(τ̀1) ∪ seg(τ̀2)
seg(prall(t.τ̀)) = seg(τ̀)
seg(prrec(t.τ̀)) = seg(τ̀)
seg(prprod[L]({i ↪→ τ̀i}i∈L)) =

⋃
i∈L seg(τ̀i)

seg(prsum[L]({i ↪→ τ̀i}i∈L)) =
⋃

i∈L seg(τ̀i)
seg(splicedt[m; n]) = {splicedt[m; n]}

seg(x) = ∅
seg(prasc{τ̀}(è)) = seg(τ̀) ∪ seg(è)
seg(prletval(è1; x.è2)) = seg(è1) ∪ seg(è2)
seg(prlam{τ̀}(x.è)) = seg(τ̀) ∪ seg(è)
seg(prap(è1; è2)) = seg(è1) ∪ seg(è2)
seg(prtlam(t.è)) = seg(è)
seg(prtap{τ̀}(è)) = seg(è) ∪ seg(τ̀)
seg(prfold(è)) = seg(è)
seg(prunfold(è)) = seg(è)
seg(prtpl{L}({i ↪→ xi.èi}i∈L)) =

⋃
i∈L seg(èi)

seg(prprj[`](è)) = seg(è)
seg(prinj[`](è)) = seg(è)
seg(prcase[L](è; {i ↪→ xi.èi}i∈L)) = seg(è) ∪⋃

i∈L seg(èi)
seg(splicede[m; n; τ̀]) = {splicede[m; n; τ̀]} ∪ seg(τ̀)
seg(prmatch[n](è; {r̀i}1≤i≤n)) = seg(è) ∪⋃

1≤i≤n seg(r̀i)

seg(prrule(p.è)) = seg(è)

The splice summary of a proto-pattern, seg(p̀), is the finite set of references to spliced
types and patterns that it mentions.

seg(prwildp) = ∅
seg(prfoldp(p̀)) = seg(p̀)
seg(prtplp[L]({i ↪→ p̀i}i∈L)) =

⋃
i∈L seg(p̀i)

seg(prinjp[`](p̀)) = seg(p̀)
seg(splicedp[m; n; τ̀]) = {splicedp[m; n; τ̀]} ∪ seg(τ̀)

The predicate ψ segments b checks that each segment in ψ, has positive length and is
within bounds of b, and that the segments in ψ do not overlap and operate at consistent
sorts or types.
Definition B.24 (Segmentation Validity). ψ segments b iff

1. For each splicedt[m; n] ∈ ψ, all of the following hold:

168

(a) 0 ≤ m < n ≤ ‖b‖
(b) For each splicedt[m′; n′] ∈ ψ, either

i. m = m′ and n = n′; or
ii. n′ < m; or

iii. m′ > n
(c) For each splicede[m′; n′; τ̀] ∈ ψ, either

i. n′ < m; or
ii. m′ > n

(d) For each splicedp[m′; n′; τ̀] ∈ ψ, either
i. n′ < m; or

ii. m′ > n
2. For each splicede[m; n; τ̀] ∈ ψ, all of the following hold:

(a) 0 ≤ m < n ≤ ‖b‖
(b) For each splicedt[m′; n′] ∈ ψ, either

i. n′ < m; or
ii. m′ > n

(c) For each splicede[m′; n′; τ̀′] ∈ ψ, either
i. m = m′ and n = n′ and τ̀ = τ̀′; or

ii. n′ < m; or
iii. m′ > n

3. For each splicedp[m; n; τ̀] ∈ ψ, all of the following hold:
(a) 0 ≤ m < n ≤ ‖b‖
(b) For each splicedt[m′; n′] ∈ ψ, either

i. n′ < m; or
ii. m′ > n

(c) For each splicede[m′; n′; τ̀′] ∈ ψ, either
i. n′ < m; or

ii. m′ > n
(d) For each splicedp[m′; n′; τ̀′] ∈ ψ, either

i. m = m′ and n = n′ and τ̀ = τ̀′; or
ii. n′ < m; or

iii. m′ > n

B.3.2 Proto-Type Validation

Type splicing scenes, T, are of the form ∆̂; b.

∆ `T τ̀ τ type τ̀ has well-formed expansion τ

∆, t type `T t t type
(B.9a)

169

∆ `T τ̀1 τ1 type ∆ `T τ̀2 τ2 type

∆ `T prparr(τ̀1; τ̀2) parr(τ1; τ2) type
(B.9b)

∆, t type `T τ̀ τ type

∆ `T prall(t.τ̀) all(t.τ) type
(B.9c)

∆, t type `T τ̀ τ type

∆ `T prrec(t.τ̀) rec(t.τ) type
(B.9d)

{∆ `T τ̀i τi type}i∈L

∆ `T prprod[L]({i ↪→ τ̀i}i∈L) prod[L]({i ↪→ τi}i∈L) type
(B.9e)

{∆ `T τ̀i τi type}i∈L

∆ `T prsum[L]({i ↪→ τ̀i}i∈L) sum[L]({i ↪→ τi}i∈L) type
(B.9f)

parseUTyp(subseq(b; m; n)) = τ̂ 〈D; ∆app〉 ` τ̂ τ type ∆ ∩ ∆app = ∅

∆ `〈D;∆app〉; b splicedt[m; n] τ type
(B.9g)

B.3.3 Proto-Expression Validation

Expression splicing scenes, E, are of the form ∆̂; Γ̂; Ψ̂; Φ̂; b. We write ts(E) for the type
splicing scene constructed by dropping unnecessary contexts from E:

ts(∆̂; Γ̂; Ψ̂; Φ̂; b) = ∆̂; b

∆ Γ `E è e : τ è has expansion e of type τ

∆ Γ, x : τ `E x x : τ
(B.10a)

∆ `ts(E) τ̀ τ type ∆ Γ `E è e : τ

∆ Γ `E prasc{τ̀}(è) e : τ
(B.10b)

∆ Γ `E è1 e1 : τ1 ∆ Γ, x : τ1 `è2 e2 τ2 :

∆ Γ `E prletval(è1; x.è2) ap(lam{τ1}(x.e2); e1) : τ2
(B.10c)

∆ `ts(E) τ̀ τ type ∆ Γ, x : τ `E è e : τ′

∆ Γ `E prlam{τ̀}(x.è) lam{τ}(x.e) : parr(τ; τ′)
(B.10d)

∆ Γ `E è1 e1 : parr(τ; τ′) ∆ Γ `E è2 e2 : τ

∆ Γ `E prap(è1; è2) ap(e1; e2) : τ′
(B.10e)

170

∆, t type Γ `E è e : τ

∆ Γ `E prtlam(t.è) tlam(t.e) : all(t.τ)
(B.10f)

∆ Γ `E è e : all(t.τ) ∆ `ts(E) τ̀′ τ′ type

∆ Γ `E prtap{τ̀′}(è) tap{τ′}(e) : [τ′/t]τ
(B.10g)

∆ Γ `E è e : [rec(t.τ)/t]τ

∆ Γ `E prfold(è) fold(e) : rec(t.τ)
(B.10h)

∆ Γ `E è e : rec(t.τ)

∆ Γ `E prunfold(è) unfold(e) : [rec(t.τ)/t]τ
(B.10i)

τ = prod[L]({i ↪→ τi}i∈L)

{∆ Γ `E èi ei : τi}i∈L

∆ Γ `E prtpl{L}({i ↪→ èi}i∈L) tpl[L]({i ↪→ ei}i∈L) : τ
(B.10j)

∆ Γ `E è e : prod[L, `]({i ↪→ τi}i∈L; ` ↪→ τ)

∆ Γ `E prprj[`](è) prj[`](e) : τ
(B.10k)

∆ Γ `E è e : τ′

∆ Γ `E prinj[`](è) inj[`](e) : sum[L, `]({i ↪→ τi}i∈L; ` ↪→ τ′)
(B.10l)

∆ Γ `E è e : sum[L]({i ↪→ τi}i∈L) {∆ Γ, xi : τi `E èi ei : τ}i∈L

∆ Γ `E prcase[L](è; {i ↪→ xi.èi}i∈L) case[L](e; {i ↪→ xi.ei}i∈L) : τ
(B.10m)

∅ `ts(E) τ̀ τ type E = 〈D; ∆app〉; 〈G; Γapp〉; Ψ̂; Φ̂; b
parseUExp(subseq(b; m; n)) = ê 〈D; ∆app〉 〈G; Γapp〉 `Ψ̂;Φ̂ ê e : τ

∆ ∩ ∆app = ∅ dom(Γ) ∩ dom(Γapp) = ∅

∆ Γ `E splicede[m; n; τ̀] e : τ
(B.10n)

∆ Γ `E è e : τ {∆ Γ `E r̀i ri : τ Z⇒ τ′}1≤i≤n

∆ Γ `E prmatch[n](è; {r̀i}1≤i≤n) match[n](e; {ri}1≤i≤n) : τ′
(B.10o)

∆ Γ `E r̀ r : τ Z⇒ τ′ r̀ has expansion r taking values of type τ to values of type τ′

p : τ
Γ′ ∆ Γ ∪ Γ′ `E è e : τ′

∆ Γ `E prrule(p.è) rule(p.e) : τ Z⇒ τ′
(B.11)

B.3.4 Proto-Pattern Validation

Pattern splicing scenes, P, are of the form ∆̂; Φ̂; b.

171

p̀ p : τ
P Γ̂ p̀ has expansion p matching against τ generating hypotheses Γ̂

prwildp wildp : τ
P 〈∅; ∅〉
(B.12a)

p̀ p : [rec(t.τ)/t]τ
P Γ̂

prfoldp(p̀) foldp(p) : rec(t.τ)
P Γ̂
(B.12b)

τ = prod[L]({i ↪→ τi}i∈L)

{ p̀i pi : τi

P Γ̂i}i∈L

prtplp[L]({i ↪→ p̀i}i∈L) tplp[L]({i ↪→ pi}i∈L) : τ
P]i∈LΓ̂i
(B.12c)

p̀ p : τ
P Γ̂

prinjp[`](p̀) injp[`](p) : sum[L, `]({i ↪→ τi}i∈L; ` ↪→ τ)
P Γ̂
(B.12d)

∅ `∆̂; b τ̀ τ type parseUPat(subseq(b; m; n)) = p̂ ∆̂ `Φ̂ p̂ p : τ
̂Γ

splicedp[m; n; τ̀] p : τ
∆̂; Φ̂; b Γ̂
(B.12e)

B.4 Metatheory

B.4.1 Type Expansion

Lemma B.25 (Type Expansion). If 〈D; ∆〉 ` τ̂ τ type then ∆ ` τ type.
Proof. By rule induction over Rules (B.5). In each case, we apply the IH to or over each
premise, then apply the corresponding type formation rule in Rules (B.1).

Lemma B.26 (Proto-Type Validation). If ∆ `〈D;∆app〉; b τ̀ τ type and ∆ ∩ ∆app = ∅ then
∆ ∪ ∆app ` τ type.
Proof. By rule induction over Rules (B.9).
Case (B.9a).

(1) ∆ = ∆′, t type by assumption
(2) τ̀ = t by assumption
(3) τ = t by assumption
(4) ∆′, t type ` t type by Rule (B.1a)
(5) ∆′, t type∪ ∆app ` t type by Lemma B.2 over

∆app to (4)

Case (B.9b).
(1) τ̀ = prparr(τ̀1; τ̀2) by assumption
(2) τ = parr(τ1; τ2) by assumption
(3) ∆ `〈D;∆app〉; b τ̀1 τ1 type by assumption
(4) ∆ `〈D;∆app〉; b τ̀2 τ2 type by assumption
(5) ∆ ∪ ∆app ` τ1 type by IH on (3)

172

(6) ∆ ∪ ∆app ` τ2 type by IH on (4)
(7) ∆ ∪ ∆app ` parr(τ1; τ2) type by Rule (B.1b) on (5)

and (6)

Case (B.9c).
(1) τ̀ = prall(t.τ̀′) by assumption
(2) τ = all(t.τ′) by assumption
(3) ∆, t type `〈D;∆app〉; b τ̀′ τ′ type by assumption
(4) ∆, t type∪ ∆app ` τ′ type by IH on (3)
(5) ∆ ∪ ∆app, t type ` τ′ type by exchange over

∆app on (4)
(6) ∆ ∪ ∆app ` all(t.τ′) type by Rule (B.1c) on (5)

Case (B.9d).
(1) τ̀ = prrec(t.τ̀′) by assumption
(2) τ = rec(t.τ′) by assumption
(3) ∆, t type `∆app; b τ̀′ τ′ type by assumption
(4) ∆, t type∪ ∆app ` τ′ type by IH on (3)
(5) ∆ ∪ ∆app, t type ` τ′ type by exchange over

∆app on (4)
(6) ∆ ∪ ∆app ` rec(t.τ′) type by Rule (B.1d) on (5)

Case (B.9e).
(1) τ̀ = prprod[L]({i ↪→ τ̀i}i∈L) by assumption
(2) τ = prod[L]({i ↪→ τi}i∈L) by assumption
(3) {∆ `∆app; b τ̀i τi type}i∈L by assumption
(4) {∆ ∪ ∆app ` τi type}i∈L by IH over (3)
(5) ∆ ∪ ∆app ` prod[L]({i ↪→ τi}i∈L) type by Rule (B.1e) on (4)

Case (B.9f).
(1) τ̀ = prsum[L]({i ↪→ τ̀i}i∈L) by assumption
(2) τ = sum[L]({i ↪→ τi}i∈L) by assumption
(3) {∆ `∆app; b τ̀i τi type}i∈L by assumption
(4) {∆ ∪ ∆app ` τi type}i∈L by IH over (3)
(5) ∆ ∪ ∆app ` sum[L]({i ↪→ τi}i∈L) type by Rule (B.1f) on (4)

Case (B.9g).
(1) τ̀ = splicedt[m; n] by assumption
(2) parseUTyp(subseq(b; m; n)) = τ̂ by assumption
(3) 〈D; ∆app〉 ` τ̂ τ type by assumption
(4) ∆ ∩ ∆app = ∅ by assumption
(5) ∆app ` τ type by Lemma B.25 on (3)

173

(6) ∆ ∪ ∆app ` τ type by Lemma B.2 over ∆
on (5) and exchange
over ∆

B.4.2 Typed Pattern Expansion

Theorem B.27 (Typed Pattern Expansion).
1. If 〈D; ∆〉 `〈A;Φ〉 p̂ p : τ
〈G; Γ〉 then ∆ ` p : τ
Γ.

2. If p̀ p : τ
〈D;∆〉; 〈A;Φ〉; b 〈G; Γ〉 then ∆ ` p : τ
Γ.
Proof. By mutual rule induction over Rules (B.8) and Rules (B.12).

1. We induct on the premise. In the following, let ∆̂ = 〈D; ∆〉 and Γ̂ = 〈G; Γ〉 and
Φ̂ = 〈A; Φ〉.
Case (B.8a).

(1) p̂ = x̂ by assumption
(2) p = x by assumption
(3) Γ = x : τ by assumption
(4) ∆ ` x : τ
x : τ by Rule (B.4a)

Case (B.8b).
(1) p = wildp by assumption
(2) Γ = ∅ by assumption
(3) ∆ ` wildp : τ
∅ by Rule (B.4b)

Case (B.8c).
(1) p̂ = fold(p̂′) by assumption
(2) p = foldp(p′) by assumption
(3) τ = rec(t.τ′) by assumption
(4) ∆̂ `Φ̂ p̂′ p′ : [rec(t.τ′)/t]τ′
̂Γ by assumption
(5) ∆ ` p′ : [rec(t.τ′)/t]τ′
Γ by IH, part 1 on (4)
(6) ∆ ` foldp(p′) : rec(t.τ′)
Γ by Rule (B.4c) on (5)

Case (B.8d).
(1) p̂ = 〈{i ↪→ p̂i}i∈L〉 by assumption
(2) p = tplp[L]({i ↪→ pi}i∈L) by assumption
(3) τ = prod[L]({i ↪→ τi}i∈L) by assumption
(4) {∆̂ `Φ̂ p̂i pi : τi
〈Gi; Γi〉}i∈L by assumption
(5) Γ = ∪i∈LΓi by assumption
(6) {∆ ` pi : τi
Γi}i∈L by IH, part 1 over (4)
(7) ∆ ` tplp[L]({i ↪→ pi}i∈L) : prod[L]({i ↪→ τi}i∈L)
∪i∈L Γi

by Rule (B.4d) on (6)
Case (B.8e).

(1) p̂ = inj[`](p̂′) by assumption

174

(2) p = injp[`](p′) by assumption
(3) τ = sum[L, `]({i ↪→ τi}i∈L; ` ↪→ τ′) by assumption
(4) ∆̂ `Φ̂ p̂′ p′ : τ′
̂Γ by assumption
(5) ∆ ` p′ : τ′
Γ by IH, part 1 on (4)
(6) ∆ ` injp[`](p′) : sum[L, `]({i ↪→ τi}i∈L; ` ↪→ τ′)
Γ

by Rule (B.4e) on (5)
Case (B.8f).

(1) p̂ = â ‘b‘ by assumption
(2) A = A′, â a by assumption
(3) Φ = Φ′, a ↪→ sptlm(τ; eparse) by assumption
(4) b ↓Body ebody by assumption
(5) eparse(ebody) ⇓ inj[SuccessP](eproto) by assumption
(6) eproto ↑PrPat p̀ by assumption

(7) p̀ p : τ
∆̂; 〈A;Φ〉; b 〈G; Γ〉 by assumption
(8) ∆ ` p : τ
Γ by IH, part 2 on (7)

2. We induct on the premise. In the following, let Γ̂ = 〈G; Γ〉 and ∆̂ = 〈D; ∆〉 and
Φ̂ = 〈A; Φ〉.
Case (B.12a).

(1) p = wildp by assumption
(2) Γ = ∅ by assumption
(3) ∆ ` wildp : τ
∅ by Rule (B.4b)

Case (B.12b).
(1) p̀ = prfoldp(p̀′) by assumption
(2) p = foldp(p′) by assumption
(3) τ = rec(t.τ′) by assumption

(4) p̀′ p′ : [rec(t.τ′)/t]τ′
∆̂; Φ̂; b Γ̂ by assumption
(5) ∆ ` p′ : [rec(t.τ′)/t]τ′
Γ by IH, part 2 on (4)
(6) ∆ ` foldp(p′) : rec(t.τ′)
Γ by Rule (B.4c) on (5)

Case (B.12c).
(1) p̀ = prtplp[L]({i ↪→ p̀i}i∈L) by assumption
(2) p = tplp[L]({i ↪→ pi}i∈L) by assumption
(3) τ = prod[L]({i ↪→ τi}i∈L) by assumption

(4) { p̀i pi : τi

∆̂; Φ̂; b 〈Gi; Γi〉}i∈L by assumption

(5) Γ = ∪i∈LΓi by assumption
(6) {∆ ` pi : τi
Γi}i∈L by IH, part 2 over (4)
(7) ∆ ` tplp[L]({i ↪→ pi}i∈L) : prod[L]({i ↪→ τi}i∈L)
∪i∈L Γi

by Rule (B.4d) on (6)
Case (B.12d).

(1) p̀ = prinjp[`](p̀′) by assumption

175

(2) p = injp[`](p′) by assumption
(3) τ = sum[L, `]({i ↪→ τi}i∈L; ` ↪→ τ′) by assumption

(4) p̀′ p′ : τ′
∆̂; Φ̂; b Γ̂ by assumption
(5) ∆ ` p′ : τ′
Γ by IH, part 2 on (4)
(6) ∆ ` injp[`](p′) : sum[L, `]({i ↪→ τi}i∈L; ` ↪→ τ′)
Γ

by Rule (B.4e) on (5)
Case (B.12e).

(1) p̀ = splicedp[m; n; τ̀] by assumption
(2) ∅ `∆̂; b τ̀ τ type by assumption
(3) parseUExp(subseq(b; m; n)) = p̂ by assumption
(4) ∆̂ `Φ̂ p̂ p : τ
̂Γ by assumption
(5) ∆ ` p : τ
Γ by IH, part 1 on (4)

The mutual induction can be shown to be well-founded by showing that the following
numeric metric on the judgements that we induct on is decreasing:

‖∆̂ `Φ̂ p̂ p : τ
̂Γ‖ = ‖ p̂‖

‖ p̀ p : τ
∆̂; Φ̂; b Γ̂‖ = ‖b‖

where ‖b‖ is the length of b and ‖ p̂‖ is the sum of the lengths of the literal bodies in p̂,
as defined in Sec. B.2.1.

The only case in the proof of part 1 that invokes part 2 is Case (B.8f). There, we have
that the metric remains stable:

‖∆̂ `Φ̂ â ‘b‘ p : τ
̂Γ‖

=‖ p̀ p : τ
∆̂; Φ̂; b Γ̂‖
=‖b‖

The only case in the proof of part 2 that invokes part 1 is Case (B.12e). There,
we have that parseUPat(subseq(b; m; n)) = p̂ and the IH is applied to the judgement
∆̂ `Φ̂ p̂ p : τ
̂Γ. Because the metric is stable when passing from part 1 to part 2, we
must have that it is strictly decreasing in the other direction:

‖∆̂ `Φ̂ p̂ p : τ
̂Γ‖ < ‖splicedp[m; n; τ̀] p : τ
∆̂; Φ̂; b Γ̂‖

i.e. by the definitions above,
‖ p̂‖ < ‖b‖

This is established by appeal to Condition B.17, which states that subsequences of b
are no longer than b, and the Condition B.13, which states that an unexpanded pattern
constructed by parsing a textual sequence b is strictly smaller, as measured by the metric

176

defined above, than the length of b, because some characters must necessarily be used to
apply the pattern TLM and delimit each literal body. Combining Conditions B.17 and
B.13, we have that ‖ p̂‖ < ‖b‖ as needed.

B.4.3 Typed Expression Expansion

Theorem B.28 (Typed Expansion (Strong)).
1. (a) If 〈D; ∆〉 〈G; Γ〉 `Ψ̂;Φ̂ ê e : τ then ∆ Γ ` e : τ.

(b) If 〈D; ∆〉 〈G; Γ〉 `Ψ̂; Φ̂ r̂ r : τ Z⇒ τ′ then ∆ Γ ` r : τ Z⇒ τ′.

2. (a) If ∆ Γ `〈D;∆app〉; 〈G;Γapp〉; Ψ̂; Φ̂; b è e : τ and ∆ ∩ ∆app = ∅ and dom(Γ) ∩
dom(Γapp) = ∅ then ∆ ∪ ∆app Γ ∪ Γapp ` e : τ.

(b) If ∆ Γ `〈D;∆app〉; 〈G;Γapp〉; Ψ̂; Φ̂; b r̀ r : τ Z⇒ τ′ and ∆ ∩ ∆app = ∅ and dom(Γ) ∩
dom(Γapp) = ∅ then ∆ ∪ ∆app Γ ∪ Γapp ` r : τ Z⇒ τ′.

Proof. By mutual rule induction over Rules (B.6), Rule (B.7), Rules (B.10) and Rule (B.11) .
1. In the following, let ∆̂ = 〈D; ∆〉 and Γ̂ = 〈G; Γ〉.

(a) Case (B.6a).
(1) ê = x̂ by assumption
(2) e = x by assumption
(3) Γ = Γ′, x : τ by assumption
(4) ∆ Γ′, x : τ ` x : τ by Rule (B.2a)

Case (B.6b).
(1) ê = ê′ : τ̂ by assumption
(2) ∆̂ ` τ̂ τ type by assumption
(3) ∆̂ Γ̂ `Ψ̂;Φ̂ ê′ e : τ by assumption
(4) ∆ Γ ` e : τ by IH, part 1(a) on (3)

Case (B.6c).
(1) ê = let val x̂ = ê1 in ê2 by assumption
(2) e = ap(lam{τ1}(x.e2); e1) by assumption
(3) ∆̂ Γ̂ `Ψ̂;Φ̂ ê1 e1 : τ1 by assumption

(4) ∆̂ Γ̂, x̂ x : τ1 `Ψ̂;Φ̂ ê2 e2 : τ by assumption
(5) ∆ Γ ` e1 : τ1 by IH, part 1(a) on (3)
(6) ∆ Γ, x : τ ` e2 : τ by IH, part 1(a) on (4)
(7) ∆ Γ ` lam{τ1}(x.e2) : parr(τ1; τ) by Rule (B.2b) on (6)
(8) ∆ Γ ` ap(lam{τ1}(x.e2); e1) : τ by Rule (B.2c) on (7)

and (5)

Case (B.6d).
(1) ê = λx̂:τ̂1.ê′ by assumption
(2) e = lam{τ1}(x.e′) by assumption

177

(3) τ = parr(τ1; τ2) by assumption
(4) ∆̂ ` τ̂1 τ1 type by assumption
(5) ∆̂ Γ̂, x̂ x : τ1 `Ψ̂;Φ̂ ê′ e′ : τ2 by assumption
(6) ∆ ` τ1 type by Lemma B.25 on (4)
(7) ∆ Γ, x : τ1 ` e′ : τ2 by IH, part 1(a) on (5)
(8) ∆ Γ ` lam{τ1}(x.e′) : parr(τ1; τ2) by Rule (B.2b) on (6)

and (7)

Case (B.6e).
(1) ê = ê1(ê2) by assumption
(2) e = ap(e1; e2) by assumption
(3) ∆̂ Γ̂ `Ψ̂;Φ̂ ê1 e1 : parr(τ2; τ) by assumption

(4) ∆̂ Γ̂ `Ψ̂;Φ̂ ê2 e2 : τ2 by assumption
(5) ∆ Γ ` e1 : parr(τ2; τ) by IH, part 1(a) on (3)
(6) ∆ Γ ` e2 : τ2 by IH, part 1(a) on (4)
(7) ∆ Γ ` ap(e1; e2) : τ by Rule (B.2c) on (5)

and (6)

Case (B.6f) through (B.6m). These cases follow analagously, i.e. we apply
Lemma B.25 to or over the type expansion premises and the IH part 1(a)
to or over the typed expression expansion premises and then apply the
corresponding typing rule in Rules (B.2d) through (B.2k).

Case (B.6n).
(1) ê = syntax â at τ̂′ by static eparse in ê′ by assumption
(2) ∆̂ ` τ̂′ τ′ type by assumption
(3) ∅ ∅ ` eparse : parr(Body; ParseResultSE) by assumption
(4) ∆̂ Γ̂ `Ψ̂,â a↪→setlm(τ′; eparse);Φ̂ ê′ e : τ by assumption

(5) ∆ ` τ′ type by Lemma B.25 to (2)
(6) ∆ Γ ` e : τ by IH, part 1(a) on (4)

Case (B.6o).
(1) ê = â ‘b‘ by assumption
(2) A = A′, â a by assumption
(3) Ψ = Ψ′, a ↪→ setlm(τ; eparse) by assumption
(4) b ↓Body ebody by assumption
(5) eparse(ebody) ⇓ inj[SuccessE](eproto) by assumption
(6) eproto ↑PrExpr è by assumption

(7) ∅ ∅ `∆̂; Γ̂; Ψ̂; Φ̂; b è e : τ by assumption
(8) ∅ ∩ ∆ = ∅ by finite set

intersection

178

(9) ∅ ∩ dom(Γ) = ∅ by finite set
intersection

(10) ∅ ∪ ∆ ∅ ∪ Γ ` e : τ by IH, part 2(a) on (7),
(8), and (9)

(11) ∆ Γ ` e : τ by finite set and finite
function identity over
(10)

Case (B.6p).
(1) ê = match ê′ {r̂i}1≤i≤n by assumption
(2) e = match[n](e′; {ri}1≤i≤n) by assumption
(3) ∆̂ Γ̂ `Ψ̂; Φ̂ ê′ e′ : τ′ by assumption
(4) {∆̂ Γ̂ `Ψ̂; Φ̂ r̂i ri : τ′ Z⇒ τ}1≤i≤n by assumption
(5) ∆ Γ ` e′ : τ′ by IH, part 1(a) on (3)
(6) {∆ Γ ` ri : τ′ Z⇒ τ}1≤i≤n by IH, part 1(b) over

(4)
(7) ∆ Γ ` match[n](e′; {ri}1≤i≤n) : τ by Rule (B.2l) on (5)

and (6)

Case (B.6q).
(1) ê = syntax â at τ̂′ for patterns by static eparse in ê′

by assumption
(2) ∆̂ ` τ̂′ τ′ type by assumption
(3) ∅ ∅ ` eparse : parr(Body; ParseResultSE) by assumption
(4) ∆̂ Γ̂ `Ψ̂; Φ̂,â a↪→sptlm(τ′; eparse)

ê′ e : τ by assumption

(5) ∆ ` τ′ type by Lemma B.25 to (2)
(6) ∆ Γ ` e : τ by IH, part 1(a) on (4)

(b) Case (B.7).
(1) r̂ = p̂⇒ ê by assumption
(2) r = rule(p.e) by assumption
(3) ∆̂ `Φ̂ p̂ p : τ
〈A′; Γ〉 by assumption
(4) ∆̂ 〈A]A′; Γ ∪ Γ〉 `Ψ̂; Φ̂ ê e : τ′ by assumption
(5) ∆ ` p : τ
Γ by Theorem B.27, part

1 on (3)
(6) ∆ Γ ∪ Γ ` e : τ′ by IH, part 1(a) on (4)
(7) ∆ Γ ` rule(p.e) : τ Z⇒ τ′ by Rule (B.3) on (5)

and (6)

2. In the following, let ∆̂ = 〈D; ∆app〉 and Γ̂ = 〈G; Γapp〉.

(a) Case (B.10a).
(1) è = x by assumption
(2) e = x by assumption
(3) Γ = Γ′, x : τ by assumption

179

(4) ∆ ∪ ∆app Γ′, x : τ ` x : τ by Rule (B.2a)
(5) ∆ ∪ ∆app Γ′, x : τ ∪ Γapp ` x : τ by Lemma B.2 over

Γapp to (4)

Case (B.10d).
(1) è = prlam{τ̀1}(x.è′) by assumption
(2) e = lam{τ1}(x.e′) by assumption
(3) τ = parr(τ1; τ2) by assumption
(4) ∆ `∆̂app; b τ̀1 τ1 type by assumption
(5) ∆ Γ, x : τ1 `∆̂app; Γ̂app; Ψ̂; Φ̂; b è′ e′ : τ2 by assumption
(6) ∆ ∩ ∆app = ∅ by assumption
(7) dom(Γ) ∩ dom(Γapp) = ∅ by assumption
(8) x /∈ dom(Γapp) by identification

convention
(9) dom(Γ, x : τ1) ∩ dom(Γapp) = ∅ by (7) and (8)

(10) ∆ ∪ ∆app ` τ1 type by Lemma B.26 on (4)
and (6)

(11) ∆ ∪ ∆app Γ, x : τ1 ∪ Γapp ` e′ : τ2 by IH, part 2(a) on (5),
(6) and (9)

(12) ∆ ∪ ∆app Γ ∪ Γapp, x : τ1 ` e′ : τ2 by exchange over Γapp
on (11)

(13) ∆ ∪ ∆app Γ ∪ Γapp ` lam{τ1}(x.e′) : parr(τ1; τ2)
by Rule (B.2b) on (10)
and (12)

Case (B.10e).
(1) è = prap(è1; è2) by assumption
(2) e = ap(e1; e2) by assumption
(3) ∆ Γ `∆̂app; Γ̂app; Ψ̂; Φ̂; b è1 e1 : parr(τ2; τ) by assumption
(4) ∆ Γ `∆̂app; Γ̂app; Ψ̂; Φ̂; b è2 e2 : τ2 by assumption
(5) ∆ ∩ ∆app = ∅ by assumption
(6) dom(Γ) ∩ dom(Γapp) = ∅ by assumption
(7) ∆ ∪ ∆app Γ ∪ Γapp ` e1 : parr(τ2; τ) by IH, part 2(a) on (3),

(5) and (6)
(8) ∆ ∪ ∆app Γ ∪ Γapp ` e2 : τ2 by IH, part 2(a) on (4),

(5) and (6)
(9) ∆ ∪ ∆app Γ ∪ Γapp ` ap(e1; e2) : τ by Rule (B.2c) on (7)

and (8)

Case (B.10f).
(1) è = prtlam(t.è′) by assumption
(2) e = tlam(t.e′) by assumption
(3) τ = all(t.τ′) by assumption

180

(4) ∆, t type Γ `∆̂app; Γ̂app; Ψ̂; Φ̂; b è′ e′ : τ′ by assumption
(5) ∆ ∩ ∆app = ∅ by assumption
(6) dom(Γ) ∩ dom(Γapp) = ∅ by assumption
(7) t type /∈ ∆app by identification

convention
(8) ∆, t type∩ ∆app = ∅ by (5) and (7)
(9) ∆, t type∪ ∆app Γ ∪ Γapp ` e′ : τ′ by IH, part 2(a) on (4),

(8) and (6)
(10) ∆ ∪ ∆app, t type Γ ∪ Γapp ` e′ : τ′ by exchange over

∆app on (9)
(11) ∆ ∪ ∆app Γ ∪ Γapp ` tlam(t.e′) : all(t.τ′) by Rule (B.2d) on (10)

Case (B.10g) through (B.10m). These cases follow analagously, i.e. we apply
the IH, part 2(a) to all proto-expression validation judgements, Lemma
B.26 to all proto-type validation judgements, the identification conven-
tion to ensure that extended contexts remain disjoint, weakening and
exchange as needed, and the corresponding typing rule in Rules (B.2e)
through (B.2k).

Case (B.10n).
(1) è = splicede[m; n; τ̀] by assumption
(2) E = 〈D; ∆app〉; 〈G; Γapp〉; Ψ̂; b by assumption
(3) ∅ `ts(E) τ̀ τ type by assumption
(4) parseUExp(subseq(b; m; n)) = ê by assumption
(5) ∆̂app Γ̂app `Ψ̂ ê e : τ by assumption
(6) ∆ ∩ ∆app = ∅ by assumption
(7) dom(Γ) ∩ dom(Γapp) = ∅ by assumption
(8) ∆app Γapp ` e : τ by IH, part 1 on (5)
(9) ∆ ∪ ∆app Γ ∪ Γapp ` e : τ by Lemma B.2 over ∆

and Γ and exchange
on (8)

Case (B.10o).
(1) è = prmatch[n](è′; {r̀i}1≤i≤n) by assumption
(2) e = match[n](e′; {ri}1≤i≤n) by assumption
(3) ∆ Γ `∆̂; Γ̂; Ψ̂; Φ̂; b è′ e′ : τ′ by assumption
(4) {∆ Γ `∆̂; Γ̂; Ψ̂; Φ̂; b r̀i ri : τ′ Z⇒ τ}1≤i≤n by assumption
(5) ∆ ∩ ∆app = ∅ by assumption
(6) dom(Γ) ∩ dom(Γapp) = ∅ by assumption
(7) ∆ ∪ ∆app Γ ∪ Γapp ` e′ : τ′ by IH, part 2(a) on (3),

(5) and (6)

181

(8) ∆ ∪ ∆app Γ ∪ Γapp ` r : τ′ Z⇒ τ by IH, part 2(b) on (4),
(5) and (6)

(9) ∆ ∪ ∆app Γ ∪ Γapp ` match[n](e′; {ri}1≤i≤n) : τ
by Rule (B.2l) on (7)
and (8)

(b) There is only one case.
Case (B.11).

(1) r̀ = prrule(p.è) by assumption
(2) r = rule(p.e) by assumption
(3) ∆ ` p : τ
Γ′ by assumption
(4) ∆ Γ ∪ Γ′ `∆̂; Γ̂; Ψ̂; Φ̂; b è e : τ′ by assumption
(5) ∆ ∩ ∆app = ∅ by assumption
(6) dom(Γ) ∩ dom(Γ′) = ∅ by identification

convention
(7) dom(Γapp) ∩ dom(Γ′) = ∅ by identification

convention
(8) dom(Γ) ∩ dom(Γapp) = ∅ by assumption
(9) dom(Γ ∪ Γ′) ∩ dom(Γapp) = ∅ by standard finite set

definitions and
identities on (6), (7)
and (8)

(10) ∆ ∪ ∆app Γ ∪ Γ′ ∪ Γapp ` e : τ′ by IH, part 2(a) on (4),
(5) and (9)

(11) ∆ ∪ ∆app Γ ∪ Γapp ∪ Γ′ ` e : τ′ by exchange of Γ′ and
Γapp on (10)

(12) ∆ ∪ ∆app Γ ∪ Γapp ` rule(p.e) : τ Z⇒ τ′ by Rule (B.3) on (3)
and (11)

The mutual induction can be shown to be well-founded by showing that the following
numeric metric on the judgements that we induct on is decreasing:

‖∆̂ Γ̂ `Ψ̂;Φ̂ ê e : τ‖ = ‖ê‖

‖∆ Γ `∆̂; Γ̂; Ψ̂; Φ̂; b è e : τ‖ = ‖b‖

where ‖b‖ is the length of b and ‖ê‖ is the sum of the lengths of the seTLM literal bodies
in ê, as defined in Sec. B.2.1.

The only case in the proof of part 1 that invokes part 2 is Case (B.6o). There, we have
that the metric remains stable:

‖∆̂ Γ̂ `Ψ̂;Φ̂ â ‘b‘ e : τ‖

=‖∅ ∅ `∆̂; Γ̂; Ψ̂; Φ̂; b è e : τ‖
=‖b‖

182

The only case in the proof of part 2 that invokes part 1 is Case (B.10n). There,
we have that parseUExp(subseq(b; m; n)) = ê and the IH is applied to the judgement
∆̂ Γ̂ `Ψ̂;Φ̂ ê e : τ. Because the metric is stable when passing from part 1 to part 2, we
must have that it is strictly decreasing in the other direction:

‖∆̂ Γ̂ `Ψ̂;Φ̂ ê e : τ‖ < ‖∆ Γ `∆̂; Γ̂; Ψ̂; Φ̂; b splicede[m; n; τ̀] e : τ‖

i.e. by the definitions above,
‖ê‖ < ‖b‖

This is established by appeal to Condition B.17, which states that subsequences of b
are no longer than b, and Condition B.12, which states that an unexpanded expression
constructed by parsing a textual sequence b is strictly smaller, as measured by the metric
defined above, than the length of b, because some characters must necessarily be used to
apply a TLM and delimit each literal body. Combining these conditions, we have that
‖ê‖ < ‖b‖ as needed.

Theorem B.29 (Typed Expression Expansion). If 〈D; ∆〉 〈G; Γ〉`Ψ̂;Φ̂ ê e : τ then ∆ Γ `
e : τ.
Proof. This theorem follows immediately from Theorem B.28, part 1(a).

B.4.4 Abstract Reasoning Principles

Lemma B.30 (Proto-Type Expansion Decomposition). If ∆ `〈D;∆app〉; b τ̀ τ type where
seg(τ̀) = {splicedt[mi; ni]}0≤i<n then all of the following hold:

1. {〈D; ∆app〉 ` parseUTyp(subseq(b; mi; ni)) τi type}0≤i<n
2. τ = [{τi/ti}0≤i<n]τ

′ for some τ′ and fresh {ti}0≤i<n (i.e. {ti /∈ dom(∆)}0≤i<n and
{ti /∈ dom(∆app)}0≤i<n)

3. fv(τ′) ⊂ dom(∆) ∪ {ti}0≤i<n
Proof. By rule induction over Rules (B.9). In the following, let ∆̂ = 〈D; ∆app〉 and
T = ∆̂; b.
Case (B.9a).

(1) τ̀ = t by assumption
(2) τ = t by assumption
(3) ∆ = ∆′, t type by assumption
(4) seg(τ̀) = ∅ by definition
(5) fv(t) = {t} by definition
(6) {t} ⊂ dom(∆) ∪∅ by definition

The conclusions hold as follows:
1. This conclusion holds trivially because n = 0.
2. Choose τ′ = t and ∅.
3. (6)

Case (B.9b).
(1) τ̀ = prparr(τ̀1; τ̀2) by assumption

183

(2) τ = parr(τ′1; τ′2) by assumption
(3) ∆ `T τ̀1 τ′1 type by assumption
(4) ∆ `T τ̀2 τ′2 type by assumption
(5) seg(τ̀) = seg(τ̀1) ∪ seg(τ̀2) by definition
(6) seg(τ̀1) = {splicedt[mi; ni]}0≤i<n′ by definition
(7) seg(τ̀2) = {splicedt[mi; ni]}n′≤i<n by definition
(8) {〈D; ∆app〉 ` parseUTyp(subseq(b; mi; ni)) τi type}0≤i<n′

by IH on (3) and (6)
(9) τ′1 = [{τi/ti}0≤i<n′]τ

′′
1 for some τ′′1 and fresh {ti}0≤i<n′

by IH on (3) and (6)
(10) fv(τ′′1) ⊂ dom(∆) ∪ {ti}0≤i<n′ by IH on (3) and (6)
(11) {〈D; ∆app〉 ` parseUTyp(subseq(b; mi; ni)) τi type}n′≤i<n

by IH on (4) and (7)
(12) τ′2 = [{τi/ti}n′≤i<n]τ

′′
2 for some τ′′2 and fresh {ti}n′≤i<n

by IH on (4) and (7)
(13) fv(τ′′2) ⊂ dom(∆) ∪ {ti}n′≤i<n by IH on (4) and (7)
(14) {ti}0≤i<n′ ∩ {ti}n′≤i<n = ∅ by identification

convention
(15) fv(τ′′1) ⊂ dom(∆) ∪ {ti}0≤i<n by (10) and (14)
(16) fv(τ′′2) ⊂ dom(∆) ∪ {ti}0≤i<n by (13) and (14)
(17) τ′1 = [{τi/ti}0≤i<n]τ

′′
1 by substitution

properties and (9) and
(14)

(18) τ′2 = [{τi/ti}0≤i<n]τ
′′
2 by substitution

properties and (12)
and (14)

(19) parr(τ′1; τ′2) = [{τi/ti}0≤i<n]parr(τ
′′
1 ; τ′′2) by substitution and

(17) and (18)
(20) fv(parr(τ′′1 ; τ′′2)) = fv(τ′′1) ∪ fv(τ′′2) by definition
(21) fv(parr(τ′′1 ; τ′′2)) ⊂ dom(∆) ∪ {ti}0≤i<n by (20) and (15) and

(16)
The conclusions hold as follows:

1. (8) ∪ (11)
2. Choosing {ti}0≤i<n and parr(τ′′1 ; τ′′2), by (19)
3. (21)

Case (B.9c) through (B.9f). These cases follow by analagous inductive argument.
Case (B.9g).

(1) τ̀ = splicedt[m; n] by assumption
(2) seg(splicedt[m; n]) = {splicedt[m; n]} by definition
(3) parseUTyp(subseq(b; m; n)) = τ̂ by assumption
(4) 〈D; ∆app〉 ` τ̂ τ type by assumption
(5) t /∈ dom(∆) by identification

convention

184

(6) t /∈ dom(∆app) by identification
(7) τ = [τ/t]τ by definition
(8) fv(t) ⊂ ∆ ∪ {t} by definition

The conclusions hold as follows:
1. (3) and (4)
2. Choosing {t} and t, by (5), (6) and (7)
3. (8)

Lemma B.31 (Proto-Expression and Proto-Rule Expansion Decomposition).

1. If ∆ Γ `〈D;∆app〉; 〈G;Γapp〉; Ψ̂; Φ̂; b è e : τ where seg(è) = {splicedt[m′i; n′i]}0≤i<nty ∪
{splicede[mi; ni; τ̀i]}0≤i<nexp then all of the following hold:

(a) {〈D; ∆app〉 ` parseUTyp(subseq(b; m′i; n′i)) τ′i type}0≤i<nty

(b) {∅ `〈D;∆app〉; b τ̀i τi type}0≤i<nexp

(c) {〈D; ∆app〉 〈G; Γapp〉 `Ψ̂;Φ̂ parseUExp(subseq(b; mi; ni)) ei : τi}0≤i<nexp

(d) e = [{τ′i /ti}0≤i<nty , {ei/xi}0≤i<nexp]e
′ for some e′ and {ti}0≤i<nty and {xi}0≤i<nexp

such that {ti}0≤i<nty fresh (i.e. {ti /∈ dom(∆)}0≤i<nty and {ti /∈ dom(∆app)}0≤i<nty)
and {xi}0≤i<nexp fresh (i.e. {xi /∈ dom(Γ)}0≤i<nexp and {xi /∈ dom(Γapp)}0≤i<nty)

(e) fv(e′) ⊂ dom(∆) ∪ dom(Γ) ∪ {ti}0≤i<nty ∪ {xi}0≤i<nexp

2. If ∆ Γ `〈D;∆app〉; 〈G;Γapp〉; Ψ̂; Φ̂; b r̀ r : τ Z⇒ τ′ and

seg(r̀) = {splicedt[m′i; n′i]}0≤i<nty ∪ {splicede[mi; ni; τ̀i]}0≤i<nexp

then all of the following hold:
(a) {〈D; ∆app〉 ` parseUTyp(subseq(b; m′i; n′i)) τ′i type}0≤i<nty

(b) {∅ `〈D;∆app〉; b τ̀i τi type}0≤i<nexp

(c) {〈D; ∆app〉 〈G; Γapp〉 `Ψ̂;Φ̂ parseUExp(subseq(b; mi; ni)) ei : τi}0≤i<nexp

(d) r = [{τ′i /ti}0≤i<nty , {ei/xi}0≤i<nexp]r
′ for some e′ and fresh {ti}0≤i<nty and fresh

{xi}0≤i<nexp

(e) fv(r′) ⊂ dom(∆) ∪ dom(Γ) ∪ {ti}0≤i<nty ∪ {xi}0≤i<nexp

Proof. By rule induction over Rules (B.10) and Rule (B.11). In the following, let ∆̂ =
〈D; ∆app〉 and Γ̂ = 〈G; Γapp〉 and E = ∆̂; Γ̂; Ψ̂; Φ̂; b.

1. Case (B.10a).
(1) è = x by assumption
(2) e = x by assumption
(3) Γ = Γ′, x : τ by assumption
(4) seg(x) = {} by definition
(5) fv(x) = {x} by definition
(6) fv(x) ⊂ dom(Γ) by definition

185

(7) fv(x) ⊂ dom(Γ) ∪ dom(∆) by (6) and definition
of subset

The conclusions hold as follows:
(a) This conclusion holds trivially because nty = 0.
(b) This conclusion holds trivially because nexp = 0.
(c) This conclusion holds trivially because nexp = 0.
(d) Choose x, ∅ and ∅.
(e) (7)

Case (B.10b) through (B.10m). These cases follow by straightforward inductive
argument.

Case (B.10n).
(1) è = splicede[m; n; τ̀] by assumption
(2) seg(splicede[m; n; τ̀]) = seg(τ̀) ∪ {splicede[m; n; τ̀]}

by definition
(3) seg(τ̀) = {splicedt[m′i; n′i]}0≤i<nty by definition

(4) ∅ `ts(E) τ̀ τ type by assumption
(5) parseUExp(subseq(b; m; n)) = ê by assumption
(6) 〈D; ∆app〉 〈G; Γapp〉 `Ψ̂;Φ̂ ê e : τ by assumption
(7) {〈D; ∆app〉 ` parseUTyp(subseq(b; m′i; n′i)) τ′i type}0≤i<nty

by Lemma B.30 on (4)
and (3)

(8) x /∈ dom(Γ) by identification
convention

(9) x /∈ dom(Γapp) by identification
convention

(10) x /∈ dom(∆) by identificaiton
convention

(11) x /∈ dom(∆app) by identification
convention

(12) e = [{τ′i /ti}0≤i<nty , e/x]x by definition
(13) fv(x) = {x} by definition
(14) fv(x) ⊂ dom(∆) ∪ dom(Γ) ∪ {ti}0≤i<nty ∪ {x} by definition

The conclusions hold as follows:
(a) (7)
(b) {(4)}
(c) {(6)}
(d) Choosing x, {ti}0≤i<nty and {x}, by (8), (9), (10), (11) and (12).
(e) (14)

Case (B.10o).
(1) è = prmatch[n](è′; {r̀i}1≤i≤n) by assumption
(2) e = match[n](τ; e′){ri}1≤i≤n by assumption

186

(3) ∆ Γ `E è e : τ′ by assumption
(4) {∆ Γ `E r̀j rj : τ′ Z⇒ τ}1≤j≤n by assumption
(5) seg(prmatch[n](è′; {r̀i}1≤i≤n)) = seg(è) ∪⋃

0≤i<n seg(r̀i)
by definition

(6) seg(è′) = {splicedt[m′i; n′i]}0≤i<n′ty ∪ {splicede[mi; ni; τ̀i]}0≤i<n′exp

by definition
(7) {seg(r̀j) =
{splicedt[m′i,j; n′i,j]}0≤i<nty,j ∪ {splicede[mi,j; ni,j; τ̀i,j]}0≤i<nexp,j}0≤j<n

by definition
(8) {〈D; ∆app〉 ` parseUTyp(subseq(b; m′i; n′i)) τ′i type}0≤i<n′ty

by IH, part 1 on (3)
and (6)

(9) {∅ `〈D;∆app〉; b τ̀i τi type}0≤i<n′exp
by IH, part 1 on (3)
and (6)

(10) {〈D; ∆app〉 〈G; Γapp〉 `Ψ̂;Φ̂ parseUExp(subseq(b; mi; ni)) ei :
τi}0≤i<n′exp

by IH, part 1 on (3)
and (6)

(11) e′ = [{τ′i /ti}0≤i<n′ty , {ei/xi}0≤i<n′exp
]e′′ for some e′′ and fresh

{ti}0≤i<n′ty and fresh {xi}0≤i<n′exp
by IH, part 1 on (3)
and (6)

(12) fv(e′′) ⊂ dom(∆) ∪ dom(Γ) ∪ {ti}0≤i<n′ty ∪ {xi}0≤i<n′exp

by IH, part 1 on (3)
and (6)

(13) {{〈D; ∆app〉 ` parseUTyp(subseq(b; m′i,j; n′i,j)) τ′i,j type}0≤i<nty,j}0≤j<n
by IH, part 2 over (4)
and (7)

(14) {{∅ `〈D;∆app〉; b τ̀i,j τi,j type}0≤i<nexp,j}0≤j<n by IH, part 2 over (4)
and (7)

(15) {{〈D; ∆app〉 〈G; Γapp〉 `Ψ̂;Φ̂ parseUExp(subseq(b; mi,j; ni,j)) ei,j :
τi,j}0≤i<nexp,j}0≤j<n by IH, part 2 over (4)

and (7)
(16) {rj = [{τ′i,j/ti,j}0≤i<nty,j , {ei,j/xi,j}0≤i<nexp,j]r

′
j}0≤j<n for some {r′j}0≤j<n

and fresh {{ti,j}0≤i<nty,j}0≤j<n and fresh {{xi,j}0≤i<nexp,j}0≤j<n
by IH, part 2 over (4)
and (7)

(17) {fv(r′j) ⊂ dom(∆) ∪ dom(Γ) ∪ {ti,j}0≤i<nty,j ∪ {xi,j}0≤i<nexp,j}0≤j<n
by IH, part 2 over (4)
and (7)

(18) (∪0≤j<n{ti,j}0≤i<nty,j) ∩ {ti}0≤i<n′ty = ∅ by identification
convention

187

(19) (∪0≤j<n{xi,j}0≤i<nexp,j) ∩ {xi}0≤i<n′exp
= ∅ by identification

convention
(20) e′ = [{τ′i /ti}0≤i<n′ty ∪0≤j<n {τi,j/ti,j}0≤i<nty,j , {ei/xi}0≤i<nexp ∪0≤j<n

{τi,j/ti,j}0≤i<nty,j]e
′′ by substitution

properties and (11)
and (12) and (18) and
(19)

(21) {rj = [{τ′i /ti}0≤i<n′ty ∪0≤j<n {τi,j/ti,j}0≤i<nty,j , {ei/xi}0≤i<nexp ∪0≤j<n

{τi,j/ti,j}0≤i<nty,j]r
′
j}0≤j<n by substitution

properties and (16)
and (17) and (18) and
(19)

(22) e = [{τ′i /ti}0≤i<n′ty ∪0≤j<n {τi,j/ti,j}0≤i<nty,j , {ei/xi}0≤i<n′exp
∪0≤j<n

{ei,j/xi,j}0≤i<nexp,j]match[n](e
′′; {r′i}1≤i≤n) by (20) and (21) and

definition of
substitution

(23) fv(e′′) ⊂ dom(∆) ∪ dom(Γ) ∪ {ti}0≤i<n′ty ∪0≤j<n {ti,j}0≤i<nty,j ∪
{xi}0≤i<n′exp

∪0≤j<n {xi,j}0≤i<nexp,j by (12) and (18) and
(19)

(24) {fv(r′j) ⊂ dom(∆) ∪ dom(Γ) ∪ {ti}0≤i<n′ty ∪0≤j<n {ti,j}0≤i<nty,j ∪
{xi}0≤i<n′exp

∪0≤j<n {xi,j}0≤i<nexp,j}0≤j<n by (17) and (18) and
(19)

(25) fv(match[n](e′′; {r′i}1≤i≤n)) ⊂ dom(∆) ∪ dom(Γ) ∪ {ti}0≤i<n′ty ∪0≤j<n

{ti,j}0≤i<nty,j ∪ {xi}0≤i<n′exp
∪0≤j<n {xi,j}0≤i<nexp,j

by (23) and (24)

The conclusions hold as follows:
(a) (8)∪⋃

0≤j<n (13)j
(b) (9)∪⋃

0≤j<n (14)j
(c) (10)∪⋃

0≤j<n (15)j
(d) Choose:

i. match[n](e′′; {r′i}1≤i≤n)

ii. {ti}0≤i<n′ty ∪ {{ti,j}0≤i<nty,j}0≤j<n; and

iii. {xi}0≤i<n′exp
∪ {{xi,j}0≤i<nexp,j}0≤j<n; and

We have e = [{τ′i /ti}0≤i<n′ty ∪ {{τi,j/ti,j}0≤i<nty,j}0≤j<n, {ei/xi}0≤i<n′exp
∪

{{ei,j/xi,j}0≤i<nexp,j}0≤j<n]match[n](e′′; {r′i}1≤i≤n) by (22).
(e) (25)

2. By rule induction over the rule typing assumption. There is only one case. In the
following, let ∆̂ = 〈D; ∆app〉 and Γ̂ = 〈G; Γapp〉 and E = ∆̂; Γ̂; Ψ̂; Φ̂; b.
Case (B.11).

188

(1) r̀ = prrule(p.è) by assumption
(2) r = rule(p.e) by assumption
(3) ∆ ` p : τ
Γ′ by assumption
(4) ∆ Γ ∪ Γ′ `E è e : τ′ by assumption
(5) seg(r̀) = seg(è) by definition
(6) seg(è) = {splicedt[m′i; n′i]}0≤i<nty ∪ {splicede[mi; ni; τ̀i]}0≤i<nexp

by definition
(7) {〈D; ∆app〉 ` parseUTyp(subseq(b; m′i; n′i)) τ′i type}0≤i<nty

by IH, part 1 on (4)
and (6)

(8) {∅ `〈D;∆app〉; b τ̀i τi type}0≤i<nexp by IH, part 1 on (4)
and (6)

(9) {〈D; ∆app〉 〈G; Γapp〉 `Ψ̂;Φ̂ parseUExp(subseq(b; mi; ni)) ei :
τi}0≤i<nexp by IH, part 1 on (4)

and (6)
(10) e = [{τ′i /ti}0≤i<nty , {ei/xi}0≤i<nexp]e

′ for some e′ and fresh {ti}0≤i<nty

and fresh {xi}0≤i<nexp by IH, part 1 on (4)
and (6)

(11) fv(e′) ⊂ dom(∆) ∪ dom(Γ) ∪ dom(Γ′) ∪ {ti}0≤i<nty ∪ {xi}0≤i<nexp

by IH, part 1 on (4)
and (6)

(12) r = [{τ′i /ti}0≤i<nty , {ei/xi}0≤i<nexp]rule(p.e′) by substitution
properties and (10)

(13) fv(p) = dom(Γ′) by Lemma B.5 on (3)
(14) fv(rule(p.e′)) ⊂ dom(∆) ∪ dom(Γ) ∪ {ti}0≤i<nty ∪ {xi}0≤i<nexp

by definition of fv(r)
and (11) and (13)

The conclusions hold as follows:
(a) (7)
(b) (8)
(c) (9)
(d) Choosing rule(p.e′) and {ti}0≤i<nty and {xi}0≤i<nexp , by (12)
(e) (14)

Theorem B.32 (seTLM Abstract Reasoning Principles). If 〈D; ∆〉 〈G; Γ〉 `Ψ̂;Φ̂ â ‘b‘ e : τ

then:
1. (Typing 1) Ψ̂ = Ψ̂′, â a ↪→ setlm(τ; eparse) and ∆ Γ ` e : τ

2. b ↓Body ebody
3. eparse(ebody) ⇓ inj[SuccessE](eproto)

4. eproto ↑PrExpr è
5. (Segmentation) seg(è) segments b
6. seg(è) = {splicedt[m′i; n′i]}0≤i<nty ∪ {splicede[mi; ni; τ̀i]}0≤i<nexp

189

7. (Typing 2) {〈D; ∆〉 ` parseUTyp(subseq(b; m′i; n′i)) τ′i type}0≤i<nty and {∆ `
τ′i type}0≤i<nty

8. (Typing 3) {∅ `〈D;∆〉; b τ̀i τi type}0≤i<nexp and {∆ ` τi type}0≤i<nexp

9. (Typing 4) {〈D; ∆〉 〈G; Γ〉 `Ψ̂;Φ̂ parseUExp(subseq(b; mi; ni)) ei : τi}0≤i<nexp and
{∆ Γ ` ei : τi}0≤i<nexp

10. (Capture Avoidance) e = [{τ′i /ti}0≤i<nty , {ei/xi}0≤i<nexp]e
′ for some {ti}0≤i<nty and

{xi}0≤i<nexp and e′

11. (Context Independence) fv(e′) ⊂ {ti}0≤i<nty ∪ {xi}0≤i<nexp

Proof. By rule induction over Rules (B.6). There is only one rule that applies. In the
following, let ∆̂ = 〈D; ∆〉 and Γ̂ = 〈G; Γ〉.
Case (B.6o).

(1) Ψ̂ = Ψ̂′, â a ↪→ setlm(τ; eparse) by assumption
(2) 〈D; ∆〉 〈G; Γ〉 `Ψ̂;Φ̂ â ‘b‘ e : τ by assumption
(3) ∆ Γ ` e : τ by Theorem B.29 on

(2)
(4) b ↓Body ebody by assumption
(5) eparse(ebody) ⇓ inj[SuccessE](eproto) by assumption
(6) eproto ↑PrExpr è by assumption
(7) seg(è) segments b by assumption
(8) ∅ ∅ `∆̂; Γ̂; Ψ̂; Φ̂; b è e : τ by assumption
(9) seg(è) = {splicedt[m′i; n′i]}0≤i<nty ∪ {splicede[mi; ni; τ̀i]}0≤i<nexp

by definition
(10) {〈D; ∆〉 ` parseUTyp(subseq(b; m′i; n′i)) τ′i type}0≤i<nty

by Lemma B.31 on (8)
and (9)

(11) {∆ ` τ′i type}0≤i<nty by Lemma B.25, part 1
over (10)

(12) {∅ `〈D;∆〉; b τ̀i τi type}0≤i<nexp by Lemma B.31 on (8)
and (9)

(13) ∅ ∩ ∆ = ∅ by definition
(14) {∆ ` τi type}0≤i<nexp by Lemma B.25, part 2

over (12) and (13)
(15) {〈D; ∆〉 〈G; Γ〉 `Ψ̂;Φ̂ parseUExp(subseq(b; mi; ni)) ei : τi}0≤i<nexp

by Lemma B.31 on (8)
and (9)

(16) {∆ Γ ` ei : τi}0≤i<nexp by Theorem B.29 over
(15)

(17) e = [{τ′i /ti}0≤i<nty , {ei/xi}0≤i<nexp]e
′ for some e′ and fresh {ti}0≤i<nty and

fresh {xi}0≤i<nexp by Lemma B.31 on (8)
and (9)

(18) fv(e′) ⊂ {ti}0≤i<nty ∪ {xi}0≤i<nexp by Lemma B.31 on (8)
and (9)

190

The conclusions hold as follows:
1. (1) and (3)
2. (4)
3. (5)
4. (6)
5. (7)
6. (9)
7. (10) and (11)
8. (12) and (14)
9. (15) and (16)

10. (17)
11. (18)

Lemma B.33 (Proto-Pattern Expansion Decomposition). If p̀ p : τ
∆̂; Φ̂; b Γ̂ where

seg(p̀) = {splicedt[m′i; n′i]}0≤i<nty ∪ {splicedp[mi; ni; τ̀i]}0≤i<npat

then all of the following hold:
1. {∆̂ ` parseUTyp(subseq(b; m′i; n′i)) τ′i type}0≤i<nty

2. {∅ `∆̂; b τ̀i τi type}0≤i<npat

3. {∆̂ `Φ̂ parseUPat(subseq(b; mi; ni)) pi : τi
̂Γi}0≤i<npat

4. Γ̂ =
⊎

0≤i<npat Γ̂i

Proof. By rule induction over Rules (B.12). In the following, let P = ∆̂; Φ̂; b.
Case (B.12a).

(1) p̀ = prwildp by assumption
(2) e = wildp by assumption
(3) Γ̂ = 〈∅; ∅〉 by assumption
(4) seg(prwildp) = ∅ by definition

The conclusions hold as follows:
1. This conclusion holds trivially because nty = 0.
2. This conclusion holds trivially because npat = 0.
3. This conclusion holds trivially because npat = 0.
4. This conclusion holds trivially because Γ̂ = ∅ and npat = 0.

Case (B.12b).
(1) p̀ = prfoldp(p̀′) by assumption
(2) p = foldp(p′) by assumption
(3) τ = rec(t.τ′) by assumption
(4) p̀ p : [rec(t.τ′)/t]τ′
P Γ̂ by assumption
(5) seg(prfoldp(p̀′)) = seg(p̀′) by definition

191

(6) seg(p̀′) = {splicedt[m′i; n′i]}0≤i<nty ∪ {splicedp[mi; ni; τ̀i]}0≤i<npat

by definition
(7) {∆̂ ` parseUTyp(subseq(b; m′i; n′i)) τ′i type}0≤i<nty by IH on (4) and (6)

(8) {∅ `∆̂; b τ̀i τi type}0≤i<npat by IH on (4) and (6)

(9) {∆̂ `Φ̂ parseUPat(subseq(b; mi; ni)) pi : τi
̂Γi}0≤i<npat

by IH on (4) and (6)
(10) Γ̂ =

⊎
0≤i<npat Γ̂i by IH on (4) and (6)

The conclusions hold as follows:
1. (7)
2. (8)
3. (9)
4. (10)

Case (B.12c).
(1) p̀ = prtplp[L]({j ↪→ p̀j}j∈L) by assumption
(2) p = tplp[L]({j ↪→ pj}j∈L) by assumption
(3) τ = prod[L]({j ↪→ τj}j∈L) by assumption
(4) Γ̂ =

⊎
j∈L Γ̂j by assumption

(5) { p̀j pj : τj

P Γ̂j}j∈L by assumption

(6) seg(prtplp[L]({j ↪→ p̀j}j∈L)) =
⋃

j∈L seg(p̀j) by definition
(7) {seg(p̀j) =
{splicedt[m′i,j; n′i,j]}0≤i<nty,j ∪ {splicedp[mi,j; ni,j; τ̀i,j]}0≤i<npat,j}j∈L

by definition
(8) npat = Σj∈Lnpat,j by definition
(9) {{∆̂ ` parseUTyp(subseq(b; m′i,j; n′i,j)) τ′i,j type}0≤i<nty,j}j∈L

by IH over (5) and (7)
(10) {{∅ `∆̂; b τ̀i,j τi,j type}0≤i<npat,j}j∈L by IH over (5) and (7)

(11) {{∆̂ `Φ̂ parseUPat(subseq(b; mi,j; ni,j)) pi,j : τi,j
̂Γi,j}0≤i<npat,j}j∈L
by IH over (5) and (7)

(12) {Γ̂j =
⊎

0≤i<npat,j
Γ̂i,j}j∈L by IH over (5) and (7)

(13)
⊎

j∈L Γ̂j =
⊎

j∈L
⊎

i∈npat,j
Γ̂i,j by definition and (12)

The conclusions hold as follows:
1.

⋃
j∈L

⋃
i∈nty,j

(9)i,j

2.
⋃

j∈L
⋃

i∈npat,j
(10)i,j

3.
⋃

j∈L
⋃

i∈npat,j
(11)i,j

4. (13)
Case (B.12d).

(1) p̀ = prinjp[`](p̀′) by assumption
(2) p = injp[`](p′) by assumption

192

(3) τ = sum[L, `]({i ↪→ τi}i∈L; ` ↪→ τ′) by assumption
(4) p̀ p : τ′
P Γ̂ by assumption
(5) seg(prinjp[`](p̀′)) = seg(p̀′) by definition
(6) seg(p̀′) = {splicedt[m′i; n′i]}0≤i<nty ∪ {splicedp[mi; ni; τ̀i]}0≤i<npat

by definition
(7) {∆̂ ` parseUTyp(subseq(b; m′i; n′i)) τ′i type}0≤i<nty by IH on (4) and (6)

(8) {∅ `∆̂; b τ̀i τi type}0≤i<npat by IH on (4) and (6)

(9) {∆̂ `Φ̂ parseUPat(subseq(b; mi; ni)) pi : τi
̂Γi}0≤i<npat

by IH on (4) and (6)
(10) Γ̂ =

⊎
0≤i<npat Γ̂i by IH on (4) and (6)

The conclusions hold as follows:
1. (7)
2. (8)
3. (9)
4. (10)

Case (B.12e).
(1) p̀ = splicedp[m; n; τ̀] by assumption
(2) ∅ `∆̂; b τ̀ τ type by assumption
(3) parseUPat(subseq(b; m; n)) = p̂ by assumption
(4) ∆̂ `Φ̂ p̂ p : τ
̂Γ by assumption
(5) seg(splicedp[m; n; τ̀]) = seg(τ̀) ∪ {splicedp[m; n; τ̀]}

by definition
(6) seg(τ̀) = {splicedt[m′i; n′i]}0≤i<nty by definition
(7) {〈D; ∆app〉 ` parseUTyp(subseq(b; mi; ni)) τi type}0≤i<n

by Lemma B.30 on (2)
and (6)

The conclusions hold as follows:
1. (7)
2. (2)
3. (3) and (4)
4. This conclusion holds by (4) because npat = 1.

Theorem B.34 (spTLM Abstract Reasoning Principles). If ∆̂ `Φ̂ â ‘b‘ p : τ
̂Γ where
∆̂ = 〈D; ∆〉 and Γ̂ = 〈G; Γ〉 then all of the following hold:

1. (Typing 1) Φ̂ = Φ̂′, â a ↪→ sptlm(τ; eparse) and ∆ ` p : τ
Γ
2. b ↓Body ebody
3. eparse(ebody) ⇓ inj[SuccessP](eproto)

4. eproto ↑PrPat p̀
5. (Segmentation) seg(p̀) segments b

193

6. seg(p̀) = {splicedt[n′i; m′i]}0≤i<nty ∪ {splicedp[mi; ni; τ̀i]}0≤i<npat

7. (Typing 2) {∆̂ ` parseUTyp(subseq(b; m′i; n′i)) τ′i type}0≤i<nty and {∆ ` τ′i type}0≤i<nty

8. (Typing 3) {∅ `∆̂; b τ̀i τi type}0≤i<npat and {∆ ` τi type}0≤i<npat

9. (Typing 4) {∆̂ `Φ̂ parseUPat(subseq(b; mi; ni)) pi : τi
〈Gi; Γi〉}0≤i<npat and
{∆ ` pi : τi
Γi}0≤i<npat

10. (No Hidden Bindings) G =
⊎

0≤i<npat Gi and Γ =
⋃

0≤i<npat Γi
Proof. By rule induction over Rules (B.8). There is only one rule that applies.
Case (B.8f).

(1) ∆̂ `Φ̂ â ‘b‘ p : τ
̂Γ by assumption
(2) Φ̂ = Φ̂′, â a ↪→ sptlm(τ; eparse) by assumption
(3) ∆ ` p : τ
Γ by Theorem B.27 on

(1)
(4) b ↓Body ebody by assumption
(5) eparse(ebody) ⇓ inj[SuccessP](eproto) by assumption
(6) eproto ↑PrPat p̀ by assumption
(7) seg(p̀) segments b by assumption

(8) p̀ p : τ
∆̂; Φ̂; b Γ̂ by assumption
(9) seg(p̀) = {splicedt[m′i; n′i]}0≤i<nty ∪ {splicedp[mi; ni; }]0≤i<npat

by definition
(10) {∆̂ ` parseUTyp(subseq(b; m′i; n′i)) τ′i type}0≤i<nty by Lemma B.33 on (8)

and (9)
(11) {∆ ` τ′i type}0≤i<nty by Lemma B.25, part 1

over (10)
(12) {∅ `∆̂; b τ̀i τi type}0≤i<npat by Lemma B.33 on (8)

and (9)
(13) {∆ ` τi type}0≤i<npat by Lemma B.25, part 2

over (12)
(14) {∆̂ `Φ̂ parseUPat(subseq(b; mi; ni)) pi : τi
̂Γi}0≤i<npat

by Lemma B.33 on (8)
and (9)

(15) {∆ ` pi : τi
Γi}0≤i<npat by Theorem B.27 over
(14)

(16) G =
⊎

0≤i<npat Gi and Γ =
⋃

0≤i<npat Γi by Lemma B.33 on (8)
and (9)

The conclusions hold as follows:
1. (2) and (3)
2. (4)
3. (5)
4. (6)
5. (7)

194

6. (9)
7. (10) and (11)
8. (12) and (13)
9. (14) and (15)

10. (16)

195

196

Appendix C

miniVerseP

197

C.1 Expanded Language (XL)

C.1.1 Syntax

Signatures and Module Expressions

Sort Operational Form Description
Sig σ ::= sig{κ}(u.τ) signature
Mod M ::= X module variable

struct(c; e) structure
seal{σ}(M) seal
mlet{σ}(M; X.M) definition

Kinds and Constructions

Sort Operational Form Description
Kind κ ::= k kind variable

darr(κ; u.κ) dependent function
unit nullary product
dprod(κ; u.κ) dependent product
Type type
S(τ) singleton

Con c, τ ::= u construction variable
t type variable
abs(u.c) abstraction
app(c; c) application
triv trivial
pair(c; c) pair
prl(c) left projection
prr(c) right projection
parr(τ; τ) partial function
all{κ}(u.τ) polymorphic
rec(t.τ) recursive
prod[L]({i ↪→ τi}i∈L) labeled product
sum[L]({i ↪→ τi}i∈L) labeled sum
con(M) construction component

198

Expressions, Rules and Patterns

Sort Operational Form Description
Exp e ::= x variable

lam{τ}(x.e) abstraction
ap(e; e) application
clam{κ}(u.e) construction abstraction
cap{κ}(e) construction application
fold(e) fold
unfold(e) unfold
tpl[L]({i ↪→ ei}i∈L) labeled tuple
prj[`](e) projection
inj[`](e) injection
match[n](e; {ri}1≤i≤n) match
val(M) value component

Rule r ::= rule(p.e) rule
Pat p ::= x variable pattern

wildp wildcard pattern
foldp(p) fold pattern
tplp[L]({i ↪→ pi}i∈L) labeled tuple pattern
injp[`](p) injection pattern

C.1.2 Statics

Unified Contexts

A unified context, Ω, is an ordered finite function. We write
• Ω, X : σ when X /∈ dom(Ω) for the extension of Ω with a mapping from X to the

hypothesis X : σ.
• Ω, x : τ when x /∈ dom(Ω) for the extension of Ω with a mapping from x to the

hypothesis x : τ.
• Ω, u :: κ when u /∈ dom(Ω) for the extension of Ω with a mapping from u to the

hypothesis u :: κ.

Signatures and Structures

Ω ` σ sig σ is a signature

Ω ` κ kind Ω, u :: κ ` τ :: Type
Ω ` sig{κ}(u.τ) sig

(C.1)

Ω ` σ ≡ σ′ σ and σ′ are definitionally equal

Ω ` κ ≡ κ′ Ω, u :: κ ` τ ≡ τ′ :: Type
Ω ` sig{κ}(u.τ) ≡ sig{κ′}(u.τ′)

(C.2)

199

Ω ` σ <: σ′ σ is a subsignature of σ′

Ω ` κ <:: κ′ Ω, u :: κ ` τ <: τ′

Ω ` sig{κ}(u.τ) <: sig{κ′}(u.τ′)
(C.3)

Ω ` M : σ M matches σ

Ω ` M : σ Ω ` σ <: σ′

Ω ` M : σ′
(C.4a)

Ω, X : σ ` X : σ
(C.4b)

Ω ` c :: κ Ω ` e : [c/u]τ
Ω ` struct(c; e) : sig{κ}(u.τ)

(C.4c)

Ω ` σ sig Ω ` M : σ

Ω ` seal{σ}(M) : σ
(C.4d)

Ω ` M : σ Ω ` σ′ sig Ω, X : σ ` M′ : σ′

Ω ` mlet{σ′}(M; X.M′) : σ′
(C.4e)

Ω ` M mval M is, or stands for, a module value

Ω ` struct(c; e) mval
(C.5a)

Ω, X : σ ` X mval
(C.5b)

Kinds and Constructions

Ω ` κ kind κ is a kind

Ω ` κ1 kind Ω, u :: κ1 ` κ2 kind

Ω ` darr(κ1; u.κ2) kind
(C.6a)

Ω ` unit kind
(C.6b)

Ω ` κ1 kind Ω, u :: κ1 ` κ2 kind

Ω ` dprod(κ1; u.κ2) kind
(C.6c)

Ω ` Type kind
(C.6d)

200

Ω ` τ :: Type
Ω ` S(τ) kind

(C.6e)

Ω ` κ ≡ κ′ κ and κ′ are definitionally equal

Ω ` κ kind

Ω ` κ ≡ κ
(C.7a)

Ω ` κ ≡ κ′

Ω ` κ′ ≡ κ
(C.7b)

Ω ` κ ≡ κ′ Ω ` κ′ ≡ κ′′

Ω ` κ ≡ κ′′
(C.7c)

Ω ` κ1 ≡ κ′1 Ω, u :: κ1 ` κ2 ≡ κ′2
Ω ` darr(κ1; u.κ2) ≡ darr(κ′1; u.κ′2)

(C.7d)

Ω ` κ1 ≡ κ′1 Ω, u :: κ1 ` κ2 ≡ κ′2
Ω ` dprod(κ1; u.κ2) ≡ dprod(κ′1; u.κ′2)

(C.7e)

Ω ` c ≡ c′ :: Type
Ω ` S(c) ≡ S(c′)

(C.7f)

Ω ` κ <:: κ′ κ is a subkind of κ′

Ω ` κ ≡ κ′

Ω ` κ <:: κ′
(C.8a)

Ω ` κ <:: κ′ Ω ` κ′ <:: κ′′

Ω ` κ <:: κ′′
(C.8b)

Ω ` κ′1 <:: κ1 Ω, u :: κ′1 ` κ2 <:: κ′2
Ω ` darr(κ1; u.κ2) <:: darr(κ′1; u.κ′2)

(C.8c)

Ω ` κ1 <:: κ′1 Ω, u :: κ1 ` κ2 <:: κ′2
Ω ` dprod(κ1; u.κ2) <:: dprod(κ′1; u.κ′2)

(C.8d)

Ω ` τ :: Type
Ω ` S(τ) <:: Type

(C.8e)

Ω ` τ <: τ′

Ω ` S(τ) <:: S(τ′)
(C.8f)

201

Ω ` c :: κ c has kind κ

Ω ` c :: κ1 Ω ` κ1 <:: κ2

Ω ` c :: κ2
(C.9a)

Ω, u :: κ ` u :: κ
(C.9b)

Ω, u :: κ1 ` c2 :: κ2

Ω ` abs(u.c2) :: darr(κ1; u.κ2)
(C.9c)

Ω ` c1 :: darr(κ2; u.κ) Ω ` c2 :: κ2

Ω ` app(c1; c2) :: [c1/u]κ
(C.9d)

Ω ` triv :: unit
(C.9e)

Ω ` c1 :: κ1 Ω ` c2 :: [c1/u]κ2

Ω ` pair(c1; c2) :: dprod(κ1; u.κ2)
(C.9f)

Ω ` c :: dprod(κ1; u.κ2)

Ω ` prl(c) :: κ1
(C.9g)

Ω ` c :: dprod(κ1; u.κ2)

Ω ` prr(c) :: [prl(c)/u]κ2
(C.9h)

Ω ` τ1 :: Type Ω ` τ2 :: Type
Ω ` parr(τ1; τ2) :: Type

(C.9i)

Ω ` κ kind Ω, u :: κ ` τ :: Type
Ω ` all{κ}(u.τ) :: Type

(C.9j)

Ω, t :: Type ` τ :: Type
Ω ` rec(t.τ) :: Type

(C.9k)

{Ω ` τi :: Type}1≤i≤n

Ω ` prod[L]({i ↪→ τi}i∈L) :: Type
(C.9l)

{Ω ` τi :: Type}1≤i≤n

Ω ` sum[L]({i ↪→ τi}i∈L) :: Type
(C.9m)

Ω ` c :: Type
Ω ` c :: S(c)

(C.9n)

Ω ` M mval Ω ` M : sig{κ}(u.τ)
Ω ` con(M) :: κ

(C.9o)

202

Ω ` c ≡ c′ :: κ c and c′ are definitionally equal as constructions of kind κ

Ω ` c :: κ

Ω ` c ≡ c :: κ
(C.10a)

Ω ` c ≡ c′ :: κ

Ω ` c′ ≡ c :: κ
(C.10b)

Ω ` c ≡ c′ :: κ Ω ` c′ ≡ c′′ :: κ

Ω ` c ≡ c′′ :: κ
(C.10c)

Ω, u :: κ1 ` c ≡ c′ :: κ2

Ω ` abs(u.c) ≡ abs(u.c′) :: darr(κ1; u.κ2)
(C.10d)

Ω ` c1 ≡ c′1 :: darr(κ2; u.κ) Ω ` c2 ≡ c′2 :: κ2

Ω ` app(c1; c2) ≡ app(c′1; c′2) :: κ
(C.10e)

Ω ` abs(u.c) :: darr(κ2; u.κ) Ω ` c2 :: κ2

Ω ` app(abs(u.c); c2) ≡ [c2/u]c :: [c2/u]κ
(C.10f)

Ω ` c1 ≡ c′1 :: κ1 Ω ` c2 ≡ c′2 :: [c1/u]κ2

Ω ` pair(c1; c2) ≡ pair(c′1; c′2) :: dprod(κ1; u.κ2)
(C.10g)

Ω ` c ≡ c′ :: dprod(κ1; u.κ2)

Ω ` prl(c) ≡ prl(c′) :: κ1
(C.10h)

Ω ` c1 :: κ1 Ω ` c2 :: κ2

Ω ` prl(pair(c1; c2)) ≡ c1 :: κ1
(C.10i)

Ω ` c ≡ c′ :: dprod(κ1; u.κ2)

Ω ` prr(c) ≡ prr(c′) :: [prl(c)/u]κ2
(C.10j)

Ω ` c1 :: κ1 Ω ` c2 :: κ2

Ω ` prr(pair(c1; c2)) ≡ c2 :: κ2
(C.10k)

Ω ` τ1 ≡ τ′1 :: Type Ω ` τ2 ≡ τ′2 :: Type
Ω ` parr(τ1; τ2) ≡ parr(τ′1; τ′2) :: Type

(C.10l)

Ω ` κ ≡ κ′ Ω, u :: κ ` τ ≡ τ′ :: Type
Ω ` all{κ}(u.τ) ≡ all{κ′}(u.τ′) :: Type

(C.10m)

Ω, t :: Type ` τ ≡ τ′ :: Type
Ω ` rec(t.τ) ≡ rec(t.τ′) :: Type

(C.10n)

{Ω ` τi ≡ τ′i :: Type}1≤i≤n

Ω ` prod[L]({i ↪→ τi}i∈L) ≡ prod[L]({i ↪→ τ′i }i∈L) :: Type
(C.10o)

203

{Ω ` τi ≡ τ′i :: Type}1≤i≤n

Ω ` sum[L]({i ↪→ τi}i∈L) ≡ sum[L]({i ↪→ τ′i }i∈L) :: Type
(C.10p)

Ω ` c :: S(c′)
Ω ` c ≡ c′ :: Type

(C.10q)

Ω ` struct(c; e) : sig{κ}(u.τ)
Ω ` con(struct(c; e)) ≡ c :: κ

(C.10r)

Expressions, Rules and Patterns

Ω ` τ <: τ′ τ is a subtype of τ′

Ω ` τ1 ≡ τ2 :: Type
Ω ` τ1 <: τ2

(C.11a)

Ω ` τ <: τ′ Ω ` τ′ <: τ′′

Ω ` τ <: τ′′
(C.11b)

Ω ` τ′1 <: τ1 Ω ` τ2 <: τ′2
Ω ` parr(τ1; τ2) <: parr(τ′1; τ′2)

(C.11c)

Ω ` κ′ <:: κ Ω, u :: κ′ ` τ <: τ′

Ω ` all{κ}(u.τ) <: all{κ′}(u.τ′)
(C.11d)

{Ω ` τi <: τ′i }i∈L

Ω ` prod[L]({i ↪→ τi}i∈L) <: prod[L]({i ↪→ τ′i }i∈L)
(C.11e)

{Ω ` τi <: τ′i }i∈L

Ω ` sum[L]({i ↪→ τi}i∈L) <: sum[L]({i ↪→ τ′i }i∈L)
(C.11f)

Ω ` e : τ e has type τ

Ω ` e : τ Ω ` τ <: τ′

Ω ` e : τ′
(C.12a)

Ω, x : τ ` x : τ
(C.12b)

Ω ` τ :: Type Ω, x : τ ` e : τ′

Ω ` lam{τ}(x.e) : parr(τ; τ′)
(C.12c)

Ω ` e1 : parr(τ; τ′) Ω ` e2 : τ

Ω ` ap(e1; e2) : τ′
(C.12d)

Ω ` κ kind Ω, u :: κ ` e : τ

Ω ` clam{κ}(u.e) : all{κ}(u.τ)
(C.12e)

204

Ω ` e : all{κ}(u.τ) Ω ` c :: κ

Ω ` cap{c}(e) : [c/u]τ
(C.12f)

Ω ` e : [rec(t.τ)/t]τ
Ω ` fold(e) : rec(t.τ)

(C.12g)

Ω ` e : rec(t.τ)
Ω ` unfold(e) : [rec(t.τ)/t]τ

(C.12h)

{Ω ` ei : τi}i∈L

Ω ` tpl[L]({i ↪→ ei}i∈L) : prod[L]({i ↪→ τi}i∈L)
(C.12i)

Ω ` e : prod[L, `]({i ↪→ τi}i∈L; ` ↪→ τ)

Ω ` prj[`](e) : τ
(C.12j)

Ω ` e : τ

Ω ` inj[`](e) : sum[L, `]({i ↪→ τi}i∈L; ` ↪→ τ)
(C.12k)

Ω ` e : τ {Ω ` ri : τ Z⇒ τ′}1≤i≤n

Ω ` match[n](e; {ri}1≤i≤n) : τ′
(C.12l)

Ω ` M mval Ω ` M : sig{κ}(u.τ)
Ω ` val(M) : [con(M)/u]τ

(C.12m)

Ω ` r : τ Z⇒ τ′ r takes values of type τ to values of type τ′

Ω ` p : τ
Ω′ Ω ∪Ω′ ` e : τ′

Ω ` rule(p.e) : τ Z⇒ τ′
(C.13)

Ω ` p : τ
Ω′ p matches values of type τ generating hypotheses Ω′

Ω ` p : τ
Ω′ Ω ` τ <: τ′

Ω ` p : τ′
Ω′
(C.14a)

Ω ` x : τ
x : τ
(C.14b)

Ω ` wildp : τ
∅
(C.14c)

Ω ` p : [rec(t.τ)/t]τ
Ω′

Ω ` foldp(p) : rec(t.τ)
Ω′
(C.14d)

{Ω ` pi : τi
Ωi}i∈L

Ω ` tplp[L]({i ↪→ pi}i∈L) : prod[L]({i ↪→ τi}i∈L)
∪i∈L Ωi
(C.14e)

Ω ` p : τ
Ω′

Ω ` injp[`](p) : sum[L, `]({i ↪→ τi}i∈L; ` ↪→ τ)
Ω′
(C.14f)

205

Metatheory

The rules above are syntax-directed, so we assume an inversion lemma for each rule
as needed without stating it separately or proving it explicitly. The following standard
lemmas also hold, for all basic judgements J above.
Lemma C.1 (Weakening). If Ω ` J then Ω ∪Ω′ ` J.
Proof Sketch. By straightforward mutual rule induction.

Definition C.2. A substitution, ω, is a finite function that maps:
• each X ∈ dom(ω) to a module expression subtitution, M/X;
• each u ∈ dom(ω) to a construction substitution, c/u; and
• each x ∈ dom(ω) to an expression substitution, e/x.
We write Ω ` ω : Ω′ iff dom(ω) = dom(Ω′) and:
• for each M/X ∈ ω, we have X : σ ∈ Ω′ and Ω ` M : σ and Ω ` M mval; and
• for each c/u ∈ ω, we have u :: κ ∈ Ω′ and Ω ` c :: κ; and
• for each e/x ∈ ω, we have x : τ ∈ Ω′ and Ω ` e : τ.
We simultaneously apply a substitution by placing it in prefix position. For example, [ω]e

applies the substitutions ω simultaneously to e.
Lemma C.3 (Substitution). If Ω ∪Ω′ ∪Ω′′ ` J and Ω ` ω : Ω′ then Ω ∪ [ω]Ω′′ ` [ω]J.
Proof Sketch. By straightforward rule induction.

Lemma C.4 (Decomposition). If Ω ∪ [ω]Ω′′ ` [ω]J and Ω ` ω : Ω′ then Ω ∪Ω′ ∪Ω′′ ` J.
Proof Sketch. By straightforward rule induction.

Lemma C.5 (Pattern Binding). If Ω ` p : τ
Ω′ then dom(Ω′) = patvars(p).
Proof Sketch. By straightforward rule induction over Rules (C.14).

C.1.3 Structural Dynamics

The structural dynamics of modules is defined as a transition system, and is organized
around judgements of the following form:

Judgement Form Description
M 7→ M′ M transitions to M′

M val M is a module value
M matchfail M raises match failure

The structural dynamics of expressions is also defined as a transition system, and is
organized around judgements of the following form:

Judgement Form Description
e 7→ e′ e transitions to e′

e val e is a value
e matchfail e raises match failure

206

We also define auxiliary judgements for iterated transition, e 7→∗ e′, and evaluation,
e ⇓ e′ of expressions.
Definition C.6 (Iterated Transition). Iterated transition, e 7→∗ e′, is the reflexive, transitive
closure of the transition judgement, e 7→ e′.
Definition C.7 (Evaluation). e ⇓ e′ iff e 7→∗ e′ and e′ val.

Similarly, we lift these definitions to the level of module expressions as well.
Definition C.8 (Iterated Module Transition). Iterated transition, M 7→∗ M′, is the reflexive,
transitive closure of the transition judgement, M 7→ M′.
Definition C.9 (Module Evaluation). M ⇓ M′ iff M 7→∗ M′ and M′ val.

As in miniVerseS, our subsequent developments do not make mention of particular
rules in the dynamics, nor do they make mention of other judgements, not listed above,
that are used only for defining the dynamics of the match operator, so we do not produce
these details here. Instead, it suffices to state the following conditions.

The Preservation condition ensures that evaluation preserves typing.
Condition C.10 (Preservation).

1. If ` M : σ and M 7→ M′ then ` M : σ.
2. If ` e : τ and e 7→ e′ then ` e′ : τ.
The Progress condition ensures that evaluation of a well-typed expanded expression

cannot “get stuck”. We must consider the possibility of match failure in this condition.
Condition C.11 (Progress).

1. If ` M : σ then either M val or M matchfail or there exists an M′ such that M 7→ M′.
2. If ` e : τ then either e val or e matchfail or there exists an e′ such that e 7→ e′.

C.2 Unexpanded Language (UL)

C.2.1 Syntax

Stylized Syntax – Unexpanded Signatures and Modules

Sort Stylized Form Description
USig σ̂ ::= Jû :: κ̂; τ̂K signature
UMod M̂ ::= X̂ module identifier

Jĉ; êK structure
M̂ � σ̂ seal
(let X̂ = M̂ in M̂) : σ̂ definition
syntax â at ρ̂ for expressions by static e in M̂ peTLM definition
let syntax â = ε̂ for expressions in M̂ peTLM binding
syntax â at ρ̂ for patterns by static e in M̂ ppTLM definition
let syntax â = ε̂ for patterns in M̂ ppTLM binding

207

Stylized Syntax – Unexpanded Kinds and Constructions

Sort Stylized Form Description
UKind κ̂ ::= (û :: κ̂)→ κ̂ dependent function

⟪⟫ nullary product
(û :: κ̂)× κ̂ dependent product
T type
[=τ̂] singleton

UCon ĉ, τ̂ ::= û construction identifier
t̂
ĉ :: κ̂ ascription
λû.ĉ abstraction
c(c) application
⟪⟫ trivial
⟪ĉ, ĉ⟫ pair
ĉ · l left projection
ĉ · r right projection
τ̂ ⇀ τ̂ partial function
∀(û :: κ̂).τ̂ polymorphic
µt̂.τ̂ recursive
〈{i ↪→ τ̂i}i∈L〉 labeled product
[{i ↪→ τ̂i}i∈L] labeled sum
X̂ · c construction component

208

Stylized Syntax – Unexpanded Expressions, Rules and Patterns

Sort Stylized Form Description
UExp ê ::= x̂ identifier

ê : τ̂ ascription
let val x̂ = ê in ê value binding
λx̂:τ̂.ê abstraction
ê(ê) application
Λû::κ̂.ê construction abstraction
ê[ĉ] construction application
fold(ê) fold
unfold(ê) unfold
〈{i ↪→ êi}i∈L〉 labeled tuple
ê · ` projection
inj[`](ê) injection
match ê {r̂i}1≤i≤n match
X̂ · v value component
ε̂ ‘b‘ peTLM application

URule r̂ ::= p̂⇒ ê match rule
UPat p̂ ::= x̂ identifier pattern

_ wildcard pattern
fold(p̂) fold pattern
〈{i ↪→ p̂i}i∈L〉 labeled tuple pattern
inj[`](p̂) injection pattern
ε̂ ‘b‘ ppTLM application

Stylized Syntax – Unexpanded TLM Types and Expressions

Sort Stylized Form Description
UMType ρ̂ ::= τ̂ type annotation

∀X̂:σ̂.ρ̂ module parameterization
UMExp ε̂ ::= â TLM identifier reference

ΛX̂:σ̂.ε̂ module abstraction
ε̂(X̂) module application

Stylized Syntax – TLM Types and Expressions

Sort Operational Form Description
MType ρ ::= type(τ) type annotation

allmods{σ}(X.ρ) module parameterization
MExp ε ::= defref[a] TLM definition reference

absmod{σ}(X.ε) module abstraction
apmod{M}(ε) module application

209

Body Lengths

We write ‖b‖ for the length of b. The metafunction ‖M̂‖ computes the sum of the lengths
of expression literal bodies in M̂:

‖X̂‖ = 0
‖Jĉ; êK‖ = ‖ê‖
‖M̂ � σ̂‖ = ‖M̂‖
‖(let X̂ = M̂ in M̂′) : σ̂‖ = ‖M̂‖+ ‖M̂′‖
‖syntax â at ρ̂ for expressions by static e in M̂‖ = ‖M̂‖
‖let syntax â = ε̂ for expressions in M̂‖ = ‖M̂‖
‖syntax â at ρ̂ for patterns by static e in M̂‖ = ‖M̂‖
‖let syntax â = ε̂ for patterns in M̂‖ = ‖M̂‖

and ‖ê‖ computes the sum of the lengths of expression literal bodies in ê:

‖x̂‖ = 0
‖λx̂:τ̂.ê‖ = ‖ê‖
‖ê1(ê2)‖ = ‖ê1‖+ ‖ê2‖
‖Λû::κ̂.ê‖ = ‖ê‖
‖ê[ĉ]‖ = ‖ê‖
‖fold(ê)‖ = ‖ê‖
‖unfold(ê)‖ = ‖ê‖
‖〈{i ↪→ êi}i∈L〉‖ = ∑i∈L ‖êi‖
‖` · ê‖ = ‖ê‖
‖inj[`](ê)‖ = ‖ê‖
‖match ê {r̂i}1≤i≤n‖ = ‖ê‖+ ∑1≤i≤n ‖ri‖
‖X̂ · v‖ = 0
‖ε̂ ‘b‘‖ = ‖b‖

and ‖r̂‖ computes the sum of the lengths of expression literal bodies in r̂:

‖ p̂⇒ ê‖ = ‖ê‖

Similarly, the metafunction ‖ p̂‖ computes the sum of the lengths of the pattern literal
bodies in p̂:

‖x̂‖ = 0
‖fold(p̂)‖ = ‖ p̂‖

‖〈{i ↪→ p̂i}i∈L〉‖ = ∑
i∈L
‖ p̂i‖

‖inj[`](p̂)‖ = ‖ p̂‖
‖ε̂ ‘b‘‖ = ‖b‖

210

Common Unexpanded Forms

Each expanded form, with a few minor exceptions noted below, maps onto an unex-
panded form. We refer to these as the common forms. In particular:

• Each module variable, X, maps onto a unique module identifier, written X̂.
• Each signature, σ, maps onto an unexpanded signature, U (σ), as follows:

U (sig{κ}(u.c)) = Jû :: U (κ);U (c)K

• Each module expression, M, maps onto an unexpanded module expression, M̂, as
follows:

U (X) = X̂
U (struct(ĉ; ê)) = JU (ĉ);U (ê)K
U (seal{σ}(M)) = U (M) � U (σ)

U (mlet{σ}(M; X.M′)) = (let X̂ = U (M) in U (M′)) : U (σ)

• Each construction variable, u, maps onto a unique type identifier, written û.
• Each kind, κ, maps onto an unexpanded kind, U (κ), as follows:

U (darr(κ; u.κ′)) = (û :: U (κ))→ U (κ′)
U (unit) = ⟪⟫

U (dprod(κ; u.κ′)) = (û :: U (κ))×U (κ′)
U (Type) = T
U (S(τ)) = [=U (τ)]

• Each construction, c, except for constructions of the form con(M)where M is not a
module variable, maps onto an unexpanded type, U (c), as follows:

U (u) = û
U (abs(u.c)) = λû.U (c)
U (app(c; c′)) = U (c)(U (c′))
U (triv) = ⟪⟫

U (pair(c; c′)) = ⟪U (c),U (c′)⟫
U (prl(c)) = U (c) · l
U (prr(c)) = U (c) · r

U (parr(τ1; τ2)) = U (τ1) ⇀ U (τ2)

U (all{κ}(u.τ)) = ∀(û :: U (κ)).U (τ)
U (rec(t.τ)) = µt̂.U (τ)

U (prod[L]({i ↪→ τi}i∈L)) = 〈{i ↪→ U (τi)}i∈L〉
U (sum[L]({i ↪→ τi}i∈L)) = [{i ↪→ U (τi)}i∈L]

U (con(X)) = X̂ · c

211

• Each expression variable, x, maps onto a unique expression identifier, written x̂.
• Each expanded expression, e, except expressions of the form val(M)where M is

not a module variable, maps onto an unexpanded expression, U (e), as follows:

U (x) = x̂
U (lam{τ}(x.e)) = λx̂:U (τ).U (e)
U (ap(e1; e2)) = U (e1)(U (e2))

U (clam{κ}(u.e)) = Λû::U (κ).U (e)
U (cap{c}(e)) = U (e)[U (c)]
U (fold(e)) = fold(U (e))

U (unfold(e)) = unfold(U (e))
U (tpl[L]({i ↪→ ei}i∈L)) = 〈{i ↪→ U (ei)}i∈L〉

U (prj[`](e)) = U (e) · `
U (inj[`](e)) = inj[`](U (e))

U (match[n](e; {ri}1≤i≤n)) = match U (e) {U (ri)}1≤i≤n

U (val(X)) = X̂ · v

• Each expanded rule, r, maps onto an unexpanded rule, U (r), as follows:

U (rule(p.e)) = urule(U (p).U (e))

• Each expanded pattern, p, maps onto an unexpanded pattern, U (p), as follows:

U (x) = x̂
U (wildp) = uwildp

U (foldp(p)) = ufoldp(U (p))
U (tplp[L]({i ↪→ pi}i∈L)) = utplp[L]({i ↪→ U (pi)}i∈L)

U (injp[`](p)) = uinjp[`](U (p))

Textual Syntax

There is also a context-free textual syntax for the UL. We need only posit the existence of
partial metafunctions that satisfy the following condition.
Condition C.12 (Textual Representability).

1. For each κ̂, there exists b such that parseUKind(b) = κ̂.
2. For each ĉ, there exists b such that parseUCon(b) = ĉ.
3. For each ê, there exists b such that parseUExp(b) = ê.
4. For each p̂, there exists b such that parseUPat(b) = p̂.

Condition C.13 (Expression Parsing Monotonicity). If parseUExp(b) = ê then ‖ê‖ < ‖b‖.
Condition C.14 (Pattern Parsing Monotonicity). If parseUPat(b) = p̂ then ‖ p̂‖ < ‖b‖.

212

C.2.2 Typed Expansion

Unexpanded Unified Contexts

A unexpanded unified context, Ω̂, takes the form 〈M;D;G; Ω〉, where M is a module
identifier expansion context, D is a construction identifier expansion context, G is an expression
identifier expansion context, and Ω is a unified context.

A module identifier expansion context,M, is a finite function that maps each module
identifier X̂ ∈ dom(M) to the module identifier expansion X̂ X. We write Ω̂, X̂
X : σ when Ω̂ = 〈M;D;G; Ω〉 as an abbreviation of

〈M] X̂ X;D;G; Ω, X : σ〉

A construction identifier expansion context, D, is a finite function that maps each
construction identifier û ∈ dom(D) to the construction identifier expansion û u. We
write Ω̂, û u :: κ when Ω̂ = 〈M;D;G; Ω〉 as an abbreviation of

〈M;D] û u;G; Ω, u :: κ〉

An expression identifier expansion context, G, is a finite function that maps each
expression identifier x̂ ∈ dom(G) to the expression identifier expansion x̂ x. We write
Ω̂, x̂ x : τ when Ω̂ = 〈M;D;G; Ω〉 as an abbreviation of

〈M;D;G] x̂ x; Ω, x : τ〉

Body Encoding and Decoding

An assumed type abbreviated Body classifies encodings of literal bodies, b. The mapping
from literal bodies to values of type Body is defined by the body encoding judgement
b ↓Body ebody. An inverse mapping is defined by the body decoding judgement ebody ↑Body b.

Judgement Form Description
b ↓Body e b has encoding e
e ↑Body b e has decoding b

The following condition establishes an isomorphism between literal bodies and values
of type Body mediated by the judgements above.
Condition C.15 (Body Isomorphism).

1. For every literal body b, we have that b ↓Body ebody for some ebody such that ` ebody : Body
and ebody val.

2. If ` ebody : Body and ebody val then ebody ↑Body b for some b.
3. If b ↓Body ebody then ebody ↑Body b.
4. If ` ebody : Body and ebody val and ebody ↑Body b then b ↓Body ebody.
5. If b ↓Body ebody and b ↓Body e′body then ebody = e′body.
6. If ` ebody : Body and ebody val and ebody ↑Body b and ebody ↑Body b′ then b = b′.

213

We also assume a partial metafunction, subseq(b; m; n), which extracts a subsequence
of b starting at position m and ending at position n, inclusive, where m and n are natural
numbers. The following condition is technically necessary.
Condition C.16 (Body Subsequencing). If subseq(b; m; n) = b′ then ‖b′‖ ≤ ‖b‖.

Parse Results

The type function abbreviated ParseResult, and auxiliary abbreviations used below, is
defined as follows:

LP
def
= ParseError, Success

ParseResult
def
= abs(t.sum[LP](ParseError ↪→ 〈〉, Success ↪→ t))

ParseResult(τ)
def
= app(ParseResult; τ)

TLM Contexts

peTLM contexts, Ψ̂, are of the form 〈A; Ψ〉, where A is a TLM identifier expansion context
and Ψ is a peTLM definition context.

ppTLM contexts, Φ̂, are of the form 〈A; Φ〉, where A is a TLM identifier expansion
context and Φ is a ppTLM definition context.

A TLM identifier expansion context, A, is a finite function mapping each TLM identifier
â ∈ dom(A) to the TLM identifier expansion, â ε, for some TLM expression, ε. We write
A] â ε for the TLM identifier expansion context that maps â to â ε, and defers to
A for all other TLM identifiers (i.e. the previous mapping is updated.)

A peTLM definition context, Ψ, is a finite function mapping each TLM name a ∈
dom(Ψ) to an expanded peTLM definition, a ↪→ petlm(ρ; eparse), where ρ is the peTLM’s
type annotation, and eparse is its parse function. We write Ψ, a ↪→ petlm(ρ; eparse) when
a /∈ dom(Ψ) for the extension of Ψ that maps a to a ↪→ petlm(ρ; eparse). We write
Ω ` Ψ peTLMs when all the TLM type annotations in Ψ are well-formed assuming Ω,
and the parse functions in Ψ are closed and of the appropriate type.
Definition C.17 (peTLM Definition Context Formation). Ω ` Ψ peTLMs iff for each
a ↪→ petlm(ρ; eparse) ∈ Ψ, we have Ω ` ρ tlmty and

∅ ` eparse : parr(Body; ParseResult(PPrExpr))

Definition C.18 (peTLM Context Formation). Ω ` 〈A; Ψ〉 peTLMctx iff Ω ` Ψ peTLMs

and for each â ε ∈ A we have Ω `ExpΨ ε @ ρ for some ρ.
A ppTLM definition context, Φ, is a finite function mapping each TLM name a ∈

dom(Φ) to an expanded ppTLM definition, a ↪→ pptlm(ρ; eparse), where ρ is the ppTLM’s
type annotation, and eparse is its parse function. We write Φ, a ↪→ pptlm(ρ; eparse) when
a /∈ dom(Φ) for the extension of Φ that maps a to a ↪→ pptlm(ρ; eparse). We write
Ω ` Φ ppTLMs when all the type annotations in Φ are well-formed assuming Ω, and the
parse functions in Φ are closed and of the appropriate type.

214

Definition C.19 (ppTLM Definition Context Formation). Ω ` Φ ppTLMs iff for each
â ↪→ pptlm(ρ; eparse) ∈ Φ, we have Ω ` ρ tlmty and

∅ ` eparse : parr(Body; ParseResult(PPrPat))

Definition C.20 (ppTLM Context Formation). Ω ` 〈A; Φ〉 ppTLMctx iff Ω ` Φ ppTLMs
and for each â ε ∈ A we have Ω `PatΦ ε @ ρ for some ρ.

Signature and Module Expansion

Ω̂ ` σ̂ σ sig σ̂ has well-formed expansion σ

Ω̂ ` κ̂ κ kind Ω̂, û u :: κ ` τ̂ τ :: Type

Ω̂ ` Jû :: κ̂; τ̂K sig{κ}(u.τ) sig
(C.15)

Ω̂ `Ψ̂;Φ̂ M̂ M : σ M̂ has expansion M matching σ

Ω̂ `Ψ̂;Φ̂ M̂ M : σ Ω̂ ` σ <: σ′

Ω̂ `Ψ̂;Φ̂ M̂ M : σ′
(C.16a)

Ω̂, X̂ X : σ `Ψ̂;Φ̂ X̂ X : σ
(C.16b)

Ω̂ ` ĉ c :: κ Ω̂ `Ψ̂;Φ̂ ê e : [c/u]τ

Ω̂ `Ψ̂;Φ̂ Jĉ; êK struct(c; e) : sig{κ}(u.τ)
(C.16c)

Ω̂ ` σ̂ σ sig Ω̂ `Ψ̂;Φ̂ M̂ M : σ

Ω̂ `Ψ̂;Φ̂ M̂ � σ̂ seal{σ}(M) : σ
(C.16d)

Ω̂ `Ψ̂;Φ̂ M̂ M : σ Ω̂ ` σ̂′ σ′ sig

Ω̂, X̂ X : σ `Ψ̂;Φ̂ M̂′ M′ : σ′

Ω̂ `Ψ̂;Φ̂ (let X̂ = M̂ in M̂′) : σ̂′ mlet{σ′}(M; X.M′) : σ′
(C.16e)

Ω̂ ` ρ̂ ρ tlmty ∅ ` eparse : parr(Body; ParseResult(PPrExpr))
eparse ⇓ e′parse Ω̂ `〈A]â↪→defref[a];Ψ,a↪→petlm(ρ;e′parse)〉;Φ̂ M̂ M : σ

Ω̂ `〈A;Ψ〉;Φ̂ syntax â at ρ̂ for expressions by static eparse in M̂ M : σ
(C.16f)

Ω̂ `Exp〈A;Ψ〉 ε̂ ε @ ρ Ω̂ `〈A]â↪→εnormal;Ψ〉;Φ̂ M̂ M : σ

Ω̂ `〈A;Ψ〉;Φ̂ let syntax â = ε̂ for expressions in M̂ M : σ
(C.16g)

Ω̂ ` ρ̂ ρ tlmty ∅ ` eparse : parr(Body; ParseResult(PPrPat))
eparse ⇓ e′parse Ω̂ `Ψ̂;〈A]â↪→defref[a];Φ,a↪→pptlm(ρ;e′parse)〉 M̂ M : σ

Ω̂ `Ψ̂;〈A;Φ〉 syntax â at ρ̂ for patterns by static eparse in M̂ M : σ
(C.16h)

215

Ω̂ `Pat〈A;Φ〉 ε̂ ε @ ρ Ω̂ `Ψ̂;〈A]â↪→ε;Φ〉 M̂ M : σ

Ω̂ `Ψ̂;〈A;Φ〉 let syntax â = ε̂ for patterns in M̂ M : σ
(C.16i)

Kind and Construction Expansion

Ω̂ ` κ̂ κ kind κ̂ has well-formed expansion κ

Ω̂ ` κ̂1 κ1 kind Ω̂, û u :: κ1 ` κ̂2 κ2 kind

Ω̂ ` (û :: κ̂1)→ κ̂2 darr(κ1; u.κ2) kind
(C.17a)

Ω̂ ` ⟪⟫ unit kind (C.17b)

Ω̂ ` κ̂1 κ1 kind Ω̂, û u :: κ1 ` κ̂2 κ2 kind

Ω̂ ` (û :: κ̂1)× κ̂2 dprod(κ1; u.κ2) kind
(C.17c)

Ω̂ ` T Type kind
(C.17d)

Ω̂ ` τ̂ τ :: Type

Ω̂ ` [=τ̂] S(τ) kind
(C.17e)

Ω̂ ` ĉ c :: κ ĉ has expansion c of kind κ

Ω̂ ` ĉ c :: κ1 Ω ` κ1 <:: κ2

Ω̂ ` ĉ c :: κ2
(C.18a)

Ω̂, û u :: κ ` û u :: κ
(C.18b)

Ω̂, û u :: κ1 ` ĉ2 c2 :: κ2

Ω̂ ` λû.ĉ2 abs(u.c2) :: darr(κ1; u.κ2)
(C.18c)

Ω̂ ` ĉ1 c1 :: darr(κ2; u.κ) Ω̂ ` ĉ2 c2 :: κ2

Ω̂ ` ĉ1(ĉ2) app(c1; c2) :: [c1/u]κ
(C.18d)

Ω̂ ` ⟪⟫ triv :: unit
(C.18e)

Ω̂ ` ĉ1 c1 :: κ1 Ω̂ ` ĉ2 c2 :: [c1/u]κ2

Ω̂ ` ⟪ĉ1, ĉ2⟫ pair(c1; c2) :: dprod(κ1; u.κ2)
(C.18f)

Ω̂ ` ĉ c :: dprod(κ1; u.κ2)

Ω̂ ` ĉ · l prl(c) :: κ1
(C.18g)

216

Ω̂ ` ĉ c :: dprod(κ1; u.κ2)

Ω̂ ` ĉ · r prr(c) :: [prl(c)/u]κ2
(C.18h)

Ω̂ ` τ̂1 τ1 :: Type Ω̂ ` τ̂2 τ2 :: Type

Ω̂ ` τ̂1 ⇀ τ̂2 parr(τ1; τ2) :: Type
(C.18i)

Ω̂ ` κ̂ κ kind Ω̂, û u :: κ ` τ̂ τ :: Type

Ω̂ ` ∀(û :: κ̂).τ̂ all{κ}(u.τ) :: Type
(C.18j)

Ω̂, t̂ t :: Type ` τ̂ τ :: Type

Ω̂ ` µt̂.τ̂ rec(t.τ) :: Type
(C.18k)

{Ω̂ ` τ̂i τi :: Type}1≤i≤n

Ω̂ ` 〈{i ↪→ τ̂i}i∈L〉 prod[L]({i ↪→ τi}i∈L) :: Type
(C.18l)

{Ω̂ ` τ̂i τi :: Type}1≤i≤n

Ω̂ ` [{i ↪→ τ̂i}i∈L] sum[L]({i ↪→ τi}i∈L) :: Type
(C.18m)

Ω̂ ` ĉ c :: Type

Ω̂ ` ĉ c :: S(c)
(C.18n)

Ω̂, X̂ X : sig{κ}(u.τ) ` X̂ · c con(X) :: κ
(C.18o)

Type, Expression, Rule and Pattern Expansion

Ω̂ `Ψ̂;Φ̂ ê e : τ ê has expansion e of type τ

Ω̂ `Ψ̂;Φ̂ ê e : τ Ω ` τ <: τ′

Ω̂ `Ψ̂;Φ̂ ê e : τ′
(C.19a)

Ω̂, x̂ x : τ `Ψ̂;Φ̂ x̂ x : τ
(C.19b)

Ω̂ ` τ̂ τ :: Type Ω̂ `Ψ̂;Φ̂ ê e : τ

Ω̂ `Ψ̂;Φ̂ ê : τ̂ e : τ
(C.19c)

Ω̂ `Ψ̂;Φ̂ ê1 e1 : τ1 Ω̂, x̂ x : τ1 `Ψ̂;Φ̂ ê2 e2 : τ2

Ω̂ `Ψ̂;Φ̂ let val x̂ = ê1 in ê2 ap(lam{τ1}(x.e2); e1) : τ2
(C.19d)

Ω̂ ` τ̂1 τ1 :: Type Ω̂, x̂ x : τ1 `Ψ̂;Φ̂ ê e : τ2

Ω̂ `Ψ̂;Φ̂ λx̂:τ̂1.ê lam{τ1}(x.e) : parr(τ1; τ2)
(C.19e)

217

Ω̂ `Ψ̂;Φ̂ ê1 e1 : parr(τ2; τ) Ω̂ `Ψ̂;Φ̂ ê2 e2 : τ2

Ω̂ `Ψ̂;Φ̂ ê1(ê2) ap(e1; e2) : τ
(C.19f)

Ω̂ ` κ̂ κ kind Ω̂, û u :: κ `Ψ̂;Φ̂ ê e : τ

Ω̂ `Ψ̂;Φ̂ Λû::κ̂.ê clam{κ}(u.e) : all{κ}(u.τ)
(C.19g)

Ω̂ `Ψ̂;Φ̂ ê e : all{κ}(u.τ) Ω̂ ` ĉ c⇒ κ

Ω̂ `Ψ̂;Φ̂ ê[ĉ] cap{c}(e) : [c/t]τ
(C.19h)

Ω̂ `Ψ̂;Φ̂ ê e : [rec(t.τ)/t]τ

Ω̂ `Ψ̂;Φ̂ fold(ê) fold(e) : rec(t.τ)
(C.19i)

Ω̂ `Ψ̂;Φ̂ ê e : rec(t.τ)

Ω̂ `Ψ̂;Φ̂ unfold(ê) unfold(e) : [rec(t.τ)/t]τ
(C.19j)

{Ω̂ `Ψ̂;Φ̂ êi ei : τi}i∈L

Ω̂ `Ψ̂;Φ̂ 〈{i ↪→ êi}i∈L〉 tpl[L]({i ↪→ ei}i∈L) : prod[L]({i ↪→ τi}i∈L)
(C.19k)

Ω̂ `Ψ̂;Φ̂ ê e : prod[L, `]({i ↪→ τi}i∈L; ` ↪→ τ)

Ω̂ `Ψ̂;Φ̂ ê · ` prj[`](e) : τ
(C.19l)

Ω̂ `Ψ̂;Φ̂ ê′ e′ : τ′

Ω̂ `Ψ̂;Φ̂ inj[`](ê) inj[`](e
′) : sum[L, `]({i ↪→ τi}i∈L; ` ↪→ τ′)

(C.19m)

Ω̂ `Ψ̂;Φ̂ ê e : τ {Ω̂ `Ψ̂;Φ̂ r̂i ri ⇒ τ Z⇒ τ′}1≤i≤n

Ω̂ `Ψ̂;Φ̂ match ê {r̂i}1≤i≤n match[n](e; {ri}1≤i≤n) : τ′
(C.19n)

Ω̂, X̂ X : sig{κ}(u.τ) `Ψ̂;Φ̂ X̂ · v val(X) : [con(X)/u]τ
(C.19o)

Ω̂ = 〈M;D;G; Ωapp〉 Ψ̂ = 〈A; Ψ〉
Ω̂ `Exp

Ψ̂
ε̂ ε @ type(τfinal) Ωapp `ExpΨ ε ⇓ εnormal

tlmdef(εnormal) = a Ψ = Ψ′, a ↪→ petlm(ρ; eparse)
b ↓Body ebody eparse(ebody) ⇓ inj[SuccessE](epproto) epproto ↑PPrExpr ė

Ωapp `ExpΨ ė#εnormal è ? type(τproto) a ω : Ωparams

Ωparams `ω:Ωparams; Ω̂; b seg(è) segments b Ωparams `ω:Ωparams; Ω̂; Ψ̂; Φ̂; b è e : τproto

Ω̂ `Ψ̂;Φ̂ ε̂ ‘b‘ [ω]e : [ω]τproto
(C.19p)

218

Ω̂ `Ψ̂;Φ̂ r̂ r : τ Z⇒ τ′ r̂ has expansion r taking values of type τ to values of type τ′

Ω̂ = 〈M;D;G; Ω〉
Ω̂ `Φ̂ p̂ p : τ
〈∅; ∅;G ′; Ω′〉 〈M;D;G] G ′; Ω ∪Ω′〉 `Ψ̂;Φ̂ ê e : τ′

Ω̂ `Ψ̂;Φ̂ p̂⇒ ê rule(p.e) : τ Z⇒ τ′
(C.20)

Ω̂ `Φ̂ p̂ p : τ
̂Ω′ p̂ has expansion p matching against τ generating hypotheses Ω̂′

Ω̂ = 〈M;D;G; Ω〉
Ω̂ `Φ̂ p̂ p : τ
̂Ω′ Ω ` τ <: τ′

Ω̂ `Φ̂ p̂ p : τ′
̂Ω′
(C.21a)

Ω̂ `Φ̂ x̂ x : τ
〈∅; ∅; x̂ x; x : τ〉
(C.21b)

Ω̂ `Φ̂ _ wildp : τ
〈∅; ∅; ∅; ∅〉
(C.21c)

Ω̂ `Φ̂ p̂ p : [rec(t.τ)/t]τ
̂Ω′

Ω̂ `Φ̂ fold(p̂) foldp(p) : rec(t.τ)
̂Ω′
(C.21d)

τ = prod[L]({i ↪→ τi}i∈L)

{Ω̂ `Φ̂ p̂i pi : τi
̂Ωi}i∈L

Ω̂ `Φ̂ 〈{i ↪→ p̂i}i∈L〉 tplp[L]({i ↪→ pi}i∈L) : τ
∪i∈L Ω̂i
(C.21e)

Ω̂ `Φ̂ p̂ p : τ
̂Ω′

Ω̂ `Φ̂ inj[`](p̂) injp[`](p) : sum[L, `]({i ↪→ τi}i∈L; ` ↪→ τ)
̂Ω′
(C.21f)

Ω̂ = 〈M;D;G; Ωapp〉 Φ̂ = 〈A; Φ〉
Ω̂ `PatΦ̂ ε̂ ε @ type(τfinal) Ωapp `PatΦ ε ⇓ εnormal
tlmdef(εnormal) = a Φ = Φ′, a ↪→ pptlm(ρ; eparse)

b ↓Body ebody eparse(ebody) ⇓ inj[SuccessP](epproto) epproto ↑PPrPat ṗ
Ωapp `PatΦ ṗ#εnormal p̀ ? type(τproto) a ω : Ωparams

Ωparams `ω:Ωparams; Ω̂; b seg(p̀) segments b p̀ p : τproto
ω:Ωparams; Ω̂; Φ̂; b Ω̂′

Ω̂ `Φ̂ ε̂ ‘b‘ p : [ω]τproto
̂Ω′
(C.21g)

TLM Type and Expression Expansion

Ω̂ ` ρ̂ ρ tlmty ρ̂ has well-formed expansion ρ

Ω̂ ` τ̂ τ :: Type

Ω̂ ` τ̂ type(τ) tlmty
(C.22a)

219

Ω̂ ` σ̂ σ sig Ω̂, X̂ X : σ ` ρ̂ ρ tlmty

Ω̂ ` ∀X̂:σ̂.ρ̂ allmods{σ}(X.ρ) tlmty
(C.22b)

Ω̂ `Exp
Ψ̂

ε̂ ε @ ρ ε̂ has peTLM expression expansion ε at ρ

Ω `ExpΨ ε @ ρ

〈M;D;G; Ω〉 `Exp〈A,â↪→ε;Ψ〉 â ε @ ρ
(C.23a)

Ω̂ ` σ̂ σ sig Ω̂, X̂ X : σ `Exp
Ψ̂

ε̂ ε @ ρ

Ω̂ `Exp
Ψ̂

ΛX̂:σ̂.ε̂ absmod{σ}(X.ε) @ allmods{σ}(X.ρ)
(C.23b)

Ω̂ `Exp
Ψ̂

ε̂ ε @ allmods{σ}(X′.ρ) Ω̂ `Ψ̂;Φ̂ X̂ X : σ

Ω̂ `Exp
Ψ̂

ε̂(X̂) apmod{X}(ε) @ [X/X′]ρ
(C.23c)

Ω̂ `Pat
Ψ̂

ε̂ ε @ ρ ε̂ has ppTLM expression expansion ε at ρ

Ω `PatΦ ε @ ρ

〈M;D;G; Ω〉 `Pat〈A,â↪→ε;Φ〉 â ε @ ρ
(C.24a)

Ω̂ ` σ̂ σ sig Ω̂, X̂ X : σ `PatΦ̂ ε̂ ε @ ρ

Ω̂ `PatΦ̂ ΛX̂:σ̂.ε̂ absmod{σ}(X.ε) @ allmods{σ}(X.ρ)
(C.24b)

Ω̂ `PatΦ̂ ε̂ ε @ allmods{σ}(X′.ρ) Ω̂ `Ψ̂;Φ̂ X̂ X : σ

Ω̂ `PatΦ̂ ε̂(X̂) apmod{X}(ε) @ [X/X′]ρ
(C.24c)

Statics of the TLM Language

Ω ` ρ tlmty ρ is a TLM type

Ω ` τ :: Type
Ω ` type(τ) tlmty

(C.25a)

Ω ` σ sig Ω, X : σ ` ρ tlmty

Ω ` allmods{σ}(X.ρ) tlmty
(C.25b)

Ω `ExpΨ ε @ ρ ε is a peTLM expression at ρ

Ω ` ρ tlmty

Ω `ExpΨ,a↪→petlm(ρ;eparse)
defref[a] @ ρ

(C.26a)

220

Ω ` σ sig Ω, X : σ `ExpΨ ε @ ρ

Ω `ExpΨ absmod{σ}(X.ε) @ allmods{σ}(X.ρ)
(C.26b)

Ω `ExpΨ ε @ allmods{σ}(X′.ρ) Ω ` X : σ

Ω `ExpΨ apmod{X}(ε) @ [X/X′]ρ
(C.26c)

Ω `PatΦ ε @ ρ ε is a ppTLM expression at ρ

Ω ` ρ tlmty

Ω `PatΦ,a↪→pptlm(ρ;eparse)
defref[a] @ ρ

(C.27a)

Ω ` σ sig Ω, X : σ `PatΦ ε @ ρ

Ω `PatΦ absmod{σ}(X.ε) @ allmods{σ}(X.ρ)
(C.27b)

Ω `PatΦ ε @ allmods{σ}(X′.ρ) Ω ` X : σ

Ω `PatΦ apmod{X}(ε) @ [X/X′]ρ
(C.27c)

The following metafunction extracts the TLM name from a TLM expression.

tlmdef(defref[a]) = a (C.28a)
tlmdef(absmod{σ}(X.ε)) = tlmdef(ε) (C.28b)

tlmdef(apmod{X}(ε)) = tlmdef(ε) (C.28c)

Dynamics of the TLM Language

Ω `ExpΨ ε 7→ ε′ peTLM expression ε transitions to ε′

Ω `ExpΨ ε 7→ ε′

Ω `ExpΨ apmod{X}(ε) 7→ apmod{X}(ε′)
(C.29a)

Ω `ExpΨ apmod{X}(absmod{σ}(X′.ε)) 7→ [X/X′]ε
(C.29b)

Ω `PatΨ ε 7→ ε′ ppTLM expression ε transitions to ε′

Ω `PatΨ ε 7→ ε′

Ω `PatΨ apmod{X}(ε) 7→ apmod{X}(ε′)
(C.30a)

Ω `PatΨ apmod{X}(absmod{σ}(X′.ε)) 7→ [X/X′]ε
(C.30b)

Ω `ExpΨ ε 7→∗ ε′ peTLM expression ε transitions in multiple steps to ε′

Ω `ExpΨ ε 7→∗ ε
(C.31a)

221

Ω `ExpΨ ε 7→ ε′

Ω `ExpΨ ε 7→∗ ε′
(C.31b)

Ω `ExpΨ ε 7→∗ ε′ Ω `ExpΨ ε′ 7→∗ ε′′

Ω `ExpΨ ε 7→∗ ε′′
(C.31c)

Ω `PatΨ ε 7→∗ ε′ ppTLM expression ε transitions in multiple steps to ε′

Ω `PatΨ ε 7→∗ ε
(C.32a)

Ω `ExpΨ ε 7→ ε′

Ω `PatΨ ε 7→∗ ε′
(C.32b)

Ω `PatΨ ε 7→∗ ε′ Ω `PatΨ ε′ 7→∗ ε′′

Ω `PatΨ ε 7→∗ ε′′
(C.32c)

Ω `ExpΨ ε ⇓ ε′ peTLM expression ε normalizes to ε′

Ω `ExpΨ ε 7→∗ ε′ Ω `ExpΨ ε′ normal

Ω `ExpΨ ε ⇓ ε′
(C.33)

Ω `PatΨ ε ⇓ ε′ ppTLM expression ε normalizes to ε′

Ω `ExpΨ ε 7→∗ ε′ Ω `ExpΨ ε′ normal

Ω `PatΨ ε ⇓ ε′
(C.34)

Ω `ExpΨ ε normal ε is a normal peTLM expression

Ω `ExpΨ,a↪→petlm(ρ;eparse)
defref[a] normal

(C.35a)

Ω `ExpΨ absmod{σ}(X.ε) normal
(C.35b)

ε 6= absmod{σ}(X′.ε′) Ω `ExpΨ ε normal

Ω `ExpΨ apmod{X}(ε) normal
(C.35c)

Ω `PatΨ ε normal ε is a normal ppTLM expression

Ω `PatΨ,a↪→petlm(ρ;eparse)
defref[a] normal

(C.36a)

Ω `PatΨ absmod{σ}(X.ε) normal
(C.36b)

ε 6= absmod{σ}(X′.ε′) Ω `PatΨ ε normal

Ω `PatΨ apmod{X}(ε) normal
(C.36c)

222

C.3 Proto-Expansion Validation

C.3.1 Syntax of Proto-Expansions

Syntax – Parameterized Proto-Expressions

Sort Operational Form Stylized Form Description
PPrExpr ė ::= prexp(è) è proto-expression

prbindmod(X.ė) ΛX.ė module binding

Syntax – Parameterized Proto-Patterns

Sort Operational Form Stylized Form Description
PPrPat ṗ ::= prpat(p̀) p̀ proto-pattern

prbindmod(X.ṗ) ΛX.ṗ module binding

Syntax – Proto-Kinds and Proto-Constructions

Sort Operational Form Stylized Form Description
PrKind κ̀ ::= prdarr(κ̀; u.κ̀) (u :: κ̀)→ κ̀ dependent function

prunit ⟪⟫ nullary product
prdprod(κ̀; u.κ̀) (u :: κ̀)× κ̀ dependent product
prType T type
prS(τ̀) [=τ̀] singleton
splicedk[m; n] splicedk[m; n] spliced kind

PrCon c̀, τ̀ ::= u u construction variable
t t type variable
prabs(u.c̀) λu.c̀ abstraction
prapp(c̀; c̀) c̀(c̀) application
prtriv ⟪⟫ trivial
prpair(c̀; c̀) ⟪c̀, c̀⟫ pair
prprl(c̀) c̀ · l left projection
prprr(c̀) c̀ · r right projection
prparr(τ̀; τ̀) τ̀ ⇀ τ̀ partial function
prall{κ̀}(u.τ̀) ∀(u :: κ̀).τ̀ polymorphic
prrec(t.τ̀) µt.τ̀ recursive
prprod[L]({i ↪→ τ̀i}i∈L) 〈{i ↪→ τ̀i}i∈L〉 labeled product
prsum[L]({i ↪→ τ̀i}i∈L) [{i ↪→ τ̀i}i∈L] labeled sum
prcon(X) X · c construction component
splicedc[m; n; κ̀] splicedc[m; n; κ̀] spliced construction

223

Syntax – Proto-Expressions and Proto-Rules

Sort Operational Form Stylized Form Description
PrExp è ::= x x variable

prasc{τ̀}(è) è : τ̀ ascription
prletval(è; x.è) let val x = è in è value binding
prlam{τ̀}(x.è) λx:τ̀.è abstraction
prap(è; è) è(è) application
prclam{κ̀}(u.è) Λu::κ̀.è construction abstraction
prcap{c̀}(è) è[c̀] construction application
prfold(è) fold(è) fold
prunfold(è) unfold(è) unfold
prtpl{L}({i ↪→ èi}i∈L) 〈{i ↪→ èi}i∈L〉 labeled tuple
prprj[`](è) è · ` projection
prinj[`](è) inj[`](è) injection
prmatch[n](è; {r̀i}1≤i≤n) match è {r̀i}1≤i≤n match
prval(X) X · v value component
splicede[m; n; τ̀] splicede[m; n; τ̀] spliced expression

PrRule r̀ ::= prrule(p.è) p⇒ è rule

Syntax – Proto-Patterns

PrPat p̀ ::= prwildp _ wildcard pattern
prfoldp(p̀) fold(p̀) fold pattern
prtplp[L]({i ↪→ p̀i}i∈L) 〈{i ↪→ p̀i}i∈L〉 labeled tuple pattern
prinjp[`](p̀) inj[`](p̀) injection pattern
splicedp[m; n; τ̀] splicedp[m; n; τ̀] spliced pattern

Common Proto-Expansion Terms

Each expanded term, with a few exceptions noted below, maps onto a proto-expansion
term. We refer to these as the common proto-expansion terms. In particular:

• Each kind, κ, maps onto a proto-kind, P(κ), as follows:

P(darr(κ1; u.κ2)) = prdarr(P(κ1); u.P(κ2))
P(unit) = prunit

P(dprod(κ1; u.κ2)) = prdprod(P(κ1); u.P(κ2))
P(Type) = prType
P(S(τ)) = prS(P(τ))

224

• Each construction, c, maps onto a proto-construction, P(c), as follows:

P(u) = u
P(abs(u.c)) = prabs(u.P(c))
P(app(c1; c2)) = prapp(P(c1);P(c2))

P(triv) = prtriv
P(pair(c1; c2)) = prpair(P(c1);P(c2))

P(prl(c)) = prprl(P(c))
P(prr(c)) = prprr(P(c))

P(parr(τ1; τ2)) = prparr(P(τ1);P(τ2))
P(all(t.τ)) = prall(t.P(τ))
P(rec(t.τ)) = prrec(t.P(τ))

P(prod[L]({i ↪→ τi}i∈L)) = prprod[L]({i ↪→ P(τi)}i∈L)
P(sum[L]({i ↪→ τi}i∈L)) = prsum[L]({i ↪→ P(τi)}i∈L)

P(con(X)) = prcon(X)

• Each expanded expression, e, except for the value projection of a module expression
that is not of module variable form, maps onto a proto-expression, P(e), as follows:

P(x) = x
P(lam{τ}(x.e)) = prlam{P(τ)}(x.P(e))
P(ap(e1; e2)) = prap(P(e1);P(e2))

P(clam{κ}(u.e)) = prclam{P(κ)}(u.P(e))
P(cap{c}(e)) = prcap{P(c)}(P(e))
P(fold(e)) = prfold(P(e))

P(unfold(e)) = prunfold(P(e))
P(tpl[L]({i ↪→ ei}i∈L)) = prtpl{L}({i ↪→ P(ei)}i∈L)

P(inj[`](e)) = prinj[`](P(e))
P(match[n](e; {ri}1≤i≤n)) = prmatch[n](P(e); {P(ri)}1≤i≤n)

P(val(X)) = prval(X)

• Each expanded rule, r, maps onto the proto-rule, P(r), as follows:

P(rule(p.e)) = prrule(p.P(e))

Notice that proto-rules bind expanded patterns, not proto-patterns. This is because
proto-rules appear in proto-expressions, which are generated by peTLMs. It would
not be sensible for an peTLM to splice a pattern out of a literal body.

• Each expanded pattern, p, except for the variable patterns, maps onto a proto-
pattern, P(p), as follows:

P(wildp) = prwildp
P(foldp(p)) = prfoldp(P(p))

P(tplp[L]({i ↪→ pi}i∈L)) = prtplp[L]({i ↪→ P(pi)}i∈L)

P(injp[`](p)) = prinjp[`](P(p))

225

Parameterized Proto-Expression Encoding and Decoding

The type abbreviated PPrExpr classifies encodings of parameterized proto-expressions. The
mapping from parameterized proto-expressions to values of type PPrExpr is defined by
the parameterized proto-expression encoding judgement, ė ↓PPrExpr e. An inverse mapping is
defined by the parameterized proto-expression decoding judgement, e ↑PPrExpr ė.

Judgement Form Description
ė ↓PPrExpr e ė has encoding e
e ↑PPrExpr ė e has decoding ė

Rather than picking a particular definition of PPrExpr and defining the judgements
above inductively against it, we only state the following condition, which establishes an
isomorphism between values of type PPrExpr and parameterized proto-expressions.
Condition C.21 (Parameterized Proto-Expression Isomorphism).

1. For every ė, we have ė ↓PPrExpr eproto for some eproto such that ` eproto : PPrExpr and
eproto val.

2. If ` eproto : PPrExpr and eproto val then eproto ↑PPrExpr ė for some ė.
3. If ė ↓PPrExpr eproto then eproto ↑PPrExpr ė.
4. If ` eproto : PPrExpr and eproto val and eproto ↑PPrExpr ė then ė ↓PPrExpr eproto.
5. If ė ↓PPrExpr eproto and ė ↓PPrExpr e′proto then eproto = e′proto.
6. If ` eproto : PPrExpr and eproto val and eproto ↑PPrExpr ė and eproto ↑PPrExpr ė′ then ė = ė′.

Parameterized Proto-Pattern Encoding and Decoding

The type abbreviated PPrPat classifies encodings of parameterized proto-patterns. The
mapping from parameterized proto-patterns to values of type PPrPat is defined by the
parameterized proto-pattern encoding judgement, ṗ ↓PPrPat p. An inverse mapping is defined
by the parameterized proto-expression decoding judgement, p ↑PPrPat ṗ.

Judgement Form Description
ṗ ↓PPrPat p ṗ has encoding p
p ↑PPrPat ṗ p has decoding ṗ

Again, rather than picking a particular definition of PPrPat and defining the judge-
ments above inductively against it, we only state the following condition, which estab-
lishes an isomorphism between values of type PPrPat and parameterized proto-patterns.
Condition C.22 (Parameterized Proto-Pattern Isomorphism).

1. For every ṗ, we have ṗ ↓PPrPat eproto for some eproto such that ` eproto : PPrPat and
eproto val.

2. If ` eproto : PPrPat and eproto val then eproto ↑PPrPat ṗ for some ṗ.
3. If ṗ ↓PPrPat eproto then eproto ↑PPrPat ṗ.
4. If ` eproto : PPrPat and eproto val and eproto ↑PPrPat ṗ then ṗ ↓PPrPat eproto.
5. If ṗ ↓PPrPat eproto and ṗ ↓PPrPat e′proto then eproto = e′proto.
6. If ` eproto : PPrPat and eproto val and eproto ↑PPrPat ṗ and eproto ↑PPrPat ṗ′ then ṗ = ṗ′.

226

Segmentations

The segmentation, ψ, of a proto-kind, seg(κ̀), proto-construction, seg(c̀), proto-expression,
seg(è), or proto-rule, seg(r̀), is the finite set of references to spliced kinds, constructions
and expressions that it mentions.

seg(prdarr(κ̀1; u.κ̀2)) = seg(κ̀1) ∪ seg(κ̀2)
seg(prunit) = ∅
seg(prdprod(κ̀1; u.κ̀2)) = seg(κ̀1) ∪ κ̀2
seg(prType) = ∅
seg(prS(τ̀)) = seg(τ̀)
seg(splicedk[m; n]) = {splicedk[m; n]}

seg(u) = ∅
seg(prabs(u.c̀)) = seg(c̀)
seg(prapp(c̀1; c̀2)) = seg(c̀1) ∪ seg(c̀2)
seg(prtriv) = ∅
seg(prpair(c̀1; c̀2)) = seg(c̀1) ∪ seg(c̀2)
seg(prprl(c̀)) = seg(c̀)
seg(prprr(c̀)) = seg(c̀)
seg(prparr(τ̀1; τ̀2)) = seg(τ̀1) ∪ seg(τ̀2)
seg(prall{κ̀}(u.τ̀)) = seg(κ̀) ∪ seg(τ̀)
seg(prrec(t.τ̀)) = seg(τ̀)
seg(prprod[L]({i ↪→ τ̀i}i∈L)) =

⋃
i∈L seg(τ̀i)

seg(prsum[L]({i ↪→ τ̀i}i∈L)) =
⋃

i∈L seg(τ̀i)
seg(prcon(X)) = ∅
seg(splicedc[m; n; κ̀]) = {splicedc[m; n; κ̀]} ∪ seg(κ̀)

seg(x) = ∅
seg(prasc{τ̀}(è)) = seg(τ̀) ∪ seg(è)
seg(prletval(è1; x.è2)) = seg(è1) ∪ seg(è2)
seg(prlam{τ̀}(x.è)) = seg(τ̀) ∪ seg(è)
seg(prap(è1; è2)) = seg(è1) ∪ seg(è2)
seg(prclam{κ̀}(u.è)) = seg(κ̀) ∪ seg(è)
seg(prcap{c̀}(è)) = seg(è) ∪ seg(c̀)
seg(prfold(è)) = seg(è)
seg(prunfold(è)) = seg(è)
seg(prtpl{L}({i ↪→ èi}i∈L)) =

⋃
i∈L seg(èi)

seg(prprj[`](è)) = seg(è)
seg(prinj[`](è)) = seg(è)
seg(prmatch[n](è; {r̀i}1≤i≤n)) = seg(è) ∪⋃

1≤i≤n seg(r̀i)
seg(prval(X)) = ∅
seg(splicede[m; n; τ̀]) = {splicede[m; n; τ̀]} ∪ seg(τ̀)

seg(prrule(p.è)) = seg(è)

227

The segmentation of a proto-pattern, seg(p̀), is the finite set of references to spliced
patterns and types that it mentions.

seg(prwildp) = ∅
seg(prfoldp(p̀)) = seg(p̀)
seg(prtplp[L]({i ↪→ p̀i}i∈L)) =

⋃
i∈L seg(p̀i)

seg(prinjp[`](p̀)) = seg(p̀)
seg(splicedp[m; n; τ̀]) = {splicedp[m; n; τ̀]} ∪ seg(τ̀)

The predicate Ω `C ψ segments b checks that each segment in ψ, has non-negative
length and is within bounds of b, and that the segments in ψ do not overlap and operate
at consistent sorts, kinds and types. The contexts are needed because kind and type
equivalence are contextual.
Definition C.23 (Segmentation Validity). Ω `C ψ segments b where

C = ω : Ωparams; 〈M;D;G; Ωapp〉; b

iff
1. For each splicedk[m; n] ∈ ψ, all of the following hold:

(a) 0 ≤ m < n ≤ ‖b‖
(b) For each splicedk[m′; n′] ∈ ψ, either

i. m = m′ and n = n′; or
ii. n′ < m; or

iii. m′ > n
(c) For each splicedc[m′; n′; κ̀] ∈ ψ, either

i. n′ < m; or
ii. m′ > n

(d) For each splicede[m′; n′; τ̀] ∈ ψ, either
i. n′ < m; or

ii. m′ > n
(e) For each splicedp[m′; n′; τ̀] ∈ ψ, either

i. n′ < m; or
ii. m′ > n

2. For each splicedc[m; n; κ̀] ∈ ψ, all of the following hold:
(a) 0 ≤ m < n ≤ ‖b‖
(b) For each splicedk[m′; n′] ∈ ψ, either

i. n′ < m; or
ii. m′ > n

(c) For each splicedc[m′; n′; κ̀′] ∈ ψ, either
i. m = m′ and n = n′ and Ω `C κ̀ κ kind and Ω `C κ̀′ κ′ kind and

Ω ∪Ωapp ` κ ≡ κ′; or
ii. n′ < m; or

iii. m′ > n

228

(d) For each splicede[m′; n′; τ̀] ∈ ψ, either
i. n′ < m; or

ii. m′ > n
(e) For each splicedp[m′; n′; τ̀] ∈ ψ, either

i. n′ < m; or
ii. m′ > n

3. For each splicede[m; n; τ̀] ∈ ψ, all of the following hold:
(a) 0 ≤ m < n ≤ ‖b‖
(b) For each splicedk[m′; n′] ∈ ψ, either

i. n′ < m; or
ii. m′ > n

(c) For each splicedc[m′; n′; κ̀′] ∈ ψ, either
i. n′ < m; or

ii. m′ > n
(d) For each splicede[m′; n′; τ̀′] ∈ ψ, either

i. m = m′ and n = n′ and Ω `C τ̀ τ :: Type and Ω `C τ̀′ τ′ :: Type and
Ω ∪Ωapp ` τ ≡ τ′ :: Type; or

ii. n′ < m; or
iii. m′ > n

(e) For each splicedp[m′; n′; τ̀] ∈ ψ, either
i. n′ < m; or

ii. m′ > n
4. For each splicedp[m; n; τ̀] ∈ ψ, all of the following hold:

(a) 0 ≤ m < n ≤ ‖b‖
(b) For each splicedk[m′; n′] ∈ ψ, either

i. n′ < m; or
ii. m′ > n

(c) For each splicedc[m′; n′; κ̀′] ∈ ψ, either
i. n′ < m; or

ii. m′ > n
(d) For each splicede[m′; n′; τ̀′] ∈ ψ, either

i. n′ < m; or
ii. m′ > n

(e) For each splicedp[m′; n′; τ̀] ∈ ψ, either
i. m = m′ and n = n′ and Ω `C τ̀ τ :: Type and Ω `C τ̀′ τ′ :: Type and

Ω ∪Ωapp ` τ ≡ τ′ :: Type; or
ii. n′ < m; or

iii. m′ > n

229

C.3.2 Deparameterization

Ωapp `ExpΨ ė#ε è ? ρ a ω : Ωparams
When applying peTLM ε, ė has deparameterization
è leaving ρ with parameter substitution ω

Ωapp ` ρ tlmty

Ωapp `ExpΨ,a↪→petlm(ρ;eparse)
prexp(è)#defref[a] è ? ρ a ∅ : ∅

(C.37a)

Ωapp `ExpΨ ė#ε è ? allmods{σ}(X.ρ) a ω : Ω
Ωapp ` X′ : σ X /∈ dom(Ωapp)

Ωapp `ExpΨ prbindmod(X.ė)#apmod{X′}(ε) è ? ρ a (ω, X′/X) : (Ω, X : σ)
(C.37b)

Ωapp `PatΦ ṗ#ε p̀ ? ρ a ω : Ωparams
When applying ppTLM ε, ṗ has deparameterization
p̀ leaving ρ with parameter substitution ω

Ωapp ` ρ tlmty

Ωapp `PatΦ,a↪→pptlm(ρ;eparse)
prpat(p̀)#defref[a] p̀ ? ρ a ∅ : ∅

(C.38a)

Ωapp `PatΦ ṗ#ε p̀ ? allmods{σ}(X.ρ) a ω : Ω
Ωapp ` X′ : σ X /∈ dom(Ωapp)

Ωapp `PatΦ prbindmod(X.ṗ)#apmod{X′}(ε) p̀ ? ρ a (ω, X′/X) : (Ω, X : σ)
(C.38b)

C.3.3 Proto-Expansion Validation

Splicing Scenes

Expression splicing scenes, E, are of the form ω : Ωparams; Ω̂; Ψ̂; Φ̂; b, construction splicing
scenes, C, are of the form ω : Ωparams; Ω̂; b, and pattern splicing scenes, P, are of the form
ω : Ωparams; Ω̂; Φ̂; b. We write cs(E) for the construction splicing scene constructed by
dropping the TLM contexts from E:

cs(ω : Ωparams; Ω̂; Ψ̂; Φ̂; b) = ω : Ωparams; Ω̂; b

Proto-Kind and Proto-Construction Validation

Ω `C κ̀ κ kind κ̀ has well-formed expansion κ

Ω `C κ̀1 κ1 kind Ω, u :: κ1 `C κ̀2 κ2 kind

Ω `C prdarr(κ̀1; u.κ̀2) darr(κ1; u.κ2) kind
(C.39a)

Ω `C prunit unit kind
(C.39b)

Ω `C κ̀1 κ1 kind Ω, u :: κ1 `C κ̀2 κ2 kind

Ω `C prdprod(κ̀1; u.κ̀2) dprod(κ1; u.κ2) kind
(C.39c)

230

Ω `C prType Type kind
(C.39d)

Ω `C τ̀ τ :: Type

Ω `C prS(τ̀) S(τ) kind
(C.39e)

parseUKind(subseq(b; m; n)) = κ̂ Ω̂ ` κ̂ κ kind

Ω̂ = 〈M;D;G; Ωapp〉 dom(Ω) ∩ dom(Ωapp) = ∅

Ω `ω:Ωparams; Ω̂; b splicedk[m; n] κ kind
(C.39f)

Ω `C c̀ c :: κ c̀ has expansion c of kind κ

Ω `C c̀ c :: κ1 Ω ` κ1 <:: κ2

Ω `C c̀ c :: κ2
(C.40a)

Ω, u :: κ `C u u :: κ
(C.40b)

Ω, u :: κ1 `C c̀2 c2 :: κ2

Ω `C prabs(u.c̀2) abs(u.c2) :: darr(κ1; u.κ2)
(C.40c)

Ω `C c̀1 c1 :: darr(κ2; u.κ) Ω `C c̀2 c2 :: κ2

Ω `C prapp(c̀1; c̀2) app(c1; c2) :: [c1/u]κ
(C.40d)

Ω `C prtriv triv :: unit
(C.40e)

Ω `C c̀1 c1 :: κ1 Ω `C c̀2 c2 :: [c1/u]κ2

Ω `C prpair(c̀1; c̀2) pair(c1; c2) :: dprod(κ1; u.κ2)
(C.40f)

Ω `C c̀ c :: dprod(κ1; u.κ2)

Ω `C prprl(c̀) prl(c) :: κ1
(C.40g)

Ω `C c̀ c :: dprod(κ1; u.κ2)

Ω `C prprr(c̀) prr(c) :: [prl(c)/u]κ2
(C.40h)

Ω `C τ̀1 τ1 :: Type Ω `C τ̀2 τ2 :: Type

Ω `C prparr(τ̀1; τ̀2) parr(τ1; τ2) :: Type
(C.40i)

Ω `C κ̀ κ kind Ω, u :: κ `C τ̀ τ :: Type

Ω `C prall{κ̀}(u.τ̀) all{κ}(u.τ) :: Type
(C.40j)

Ω, t :: Type `C τ̀ τ :: Type

Ω `C prrec(t.τ̀) rec(t.τ) :: Type
(C.40k)

231

{Ω `C τ̀i τi :: Type}1≤i≤n

Ω `C prprod[L]({i ↪→ τ̀i}i∈L) prod[L]({i ↪→ τi}i∈L) :: Type
(C.40l)

{Ω `C τ̀i τi :: Type}1≤i≤n

Ω `C prsum[L]({i ↪→ τ̀i}i∈L) sum[L]({i ↪→ τi}i∈L) :: Type
(C.40m)

Ω `C c̀ c :: Type

Ω `C c̀ c :: S(c)
(C.40n)

Ω, X : sig{κ}(u.τ) `C prcon(X) con(X) :: κ
(C.40o)

C = ω : Ωparams; Ω̂; b Ωparams `C κ̀ κ kind

parseUCon(subseq(b; m; n)) = ĉ Ω̂ ` ĉ c :: [ω]κ
Ω̂ = 〈M;D;G; Ωapp〉 dom(Ω) ∩ dom(Ωapp) = ∅

Ω `C splicedc[m; n; κ̀] c :: κ
(C.40p)

Proto-Expression and Proto-Rule Validation

Ω `E è e : τ è has expansion e of type τ

Ω `E è e : τ Ω ` τ <: τ′

Ω `E è e : τ′
(C.41a)

Ω, x : τ `E x x : τ
(C.41b)

Ω `cs(E) τ̀ τ :: Type Ω `E è e : τ

Ω `E prasc{τ̀}(è) e : τ
(C.41c)

Ω `E è1 e1 : τ1 Ω, x : τ1 `è2 e2 τ2 :

Ω `E prletval(è1; x.è2) ap(lam{τ1}(x.e2); e1) : τ2
(C.41d)

Ω `cs(E) τ̀1 τ1 :: Type Ω, x : τ1 `E è e : τ2

Ω `E prlam{τ̀1}(x.è) lam{τ1}(x.e) : parr(τ1; τ2)
(C.41e)

Ω `E è1 e1 : parr(τ2; τ) Ω `E è2 e2 : τ2

Ω `E prap(è1; è2) ap(e1; e2) : τ
(C.41f)

Ω `cs(E) κ̀ κ kind Ω, u :: κ `E è e : τ

∆ Γ `E prclam{κ̀}(u.è) clam{κ}(u.e)⇒ all{κ}(u.τ)
(C.41g)

Ω `E è e : all{κ}(u.τ) Ω `cs(E) c̀ c :: κ

Ω `E prcap{c̀}(è) cap{c}(e) : [c/u]τ
(C.41h)

232

Ω `E è e : [rec(t.τ)/t]τ

Ω `E prfold(è) fold(e) : rec(t.τ)
(C.41i)

Ω `E è e : rec(t.τ)

Ω `E prunfold(è) unfold(e) : [rec(t.τ)/t]τ
(C.41j)

τ = prod[L]({i ↪→ τi}i∈L)

{Ω `E èi ei : τi}i∈L

Ω `E prtpl{L}({i ↪→ èi}i∈L) tpl[L]({i ↪→ ei}i∈L) : τ
(C.41k)

Ω `E è e : prod[L, `]({i ↪→ τi}i∈L; ` ↪→ τ)

Ω `E prprj[`](è) prj[`](e) : τ
(C.41l)

sum[L, `]({i ↪→ τi}i∈L; ` ↪→ τ′)
Ω `E è′ e′ : τ′

Ω `E prinj[`](è′) inj[`](e′) : τ
(C.41m)

Ω `E è e : τ {Ω `E r̀i ri : τ Z⇒ τ′}1≤i≤n

Ω `E prmatch[n](è; {r̀i}1≤i≤n) match[n](e; {ri}1≤i≤n) : τ′
(C.41n)

Ω, X : sig{κ}(u.τ) `E prval(X) val(X) : [con(X)/u]τ
(C.41o)

E = ω : Ωparams; Ω̂; Ψ̂; Φ̂; b Ωparams `cs(E) τ̀ τ :: Type
parseUExp(subseq(b; m; n)) = ê Ω̂ `Ψ̂;Φ̂ ê e : [ω]τ

Ω̂ = 〈M;D;G; Ωapp〉 dom(Ω) ∩ dom(Ωapp) = ∅

Ω `E splicede[m; n; τ̀] e : τ
(C.41p)

Ω `E r̀ r : τ Z⇒ τ′ r̀ has expansion r taking values of type τ to values of type τ′

Ω ` p : τ
Ω′ Ω ∪Ω′ `E è e : τ′

Ω `E prrule(p.è) rule(p.e) : τ Z⇒ τ′
(C.42)

Proto-Pattern Validation

p̀ p : τ
P Ω̂ p̀ has expansion p matching against τ generating hypotheses Ω̂

prwildp wildp : τ
P 〈∅; ∅; ∅; ∅〉
(C.43a)

p̀ p : [rec(t.τ)/t]τ
P Ω̂

prfoldp(p̀) foldp(p) : rec(t.τ)
P Ω̂
(C.43b)

233

p̀ = prtplp[L]({i ↪→ p̀i}i∈L) p = tplp[L]({i ↪→ pi}i∈L)

{ p̀i pi : τi

P Γ̂i}i∈L

p̀ p : prod[L]({i ↪→ τi}i∈L)

P]i∈LΩ̂i

(C.43c)

p̀ p : τ
P Ω̂

prinjp[`](p̀) injp[`](p) : sum[L, `]({i ↪→ τi}i∈L; ` ↪→ τ)
P Ω̂
(C.43d)

Ωparams `ω:Ωparams; Ω̂; b τ̀ τ :: Type
parseUPat(subseq(b; m; n)) = p̂ Ω̂ `Φ̂ p̂ p : [ω]τ
̂Ω′

splicedp[m; n; τ̀] p : τ
ω:Ωparams; Ω̂; Φ̂; b Ω̂′
(C.43e)

C.4 Metatheory

C.4.1 TLM Expressions

Lemma C.24 (peTLM Regularity). If Ω `ExpΨ ε @ ρ then Ω ` ρ tlmty.
Proof. By rule induction over Rules (C.26).
Case (C.26a).

(1) Ω ` ρ tlmty by assumption
Case (C.26b).

(1) ε = absmod{σ}(X.ε′) by assumption
(2) ρ = allmods{σ}(X.ρ′) by assumption
(3) Ω, X : σ `ExpΨ ε′ @ ρ′ by assumption
(4) Ω ` σ sig by assumption
(5) Ω, X : σ ` ρ′ tlmty by IH on (3)
(6) Ω ` allmods{σ}(X.ρ′) tlmty by Rule (C.25b) on (4)

and (5)
Case (C.26c).

(1) ε = apmod{X}(ε′) by assumption
(2) ρ = [X/X′]ρ′ by assumption
(3) Ω `ExpΨ ε @ allmods{σ}(X′.ρ′) by assumption
(4) Ω ` X : σ by assumption
(5) Ω ` allmods{σ}(X′.ρ′) tlmty by IH on (3)
(6) Ω, X′ : σ ` ρ′ tlmty by Inversion of Rule

(C.25b) on (5)
(7) Ω ` [X′/X]ρ′ tlmty by Substitution

Lemma C.3 on (4) and
(6)

Lemma C.25 (ppTLM Regularity). If Ω `PatΦ ε @ ρ then Ω ` ρ tlmty.

234

Proof. By rule induction over Rules (C.27). The proof is nearly identical to the proof of
Lemma C.24, differing only in that ppTLM contexts and the corresponding judgements
are mentioned.

Lemma C.26 (peTLM Unicity). If Ω `ExpΨ ε @ ρ and Ω `ExpΨ ε @ ρ′ then ρ = ρ′.
Proof. By rule induction over Rules (C.26). The rules are syntax-directed, so the proof is
by straightforward observations of syntactic contradictions.

Lemma C.27 (ppTLM Unicity). If Ω `PatΦ ε @ ρ and Ω `PatΦ ε @ ρ′ then ρ = ρ′.
Proof. By rule induction over Rules (C.27). The rules are syntax-directed, so the proof is
by straightforward observations of syntactic contradictions.

Theorem C.28 (peTLM Preservation). If Ω `ExpΨ ε @ ρ and Ω `ExpΨ ε 7→ ε′ then Ω `ExpΨ
ε′ @ ρ.
Proof. By rule induction over Rules (C.29).
Case (C.29a). By rule induction over Rules (C.26). There is only one rule that applies.

Case (C.26c).
(1) ε = apmod{X}(ε′′) by assumption
(2) ε′ = apmod{X}(ε′′′) by assumption
(3) ρ = [X/X′]ρ′ by assumption
(4) Ω `ExpΨ ε′′ 7→ ε′′′ by assumption
(5) Ω `ExpΨ ε′′ @ allmods{σ}(X′.ρ′) by assumption
(6) Ω ` X : σ by assumption
(7) Ω `ExpΨ ε′′′ @ allmods{σ}(X′.ρ′) by IH on (5) and (4)
(8) Ω `ExpΨ apmod{X}(ε′′′) @ [X/X′]ρ by Rule (C.26c) on (7)

and (6)
Case (C.29b). By rule induction over Rules (C.26). There is only one rule that applies.

Case (C.26c).
(1) ε = apmod{X}(absmod{σ}(X′.ε′′)) by assumption
(2) ε′ = [X/X′]ε′′ by assumption
(3) ρ = [X/X′]ρ′ by assumption
(4) Ω `ExpΨ absmod{σ}(X′.ε′′) @ allmods{σ}(X′.ρ′)

by assumption
(5) Ω ` X : σ by assumption
(6) Ω, X′ : σ `ExpΨ ε′′ @ ρ′ by Inversion Lemma

for Rule (C.26b) on (4)
(7) Ω `ExpΨ [X/X′]ε′′ @ [X/X′]ρ′ by Substitution

Lemma C.3 on (6)

Corollary C.29 (peTLM Preservation (Multistep)). If Ω `ExpΨ ε @ ρ and Ω `ExpΨ ε 7→∗ ε′

then Ω `ExpΨ ε′ @ ρ.

235

Proof. The multistep relation is the reflexive, transitive closure of the single step relation,
so the proof follows by applying Theorem C.28 over each step.

Corollary C.30 (peTLM Preservation (Evaluation)). If Ω `ExpΨ ε @ ρ and Ω `ExpΨ ε ⇓ ε′

then Ω `ExpΨ ε′ @ ρ.
Proof. The evaluation relation is the multistep relation with an additional requirement,
so the proof follows directly from Corollary C.29.

Theorem C.31 (ppTLM Preservation). If Ω `PatΦ ε @ ρ and Ω `PatΦ ε 7→ ε′ then Ω `PatΦ
ε′ @ ρ.
Proof. The proof is nearly identical to the proof of Theorem C.28, differing only in that
ppTLM contexts and the corresponding judgements are mentioned.

Corollary C.32 (ppTLM Preservation (Multistep)). If Ω `PatΦ ε @ ρ and Ω `PatΦ ε 7→∗ ε′

then Ω `PatΦ ε′ @ ρ.
Proof. The multistep relation is the reflexive, transitive closure of the single step relation,
so the proof follows by applying Theorem C.31 over each step.

Corollary C.33 (ppTLM Preservation (Evaluation)). If Ω `PatΦ ε @ ρ and Ω `PatΦ ε ⇓ ε′

then Ω `PatΦ ε′ @ ρ.
Proof. The evaluation relation is the multistep relation with an additional requirement,
so the proof follows directly from Corollary C.32.

Theorem C.34 (peTLM Progress). If Ω `ExpΨ ε @ ρ then either Ω `ExpΨ ε 7→ ε′ for some ε′ or
Ω `ExpΨ ε normal.
Proof. By rule induction over Rules (C.26).
Case (C.26a).

(1) ε = defref[a] by assumption
(2) Ψ = Ψ′, a ↪→ petlm(ρ; eparse) by assumption

(3) Ω `ExpΨ′,a↪→petlm(ρ;eparse)
defref[a] normal by Rule (C.35a)

Case (C.26b).
(1) ε = absmod{σ}(X.ε′) by assumption
(2) Ω `ExpΨ absmod{σ}(X.ε′) normal by Rule (C.35b)

Case (C.26c).
(1) ε = apmod{X}(ε′) by assumption
(2) ρ = [X/X′]ρ′ by assumption
(3) Ω `ExpΨ ε′ @ allmods{σ}(X′.ρ′) by assumption
(4) Ω `ExpΨ ε′ 7→ ε′′ for some ε′′ or Ω `ExpΨ ε′ normal by IH on (3)

Proceed by cases on (4).
Case Ω `ExpΨ ε′ 7→ ε′′.

(5) Ω `ExpΨ ε′ 7→ ε′′ by assumption
(6) Ω `ExpΨ apmod{X}(ε′) 7→ apmod{X}(ε′′) by Rule (C.29a) on (5)

Case Ω `ExpΨ ε′ normal. Proceed by rule induction over Rules (C.35).

236

Case (C.35a).
(7) ε′ = defref[a] by assumption
(8) Ω `ExpΨ ε′ normal by assumption
(9) Ω `ExpΨ apmod{X}(ε′) normal by Rule (C.35c) on (8)

Case (C.35b).
(10) ε′ = absmod{σ}(X.ε′′) by assumption
(11) Ω `ExpΨ apmod{X}(absmod{σ}(X′.ε′′)) 7→ [X/X′]ε′′

by Rule (C.29b)
Case (C.35c).

(12) ε′ = apmod{X′′}(ε′′) by assumption
(13) Ω `ExpΨ ε′ normal by assumption
(14) Ω `ExpΨ apmod{X}(ε′) normal by Rule (C.35c) on (8)

Theorem C.35 (ppTLM Progress). If Ω `PatΦ ε @ ρ then either Ω `PatΦ ε 7→ ε′ for some ε′ or
Ω `PatΦ ε normal.
Proof. The proof is nearly identical to the proof of Theorem C.34, differing only in that
ppTLM contexts and the corresponding judgements are mentioned.

C.4.2 Typed Expansion

Kinds, Constructions and Signatures

Theorem C.36 (Kind and Construction Expansion).
1. If 〈M;D;G; Ω〉 ` κ̂ κ kind then Ω ` κ kind.
2. If 〈M;D;G; Ω〉 ` ĉ c :: κ then Ω ` c :: κ.

Proof. By mutual rule induction over Rules (C.17) and Rules (C.18). In each case, we
apply the IH to each premise and then apply the corresponding kind formation rule from
Rules (C.6) or kinding rule from Rules (C.9).

Theorem C.37 (Signature Expansion). If 〈M;D;G; Ω〉 ` σ̂ σ sig then Ω ` σ sig.
Proof. By rule induction over Rule (C.15). Apply Theorem C.36 to each premise, then
apply Rule (C.1).

TLM Types and Expressions

Theorem C.38 (TLM Type Expansion). If 〈M;D;G; Ω〉 ` ρ̂ ρ tlmty then Ω ` ρ tlmty.
Proof. By rule induction over Rules (C.22).
Case (C.22a).

(1) ρ̂ = τ̂ by assumption
(2) ρ = type(τ) by assumption
(3) Ω̂ ` τ̂ τ :: Type by assumption

237

(4) Ω ` τ :: Type by Theorem C.36 on
(3)

(5) Ω ` type(τ) tlmty by Rule (C.25a) on (4)
Case (C.22b).

(1) ρ̂ = ∀X̂:σ̂.ρ̂′ by assumption
(2) ρ = allmods{σ}(X.ρ′) by assumption
(3) Ω̂ ` σ̂ σ sig by assumption
(4) Ω̂, X̂ X : σ ` ρ̂′ ρ′ tlmty by assumption
(5) Ω ` σ sig by Theorem C.37 on

(3)
(6) Ω, X : σ ` ρ′ tlmty by IH on (4)
(7) Ω ` allmods{σ}(X.ρ′) tlmty by Rule (C.25b) on (5)

and (6)

Theorem C.39 (peTLM Expression Expansion). If 〈M;D;G; Ω〉 `Exp〈A;Ψ〉 ε̂ ε @ ρ then

Ω `ExpΨ ε @ ρ.
Proof. By rule induction over Rules (C.23). In the following, let Ω̂ = 〈M;D;G; Ω〉 and
Ψ̂ = 〈A; Ψ〉.
Case (C.23a).

(1) ε̂ = â by assumption
(2) A = A′, â ↪→ ε by assumption
(3) Ω `ExpΨ ε @ ρ by assumption

Case (C.23b).
(1) ε̂ = ΛX̂:σ̂.ε̂′ by assumption
(2) ε = absmod{σ}(X.ε′) by assumption
(3) ρ = allmods{σ}(X.ρ′) by assumption
(4) Ω̂ ` σ̂ σ sig by assumption
(5) Ω̂, X̂ X : σ `Exp

Ψ̂
ε̂′ ε′ @ ρ′ by assumption

(6) Ω, X : σ `ExpΨ ε′ @ ρ′ by IH on (4) and (5)
(7) Ω ` σ sig by Theorem C.37 on

(4)
(8) Ω `ExpΨ absmod{σ}(X.ε′) @ allmods{σ}(X.ρ′) by Rule (C.26b) on (7)

and (6)
Case (C.23c).

(1) ε̂ = ε̂′(X̂) by assumption
(2) ε = apmod{X}(ε′) by assumption
(3) ρ = [X/X′]ρ′ by assumption
(4) Ω̂ `Exp

Ψ̂
ε̂′ ε′ @ allmods{σ}(X′.ρ′) by assumption

(5) Ω̂ `Ψ̂;Φ̂ X̂ X : σ by assumption

(6) Ω `ExpΨ ε′ @ allmods{σ}(X′.ρ′) by IH on (4)

238

(7) Ω ` X : σ by Theorem C.45 on
(5)

(8) Ω `ExpΨ apmod{X}(ε′) @ [X/X′]ρ′ by Rule (C.26c) on (6)
and (7)

Theorem C.40 (ppTLM Expression Expansion). If 〈M;D;G; Ω〉 `Pat〈A;Φ〉 ε̂ ε @ ρ then
Ω `PatΦ ε @ ρ.
Proof. The proof is nearly identical to the proof of Theorem C.39, differing only in that
ppTLM contexts and the corresponding judgements are mentioned.

Patterns

Lemma C.41 (Proto-Pattern Deparameterization). If Ωapp `PatΦ ṗ#ε p̀ ? ρ a ω : Ωparams

then dom(Ωapp) ∩ dom(Ωparams) = ∅ and Ωapp ` ω : Ωparams and Ωapp `PatΦ ε @ [ω]ρ.
Proof. By rule induction over Rules (C.38).
Case (C.38a). We have:

(1) ε = defref[a] by assumption
(2) ω = ∅ by assumption
(3) Φ = Φ′, a ↪→ pptlm(ρ; eparse) by assumption
(4) Ωparams = ∅ by assumption
(5) Ωapp ` ρ tlmty by assumption
(6) dom(Ωapp) ∩ dom(∅) = ∅ by definition
(7) Ωapp ` ∅ : ∅ by definition
(8) [∅]ρ = ρ by definition
(9) Ωapp `PatΦ′,a↪→pptlm(ρ;eparse)

a @ ρ by Rule (C.27a) on (5)

Case (C.38b). We have:
(1) ε = apmod{X}(ε′) by assumption
(2) Ωapp `PatΦ ṗ#ε′ p̀ ? allmods{σ}(X′.ρ) a ω′ : Ω′ by assumption
(3) Ωapp ` X : σ by assumption
(4) X′ /∈ dom(Ωapp) by assumption
(5) ω = ω′, X/X′ by assumption
(6) Ωparams = Ω′, X′ : σ by assumption
(7) dom(Ωapp) ∩ dom(Ω′) = ∅ by IH on (2)
(8) Ωapp ` ω′ : Ω′ by IH on (2)
(9) Ωapp `PatΦ ε′ @ [ω′]allmods{σ}(X′.ρ) by IH on (2)

(10) dom(Ωapp) ∩ dom(Ω′, X′ : σ) by (4) and (7) and
definition of finite set
intersection

(11) Ωapp ` ω′, X/X′ : Ω′, X′ : σ by Definition C.2 on
(3)

(12) Ωapp `PatΦ apmod{X}(ε′) @ (ω′, X/X′)ρ by Rule (C.27c) on (9)
and (3)

239

Theorem C.42 (Typed Pattern Expansion).
1. If 〈M;D;G; Ωapp〉 `Φ̂ p̂ p : τ
〈M′;D′;G ′; Ω′〉 thenM′ = ∅ and D′ = ∅ and

Ωapp ` p : τ
Ω′.

2. If p̀ p : τ
ω:Ωparams; 〈M;D;G;Ωapp〉; Φ̂; b 〈M′;D′;G ′; Ω′〉 and dom(Ωparams)∩ dom(Ωapp) =
∅ thenM′ = ∅ and D′ = ∅ and Ωparams ∪Ωapp ` p : τ
Ω′.

Proof. My mutual rule induction over Rules (C.21) and Rules (C.43).
1. In the following, let Ω̂ = 〈M;D;G; Ωapp〉 and Ω̂′ = 〈M′;D′;G ′; Ω′〉.

Case (C.21a) through (C.21f). These cases follow by applying the IH, part 1 and
applying the corresponding pattern typing rule in Rules (C.14).

Case (C.21g). We have:
(1) p̂ = ε̂ ‘b‘ by assumption
(2) Φ̂ = 〈A; Φ〉 by assumption
(3) Ω̂ `Pat

Φ̂
ε̂ ε @ type(τfinal) by assumption

(4) Ωapp `PatΦ ε ⇓ εnormal by assumption
(5) tlmdef(εnormal) = a by assumption
(6) Φ = Φ′, a ↪→ pptlm(ρ; eparse) by assumption
(7) b ↓Body ebody by assumption
(8) eparse(ebody) ⇓ inj[SuccessP](eproto) by assumption
(9) eproto ↑PPrPat ṗ by assumption

(10) Ωapp `PatΦ ṗ#εnormal p̀ ? type(τproto) a ω : Ωparams
by assumption

(11) p̀ p : τproto
ω:Ωparams; Ω̂; Φ̂; b Ω̂′ by assumption
(12) τ = [ω]τproto by assumption
(13) dom(Ωparams) ∩ dom(Ωapp) = ∅ by Lemma C.41 on

(10)
(14) Ωapp ` ω : Ωparams by Lemma C.41 on

(10)
(15) M′ = ∅ and D′ = ∅ by IH, part 2 on (11)

and (13)
(16) Ωparams ∪Ωapp ` p : τproto
Ω′ by IH, part 2 on (11)

and (13)
(17) Ωapp ` p : [ω]τproto
Ω′ by Substitution

Lemma C.3 on (14)
and (16)

2. We induct on the premise. In the following, let Ω̂ = 〈M;D;G; Ωapp〉 and Ω̂′ =
〈M′;D′;G ′; Ω′〉.
Case (C.43a) through (C.43d). These cases follow by applying the IH, part 2 and

then applying the corresponding pattern rule in Rules (C.14).
Case (C.43e).

(1) p̀ = splicedp[m; n; τ̀] by assumption

240

(2) τ = [ω]τ′ by assumption
(3) Ωparams `ω:Ωparams; Ω̂; b τ̀ τ′ :: Type by assumption
(4) parseUPat(subseq(b; m; n)) = p̂ by assumption
(5) Ω̂ `Φ̂ p̂ p : [ω]τ′
̂Ω′ by assumption
(6) M′ = ∅ and D′ = ∅ by IH, part 1 on (5)
(7) Ωapp ` p : [ω]τ′
Ω′ by IH, part 1 on (5)
(8) Ωparams ∪Ωapp ` p : [ω]τ′
Ω′ by Weakening on (7)

The mutual induction can be shown to be well-founded by an argument analagous to
that in the proof of Theorem B.27, appealing to Condition C.14 and Condition C.16.

Expressions and Rules

Lemma C.43 (Proto-Expression Deparameterization). If Ωapp `ExpΨ ė #ε è ? ρ a ω :
Ωparams then dom(Ωapp) ∩ dom(Ωparams) = ∅ and Ωapp ` ω : Ωparams and Ωapp `ExpΨ
ε @ [ω]ρ.
Proof. By rule induction over Rules (C.37).
Case (C.37a). We have:

(1) ε = defref[a] by assumption
(2) ω = ∅ by assumption
(3) Ψ = Ψ′, a ↪→ petlm(ρ; eparse) by assumption
(4) Ωparams = ∅ by assumption
(5) Ωapp ` ρ tlmty by assumption
(6) dom(Ωapp) ∩ dom(∅) = ∅ by definition
(7) Ωapp ` ∅ : ∅ by definition
(8) [∅]ρ = ρ by definition
(9) Ωapp `ExpΨ′,a↪→petlm(ρ;eparse)

a @ ρ by Rule (C.26a) on (5)

Case (C.37b). We have:
(1) ε = apmod{X}(ε′) by assumption
(2) Ωapp `ExpΨ ė#ε′ è ? allmods{σ}(X′.ρ) a ω′ : Ω′ by assumption
(3) Ωapp ` X : σ by assumption
(4) X′ /∈ dom(Ωapp) by assumption
(5) ω = ω′, X/X′ by assumption
(6) Ωparams = Ω′, X′ : σ by assumption
(7) dom(Ωapp) ∩ dom(Ω′) = ∅ by IH on (2)
(8) Ωapp ` ω′ : Ω′ by IH on (2)

(9) Ωapp `ExpΨ ε′ @ [ω′]allmods{σ}(X′.ρ) by IH on (2)
(10) dom(Ωapp) ∩ dom(Ω′, X′ : σ) by (4) and (7) and

definition of finite set
intersection

241

(11) Ωapp ` ω′, X/X′ : Ω′, X′ : σ by Definition C.2 on
(3)

(12) Ωapp `ExpΨ apmod{X}(ε′) @ (ω′, X/X′)ρ by Rule (C.26c) on (9)
and (3)

Theorem C.44 (Typed Expression and Rule Expansion).
1. (a) If 〈M;D;G; Ω〉 `Ψ̂;Φ̂ ê e : τ then Ω ` e : τ.

(b) If 〈M;D;G; Ω〉 `Ψ̂;Φ̂ r̂ r : τ Z⇒ τ′ then Ω ` r : τ Z⇒ τ′.

2. (a) If Ω `ω:Ωparams; 〈M;D;G;Ωapp〉; Ψ̂; Φ̂; b è e : τ and dom(Ω) ∩ dom(Ωapp) = ∅ then
Ω ∪Ωapp ` e : τ.

(b) If Ω `ω:Ωparams; 〈M;D;G;Ωapp〉; Ψ̂; Φ̂; b r̀ r : τ Z⇒ τ′ and dom(Ω) ∩ dom(Ωapp) = ∅
then Ω ∪Ωapp ` r : τ Z⇒ τ′.

Proof. By mutual rule induction over Rules (C.19), Rule (C.20), Rules (C.41) and Rule
(C.42).

1. (a) In the following, let Ω̂ = 〈M;D;G; Ω〉.
Case (C.19a).

(1) Ω̂ `Ψ̂;Φ̂ ê e : τ′ by assumption
(2) Ω ` τ <: τ′ by assumption
(3) Ω ` e : τ′ by IH, part 1(a) on (1)
(4) Ω ` e : τ by Rule (C.12a) on (3)

and (2)
Case (C.19b) through (C.19o). In each of these cases, we apply the IH, part

1(a) or 1(b), over the premises and then apply the corresponding typing
rule in Rules (C.12) and weakening as needed.

Case (C.19p).
(1) ê = ε̂ ‘b‘ by assumption
(2) e = [ω]e′ by assumption
(3) τ = [ω]τproto by assumption
(4) Ψ̂ = 〈A; Ψ〉 by assumption
(5) Ω̂ `Exp

Ψ̂
ε̂ ε @ type(τfinal) by assumption

(6) Ω `ExpΨ ε ⇓ εnormal by assumption
(7) tlmdef(εnormal) = a by assumption
(8) Ψ = Ψ′, a ↪→ petlm(ρ; eparse) by assumption
(9) b ↓Body ebody by assumption

(10) eparse(ebody) ⇓ inj[SuccessE](epproto) by assumption
(11) epproto ↑PPrExpr ė by assumption

(12) Ω `ExpΨ ė#εnormal è ? type(τproto) a ω : Ωparams
by assumption

(13) Ωparams `ω:Ωparams; Ω̂; Ψ̂; Φ̂; b è e′ : τproto by assumption

242

(14) Ω ` ω : Ωparams by Lemma C.43 on
(12)

(15) Ω ∪Ωparams ` e′ : τproto by IH, part 2(a) on
(13)

(16) Ω ` [ω]e′ : [ω]τproto by Substitution
Lemma C.3 on (14)
and (15)

(b) In the following, let Ω̂ = 〈M;D;G; Ω〉.
Case (C.20).

(1) r̂ = p̂⇒ ê by assumption
(2) r = rule(p.e) by assumption
(3) Ω̂ `Φ̂ p̂ p : τ
〈∅; ∅;G ′; Ω′〉 by assumption
(4) 〈M;D;G] G ′; Ω ∪Ω′〉 `Ψ̂;Φ̂ ê e : τ′ by assumption
(5) Ω ` p : τ
Ω′ by Theorem C.42 on

(3)
(6) Ω ∪Ω′ ` e : τ′ by IH, part 1(a) on (4)
(7) Ω ` r : τ Z⇒ τ′ by Rule (C.13) on (5)

and (6)
2. (a) In the following, let E = ω : Ωparams; 〈M;D;G; Ωapp〉; Ψ̂; Φ̂; b.

Case (C.41a).
(1) Ω `E è e : τ′ by assumption
(2) Ω ` τ′ <: τ by assumption
(3) Ω ∪Ωapp ` e : τ′ by IH, part 2(a) on (1)
(4) Ω ∪Ωapp ` e : τ by Rule (C.12a) on (3)

and (2)
Case (C.41b) through (C.41o). In each of these cases, we apply the IH, part

2(a) or 2(b), over the premises and then apply the corresponding typing
rule in Rules (C.12) and weakening as needed.

Case (C.41p).
(1) è = splicede[m; n; τ̀] by assumption
(2) τ = [ω]τ′ by assumption
(3) Ωparams `cs(E) τ̀ τ′ :: Type by assumption
(4) parseUExp(subseq(b; m; n)) = ê by assumption
(5) 〈M;D;G; Ωapp〉 `Ψ̂;Φ̂ ê e : [ω]τ′ by assumption
(6) Ωapp ` e : [ω]τ′ by IH, part 1(a) on (5)
(7) Ωapp ∪Ω ` e : [ω]τ′ by Weakening on (6)

(b) Case (C.42).
(1) r̀ = prrule(p.è) by assumption
(2) r = rule(p.e) by assumption
(3) Ω ` p : τ
Ω′ by assumption
(4) Ω ∪Ω′ `ω:Ωparams; 〈M;D;G;Ωapp〉; Ψ̂; Φ̂; b è e : τ′

243

by assumption
(5) (Ω ∪Ω′) ∩Ωapp = ∅ by identification

convention
(6) Ω ∪Ω′ ∪Ωapp ` e : τ′ by IH, part 2(a) on (4)

and (5)
(7) Ω ∪Ωapp ` p : τ
Ω′ by Weakening on (3)
(8) Ω ∪Ωapp ` r : τ Z⇒ τ′ by Rule (C.13) on (7)

and (6)
The mutual induction can be shown to be well-founded by an argument analagous to

that in the proof of Theorem B.28, appealing to Condition C.13 and Condition C.16.

Modules

Theorem C.45 (Module Expansion). If 〈M;D;G; Ω〉 `Ψ̂;Φ̂ M̂ M : σ then Ω ` M : σ.
Proof. By rule induction over Rules (C.16). In the following, let Ω̂ = 〈M;D;G; Ω〉.
Case (C.16a).

(1) Ω̂ `Ψ̂;Φ̂ M̂ M : σ′ by assumption
(2) Ω̂ ` σ′ <: σ by assumption
(3) Ω ` M : σ′ by IH on (1)
(4) Ω ` M : σ by Rule (C.4a) on (3)

and (2)
Case (C.16b) through (C.16e). In each of these cases, we apply the IH over each module

expansion premise, Theorem C.44 over each expression expansion premise and The-
orem C.36 over each construction expansion premise, then apply the corresponding
signature matching rule in Rules (C.4) and weakening as needed.

Case (C.16f) through (C.16i). In each of these cases, we apply the IH to the module
expansion premise.

C.4.3 Abstract Reasoning Principles

Lemma C.46 (Proto-Construction and Proto-Kind Decomposition).
1. If Ω `ω:Ωparams; Ω̂; b c̀ c :: κ where seg(c̀) = {splicedk[mi; ni]}0≤i<nkind ∪{splicedc[m

′
i; n′i; κ̀′i]}0≤i<ncon

then
(a) {Ω̂ ` parseUKind(subseq(b; mi; ni)) κi kind}0≤i<nkind

(b) {Ωparams `ω:Ωparams; Ω̂; b κ̀′i κ′i kind}0≤i<ncon

(c) {Ω̂ ` parseUCon(subseq(b; m′i; n′i)) ci :: [ω]κ′i}0≤i<ncon

(d) c = [{κi/ki}0≤i<nkind , {ci/ui}0≤i<ncon , ω]c′ for some c′ and fresh {ki}0≤i<nkind and
fresh {ui}0≤i<ncon

(e) fv(c′) ⊂ {ki}0≤i<nkind ∪ {ui}0≤i<ncon ∪ dom(Ω)

2. If Ω `ω:Ωparams; Ω̂; b κ̀ κ kind where seg(κ̀) = {splicedk[mi; ni]}0≤i<nkind ∪{splicedc[m
′
i; n′i; κ̀′i]}0≤i<ncon

then

244

(a) {Ω̂ ` parseUKind(subseq(b; mi; ni)) κi kind}0≤i<nkind

(b) {Ωparams `ω:Ωparams; Ω̂; b κ̀′i κ′i kind}0≤i<ncon

(c) {Ω̂ ` parseUCon(subseq(b; m′i; n′i)) ci :: [ω]κ′i}0≤i<ncon

(d) κ = [{κi/ki}0≤i<nkind , {ci/ui}0≤i<ncon , ω]κ′ for some κ′ and fresh {ki}0≤i<nkind and
fresh {ui}0≤i<ncon

(e) fv(κ′) ⊂ {ki}0≤i<nkind ∪ {ui}0≤i<ncon ∪ dom(Ω)
Proof. By mutual rule induction over Rules (C.40) and Rules (C.39).

1. Case (C.40a). This case follows by applying the IH.
Case (C.40b) through (C.40o). These cases follow by applying the IH, gathering

together the sets of conclusions and invoking the identification convention as
necessary.

Case (C.40p). Letting C = ω : Ωparams; Ω̂; b,
(1) c̀ = splicedc[m; n; κ̀] by assumption
(2) Ωparams `C κ̀ κ kind by assumption
(3) parseUCon(subseq(b; m; n)) = ĉ by assumption
(4) Ω̂ ` ĉ c :: [ω]κ by assumption
(5) Ω̂ = 〈M;D;G; Ωapp〉 by assumption
(6) dom(Ω) ∩ dom(Ωapp) = ∅ by assumption
(7) seg(splicedc[m; n; κ̀]) = seg(κ̀) ∪ {splicedc[m; n; κ̀]}

by definition
(8) seg(κ̀) = {splicedk[mi; ni]}0≤i<nkind ∪ {splicedc[m

′
i; n′i; κ̀′i]}0≤i<ncon−1

by definition
(9) {Ω̂ ` parseUKind(subseq(b; mi; ni)) κi kind}0≤i<nkind

by IH, part 2 on (2)
and (8)

(10) {Ωparams `ω:Ωparams; Ω̂; b κ̀′i κ′i kind}0≤i<ncon−1 by IH, part 2 on (2)
and (8)

(11) {Ω̂ ` parseUCon(subseq(b; m′i; n′i)) ci :: [ω]κ′i}0≤i<ncon−1
by IH, part 2 on (2)
and (8)

The conclusions hold as follows:
(a) (9)
(b) (2) and (10)
(c) (3), (4) and (11)
(d) Choose c′ = u for fresh u. Then c = [ω′, c/u]u for any ω′.
(e) fv(u) = u and u ⊂ {u} ∪ {ki}0≤i<nkind ∪ {ui}0≤i<ncon−1 ∪ dom(Ω) by

definition.
2. Case (C.39a) through (C.39e). These cases follow by applying the IH and gather-

ing together the sets of conclusions, invoking the identification convention as
necessary.

Case (C.39f). Letting C = ω : Ωparams; Ω̂; b

245

(1) κ̀ = splicedk[m; n] by assumption
(2) parseUKind(subseq(b; m; n)) = κ̂ by assumption
(3) Ω̂ ` κ̂ κ kind by assumption
(4) Ω̂ = 〈M;D;G; Ωapp〉 by assumption
(5) dom(Ω) ∩ dom(Ωapp) = ∅ by assumption
(6) ncon = 0 by definition of

summary
The conclusions hold as follows:
(a) (2) and (3)
(b) (6)
(c) (6)
(d) Choose κ′ = k for fresh k. Then κ = [ω′, κ/k]k for any ω′.
(e) fv(k) = k and k ⊂ {k} ∪ dom(Ω) by definition.

Lemma C.47 (Proto-Expression and Proto-Rule Decomposition).

1. If Ω `ω:Ωparams; Ω̂; Ψ̂; Φ̂; b è e : τproto where seg(è) = {splicedk[mi; ni]}0≤i<nkind ∪
{splicedc[m′i; n′i; κ̀′i]}0≤i<ncon ∪ {splicede[m′′i ; n′′i ; τ̀i]}0≤i<nexp then

(a) {Ω̂ ` parseUKind(subseq(b; mi; ni)) κi kind}0≤i<nkind

(b) {Ωparams `ω:Ωparams; Ω̂; b κ̀′i κ′i kind}0≤i<ncon

(c) {Ω̂ ` parseUCon(subseq(b; m′i; n′i)) ci :: [ω]κ′i}0≤i<ncon

(d) {Ωparams `ω:Ωparams; Ω̂; b τ̀i τi :: Type}0≤i<nexp

(e) {Ω̂ `Ψ̂;Φ̂ parseUExp(subseq(b; m′′i ; n′′i)) ei : [ω]τi}0≤i<nexp

(f) e = [{κi/ki}0≤i<nkind , {ci/ui}0≤i<ncon , {ei/xi}0≤i<nexp , ω]e′′ for some e′′ and fresh
{ki}0≤i<nkind and fresh {ui}0≤i<ncon and fresh {xi}0≤i<nexp

(g) fv(e′′) ⊂ {ki}0≤i<nkind ∪ {ui}0≤i<ncon ∪ {xi}0≤i<nexp ∪ dom(Ω)

2. If Ω `ω:Ωparams; Ω̂; Ψ̂; Φ̂; b r̀ r : τ Z⇒ τ′ where seg(r̀) = {splicedk[mi; ni]}0≤i<nkind ∪
{splicedc[m′i; n′i; κ̀′i]}0≤i<ncon ∪ {splicede[m′′i ; n′′i ; τ̀i]}0≤i<nexp then

(a) {Ω̂ ` parseUKind(subseq(b; mi; ni)) κi kind}0≤i<nkind

(b) {Ωparams `ω:Ωparams; Ω̂; b κ̀′i κ′i kind}0≤i<ncon

(c) {Ω̂ ` parseUCon(subseq(b; m′i; n′i)) ci :: [ω]κ′i}0≤i<ncon

(d) {Ωparams `ω:Ωparams; Ω̂; b τ̀i τi :: Type}0≤i<nexp

(e) {Ω̂ `Ψ̂;Φ̂ parseUExp(subseq(b; m′′i ; n′′i)) ei : [ω]τi}0≤i<nexp

(f) r = [{κi/ki}0≤i<nkind , {ci/ui}0≤i<ncon , {ei/xi}0≤i<nexp , ω]r′ for some r′ and fresh
{ki}0≤i<nkind and fresh {ui}0≤i<ncon and fresh {xi}0≤i<nexp

(g) fv(r′) ⊂ {ki}0≤i<nkind ∪ {ui}0≤i<ncon ∪ {xi}0≤i<nexp ∪ dom(Ω)
Proof. By mutual rule induction over Rules (C.41) and Rule (C.42).

1. Case (C.41a). This case follows by applying the IH.

246

Case (C.41b) through (C.41o). These cases follow by applying the IH or Lemma
C.46, gathering together the sets of conclusions and invoking the identification
convention as necessary.

Case (C.41p). Letting E = ω : Ωparams; Ω̂; Ψ̂; Φ̂; b,
(1) è = splicede[m; n; τ̀] by assumption
(2) Ωparams `cs(E) τ̀ τ :: Type by assumption
(3) parseUExp(subseq(b; m; n)) = ê by assumption
(4) Ω̂ `Ψ̂;Φ̂ ê e : [ω]τ by assumption
(5) Ω̂ = 〈M;D;G; Ωapp〉 by assumption
(6) dom(Ω) ∩ dom(Ωapp) = ∅ by assumption
(7) seg(è) = seg(τ̀) ∪ {splicede[m; n; τ̀]} by assumption
(8) seg(τ̀) = {splicedk[mi; ni]}0≤i<nkind ∪ {splicedc[m

′
i; n′i; κ̀′i]}0≤i<ncon

by definition
(9) {Ω̂ ` parseUKind(subseq(b; mi; ni)) κi kind}0≤i<nkind

by Lemma C.46 on (2)
and (8)

(10) {Ωparams `ω:Ωparams; Ω̂; b κ̀′i κ′i kind}0≤i<ncon by Lemma C.46 on (2)
and (8)

(11) {Ω̂ ` parseUCon(subseq(b; m′i; n′i)) ci :: [ω]κ′i}0≤i<ncon

by Lemma C.46 on (2)
and (8)

The conclusions hold as follows:

(a) (9)
(b) (10)
(c) (11)
(d) (2)
(e) (3) and (4)
(f) Choose e′′ = x for fresh x. Then e = [ω′, e/x]x for any ω′.
(g) fv(x) = x and x ⊂ {x} ∪ {ki}0≤i<nkind ∪ {ui}0≤i<ncon ∪ dom(Ω) by defini-

tion.
2. There is only one case.

Case (C.42).
(1) r̀ = prrule(p.e) by assumption
(2) r = p⇒ e by assumption
(3) Ω ` p : τ
Ω′ by assumption
(4) Ω ∪Ω′ `E è e : τ′ by assumption
(5) seg(r̀) = seg(e) by definition
(6) {Ω̂ ` parseUKind(subseq(b; mi; ni)) κi kind}0≤i<nkind

by IH, part 1 on (4)
and (5)

247

(7) {Ωparams `ω:Ωparams; Ω̂; b κ̀′i κ′i kind}0≤i<ncon by IH, part 1 on (4)
and (5)

(8) {Ω̂ ` parseUCon(subseq(b; m′i; n′i)) ci :: [ω]κ′i}0≤i<ncon

by IH, part 1 on (4)
and (5)

(9) {Ωparams `ω:Ωparams; Ω̂; b τ̀i τi :: Type}0≤i<nexp by IH, part 1 on (4)
and (5)

(10) {Ω̂ `Ψ̂;Φ̂ parseUExp(subseq(b; m′′i ; n′′i)) ei : [ω]τi}0≤i<nexp

by IH, part 1 on (4)
and (5)

(11) e = [{κi/ki}0≤i<nkind , {ci/ui}0≤i<ncon , {ei/xi}0≤i<nexp , ω]e′′ for some e′′

and fresh {ki}0≤i<nkind and fresh {ui}0≤i<ncon and fresh {xi}0≤i<nexp

by IH, part 1 on (4)
and (5)

(12) fv(e′′) ⊂ {ki}0≤i<nkind ∪ {ui}0≤i<ncon ∪ {xi}0≤i<nexp ∪ dom(Ω ∪Ω′)
by IH, part 1 on (4)
and (5)

(13) fv(e′′) ⊂
{ki}0≤i<nkind ∪ {ui}0≤i<ncon ∪ {xi}0≤i<nexp ∪ dom(Ω) ∪ dom(Ω′)

by distributivity of
union

(14) r = [{κi/ki}0≤i<nkind , {ci/ui}0≤i<ncon , {ei/xi}0≤i<nexp , ω]p⇒ e′′

by definition of
substitution

(15) dom(Ω′) = patvars(p) by Lemma C.5 on (3)
(16) fv(p⇒ e′′) ⊂ {ki}0≤i<nkind ∪ {ui}0≤i<ncon ∪ {xi}0≤i<nexp ∪ dom(Ω)

by Definition of fv(r)
and (15) and (13)

The conclusions hold as follows:
(a) (6)
(b) (7)
(c) (8)
(d) (9)
(e) (10)
(f) Choose r′ = p⇒ e′′, then by (14)
(g) (16)

Theorem C.48 (peTLM Abstract Reasoning Principles). If Ω̂ `Ψ̂;Φ̂ ε̂ ‘b‘ e : τ then:

1. Ω̂ = 〈M;D;G; Ωapp〉
2. Ψ̂ = 〈A; Ψ〉
3. (Typing 1) Ω̂ `Exp

Ψ̂
ε̂ ε @ type(τ′) and Ωapp ` e : τ′ for τ′ such that Ωapp ` τ′ <: τ.

248

4. Ωapp `ExpΨ ε ⇓ εnormal
5. tlmdef(εnormal) = a
6. Ψ = Ψ′, a ↪→ petlm(ρ; eparse)
7. b ↓Body ebody
8. eparse(ebody) ⇓ inj[SuccessE](epproto)

9. epproto ↑PPrExpr ė
10. Ωapp `ExpΨ ė#εnormal è ? type(τproto) a ω : Ωparams

11. (Segmentation) Ωparams `ω:Ωparams; Ω̂; b seg(è) segments b

12. Ωparams `ω:Ωparams; Ω̂; Ψ̂; Φ̂; b è e′ : τproto
13. e = [ω]e′

14. τ′ = [ω]τproto
15. seg(è) = {splicedk[mi; ni]}0≤i<nkind ∪ {splicedc[m

′
i; n′i; κ̀′i]}0≤i<ncon ∪

{splicede[m′′i ; n′′i ; τ̀i]}0≤i<nexp

16. (Kinding 1) {Ω̂ ` parseUKind(subseq(b; mi; ni)) κi kind}0≤i<nkind and {Ωapp `
κi kind}0≤i<nkind

17. (Kinding 2) {Ωparams `ω:Ωparams; Ω̂; b κ̀′i κ′i kind}0≤i<ncon and {Ωapp ` [ω]κ′i kind}0≤i<ncon

18. (Kinding 3) {Ω̂ ` parseUCon(subseq(b; m′i; n′i)) ci :: [ω]κ′i}0≤i<ncon and {Ωapp `
ci :: [ω]κ′i}0≤i<ncon

19. (Kinding 4) {Ωparams `ω:Ωparams; Ω̂; b τ̀i τi :: Type}0≤i<nexp and {Ωapp ` [ω]τi ::
Type}0≤i<nexp

20. (Typing 2) {Ω̂ `Ψ̂;Φ̂ parseUExp(subseq(b; m′′i ; n′′i)) ei : [ω]τi}0≤i<nexp and {Ωapp `
ei : [ω]τi}0≤i<nexp

21. (Capture Avoidance) e = [{κi/ki}0≤i<nkind , {ci/ui}0≤i<ncon , {ei/xi}0≤i<nexp , ω]e′′ for
some e′′ and fresh {ki}0≤i<nkind and fresh {ui}0≤i<ncon and fresh {xi}0≤i<nexp

22. (Context Independence)

fv(e′′) ⊂ {ki}0≤i<nkind ∪ {ui}0≤i<ncon ∪ {xi}0≤i<nexp ∪ dom(Ωparams)

Proof. By rule induction over Rules (C.19). There are two rules that apply.
Case (C.19a).

(1) Ω̂ `Ψ̂;Φ̂ ε̂ ‘b‘ e : τ′ by assumption
(2) Ω ` τ′ <: τ by assumption
(3) Ω̂ = 〈M;D;G; Ωapp〉 by IH on (1)
(4) Ψ̂ = 〈A; Ψ〉 by IH on (1)
(5) Ω̂ `Exp

Ψ̂
ε̂ ε @ type(τ′′) and Ωapp ` e : τ′′ for τ′′ such that

Ωapp ` τ′′ <: τ′. by IH on (1)

(6) Ωapp `ExpΨ ε ⇓ εnormal by IH on (1)
(7) tlmdef(εnormal) = a by IH on (1)
(8) Ψ = Ψ′, a ↪→ petlm(ρ; eparse) by IH on (1)
(9) b ↓Body ebody by IH on (1)

249

(10) eparse(ebody) ⇓ inj[SuccessE](epproto) by IH on (1)
(11) epproto ↑PPrExpr ė by IH on (1)

(12) Ωapp `ExpΨ ė#εnormal è ? type(τproto) a ω : Ωparams by IH on (1)

(13) Ωparams `ω:Ωparams; Ω̂; b seg(è) segments b by IH on (1)

(14) Ωparams `ω:Ωparams; Ω̂; Ψ̂; Φ̂; b è e′ : τproto by IH on (1)
(15) e = [ω]e′ by IH on (1)
(16) τ′ = [ω]τproto by IH on (1)
(17) seg(è) = {splicedk[mi; ni]}0≤i<nkind ∪ {splicedc[m

′
i; n′i; κ̀′i]}0≤i<ncon ∪

{splicede[m′′i ; n′′i ; τ̀i]}0≤i<nexp by IH on (1)

(18) {Ω̂ ` parseUKind(subseq(b; mi; ni)) κi kind}0≤i<nkind and
{Ωapp ` κi kind}0≤i<nkind by IH on (1)

(19) {Ωparams `ω:Ωparams; Ω̂; b κ̀′i κ′i kind}0≤i<ncon and
{Ωapp ` [ω]κ′i kind}0≤i<ncon by IH on (1)

(20) {Ω̂ ` parseUCon(subseq(b; m′i; n′i)) ci :: [ω]κ′i}0≤i<ncon and
{Ωapp ` ci :: [ω]κ′i}0≤i<ncon by IH on (1)

(21) {Ωparams `ω:Ωparams; Ω̂; b τ̀i τi :: Type}0≤i<nexp and
{Ωapp ` [ω]τi :: Type}0≤i<nexp by IH on (1)

(22) {Ω̂ `Ψ̂;Φ̂ parseUExp(subseq(b; m′′i ; n′′i)) ei : [ω]τi}0≤i<nexp and
{Ωapp ` ei : [ω]τi}0≤i<nexp by IH on (1)

(23) e = [{κi/ki}0≤i<nkind , {ci/ui}0≤i<ncon , {ei/xi}0≤i<nexp , ω]e′′ for some e′′ and
fresh {ki}0≤i<nkind and fresh {ui}0≤i<ncon and fresh {xi}0≤i<nexp

by IH on (1)
(24) fv(e′′) ⊂ {ki}0≤i<nkind ∪ {ui}0≤i<ncon ∪ {xi}0≤i<nexp ∪ dom(Ωparams)

by IH on (1)
(25) Ωapp ` τ′′ <: τ by Rule (C.11b) on (2)

and (5)
The conclusions hold as follows:

1. (3)
2. (4)
3. Choosing τ′′, by (5) and (25)
4. (6)
5. (7)
6. (8)
7. (9)
8. (10)
9. (11)

10. (12)
11. (13)
12. (14)
13. (15)

250

14. (16)
15. (17)
16. (18)
17. (19)
18. (20)
19. (21)
20. (22)
21. (23)
22. (24)

Case (C.19p).
(1) e = [ω]e′ by assumption
(2) τ = [ω]τproto by assumption
(3) Ω̂ = 〈M;D;G; Ωapp〉 by assumption
(4) Ψ̂ = 〈A; Ψ〉 by assumption
(5) Ω̂ `Exp

Ψ̂
ε̂ ε @ type(τfinal) by assumption

(6) Ωapp `ExpΨ ε ⇓ εnormal by assumption
(7) tlmdef(εnormal) = a by assumption
(8) Ψ = Ψ′, a ↪→ petlm(ρ; eparse) by assumption
(9) b ↓Body ebody by assumption

(10) eparse(ebody) ⇓ inj[SuccessE](epproto) by assumption
(11) epproto ↑PPrExpr ė by assumption

(12) Ωapp `ExpΨ ė#εnormal è ? type(τproto) a ω : Ωparams by assumption

(13) Ωparams `ω:Ωparams; Ω̂; b seg(è) segments b by assumption

(14) Ωparams `ω:Ωparams; Ω̂; Ψ̂; Φ̂; b è e′ : τproto by assumption

(15) Ωapp `ExpΨ ε @ type(τfinal) by Theorem C.39 on
(5)

(16) Ωapp `ExpΨ εnormal @ type(τfinal) by Corollary C.30 on
(15) and (6)

(17) Ωapp `ExpΨ εnormal @ [ω]type(τproto) by Lemma C.43 on
(12)

(18) type(τfinal) = [ω]type(τproto) by Theorem C.26 on
(16) and (17)

(19) τfinal = [ω]τproto = τ by definition of
substitution and (18)
and (2)

(20) Ωapp ` type(τfinal) tlmty by Lemma C.24 on
(15)

(21) Ωapp ` τ :: Type by Inversion of Rule
(C.25a) on (20)

(22) Ωapp ` τ ≡ τ :: Type by Rule (C.10a) on
(21)

251

(23) Ωapp ` τ <: τ by Rule (C.11a) on
(22)

(24) Ω̂ `Ψ̂;Φ̂ ε̂ ‘b‘ e : τ by assumption
(25) Ωapp ` e : τ by Theorem C.44 on

(24)
(26) Ωapp ` ω : Ωparams by Lemma C.43 on

(12)
(27) seg(è) = {splicedk[mi; ni]}0≤i<nkind ∪ {splicedc[m

′
i; n′i; κ̀′i]}0≤i<ncon ∪

{splicede[m′′i ; n′′i ; τ̀i]}0≤i<nexp by definition

(28) {Ω̂ ` parseUKind(subseq(b; mi; ni)) κi kind}0≤i<nkind
by Lemma C.47 on
(14) and (27)

(29) {Ωapp ` κi kind}0≤i<nkind by Theorem C.36 over
(28)

(30) {Ωparams `ω:Ωparams; Ω̂; b κ̀′i κ′i kind}0≤i<ncon by Lemma C.47 on
(14) and (27)

(31) {Ωapp ∪Ωparams ` κ′i kind}0≤i<ncon by Theorem C.36 over
(30)

(32) {Ωapp ` [ω]κ′i kind}0≤i<ncon by Lemma C.3 over
(31) and (26)

(33) {Ω̂ ` parseUCon(subseq(b; m′i; n′i)) ci :: [ω]κ′i}0≤i<ncon

by Lemma C.47 on
(14) and (27)

(34) {Ωapp ` ci :: [ω]κ′i}0≤i<ncon by Theorem C.36 over
(33)

(35) {Ωparams `ω:Ωparams; Ω̂; b τ̀i τi :: Type}0≤i<nexp by Lemma C.47 on
(14) and (27)

(36) {Ωapp ∪Ωparams ` τi :: Type}0≤i<nexp by Theorem C.36 over
(35)

(37) {Ωapp ` [ω]τi :: Type}0≤i<nexp by Lemma C.3 over
(36) and (26)

(38) {Ω̂ `Ψ̂;Φ̂ parseUExp(subseq(b; m′′i ; n′′i)) ei : [ω]τi}0≤i<nexp

by Lemma C.47 on
(14) and (27)

(39) {Ωapp ` ei : [ω]τi}0≤i<nexp by Theorem C.44 over
(38)

(40) e = [{κi/ki}0≤i<nkind , {ci/ui}0≤i<ncon , {ei/xi}0≤i<nexp , ω]e′′ for some e′′ and
fresh {ki}0≤i<nkind and fresh {ui}0≤i<ncon and fresh {xi}0≤i<nexp

by Lemma C.47 on
(14) and (27)

(41) fv(e′′) ⊂ {ki}0≤i<nkind ∪ {ui}0≤i<ncon ∪ {xi}0≤i<nexp ∪ dom(Ωparams)
by Lemma C.47 on
(14) and (27)

252

The conclusions hold as follows:
1. (3)
2. (4)
3. Choosing τ′, by (5), (19), (25) and (23)
4. (6)
5. (7)
6. (8)
7. (9)
8. (10)
9. (11)

10. (12)
11. (13)
12. (14)
13. (1)
14. (2)
15. (27)
16. (28) and (29)
17. (30) and (32)
18. (33) and (34)
19. (35) and (37)
20. (38) and (39)
21. (40)
22. (41)

Lemma C.49 (Proto-Pattern Decomposition). If p̀ p : τ
ω:Ωparams; Ω̂; Φ̂; b Ω̂′ where

seg(p̀) = {splicedk[mi; ni]}0≤i<nkind
∪ {splicedc[m′i; n′i; κ̀′i]}0≤i<ncon
∪ {splicedp[m′′i ; n′′i ; τ̀i]}0≤i<npat

then
1. {Ω̂ ` parseUKind(subseq(b; mi; ni)) κi kind}0≤i<nkind

2. {Ωparams `ω:Ωparams; Ω̂; b κ̀′i κ′i kind}0≤i<ncon

3. {Ω̂ ` parseUCon(subseq(b; m′i; n′i)) ci :: [ω]κ′i}0≤i<ncon

4. {Ωparams `ω:Ωparams; Ω̂; b τ̀i τi :: Type}0≤i<npat

5. {Ω̂ `Φ̂ parseUPat(subseq(b; m′′i ; n′′i)) pi : [ω]τi
〈∅; ∅;Gi; Ωi〉}0≤i<npat

6. Ω̂′ = 〈∅; ∅;
⊎

0≤i<npat Gi;
⋃

0≤i<npat Ωi〉
Proof. By rule induction over Rules (C.43).
Case (C.43a) through (C.43d). In each of these cases, we apply the IH to or over each

premise and then gather the sets of conclusions, applying the identification conven-
tion as necessary.

253

Case (C.43e).
(1) p̀ = splicedp[m; n; τ̀] by assumption
(2) Ωparams `ω:Ωparams; Ω̂; b τ̀ τ :: Type by assumption
(3) parseUPat(subseq(b; m; n)) = p̂ by assumption
(4) Ω̂ `Φ̂ p̂ p : [ω]τ
̂Ω′ by assumption
(5) seg(p̀) = seg(τ̀) ∪ {splicedp[m; n; τ̀]} by definition
(6) seg(τ̀) = {splicedk[mi; ni]}0≤i<nkind ∪ {splicedc[m

′
i; n′i; κ̀′i]}0≤i<ncon

by definition
(7) {Ω̂ ` parseUKind(subseq(b; mi; ni)) κi kind}0≤i<nkind

by Lemma C.46 on (2)
and (6)

(8) {Ωparams `ω:Ωparams; Ω̂; b κ̀′i κ′i kind}0≤i<ncon by Lemma C.46 on (2)
and (6)

(9) {Ω̂ ` parseUCon(subseq(b; m′i; n′i)) ci :: [ω]κ′i}0≤i<ncon

by Lemma C.46 on (2)
and (6)

The conclusions hold as follows:
1. (7)
2. (8)
3. (9)
4. (2)
5. (3) and (4)
6. (4) because npat = 1

Theorem C.50 (ppTLM Abstract Reasoning Principles). If Ω̂ `Φ̂ ε̂ ‘b‘ p : τ
̂Ω′ then:
1. Ω̂ = 〈M;D;G; Ωapp〉
2. Φ̂ = 〈A; Φ〉
3. (Typing 1) Ω̂ `Pat

Φ̂
ε̂ ε @ type(τ′) and Ωapp ` p : τ′
Ω̂′ for τ′ such that

Ωapp ` τ′ <: τ

4. Ωapp `PatΦ ε ⇓ εnormal
5. tlmdef(εnormal) = a
6. Φ = Φ′, a ↪→ pptlm(ρ; eparse)

7. b ↓Body ebody
8. eparse(ebody) ⇓ inj[SuccessP](epproto)

9. epproto ↑PPrPat ṗ
10. Ωapp `PatΦ ṗ#εnormal p̀ ? type(τproto) a ω : Ωparams

11. (Segmentation) Ωparams `ω:Ωparams; Ω̂; b seg(p̀) segments b

12. p̀ p : τproto
ω:Ωparams; Ω̂; Φ̂; b Ω̂′

13. τ′ = [ω]τproto

254

14. seg(p̀) = {splicedk[mi; ni]}0≤i<nkind ∪ {splicedc[m
′
i; n′i; κ̀′i]}0≤i<ncon ∪

{splicedp[m′′i ; n′′i ; τ̀i]}0≤i<npat

15. (Kinding 1) {Ω̂ ` parseUKind(subseq(b; mi; ni)) κi kind}0≤i<nkind and {Ωapp `
κi kind}0≤i<nkind

16. (Kinding 2) {Ωparams `ω:Ωparams; Ω̂; b κ̀′i κ′i kind}0≤i<ncon and {Ωapp ` [ω]κ′i kind}0≤i<ncon

17. (Kinding 3) {Ω̂ ` parseUCon(subseq(b; m′i; n′i)) ci :: [ω]κ′i}0≤i<ncon and {Ωapp `
ci :: [ω]κ′i}0≤i<ncon

18. (Kinding 4) {Ωparams `ω:Ωparams; Ω̂; b τ̀i τi :: Type}0≤i<npat and {Ωapp ` [ω]τi ::
Type}0≤i<npat

19. (Typing 2) {Ω̂ `Φ̂ parseUPat(subseq(b; m′′i ; n′′i)) pi : [ω]τi
〈∅; ∅;Gi; Ωi〉}0≤i<npat

and {Ωapp ` pi : [ω]τi
Ωi}0≤i<npat

20. (No Hidden Bindings) Ω̂′ = 〈∅; ∅;
⊎

0≤i<npat Gi;
⋃

0≤i<npat Ωi〉
Proof. By rule induction over Rules (C.21). There are two rules that apply.
Case (C.21a).

(1) Ω̂ = 〈M;D;G; Ω〉 by assumption
(2) Ω̂ `Φ̂ ε̂ ‘b‘ p : τ′
̂Ω′ by assumption
(3) Ω ` τ′ <: τ by assumption
(4) Ω̂ = 〈M;D;G; Ωapp〉 by IH on (2)
(5) Φ̂ = 〈A; Φ〉 by IH on (2)
(6) Ω̂ `Pat

Φ̂
ε̂ ε @ type(τ′′) and Ωapp ` p : τ′′
̂Ω′ for τ′′ such that

Ωapp ` τ′′ <: τ′ by IH on (2)
(7) Ωapp `PatΦ ε ⇓ εnormal by IH on (2)
(8) tlmdef(εnormal) = a by IH on (2)
(9) Φ = Φ′, a ↪→ pptlm(ρ; eparse) by IH on (2)

(10) b ↓Body ebody by IH on (2)
(11) eparse(ebody) ⇓ inj[SuccessP](epproto) by IH on (2)
(12) epproto ↑PPrPat ṗ by IH on (2)
(13) Ωapp `PatΦ ṗ#εnormal p̀ ? type(τproto) a ω : Ωparams by IH on (2)

(14) Ωparams `ω:Ωparams; Ω̂; b seg(p̀) segments b by IH on (2)

(15) p̀ p : τproto
ω:Ωparams; Ω̂; Φ̂; b Ω̂′ by IH on (2)
(16) τ′ = [ω]τproto by IH on (2)
(17) seg(p̀) = {splicedk[mi; ni]}0≤i<nkind ∪ {splicedc[m

′
i; n′i; κ̀′i]}0≤i<ncon ∪

{splicedp[m′′i ; n′′i ; τ̀i]}0≤i<npat by IH on (2)

(18) {Ω̂ ` parseUKind(subseq(b; mi; ni)) κi kind}0≤i<nkind and
{Ωapp ` κi kind}0≤i<nkind by IH on (2)

(19) {Ωparams `ω:Ωparams; Ω̂; b κ̀′i κ′i kind}0≤i<ncon and
{Ωapp ` [ω]κ′i kind}0≤i<ncon by IH on (2)

(20) {Ω̂ ` parseUCon(subseq(b; m′i; n′i)) ci :: [ω]κ′i}0≤i<ncon and
{Ωapp ` ci :: [ω]κ′i}0≤i<ncon by IH on (2)

255

(21) {Ωparams `ω:Ωparams; Ω̂; b τ̀i τi :: Type}0≤i<npat and
{Ωapp ` [ω]τi :: Type}0≤i<npat by IH on (2)

(22) {Ω̂ `Φ̂ parseUPat(subseq(b; m′′i ; n′′i)) pi : [ω]τi
〈∅; ∅;Gi; Ωi〉}0≤i<npat

and {Ωapp ` pi : [ω]τi
Ωi}0≤i<npat by IH on (2)

(23) Ω̂′ = 〈∅; ∅;
⊎

0≤i<npat Gi;
⋃

0≤i<npat Ωi〉 by IH on (2)
(24) Ωapp ` τ′′ <: τ by Rule (C.11b) on (6)

and (3)
The conclusions hold as follows:

1. (4)
2. (5)
3. Choosing τ′′, by (6) and (24)
4. (7)
5. (8)
6. (9)
7. (10)
8. (11)
9. (12)

10. (13)
11. (14)
12. (15)
13. (16)
14. (17)
15. (18)
16. (19)
17. (20)
18. (21)
19. (22)
20. (23)

Case (C.21g).
(1) Ω̂ = 〈M;D;G; Ωapp〉 by assumption
(2) Φ̂ = 〈A; Φ〉 by assumption
(3) Ω̂ `Pat

Φ̂
ε̂ ε @ type(τfinal) by assumption

(4) Ωapp `PatΦ ε ⇓ εnormal by assumption
(5) tlmdef(εnormal) = a by assumption
(6) Φ = Φ′, a ↪→ pptlm(ρ; eparse) by assumption
(7) b ↓Body ebody by assumption
(8) eparse(ebody) ⇓ inj[SuccessP](epproto) by assumption
(9) epproto ↑PPrPat ṗ by assumption

(10) Ωapp `PatΦ ṗ#εnormal p̀ ? type(τproto) a ω : Ωparams by assumption

(11) Ωparams `ω:Ωparams; Ω̂; b seg(p̀) segments b by assumption

256

(12) p̀ p : τproto
ω:Ωparams; Ω̂; Φ̂; b Ω̂′ by assumption
(13) τ = [ω]τproto by assumption
(14) Ωapp `PatΨ ε @ type(τfinal) by Theorem C.40 on

(3)
(15) Ωapp `PatΨ εnormal @ type(τfinal) by Corollary C.33 on

(14) and (4)
(16) Ωapp `PatΨ εnormal @ [ω]type(τproto) by Lemma C.41 on

(10)
(17) type(τfinal) = [ω]type(τproto) by Theorem C.27 on

(15) and (16)
(18) τfinal = [ω]τproto = τ by definition of

substitution and (17)
and (13)

(19) Ωapp ` type(τfinal) tlmty by Lemma C.25 on
(14)

(20) Ωapp ` τ :: Type by Inversion of Rule
(C.25a) on (19)

(21) Ωapp ` τ ≡ τ :: Type by Rule (C.10a) on
(20)

(22) Ωapp ` τ <: τ by Rule (C.11a) on
(21)

(23) Ω̂ `Φ̂ ε̂ ‘b‘ p : τ
̂Ω′ by assumption
(24) Ωapp ` p : τ
̂Ω′ by Theorem C.42 on

(23)
(25) Ωapp ` ω : Ωparams by Lemma C.41 on

(10)
(26) seg(p̀) = {splicedk[mi; ni]}0≤i<nkind ∪ {splicedc[m

′
i; n′i; κ̀′i]}0≤i<ncon ∪

{splicedp[m′′i ; n′′i ; τ̀i]}0≤i<npat by definition

(27) {Ω̂ ` parseUKind(subseq(b; mi; ni)) κi kind}0≤i<nkind
by Lemma C.49 on
(12) and (26)

(28) {Ωapp ` κi kind}0≤i<nkind by Lemma C.36 over
(27)

(29) {Ωparams `ω:Ωparams; Ω̂; b κ̀′i κ′i kind}0≤i<ncon by Lemma C.49 on
(12) and (26)

(30) {Ωapp ∪Ωparams ` κ′i kind}0≤i<ncon by Theorem C.36 over
(29)

(31) {Ωapp ` [ω]κ′i kind}0≤i<ncon by Lemma C.3 over
(30) and (25)

(32) {Ω̂ ` parseUCon(subseq(b; m′i; n′i)) ci :: [ω]κ′i}0≤i<ncon

by Lemma C.49 on
(12) and (26)

257

(33) {Ωapp ` [ω]τi :: Type}0≤i<npat by Theorem C.36 over
(32)

(34) {Ωparams `ω:Ωparams; Ω̂; b τ̀i τi :: Type}0≤i<npat by Lemma C.49 on
(12) and (26)

(35) {Ωapp ∪Ωparams ` τi :: Type}0≤i<npat by Theorem C.36 over
(34)

(36) {Ωapp ` [ω]τi :: Type}0≤i<npat by Lemma C.3 over
(35) and (25)

(37) {Ω̂ `Φ̂ parseUPat(subseq(b; m′′i ; n′′i)) pi : [ω]τi
〈∅; ∅;Gi; Ωi〉}0≤i<npat

by Lemma C.49 on
(12) and (26)

(38) {Ωapp ` pi : [ω]τi
Ωi}0≤i<npat by Theorem C.42 over
(37)

(39) Ω̂′ = 〈∅; ∅;
⊎

0≤i<npat Gi;
⋃

0≤i<npat Ωi〉 by Lemma C.49 on
(12) and (26)

The conclusions hold as follows:
1. (1)
2. (2)
3. Choosing τ, by (3) and (24) and (22)
4. (4)
5. (5)
6. (6)
7. (7)
8. (8)
9. (9)

10. (10)
11. (11)
12. (12)
13. (13)
14. (26)
15. (27) and (28)
16. (29) and (31)
17. (32) and (33)
18. (34) and (36)
19. (37) and (38)
20. (39)

258

Appendix D

Bidirectional miniVerseS

D.1 Expanded Language (XL)

The Bidirectional miniVerseS expanded language (XL) is the same as the miniVerseS XL,
which was detailed in Appendix B.1.

D.2 Unexpanded Language (UL)

D.2.1 Syntax

Stylized Syntax

The stylized syntax extends the stylized syntax of the miniVerseS UL given in Sec. B.2.1.

Sort Stylized Form Description
UTyp τ̂ ::= · · · (as in miniVerseS)
UExp ê ::= · · · (as in miniVerseS)

implicit syntax â for expressions in ê seTLM designation
implicit syntax â for patterns in ê spTLM designation
/b/ seTLM unadorned literal

URule r̂ ::= · · · (as in miniVerseS)
UPat p̂ ::= · · · (as in miniVerseS)

/b/ spTLM unadorned literal

Body Lengths

We write ‖b‖ for the length of b. The metafunction ‖ê‖ computes the sum of the lengths
of expression literal bodies in ê. It is defined by extending the definition given in Sec.

259

B.2.1 with the following additional cases:

‖implicit syntax â for expressions in ê‖ = ‖ê‖
‖implicit syntax â for patterns in ê‖ = ‖ê‖
‖/b/‖ = ‖b‖

Similarly, the metafunction ‖ p̂‖ computes the sum of the lengths of the pattern literal
bodies in p̂. It is defined by extending the definition given in Sec. B.2.1 with the following
additional case:

‖/b/‖ = ‖b‖

Textual Syntax

In addition to the stylized syntax, there is also a context-free textual syntax for the UL.
We need only posit the existence of the following partial metafunctions.
Condition D.1 (Textual Representability).

1. For each τ̂, there exists b such that parseUTyp(b) = τ̂.
2. For each ê, there exists b such that parseUExp(b) = ê.
3. For each p̂, there exists b such that parseUPat(b) = p̂.
We also impose the following technical conditions.

Condition D.2 (Expression Parsing Monotonicity). If parseUExp(b) = ê then ‖ê‖ < ‖b‖.
Condition D.3 (Pattern Parsing Monotonicity). If parseUPat(b) = p̂ then ‖ p̂‖ < ‖b‖.

D.2.2 Bidirectionally Typed Expansion

Contexts

Unexpanded type formation contexts, ∆̂, and unexpanded typing contexts, Γ̂, were defined in
Sec. B.2.3.

Body Encoding and Decoding

The type Body and the judgements b ↓Body e and e ↑Body b are characterized in Sec. B.2.3.

Parse Results

The types ParseResultSE and ParseResultSP are defined as in Sec. B.2.3.

TLM Contexts

seTLM contexts, Ψ̂, are of the form 〈A; Ψ; I〉, where A is a TLM identifier expansion context,
Ψ is a seTLM definition context and I is a TLM implicit designation context.

spTLM contexts, Φ̂, are of the form 〈A; Φ; I〉, where A is a TLM identifier expansion
context, defined above, and Φ is a spTLM definition context.

260

A TLM identifier expansion context, A, is a finite function mapping each TLM identifier
â ∈ dom(A) to the TLM identifier expansion, â a, for some TLM name, a. We write
A] â a for the TLM identifier expansion context that maps â to â a, and defers to
A for all other TLM identifiers (i.e. the previous mapping is updated.)

An seTLM definition context, Ψ, is a finite function mapping each TLM name a ∈
dom(Ψ) to an expanded seTLM definition, a ↪→ setlm(τ; eparse), where τ is the seTLM’s
type annotation, and eparse is its parse function. We write Ψ, a ↪→ setlm(τ; eparse) when
a /∈ dom(Ψ) for the extension of Ψ that maps a to a ↪→ setlm(τ; eparse). We write
∆ ` Ψ seTLMs when all the type annotations in Ψ are well-formed assuming ∆, and the
parse functions in Ψ are closed and of the appropriate type.
Definition D.4 (seTLM Definition Context Formation). ∆ ` Ψ seTLMs iff for each a ↪→
setlm(τ; eparse) ∈ Ψ, we have ∆ ` τ type and ∅ ∅ ` eparse : parr(Body; ParseResultSE).

An spTLM definition context, Φ, is a finite function mapping each TLM name a ∈
dom(Φ) to an expanded seTLM definition, a ↪→ sptlm(τ; eparse), where τ is the spTLM’s
type annotation, and eparse is its parse function. We write Φ, a ↪→ sptlm(τ; eparse) when
a /∈ dom(Φ) for the extension of Φ that maps a to a ↪→ sptlm(τ; eparse). We write
∆ ` Φ spTLMs when all the type annotations in Φ are well-formed assuming ∆, and the
parse functions in Φ are closed and of the appropriate type.
Definition D.5 (spTLM Definition Context Formation). ∆ ` Φ spTLMs iff for each a ↪→
sptlm(τ; eparse) ∈ Φ, we have ∆ ` τ type and ∅ ∅ ` eparse : parr(Body; ParseResultSP).

A TLM implicit designation context, I , is a finite function that maps each type τ ∈
dom(I) to the TLM designation τ ↪→ a, for some TLM name a. We write I] τ ↪→ a for
the TLM implicit designation context that maps τ to τ ↪→ a and defers to I for all other
types (i.e. the previous designation, if any, is updated.)
Definition D.6 (TLM Implicit Designation Context Formation). ∆ ` I designations iff for
each τ ↪→ a ∈ I , we have ∆ ` τ type.
Definition D.7 (seTLM Context Formation). ∆ ` 〈A; Ψ; I〉 seTLMctx iff

1. ∆ ` Ψ seTLMs; and
2. for each â a ∈ A we have a ∈ dom(Ψ); and
3. ∆ ` I designations; and
4. for each τ ↪→ a ∈ I , we have a ∈ dom(Ψ).

Definition D.8 (spTLM Context Formation). ∆ ` 〈A; Φ; I〉 spTLMctx iff
1. ∆ ` Φ spTLMs; and
2. for each â a ∈ A we have a ∈ dom(Φ); and
3. ∆ ` I designations; and
4. for each τ ↪→ a ∈ I we have a ∈ dom(Φ).
We define Ψ̂, â a ↪→ setlm(τ; eparse), when Ψ̂ = 〈A; Φ; I〉, as an abbreviation of

〈A] â a; Ψ, a ↪→ setlm(τ; eparse); I〉

We define Φ̂, â a ↪→ sptlm(τ; eparse), when Φ̂ = 〈A; Φ; I〉, as an abbreviation of

〈A] â a; Φ, a ↪→ sptlm(τ; eparse); I〉

261

Type Expansion

The type expansion judgement, ∆̂ ` τ̂ τ type, is inductively defined as in miniVerseS by
Rules (B.5).

Bidirectionally Typed Expression and Rule Expansion

∆̂ Γ̂ `Ψ̂;Φ̂ ê e⇒ τ ê has expansion e synthesizing type τ

∆̂ Γ̂, x̂ x : τ `Ψ̂;Φ̂ x̂ x ⇒ τ
(D.1a)

∆̂ ` τ̂ τ type ∆̂ Γ̂ `Ψ̂;Φ̂ ê e⇐ τ

∆̂ Γ̂ `Ψ̂;Φ̂ ê : τ̂ e⇒ τ
(D.1b)

∆̂ Γ̂ `Ψ̂;Φ̂ ê e⇒ τ ∆̂ Γ̂, x̂ x : τ `Ψ̂;Φ̂ ê′ e′ ⇒ τ′

∆̂ Γ̂ `Ψ̂;Φ̂ let val x̂ = ê in ê′ ap(lam{τ}(x.e′); e)⇒ τ′
(D.1c)

∆̂ ` τ̂1 τ1 type ∆̂ Γ̂, x̂ x : τ1 `Ψ̂;Φ̂ ê e⇒ τ2

∆̂ Γ̂ `Ψ̂;Φ̂ λx̂:τ̂1.ê lam{τ1}(x.e)⇒ parr(τ1; τ2)
(D.1d)

∆̂ Γ̂ `Ψ̂;Φ̂ ê1 e1 ⇒ parr(τ2; τ) ∆̂ Γ̂ `Ψ̂;Φ̂ ê2 e2 ⇐ τ2

∆̂ Γ̂ `Ψ̂;Φ̂ ê1(ê2) ap(e1; e2)⇒ τ
(D.1e)

∆̂, t̂ t type Γ̂ `Ψ̂;Φ̂ ê e⇒ τ

∆̂ Γ̂ `Ψ̂;Φ̂ Λt̂.ê tlam(t.e)⇒ all(t.τ)
(D.1f)

∆̂ Γ̂ `Ψ̂;Φ̂ ê e⇒ all(t.τ) ∆̂ ` τ̂′ τ′ type

∆̂ Γ̂ `Ψ̂;Φ̂ ê[τ̂′] tap{τ′}(e)⇒ [τ′/t]τ
(D.1g)

∆̂ Γ̂ `Ψ̂;Φ̂ ê e⇒ rec(t.τ)
∆̂ Γ̂ `Ψ̂;Φ̂ unfold(ê) unfold(e)⇒ [rec(t.τ)/t]τ

(D.1h)

{∆̂ Γ̂ `Ψ̂;Φ̂ êi ei ⇒ τi}i∈L

∆̂ Γ̂ `Ψ̂;Φ̂ 〈{i ↪→ êi}i∈L〉 tpl[L]({i ↪→ ei}i∈L)⇒ prod[L]({i ↪→ τi}i∈L)
(D.1i)

∆̂ Γ̂ `Ψ̂;Φ̂ ê e⇒ prod[L, `]({i ↪→ τi}i∈L; ` ↪→ τ)

∆̂ Γ̂ `Ψ̂;Φ̂ ê · ` prj[`](e)⇒ τ
(D.1j)

∆̂ ` τ̂ τ type ∅ ∅ ` eparse : parr(Body; ParseResultSE)
eparse ⇓ e′parse ∆̂ Γ̂ `Ψ̂,â a↪→setlm(τ; e′parse);Φ̂

ê e⇒ τ′

∆̂ Γ̂ `Ψ̂;Φ̂ syntax â at τ̂ for expressions {eparse} in ê e⇒ τ′
(D.1k)

262

Ψ̂ = Ψ̂′, â a ↪→ setlm(τ; eparse)
b ↓Body ebody eparse(ebody) ⇓ inj[SuccessE](eproto) eproto ↑PrExpr è

seg(è) segments b ∅ ∅ `∆̂; Γ̂; Ψ̂; Φ̂; b è e⇐ τ

∆̂ Γ̂ `Ψ̂;Φ̂ â ‘b‘ e⇒ τ
(D.1l)

Ψ̂ = 〈A] â a; Ψ, a ↪→ setlm(τ; eparse); I〉
∆̂ Γ̂ `〈A]â a;Ψ,a↪→setlm(τ; eparse);I]τ↪→a〉;Φ̂ ê e⇒ τ′

∆̂ Γ̂ `Ψ̂;Φ̂ implicit syntax â for expressions in ê e⇒ τ′
(D.1m)

∆̂ ` τ̂ τ type ∅ ∅ ` eparse : parr(Body; ParseResultSP)
eparse ⇓ e′parse ∆̂ Γ̂ `Ψ̂;Φ̂,â a↪→sptlm(τ; e′parse)

ê e⇒ τ′

∆̂ Γ̂ `Ψ̂;Φ̂ syntax â at τ̂ for patterns by static eparse in ê e⇒ τ′
(D.1n)

Φ̂ = 〈A] â a; Φ, a ↪→ sptlm(τ; eparse); I〉
∆̂ Γ̂ `Ψ̂;〈A]â a;Φ,a↪→sptlm(τ; eparse);I]τ↪→a〉 ê e⇒ τ′

∆̂ Γ̂ `Ψ̂;Φ̂ implicit syntax â for patterns in ê e⇒ τ′
(D.1o)

∆̂ Γ̂ `Ψ̂;Φ̂ ê e⇐ τ ê has expansion e when analyzed against type τ

∆̂ Γ̂ `Ψ̂;Φ̂ ê e⇒ τ

∆̂ Γ̂ `Ψ̂;Φ̂ ê e⇐ τ
(D.2a)

∆̂ Γ̂ `Ψ̂;Φ̂ ê e⇒ τ ∆̂ Γ̂, x̂ x : τ `Ψ̂;Φ̂ ê′ e′ ⇐ τ′

∆̂ Γ̂ `Ψ̂;Φ̂ let val x̂ = ê in ê′ ap(lam{τ}(x.e′); e)⇐ τ′
(D.2b)

∆̂, t̂ t type Γ̂ `Ψ̂;Φ̂ ê e⇐ τ

∆̂ Γ̂ `Ψ̂;Φ̂ Λt̂.ê tlam(t.e)⇐ all(t.τ)
(D.2c)

∆̂ Γ̂ `Ψ̂;Φ̂ ê e⇐ [rec(t.τ)/t]τ

∆̂ Γ̂ `Ψ̂;Φ̂ fold(ê) fold(e)⇐ rec(t.τ)
(D.2d)

{∆̂ Γ̂ `Ψ̂;Φ̂ êi ei ⇐ τi}i∈L

∆̂ Γ̂ `Ψ̂;Φ̂ 〈{i ↪→ êi}i∈L〉 tpl[L]({i ↪→ ei}i∈L)⇐ prod[L]({i ↪→ τi}i∈L)
(D.2e)

∆̂ Γ̂ `Ψ̂;Φ̂ ê e⇐ τ′

∆̂ Γ̂ `Ψ̂;Φ̂ inj[`](ê) inj[`](e)⇐ sum[L, `]({i ↪→ τi}i∈L; ` ↪→ τ′)
(D.2f)

∆̂ Γ̂ `Ψ̂;Φ̂ ê e⇒ τ {∆̂ Γ̂ `Ψ̂;Φ̂ r̂i ri ⇐ τ Z⇒ τ′}1≤i≤n

∆̂ Γ̂ `Ψ̂;Φ̂ match ê {r̂i}1≤i≤n match[n](e; {ri}1≤i≤n)⇐ τ′
(D.2g)

263

∆̂ ` τ̂ τ type ∅ ∅ ` eparse : parr(Body; ParseResultSE)
eparse ⇓ e′parse ∆̂ Γ̂ `Ψ̂,â a↪→setlm(τ; e′parse);Φ̂

ê e⇐ τ′

∆̂ Γ̂ `Ψ̂;Φ̂ syntax â at τ̂ for expressions {eparse} in ê e⇐ τ′
(D.2h)

Ψ̂ = 〈A] â a; Ψ, a ↪→ setlm(τ; eparse); I〉
∆̂ Γ̂ `〈A]â a;Ψ,a↪→setlm(τ; eparse);I]τ↪→a〉;Φ̂ ê e⇐ τ′

∆̂ Γ̂ `Ψ̂;Φ̂ implicit syntax â for expressions in ê e⇐ τ′
(D.2i)

Ψ̂ = 〈A; Ψ, a ↪→ setlm(τ; eparse); I] τ ↪→ a〉
b ↓Body ebody eparse(ebody) ⇓ inj[SuccessE](eproto) eproto ↑PrExpr è

seg(è) segments b ∅ ∅ `∆̂; Γ̂; Ψ̂; Φ̂; b è e⇐ τ

∆̂ Γ̂ `Ψ̂;Φ̂ /b/ e⇐ τ
(D.2j)

∆̂ ` τ̂ τ type ∅ ∅ ` eparse : parr(Body; ParseResultSP)
eparse ⇓ e′parse ∆̂ Γ̂ `Ψ̂;Φ̂,â a↪→sptlm(τ; e′parse)

ê e⇐ τ′

∆̂ Γ̂ `Ψ̂;Φ̂ syntax â at τ̂ for patterns by static eparse in ê e⇐ τ′
(D.2k)

Φ̂ = 〈A] â a; Φ, a ↪→ sptlm(τ; eparse); I〉
∆̂ Γ̂ `Ψ̂;〈A]â a;Φ,a↪→sptlm(τ; eparse);I]τ↪→a〉 ê e⇐ τ′

∆̂ Γ̂ `Ψ̂;Φ̂ implicit syntax â for patterns in ê e⇐ τ′
(D.2l)

∆̂ Γ̂ `Ψ̂;Φ̂ r̂ r ⇐ τ Z⇒ τ′ r̂ has expansion r taking values of type τ to values of type τ′

∆̂ `Φ̂ p̂ p : τ
〈G ′; Γ′〉 〈D; ∆〉 〈G] G ′; Γ ∪ Γ′〉 `Ψ̂;Φ̂ ê e⇐ τ′

〈D; ∆〉 〈G; Γ〉 `Ψ̂;Φ̂ p̂⇒ ê rule(p.e)⇐ τ Z⇒ τ′
(D.3)

Pattern Expansion

∆̂ `Φ̂ p̂ p : τ
̂Γ p̂ has expansion p matching against τ generating hypotheses Γ̂

∆̂ `Φ̂ x̂ x : τ
〈x̂ x; x : τ〉
(D.4a)

∆̂ `Φ̂ _ wildp : τ
〈∅; ∅〉
(D.4b)

∆̂ `Φ̂ p̂ p : [rec(t.τ)/t]τ
̂Γ

∆̂ `Φ̂ fold(p̂) foldp(p) : rec(t.τ)
̂Γ
(D.4c)

τ = prod[L]({i ↪→ τi}i∈L)

{∆̂ `Φ̂ p̂i pi : τi
̂Γi}i∈L

∆̂ `Φ̂ 〈{i ↪→ p̂i}i∈L〉 tplp[L]({i ↪→ pi}i∈L) : τ
]i∈L Γ̂i
(D.4d)

264

∆̂ `Φ̂ p̂ p : τ
̂Γ

∆̂ `Φ̂ inj[`](p̂) injp[`](p) : sum[L, `]({i ↪→ τi}i∈L; ` ↪→ τ)
̂Γ
(D.4e)

Φ̂ = Φ̂′, â a ↪→ sptlm(τ; eparse)
b ↓Body ebody eparse(ebody) ⇓ inj[SuccessP](eproto) eproto ↑PrPat p̀

seg(p̀) segments b p̀ p : τ
∆̂; Φ̂; b Γ̂

∆̂ `Φ̂ â ‘b‘ p : τ
̂Γ
(D.4f)

Φ̂ = 〈A; Φ, a ↪→ sptlm(τ; eparse); I , τ ↪→ a〉
b ↓Body ebody eparse(ebody) ⇓ inj[SuccessP](eproto) eproto ↑PrPat p̀

seg(p̀) segments b p̀ p : τ
∆̂; Φ̂; b Γ̂

∆̂ `Φ̂ /b/ p : τ
̂Γ
(D.4g)

D.3 Proto-Expansion Validation

D.3.1 Syntax of Proto-Expansions

The syntax of proto-expansions was defined in Sec. B.3.

Common Proto-Expansion Terms

Each expanded term, except variable patterns, maps onto a proto-expansion term. We
refer to these as the common proto-expansion terms. In particular:

• Each type, τ, maps onto a proto-type, P(τ), as follows:

P(t) = t
P(parr(τ1; τ2)) = prparr(P(τ1);P(τ2))
P(all(t.τ)) = prall(t.P(τ))
P(rec(t.τ)) = prrec(t.P(τ))

P(prod[L]({i ↪→ τi}i∈L)) = prprod[L]({i ↪→ P(τi)}i∈L)
P(sum[L]({i ↪→ τi}i∈L)) = prsum[L]({i ↪→ P(τi)}i∈L)

• Each expanded expression, e, maps onto a proto-expression, P(e), as follows:

P(x) = x
P(lam{τ}(x.e)) = prlam{P(τ)}(x.P(e))
P(ap(e1; e2)) = prap(P(e1);P(e2))
P(tlam(t.e)) = prtlam(t.P(e))
P(tap{τ}(e)) = prtap{P(τ)}(P(e))
P(fold(e)) = prasc{prrec(t.P(τ))}(prfold(P(e)))

P(unfold(e)) = prunfold(P(e))
P(tpl[L]({i ↪→ ei}i∈L)) = prtpl{L}({i ↪→ P(ei)}i∈L)

P(inj[`](e)) = prasc{prsum[L]({i ↪→ P(τi)}i∈L)}(prinj[`](P(e)))
P(match[n](e; {ri}1≤i≤n)) = prasc{P(τ)}(prmatch[n](P(e); {P(ri)}1≤i≤n))

265

• Each expanded rule, r, maps onto the proto-rule, P(r), as follows:

P(rule(p.e)) = prrule(p.P(e))

• Each expanded pattern, p, except for the variable patterns, maps onto a proto-
pattern, P(p), as follows:

P(wildp) = prwildp
P(foldp(p)) = prfoldp(P(p))

P(tplp[L]({i ↪→ pi}i∈L)) = prtplp[L]({i ↪→ P(pi)}i∈L)

P(injp[`](p)) = prinjp[`](P(p))

These definitions differ from those given in Sec. B.3 in that they include the type
information necessary for bidirectional typechecking.

Proto-Expression Encoding and Decoding

The type PrExpr and the judgements è ↓PrExpr e and e ↑PrExpr è are characterized as
described in Sec. B.3.

Proto-Pattern Encoding and Decoding

The type PrPat and the judgements p̀ ↓PrPat e and e ↑PrPat p̀ are characterized as de-
scribed in Sec. B.3.

Splice Summaries

The splice summary of a proto-expression, seg(è), or proto-pattern, seg(p̀), is the finite set
of references to spliced types, expressions and patterns that it mentions.

Segmentations

A segment set, ψ, is a finite set of pairs of natural numbers indicating the locations of
spliced terms. The segmentation of a proto-expression, seg(è), or proto-pattern, seg(p̀), is
the segment set implied by its splice summary.

D.3.2 Proto-Expansion Validation

Proto-Type Validation

The proto-type validation judgement, ∆ `T τ̀ τ type, is inductively defined by Rules
(B.9), which were defined in Sec. B.3.2.

266

Bidirectional Proto-Expression and Proto-Rule Validation

Expression splicing scenes, E, are of the form ∆̂; Γ̂; Ψ̂; Φ̂; b. We write ts(E) for the type
splicing scene constructed by dropping unnecessary contexts from E:

ts(∆̂; Γ̂; Ψ̂; Φ̂; b) = ∆̂; b

∆ Γ `E è e⇒ τ è has expansion e synthesizing type τ

∆ Γ, x : τ `E x x ⇒ τ
(D.5a)

∆ `ts(E) τ̀ τ type ∆ Γ `E è e⇐ τ

∆ Γ `E prasc{τ̀}(è) e⇒ τ
(D.5b)

∆ Γ `E è e⇒ τ ∆ Γ, x : τ `E è′ e′ ⇒ τ′

∆ Γ `E prletval(è; x.è′) ap(lam{τ}(x.e′); e)⇒ τ′
(D.5c)

∆ `ts(E) τ̀1 τ1 type ∆ Γ, x : τ1 `E è e⇒ τ2

∆ Γ `E prlam{τ̀1}(x.è) lam{τ1}(x.e)⇒ parr(τ1; τ2)
(D.5d)

∆ Γ `E è1 e1 ⇒ parr(τ2; τ) ∆ Γ `E è2 e2 ⇐ τ2

∆ Γ `E prap(è1; è2) ap(e1; e2)⇒ τ
(D.5e)

∆, t type Γ `E è e⇒ τ

∆ Γ `E prtlam(t.è) tlam(t.e)⇒ all(t.τ)
(D.5f)

∆ Γ `E è e⇒ all(t.τ) ∆ `ts(E) τ̀′ τ′ type

∆ Γ `E prtap{τ̀′}(è) tap{τ′}(e)⇒ [τ′/t]τ
(D.5g)

∆ Γ `E è e⇒ rec(t.τ)
∆ Γ `E prunfold(è) unfold(e)⇒ [rec(t.τ)/t]τ

(D.5h)

τ = prod[L]({i ↪→ τi}i∈L)

{∆ Γ `E èi ei ⇒ τi}i∈L

∆ Γ `E prtpl{L}({i ↪→ èi}i∈L) tpl[L]({i ↪→ ei}i∈L)⇒ τ
(D.5i)

∆ Γ `E è e⇒ prod[L, `]({i ↪→ τi}i∈L; ` ↪→ τ)

∆ Γ `E prprj[`](è) prj[`](e)⇒ τ
(D.5j)

∅ `ts(E) τ̀ τ type E = 〈D; ∆app〉; 〈G; Γapp〉; Ψ̂; Φ̂; b
parseUExp(subseq(b; m; n)) = ê 〈D; ∆app〉 〈G; Γapp〉 `Ψ̂;Φ̂ ê e⇐ τ

∆ ∩ ∆app = ∅ dom(Γ) ∩ dom(Γapp) = ∅

∆ Γ `E splicede[m; n; τ̀] e⇒ τ
(D.5k)

267

∆ Γ `E è e⇐ τ è has expansion e when analyzed against type τ

∆ Γ `E è e⇒ τ

∆ Γ `E è e⇐ τ
(D.6a)

∆ Γ `E è e⇒ τ ∆ Γ, x : τ `E è′ e′ ⇐ τ′

∆ Γ `E prletval(è; x.è′) ap(lam{τ}(x.e′); e)⇐ τ′
(D.6b)

∆, t type Γ `E è e⇐ τ

∆ Γ `E prtlam(t.è) tlam(t.e)⇐ all(t.τ)
(D.6c)

∆ Γ `E è e⇐ [rec(t.τ)/t]τ

∆ Γ `E prfold(è) fold(e)⇐ rec(t.τ)
(D.6d)

τ = prod[L]({i ↪→ τi}i∈L)

{∆ Γ `E èi ei ⇐ τi}i∈L

∆ Γ `E prtpl{L}({i ↪→ èi}i∈L) tpl[L]({i ↪→ ei}i∈L)⇐ τ
(D.6e)

∆ Γ `E è e⇐ τ′

∆ Γ `E prinj[`](è) inj[`](e)⇐ sum[L, `]({i ↪→ τi}i∈L; ` ↪→ τ′)
(D.6f)

∆ Γ `E è e⇒ τ {∆ Γ `E r̀i ri ⇐ τ Z⇒ τ′}1≤i≤n

∆ Γ `E prmatch[n](è; {r̀i}1≤i≤n) match[n](e; {ri}1≤i≤n)⇐ τ′
(D.6g)

∆ Γ `E r̀ r ⇐ τ Z⇒ τ′ r̀ has expansion r taking values of type τ to values of type τ′

∆ ` p : τ
Γ ∆ Γ ∪ Γ `E è e⇐ τ′

∆ Γ `E prrule(p.è) rule(p.e)⇐ τ Z⇒ τ′
(D.7)

Proto-Pattern Validation

Pattern splicing scenes, P, are of the form ∆̂; Φ̂; b.

p̀ p : τ
P Γ̂ p̀ has expansion p matching against τ generating hypotheses Γ̂

prwildp wildp : τ
P 〈∅; ∅〉
(D.8a)

p̀ p : [rec(t.τ)/t]τ
P Γ̂

prfoldp(p̀) foldp(p) : rec(t.τ)
P Γ̂
(D.8b)

τ = prod[L]({i ↪→ τi}i∈L)

{ p̀i pi : τi

P Γ̂i}i∈L

prtplp[L]({i ↪→ p̀i}i∈L) tplp[L]({i ↪→ pi}i∈L) : τ
P]i∈LΓ̂i
(D.8c)

268

p̀ p : τ
P Γ̂

prinjp[`](p̀) injp[`](p) : sum[L, `]({i ↪→ τi}i∈L; ` ↪→ τ)
P Γ̂
(D.8d)

∅ `∆̂; b τ̀ τ type parseUPat(subseq(b; m; n)) = p̂ ∆̂ `Φ̂ p̂ p : τ
̂Γ

splicedp[m; n; τ̀] p : τ
∆̂; Φ̂; b Γ̂
(D.8e)

D.4 Metatheory

D.4.1 Typed Pattern Expansion

Theorem D.9 (Typed Pattern Expansion).
1. If 〈D; ∆〉 `〈A;Φ;I〉 p̂ p : τ
〈G; Γ〉 then ∆ ` p : τ
Γ.

2. If p̀ p : τ
〈D;∆〉; 〈A;Φ〉; b 〈G; Γ〉 then ∆ ` p : τ
Γ.
Proof. By mutual rule induction over Rules (D.4) and Rules (D.8

1. We induct on the premise. In the following, let ∆̂ = 〈D; ∆〉 and Γ̂ = 〈G; Γ〉 and
Φ̂ = 〈A; Φ; I〉.
Case (D.4a) through (D.4f). These cases follow by identical argument to the corre-

sponding cases of Theorem B.27.
Case (D.4g).

(1) p̂ = /b/ by assumption
(2) Φ = Φ′, a ↪→ sptlm(τ; eparse) by assumption
(3) I = I ′, τ ↪→ a by assumption
(4) b ↓Body ebody by assumption
(5) eparse(ebody) ⇓ inj[SuccessP](eproto) by assumption
(6) eproto ↑PrPat p̀ by assumption

(7) p̀ p : τ
∆̂; Φ̂; b Γ̂ by assumption
(8) ∆ ` p : τ
Γ by IH, part 2 on (7)

2. We induct on the premise. All cases follow by identical argument to the correspond-
ing cases of Theorem B.27.

The mutual induction can be shown to be well-founded by an argument nearly identical
to that that given in the proof of Theorem B.27, differing only in that the appeal to
Condition B.13 is replaced by an appeal to the analagous Condition D.3.

D.4.2 Typed Expression and Rule Expansion

Theorem D.10 (Typed Expression and Rule Expansion).
1. (a) If 〈D; ∆〉 〈G; Γ〉 `Ψ̂;Φ̂ ê e⇒ τ then ∆ Γ ` e : τ.

(b) If 〈D; ∆〉 〈G; Γ〉 `Ψ̂;Φ̂ ê e⇐ τ and ∆ ` τ type then ∆ Γ ` e : τ.

269

(c) If 〈D; ∆〉 〈G; Γ〉 `Ψ̂;Φ̂ r̂ r ⇐ τ Z⇒ τ′ and ∆ ` τ′ type then ∆ Γ ` r : τ Z⇒ τ′.

2. (a) If ∆ Γ `〈D;∆app〉; 〈G;Γapp〉; Ψ̂; Φ̂; b è e ⇒ τ and ∆ ∩ ∆app = ∅ and dom(Γ) ∩
dom(Γapp) = ∅ then ∆ ∪ ∆app Γ ∪ Γapp ` e : τ.

(b) If ∆ Γ `〈D;∆app〉; 〈G;Γapp〉; Ψ̂; Φ̂; b è e ⇐ τ and ∆ ` τ type and ∆ ∩ ∆app = ∅ and
dom(Γ) ∩ dom(Γapp) = ∅ then ∆ ∪ ∆app Γ ∪ Γapp ` e : τ.

(c) If ∆ Γ `〈D;∆app〉; 〈G;Γapp〉; Ψ̂; Φ̂; b r̀ r ⇐ τ Z⇒ τ′ and ∆ ` τ′ type and ∆ ∩ ∆app = ∅
and dom(Γ) ∩ dom(Γapp) = ∅ then ∆ ∪ ∆app Γ ∪ Γapp ` r : τ Z⇒ τ′.

Proof. By mutual rule induction over Rules (D.1), Rules (D.2), Rule (D.3), Rules (D.5),
Rules (D.6) and Rule (D.7). The proof follows the proof of Theorem B.28.

D.4.3 Abstract Reasoning Principles

Lemma D.11 (Proto-Expression and Proto-Rule Expansion Decomposition).
1. If (∆ Γ `〈D;∆app〉; 〈G;Γapp〉; Ψ̂; Φ̂; b è e ⇐ τ or ∆ Γ `〈D;∆app〉; 〈G;Γapp〉; Ψ̂; Φ̂; b è e ⇒ τ)

where seg(è) = {splicedt[m′i; n′i]}0≤i<nty ∪ {splicede[mi; ni; τ̀i]}0≤i<nexp then all of
the following hold:

(a) {〈D; ∆app〉 ` parseUTyp(subseq(b; m′i; n′i)) τ′i type}0≤i<nty

(b) {∅ `〈D;∆app〉; b τ̀i τi type}0≤i<nexp

(c) {〈D; ∆app〉 〈G; Γapp〉 `Ψ̂;Φ̂ parseUExp(subseq(b; mi; ni)) ei ⇐ τi}0≤i<nexp

(d) e = [{τ′i /ti}0≤i<nty , {ei/xi}0≤i<nexp]e
′ for some e′ and {ti}0≤i<nty and {xi}0≤i<nexp

such that {ti}0≤i<nty fresh (i.e. {ti /∈ dom(∆)}0≤i<nty and {ti /∈ dom(∆app)}0≤i<nty)
and {xi}0≤i<nexp fresh (i.e. {xi /∈ dom(Γ)}0≤i<nexp and {xi /∈ dom(Γapp)}0≤i<nty)

(e) fv(e′) ⊂ dom(∆) ∪ dom(Γ) ∪ {ti}0≤i<nty ∪ {xi}0≤i<nexp

2. If ∆ Γ `〈D;∆app〉; 〈G;Γapp〉; Ψ̂; Φ̂; b r̀ r : τ Z⇒ τ′ where

seg(r̀) = {splicedt[m′i; n′i]}0≤i<nty ∪ {splicede[mi; ni; τ̀i]}0≤i<nexp

then all of the following hold:
(a) {〈D; ∆app〉 ` parseUTyp(subseq(b; m′i; n′i)) τ′i type}0≤i<nty

(b) {∅ `〈D;∆app〉; b τ̀i τi type}0≤i<nexp

(c) {〈D; ∆app〉 〈G; Γapp〉 `Ψ̂;Φ̂ parseUExp(subseq(b; mi; ni)) ei ⇐ τi}0≤i<nexp

(d) r = [{τ′i /ti}0≤i<nty , {ei/xi}0≤i<nexp]r
′ for some e′ and fresh {ti}0≤i<nty and fresh

{xi}0≤i<nexp

(e) fv(r′) ⊂ dom(∆) ∪ dom(Γ) ∪ {ti}0≤i<nty ∪ {xi}0≤i<nexp
Proof. By rule induction over Rules (D.6) and Rule (D.7). The proof follows the proof of
Theorem B.31.

Theorem D.12 (seTLM Abstract Reasoning Principles - Explicit Application). If

〈D; ∆〉 〈G; Γ〉 `Ψ̂;Φ̂ â ‘b‘ e⇒ τ

then:

270

1. (Typing 1) Ψ̂ = Ψ̂′, â a ↪→ setlm(τ; eparse) and ∆ Γ ` e : τ

2. b ↓Body ebody
3. eparse(ebody) ⇓ inj[SuccessE](eproto)

4. eproto ↑PrExpr è
5. (Segmentation) seg(è) segments b
6. seg(è) = {splicedt[m′i; n′i]}0≤i<nty ∪ {splicede[mi; ni; τ̀i]}0≤i<nexp

7. (Typing 2) {〈D; ∆〉 ` parseUTyp(subseq(b; m′i; n′i)) τ′i type}0≤i<nty and {∆ `
τ′i type}0≤i<nty

8. (Typing 3) {∅ `〈D;∆〉; b τ̀i τi type}0≤i<nexp and {∆ ` τi type}0≤i<nexp

9. (Typing 4) {〈D; ∆〉 〈G; Γ〉 `Ψ̂;Φ̂ parseUExp(subseq(b; mi; ni)) ei ⇐ τi}0≤i<nexp and
{∆ Γ ` ei : τi}0≤i<nexp

10. (Capture Avoidance) e = [{τ′i /ti}0≤i<nty , {ei/xi}0≤i<nexp]e
′ for some {ti}0≤i<nty and

{xi}0≤i<nexp and e′

11. (Context Independence) fv(e′) ⊂ {ti}0≤i<nty ∪ {xi}0≤i<nexp
Proof. By rule induction over Rules (D.1). The proof follows the proof of Theorem
B.32.

Theorem D.13 (seTLM Abstract Reasoning Principles - Implicit Application). If

〈D; ∆〉 〈G; Γ〉 `Ψ̂;Φ̂ /b/ e⇐ τ

then:
1. (Typing 1) Ψ̂ = 〈A; Ψ, a ↪→ setlm(τ; eparse); I] τ ↪→ a〉 and ∆ Γ ` e : τ

2. b ↓Body ebody
3. eparse(ebody) ⇓ inj[SuccessE](eproto)

4. eproto ↑PrExpr è
5. (Segmentation) seg(è) segments b
6. seg(è) = {splicedt[m′i; n′i]}0≤i<nty ∪ {splicede[mi; ni; τ̀i]}0≤i<nexp

7. (Typing 2) {〈D; ∆〉 ` parseUTyp(subseq(b; m′i; n′i)) τ′i type}0≤i<nty and {∆ `
τ′i type}0≤i<nty

8. (Typing 3) {∅ `〈D;∆〉; b τ̀i τi type}0≤i<nexp and {∆ ` τi type}0≤i<nexp

9. (Typing 4) {〈D; ∆〉 〈G; Γ〉 `Ψ̂;Φ̂ parseUExp(subseq(b; mi; ni)) ei ⇐ τi}0≤i<nexp and
{∆ Γ ` ei : τi}0≤i<nexp

10. (Capture Avoidance) e = [{τ′i /ti}0≤i<nty , {ei/xi}0≤i<nexp]e
′ for some {ti}0≤i<nty and

{xi}0≤i<nexp and e′

11. (Context Independence) fv(e′) ⊂ {ti}0≤i<nty ∪ {xi}0≤i<nexp
Proof. By rule induction over Rules (D.2). The proof follows the proof of Theorem B.32,
differing only in how the TLM definition is looked up.

Lemma D.14 (Proto-Pattern Expansion Decomposition). If p̀ p : τ
∆̂; Φ̂; b Γ̂ where

seg(p̀) = {splicedt[m′i; n′i]}0≤i<nty ∪ {splicedp[mi; ni; τ̀i]}0≤i<npat

271

then all of the following hold:
1. {∆̂ ` parseUTyp(subseq(b; m′i; n′i)) τ′i type}0≤i<nty

2. {∅ `∆̂; b τ̀i τi type}0≤i<npat

3. {∆̂ `Φ̂ parseUPat(subseq(b; mi; ni)) pi : τi
̂Γi}0≤i<npat

4. Γ̂ =
⊎

0≤i<npat Γ̂i
Proof. By rule induction over Rules (D.8). The proof follows the proof of Theorem
B.33.

Theorem D.15 (spTLM Abstract Reasoning Principles - Explicit Application). If

∆̂ `Φ̂ â ‘b‘ p : τ
̂Γ

where ∆̂ = 〈D; ∆〉 and Γ̂ = 〈G; Γ〉 then all of the following hold:
1. (Typing 1) Φ̂ = Φ̂′, â a ↪→ sptlm(τ; eparse) and ∆ ` p : τ
Γ
2. b ↓Body ebody
3. eparse(ebody) ⇓ inj[SuccessP](eproto)

4. eproto ↑PrPat p̀
5. (Segmentation) seg(p̀) segments b
6. seg(p̀) = {splicedt[n′i; m′i]}0≤i<nty ∪ {splicedp[mi; ni; τ̀i]}0≤i<npat

7. (Typing 2) {∆̂ ` parseUTyp(subseq(b; m′i; n′i)) τ′i type}0≤i<nty and {∆ ` τ′i type}0≤i<nty

8. (Typing 3) {∅ `∆̂; b τ̀i τi type}0≤i<npat and {∆ ` τi type}0≤i<npat

9. (Typing 4) {∆̂ `Φ̂ parseUPat(subseq(b; mi; ni)) pi : τi
̂Γi}0≤i<npat

10. (No Hidden Bindings) Γ̂ =
⊎

0≤i<npat Γ̂i
Proof. By rule induction over Rules (D.4). The proof follows the proof of Theorem
B.34.

Theorem D.16 (spTLM Abstract Reasoning Principles - Implicit Application). If

∆̂ `Φ̂ /b/ p : τ
̂Γ

where ∆̂ = 〈D; ∆〉 and Γ̂ = 〈G; Γ〉 then all of the following hold:
1. (Typing 1) Φ̂ = 〈A; Φ, a ↪→ sptlm(τ; eparse); I , τ ↪→ a〉 and ∆ ` p : τ
Γ
2. b ↓Body ebody
3. eparse(ebody) ⇓ inj[SuccessP](eproto)

4. eproto ↑PrPat p̀
5. (Segmentation) seg(p̀) segments b
6. seg(p̀) = {splicedt[n′i; m′i]}0≤i<nty ∪ {splicedp[mi; ni; τ̀i]}0≤i<npat

7. (Typing 2) {∆̂ ` parseUTyp(subseq(b; m′i; n′i)) τ′i type}0≤i<nty and {∆ ` τ′i type}0≤i<nty

8. (Typing 3) {∅ `∆̂; b τ̀i τi type}0≤i<npat and {∆ ` τi type}0≤i<npat

9. (Typing 4) {∆̂ `Φ̂ parseUPat(subseq(b; mi; ni)) pi : τi
̂Γi}0≤i<npat

10. (No Hidden Bindings) Γ̂ =
⊎

0≤i<npat Γ̂i

272

Proof. By rule induction over Rules (D.4). The proof follows the proof of Theorem B.34,
differing only in how the parse function is looked up.

273

274

Bibliography

[1] GHC Language Features - Syntactic extensions. https://downloads.haskell.
org/~ghc/7.8.4/docs/html/users_guide/syntax-extns.html. 2.4.1

[2] Merlin, an assistant for editing OCaml code. https://the-lambda-church.
github.io/merlin/. Retrieved Sep 6, 2016. 3.1.4

[3] Ocaml batteries included. http://batteries.forge.ocamlcore.org/. Retrieved
May 31, 2016, . 1.1.2

[4] core - Jane Street Capital’s standard library overlay. https://github.com/
janestreet/core/. Retrieved May 31, 2016, . 1.1.2

[5] [Rust] Macros. https://doc.rust-lang.org/book/macros.html. Retrieved Nov.
3, 2015. 3.1.2

[6] SML/NJ Quote/Antiquote. http://www.smlnj.org/doc/quote.html. Retrieved
Nov. 3, 2015. 2.4.2

[7] Information Technology Portable Operating System Interface (POSIX) Base Specifi-
cations, Issue 7. 2.4.1

[8] perlre - Perl regular expressions. http://perldoc.perl.org/perlre.html. Re-
trieved May 3, 2015. 1.1.2

[9] The Python Language Reference. http://docs.python.org. Retrieved June 4,
2014. 1.1.2

[10] OWASP Top 10 2013. https://www.owasp.org/index.php/Top_10_2013-Top_10.
Retrieved Dec 12, 2013, 2013. 3

[11] Annika Aasa. Precedences for Conctypes. In Conference on Functional Programming
Languages and Computer Architecture (FPCA), 1993. URL http://doi.acm.org/10.
1145/165180.165193. 2.4.4

[12] Annika Aasa. Precedences in Specifications and Implementations of Programming
Languages. Theor. Comput. Sci., 142(1):3–26, 1995. URL http://dx.doi.org/10.
1016/0304-3975(95)90680-J. 2.4.4

[13] Annika Aasa, Kent Petersson, and Dan Synek. Concrete Syntax for Data Objects in
Functional Languages. In LISP and Functional Programming, pages 96–105, 1988.
URL http://doi.acm.org/10.1145/62678.62688. 2.4.4

[14] Peter Aczel. A general Church-Rosser theorem. Technical report, University of
Manchester, 1978. 1.1

275

https://downloads.haskell.org/~ghc/7.8.4/docs/html/users_guide/syntax-extns.html
https://downloads.haskell.org/~ghc/7.8.4/docs/html/users_guide/syntax-extns.html
https://the-lambda-church.github.io/merlin/
https://the-lambda-church.github.io/merlin/
http://batteries.forge.ocamlcore.org/
https://github.com/janestreet/core/
https://github.com/janestreet/core/
https://doc.rust-lang.org/book/macros.html
http://www.smlnj.org/doc/quote.html
http://perldoc.perl.org/perlre.html
http://docs.python.org
https://www.owasp.org/index.php/Top_10_2013-Top_10
http://doi.acm.org/10.1145/165180.165193
http://doi.acm.org/10.1145/165180.165193
http://dx.doi.org/10.1016/0304-3975(95)90680-J
http://dx.doi.org/10.1016/0304-3975(95)90680-J
http://doi.acm.org/10.1145/62678.62688

[15] Michael D. Adams. Towards the Essence of Hygiene. In POPL, 2015. URL
http://doi.acm.org/10.1145/2676726.2677013. 2.4.10

[16] Eric Anderson, Gilman D Veith, and David Weininger. SMILES, a line notation and
computerized interpreter for chemical structures. US Environmental Protection Agency,
Environmental Research Laboratory, 1987. (document)

[17] Andrew W. Appel and David B. MacQueen. Standard ML of new jersey. In
Programming Language Implementation and Logic Programming, 1991. URL http:
//dx.doi.org/10.1007/3-540-54444-5_83. 2.1

[18] Alan Bawden. Quasiquotation in Lisp. In Partial Evaluation and Semantic-Based
Program Manipulation, 1999. URL http://repository.readscheme.org/ftp/
papers/pepm99/bawden.pdf. 6.2.1

[19] Matthias Blume. The SML/NJ Compilation and Library Manager, May 2002. Available
from http://www.smlnj.org/doc/CM/index.html. 6.3

[20] George EP Box and Norman R Draper. Empirical model-building and response surfaces.
John Wiley & Sons, 1987. 2.2

[21] Martin Bravenboer, Rob Vermaas, Jurgen Vinju, and Eelco Visser. Generalized
type-based disambiguation of meta programs with concrete object syntax. In
Generative Programming and Component Engineering (GPCE), 2005. 2.4.8

[22] Martin Bravenboer, Eelco Dolstra, and Eelco Visser. Preventing Injection Attacks
with Syntax Embeddings. In GPCE, 2007. URL http://doi.acm.org/10.1145/
1289971.1289975. 3

[23] Eugene Burmako. Scala Macros: Let Our Powers Combine!: On How Rich Syntax
and Static Types Work with Metaprogramming. In 4th Workshop on Scala, 2013.
(document), 3, 2.4.10, 8.2

[24] Stuart K. Card, Thomas P. Moran, and Allen Newell. The keystroke-level model
for user performance time with interactice systems. Commun. ACM, 23(7):396–410,
1980. URL http://doi.acm.org/10.1145/358886.358895. 2.2

[25] Adam Chlipala. Ur: statically-typed metaprogramming with type-level record com-
putation. In PLDI, 2010. URL http://doi.acm.org/10.1145/1806596.1806612.
1.2.1

[26] Adam Chlipala. Ur/Web: A simple model for programming the web. In POPL,
2015. URL http://dl.acm.org/citation.cfm?id=2676726. 1.2.1

[27] Adam Chlipala, Leaf Petersen, and Robert Harper. Strict bidirectional type check-
ing. In ACM SIGPLAN International Workshop on Types in Language Design and Im-
plementation (TLDI), 2005. URL http://doi.acm.org/10.1145/1040294.1040301.
7.2.3

[28] William D. Clinger and Jonathan Rees. Macros That Work. In POPL, 1991. URL
http://doi.acm.org/10.1145/99583.99607. 2.4.10

[29] Russ Cox, Tom Bergan, Austin T. Clements, M. Frans Kaashoek, and Eddie Kohler.
Xoc, an extension-oriented compiler for systems programming. In ASPLOS, 2008.

276

http://doi.acm.org/10.1145/2676726.2677013
http://dx.doi.org/10.1007/3-540-54444-5_83
http://dx.doi.org/10.1007/3-540-54444-5_83
http://repository.readscheme.org/ftp/papers/pepm99/bawden.pdf
http://repository.readscheme.org/ftp/papers/pepm99/bawden.pdf
http://www.smlnj.org/doc/CM/index.html
http://doi.acm.org/10.1145/1289971.1289975
http://doi.acm.org/10.1145/1289971.1289975
http://doi.acm.org/10.1145/358886.358895
http://doi.acm.org/10.1145/1806596.1806612
http://dl.acm.org/citation.cfm?id=2676726
http://doi.acm.org/10.1145/1040294.1040301
http://doi.acm.org/10.1145/99583.99607

URL http://doi.acm.org/10.1145/1346281.1346312. 2.4.9

[30] Karl Crary. A syntactic account of singleton types via hereditary substitution. In
Fourth International Workshop on Logical Frameworks and Meta-Languages: Theory and
Practice (LFMTP), 2009. URL http://doi.acm.org/10.1145/1577824.1577829.
8.3.5

[31] Ryan Culpepper, Scott Owens, and Matthew Flatt. Syntactic abstraction in compo-
nent interfaces. In International Conference on Generative Programming and Component
Engineering (GPCE), 2005. 6.3

[32] Luis Damas and Robin Milner. Principal type-schemes for functional programs. In
POPL, 1982. 8.3.3

[33] Nils Anders Danielsson and Ulf Norell. Parsing Mixfix Operators. In 20th
International Symposium on Implementation and Application of Functional Lan-
guages (IFL) - Revised Selected Papers, 2008. URL http://dx.doi.org/10.1007/
978-3-642-24452-0_5. 2.4.4, 2.4.4

[34] Rowan Davies. A Temporal-Logic Approach to Binding-Time Analysis. In 11th
Annual IEEE Symposium on Logic in Computer Science (LICS), pages 184–195, 1996.
URL http://dx.doi.org/10.1109/LICS.1996.561317. 3

[35] F. DeRemer and H. Kron. Programming-in-the-large versus programming-in-the-
small. IEEE Transactions on Software Engineering, 2:80–86, 1976. 1.2.1

[36] Lukas Diekmann and Laurence Tratt. Eco: A language composition editor. In
International Conference on Software Language Engineering (SLE), 2014. 2.4.8

[37] Derek Dreyer. Understanding and evolving the ML module system. PhD thesis,
Carnegie Mellon University, 2005. 2.3.2, 5.2.2

[38] Derek Dreyer, Robert Harper, Manuel M. T. Chakravarty, and Gabriele Keller.
Modular type classes. In POPL, 2007. URL http://dl.acm.org/citation.cfm?
id=1190216. 1.5

[39] Joshua Dunfield and Neelakantan R. Krishnaswami. Complete and easy bidi-
rectional typechecking for higher-rank polymorphism. In ICFP, 2013. URL
http://dl.acm.org/citation.cfm?id=2500365. 1.4

[40] R. Kent Dybvig, Robert Hieb, and Carl Bruggeman. Syntactic abstraction in scheme.
Lisp and Symbolic Computation, 5(4):295–326, 1992. 2.4.10

[41] Sebastian Erdweg and Felix Rieger. A framework for extensible languages. In
GPCE, 2013. 1.2.1, 2.4.5

[42] Sebastian Erdweg, Lennart C. L. Kats, Tillmann Rendel, Christian Kästner, Klaus
Ostermann, and Eelco Visser. Growing a language environment with editor li-
braries. In Generative Programming And Component Engineering (GPCE), 2011. URL
http://doi.acm.org/10.1145/2047862.2047891. 2.4.8

[43] Sebastian Erdweg, Tillmann Rendel, Christian Kastner, and Klaus Ostermann.
SugarJ: Library-based syntactic language extensibility. In OOPSLA, 2011. 1.2.1,
2.4.5

277

http://doi.acm.org/10.1145/1346281.1346312
http://doi.acm.org/10.1145/1577824.1577829
http://dx.doi.org/10.1007/978-3-642-24452-0_5
http://dx.doi.org/10.1007/978-3-642-24452-0_5
http://dx.doi.org/10.1109/LICS.1996.561317
http://dl.acm.org/citation.cfm?id=1190216
http://dl.acm.org/citation.cfm?id=1190216
http://dl.acm.org/citation.cfm?id=2500365
http://doi.acm.org/10.1145/2047862.2047891

[44] Sebastian Erdweg, Felix Rieger, Tillmann Rendel, and Klaus Ostermann. Layout-
sensitive language extensibility with SugarHaskell. In Proceedings of the 2012
Symposium on Haskell, pages 149–160. ACM, 2012. 2.4.5, 2.4.8

[45] Sebastian Erdweg, Tijs van der Storm, and Yi Dai. Capture-avoiding and hygienic
program transformations. In ECOOP, 2014. URL http://dx.doi.org/10.1007/
978-3-662-44202-9. 2.4.8

[46] Matthias Felleisen, Robert Bruce Findler, and Matthew Flatt. Semantics Engineering
with PLT Redex. The MIT Press, 2009. 2.4.5

[47] Robert Bruce Findler and Matthias Felleisen. Contracts for higher-order functions.
In ICFP, 2002. URL http://doi.acm.org/10.1145/581478.581484. 8.3.2

[48] Matthew Flatt. Creating languages in Racket. Commun. ACM, 55(1):48–56, January
2012. URL http://doi.acm.org/10.1145/2063176.2063195. 1.2.1, 2.4.6

[49] Matthew Flatt, Ryan Culpepper, David Darais, and Robert Bruce Findler. Macros
that Work Together - Compile-time bindings, partial expansion, and definition
contexts. J. Funct. Program., 22(2):181–216, 2012. URL http://dx.doi.org/10.
1017/S0956796812000093. 1.2.2, 2.4.6

[50] Bryan Ford. Parsing expression grammars: a recognition-based syntactic foun-
dation. In POPL, 2004. URL http://pdos.csail.mit.edu/~baford/packrat/
popl04/peg-popl04.pdf. 2.4.5, 2.4.8

[51] Bryan Ford. Packrat Parsing: Simple, Powerful, Lazy, Linear Time. CoRR, ab-
s/cs/0603077, 2006. URL http://arxiv.org/abs/cs/0603077. 2.4.5

[52] Murdoch J Gabbay and Andrew M Pitts. A new approach to abstract syntax with
variable binding. Formal Aspects of Computing, 13(3):341–363, 2002. 1.1

[53] Steven Ganz, Amr Sabry, and Walid Taha. Macros as multi-stage computations:
Type-safe, generative, binding macros in MacroML. In ICFP, 2001. 3, 2.4.10, 8.2

[54] Carlo Ghezzi and Dino Mandrioli. Incremental parsing. ACM Trans. Program.
Lang. Syst., 1(1):58–70, January 1979. URL http://doi.acm.org/10.1145/357062.
357066. 8.3.12

[55] Saul Gorn. Explicit definitions and linguistic dominoes. In Systems and Computer
Science, Proceedings of the Conference held at Univ. of Western Ontario, pages 77–115,
1965. 8.2

[56] T. R. G. Green. Cognitive dimensions of notations. In Proceedings of the HCI’89
Conference on People and Computers V, Cognitive Ergonomics, pages 443–460, 1989.
2.2

[57] T.R.G. Green and M. Petre. Usability analysis of visual programming environments:
A ’cognitive dimensions’ framework. Journal of Visual Languages and Computing, 7
(2):131–174, 1996. 2.2

[58] T.G. Griffin. Notational definition-a formal account. In Logic in Computer Science
(LICS ’88), pages 372–383, 1988. 2.4.4

278

http://dx.doi.org/10.1007/978-3-662-44202-9
http://dx.doi.org/10.1007/978-3-662-44202-9
http://doi.acm.org/10.1145/581478.581484
http://doi.acm.org/10.1145/2063176.2063195
http://dx.doi.org/10.1017/S0956796812000093
http://dx.doi.org/10.1017/S0956796812000093
http://pdos.csail.mit.edu/~baford/packrat/popl04/peg-popl04.pdf
http://pdos.csail.mit.edu/~baford/packrat/popl04/peg-popl04.pdf
http://arxiv.org/abs/cs/0603077
http://doi.acm.org/10.1145/357062.357066
http://doi.acm.org/10.1145/357062.357066

[59] Cordelia V. Hall, Kevin Hammond, Simon L. Peyton Jones, and Philip L. Wadler.
Type classes in Haskell. ACM Trans. Program. Lang. Syst., 18(2):109–138, March
1996. URL http://doi.acm.org/10.1145/227699.227700. 1.5, 8.3.2

[60] Robert Harper. Programming in Standard ML. http://www.cs.cmu.edu/~rwh/
smlbook/book.pdf, 1997. Working draft, retrieved June 21, 2015. 1.1.2, 2.1

[61] Robert Harper. Practical Foundations for Programming Languages. Cambridge Uni-
versity Press, 2012. 4.2, 4.2.3

[62] Robert Harper. Practical Foundations for Programming Languages. Cambridge Uni-
versity Press, 2nd edition, 2016. URL https://www.cs.cmu.edu/~rwh/plbook/
2nded.pdf. 1.1, 2.1, 2.3.1, 3.1.2, 3.2.2, 5.2.2, 5.2.2, 8.3.2, A.1

[63] Robert Harper, John C Mitchell, and Eugenio Moggi. Higher-order modules and
the phase distinction. In POPL, 1989. 5.2.2

[64] T. P. Hart. MACRO definitions for LISP. Report A. I. MEMO 57, Massachusetts
Institute of Technology, A.I. Lab., Cambridge, Massachusetts, October 1963. 2.4.10

[65] Jan Heering, P. R. H. Hendriks, Paul Klint, and J. Rekers. The syntax definition
formalism SDF - reference manual. SIGPLAN Notices, 24(11):43–75, 1989. URL
http://doi.acm.org/10.1145/71605.71607. 2.4.5

[66] David Herman. A Theory of Typed Hygienic Macros. PhD thesis, Northeastern
University, Boston, MA, May 2010. 2.4.10, 2.4.10, 1, 8.2, 8.3.7

[67] David Herman and Mitchell Wand. A theory of hygienic macros. In ESOP, 2008.
URL http://dx.doi.org/10.1007/978-3-540-78739-6_4. 2.4.10, 2.4.10, 3.2.11,
1, 8.2, 8.3.7

[68] John E. Hopcroft. Introduction to automata theory, languages, and computation. Pearson
Education India, 1979. 2.4.5

[69] Graham Hutton. Higher-order functions for parsing. Journal of Functional Pro-
gramming, 2(3):323–343, July 1992. URL http://www.cs.nott.ac.uk/Department/
Staff/gmh/parsing.ps. 2.4.6

[70] Graham Hutton and Erik Meijer. Monadic parsing in haskell. Journal of Functional
Programming, 8(04):437–444, 1998. 2.4.6

[71] Peter Zilahy Ingerman. “Pānini-Backus Form” Suggested. Commun. ACM, 10(3):
137–, March 1967. URL http://doi.acm.org/10.1145/363162.363165. 2.4.5

[72] Neil D. Jones, Carsten K. Gomard, and Peter Sestoft. Partial Evaluation and Automatic
Program Generation. Prentice Hall International, International Series in Computer
Science, June 1993. 3

[73] Simon Peyton Jones. Haskell 98 language and libraries: the revised report. Cambridge
University Press, 2003. 1.1.2

[74] Simon Peyton Jones, Andrew Tolmach, and Tony Hoare. Playing by the rules:
rewriting as a practical optimisation technique in GHC. In Haskell Workshop, 2001.
2.4.9

279

http://doi.acm.org/10.1145/227699.227700
http://www.cs.cmu.edu/~rwh/smlbook/book.pdf
http://www.cs.cmu.edu/~rwh/smlbook/book.pdf
https://www.cs.cmu.edu/~rwh/plbook/2nded.pdf
https://www.cs.cmu.edu/~rwh/plbook/2nded.pdf
http://doi.acm.org/10.1145/71605.71607
http://dx.doi.org/10.1007/978-3-540-78739-6_4
http://www.cs.nott.ac.uk/Department/Staff/gmh/parsing.ps
http://www.cs.nott.ac.uk/Department/Staff/gmh/parsing.ps
http://doi.acm.org/10.1145/363162.363165

[75] Antti-Juhani Kaijanaho. Evidence-based programming language design: a philosophical
and methodological exploration. PhD thesis, University of Jyväskylä, 2015. 2.2

[76] Lennart C. L. Kats and Eelco Visser. The Spoofax language workbench: rules
for declarative specification of languages and ides. In OOPSLA, 2010. URL
http://doi.acm.org/10.1145/1869459.1869497. 2.4.5, 2.4.8

[77] Eugene E. Kohlbecker, Daniel P. Friedman, Matthias Felleisen, and Bruce Duba.
Hygienic macro expansion. In Symposium on LISP and Functional Programming,
pages 151–161, August 1986. 2.4.10

[78] Ralf Lämmel, Ekaterina Pek, and Jürgen Starek. Large-scale, AST-based API-usage
analysis of open-source Java projects. In ACM Symposium on Applied Computing
(SAC), 2011. URL http://doi.acm.org/10.1145/1982185.1982471. 1.2.1

[79] Daniel K. Lee, Karl Crary, and Robert Harper. Towards a mechanized metatheory
of Standard ML. In POPL, 2007. URL http://dl.acm.org/citation.cfm?id=
1190216. 5.2.2

[80] Xavier Leroy, Damien Doligez, Alain Frisch, Jacques Garrigue, Didier Rémy, and
Jérôme Vouillon. The OCaml system release 4.02 Documentation and user’s manual.
Institut National de Recherche en Informatique et en Automatique, September
2014. 1.1.2, 1.2.1, 2, 2.4.5, 2.4.9

[81] Barbara Liskov and Stephen Zilles. Programming with abstract data types. In
ACM SIGPLAN Notices, volume 9, pages 50–59. ACM, 1974. 2.3.2

[82] Florian Lorenzen and Sebastian Erdweg. Modular and automated type-soundness
verification for language extensions. In ICFP, pages 331–342, 2013. URL http:
//dl.acm.org/citation.cfm?id=2500365. 2.4.5

[83] Florian Lorenzen and Sebastian Erdweg. Sound type-dependent syntactic language
extension. In POPL, 2016. URL http://dl.acm.org/citation.cfm?id=2837614.
2.4.5, 2.4.8, 8.3.8

[84] David MacQueen. Modules for Standard ML. In Symposium on LISP and Functional
Programming, 1984. URL http://doi.acm.org/10.1145/800055.802036. 2.3.2

[85] Geoffrey Mainland. Why it’s nice to be quoted: quasiquoting for Haskell. In Haskell
Workshop, 2007. 2.4.10

[86] Michel Mauny and Daniel de Rauglaudre. A complete and realistic implementation
of quotations for ML. In Workshop on ML and its applications, 1994. 2.4.10

[87] Coq Development Team. The Coq proof assistant reference manual. LogiCal Project,
2004. URL http://coq.inria.fr. Version 8.0. 2.4.4, 2.4.4, 2.4.8, 8.3.2

[88] J. McCarthy. History of lisp. In History of programming languages I, pages 173–185.
ACM, 1978. 3

[89] Tom Mens and Tom Tourwé. A survey of software refactoring. IEEE Transactions
on Software Engineering, 30(2):126–139, 2004. 8.3.11

[90] Robin Milner, Mads Tofte, Robert Harper, and David MacQueen. The Definition of

280

http://doi.acm.org/10.1145/1869459.1869497
http://doi.acm.org/10.1145/1982185.1982471
http://dl.acm.org/citation.cfm?id=1190216
http://dl.acm.org/citation.cfm?id=1190216
http://dl.acm.org/citation.cfm?id=2500365
http://dl.acm.org/citation.cfm?id=2500365
http://dl.acm.org/citation.cfm?id=2837614
http://doi.acm.org/10.1145/800055.802036
http://coq.inria.fr

Standard ML (Revised). The MIT Press, 1997. 1.1.2, 2.3.2, 6.3

[91] Stephan Albert Missura. Higher-Order Mixfix Syntax for Representing Mathematical
Notation and its Parsing. PhD thesis, ETH Zurich, 1997. 2.4.4

[92] Peter Naur, John W Backus, Friedrich L Bauer, Julien Green, Charles Katz, John
McCarthy, Alan J Perlis, Heinz Rutishauser, Klaus Samelson, Bernard Vauquois,
et al. Revised report on the algorithmic language Algol 60. Communications of the
ACM, 6(1):1–17, 1963. 2.4.5

[93] Catarina Dutilh Novaes. Formal languages in logic: A philosophical and cognitive
analysis. Cambridge University Press, 2012. 2.2

[94] Martin Odersky, Lex Spoon, and Bill Venners. Programming in Scala. Artima Inc.,
2008. 1.1.2, 6.3, 8.3.2

[95] Chris Okasaki. Even higher-order functions for parsing or why would anyone
ever want to use a sixth-order function? Journal of Functional Programming, 8(2):
195–199, March 1998. 2.4.6

[96] Cyrus Omar, YoungSeok Yoon, Thomas D. LaToza, and Brad A. Myers. Active
Code Completion. In International Conference on Software Engineering (ICSE), 2012.
URL http://dl.acm.org/citation.cfm?id=2337223.2337324. 2.4.1, 1

[97] Cyrus Omar, Darya Kurilova, Ligia Nistor, Benjamin Chung, Alex Potanin, and
Jonathan Aldrich. Safely composable type-specific languages. In ECOOP, 2014.
(document), 1.3.1, 3.1, 3.2.5, 8.2

[98] Cyrus Omar, Chenglong Wang, and Jonathan Aldrich. Composable and hygienic
typed syntax macros. In ACM Symposium on Applied Computing (SAC), 2015. 3.1,
8.2

[99] Cyrus Omar, Ian Voysey, Michael Hilton, Jonathan Aldrich, and Matthew A. Ham-
mer. Hazelnut: a bidirectionally typed structure editor calculus. In POPL, 2017.
URL http://dl.acm.org/citation.cfm?id=3009900. 8.3.14

[100] Cyrus Omar, Ian Voysey, Michael Hilton, Joshua Sunshine, Claire Le Goues,
Jonathan Aldrich, and Matthew A. Hammer. Toward semantic foundations for
program editors. In Symposium on Advances in Programming Languages (SNAPL),
2017. URL http://arxiv.org/abs/1703.08694. 8.3.14

[101] J.F. Pane and B.A. Myers. Usability issues in the design of novice programming sys-
tems. Technical report, Carnegie Mellon University, Human-Computer Interaction
Institute, CMU-HCII-96-101, 1996. 2.2

[102] Benjamin C. Pierce. Types and Programming Languages. MIT Press, 2002. 2.1, 3.2.2

[103] Benjamin C. Pierce and David N. Turner. Local type inference. ACM Trans. Program.
Lang. Syst., 22(1):1–44, January 2000. URL http://doi.acm.org/10.1145/345099.
345100. 7.2.3, 8.3.3

[104] Gordon D. Plotkin. A structural approach to operational semantics. J. Log. Algebr.
Program., 60-61:17–139, 2004. 3.2.4

281

http://dl.acm.org/citation.cfm?id=2337223.2337324
http://dl.acm.org/citation.cfm?id=3009900
http://arxiv.org/abs/1703.08694
http://doi.acm.org/10.1145/345099.345100
http://doi.acm.org/10.1145/345099.345100

[105] Justin Pombrio and Shriram Krishnamurthi. Resugaring: lifting evaluation se-
quences through syntactic sugar. In PLDI, 2014. URL http://doi.acm.org/10.
1145/2594291.2594319. 8.3.13

[106] Justin Pombrio and Shriram Krishnamurthi. Hygienic resugaring of compositional
desugaring. In ICFP, pages 75–87, 2015. URL http://doi.acm.org/10.1145/
2784731.2784755. 8.3.13

[107] Jon Rafkind and Matthew Flatt. Honu: syntactic extension for algebraic nota-
tion through enforestation. In Generative Programming and Component Engineer-
ing (GPCE), pages 122–131, 2012. URL http://doi.acm.org/10.1145/2371401.
2371420. 2.4.6

[108] J. C. Reynolds. GEDANKEN - a simple typless language based on the principle of
completeness and reference concept. Comm. A.C.M., 13(5), May 1970. 2

[109] J C Reynolds. Types, abstraction and parametric polymorphism. In IFIP Congress.
September 1983. 5

[110] Nico Ritschel and Sebastian Erdweg. Modular capture avoidance for program trans-
formations. In SLE, 2015. URL http://dl.acm.org/citation.cfm?id=2814251.
2.4.8, 2.4.8

[111] August Schwerdfeger. Context-aware scanning and determinism-preserving grammar
composition, in theory and practice. PhD thesis, University of Minnesota, 2010. 1.2.1,
2.4.8, 2.4.8, 2.4.8, 1

[112] August Schwerdfeger and Eric Van Wyk. Verifiable composition of deterministic
grammars. In PLDI, 2009. URL http://doi.acm.org/10.1145/1542476.1542499.
1.2.1, 2.4.8, 2.4.8, 2.4.8, 1

[113] Dana Scott. Lambda calculus: some models, some philosophy. Studies in Logic and
the Foundations of Mathematics, 101:223–265, 1980. 8.3.2

[114] Denys Shabalin, Eugene Burmako, and Martin Odersky. Quasiquotes for Scala.
Technical Report EPFL-REPORT-185242, 2013. 1.1.2, 6.2.1

[115] Tim Sheard. Using MetaML: A staged programming language. Lecture Notes in
Computer Science, 1608, 1999. 3, 2.4.10

[116] Tim Sheard and Nathan Linger. Programming in Omega. In Central European Func-
tional Programming School, Second Summer School (CEFP), Romania, June 23-30, 2007,
Revised Selected Lectures, pages 158–227, 2007. doi: 10.1007/978-3-540-88059-2_5.
URL http://dx.doi.org/10.1007/978-3-540-88059-2_5. 2.4.1

[117] Tim Sheard and Simon Peyton Jones. Template meta-programming for Haskell. In
Haskell Workshop, 2002. 2.4.10, 2.4.10

[118] Erik Silkensen and Jeremy G. Siek. Well-typed islands parse faster. In
Trends in Functional Programming, 2012. URL http://dx.doi.org/10.1007/
978-3-642-40447-4_5. 2.4.8

[119] Konrad Slind. Object language embedding in Standard ML of New-Jersey. In
ICFP, 1991. 2.4.2

282

http://doi.acm.org/10.1145/2594291.2594319
http://doi.acm.org/10.1145/2594291.2594319
http://doi.acm.org/10.1145/2784731.2784755
http://doi.acm.org/10.1145/2784731.2784755
http://doi.acm.org/10.1145/2371401.2371420
http://doi.acm.org/10.1145/2371401.2371420
http://dl.acm.org/citation.cfm?id=2814251
http://doi.acm.org/10.1145/1542476.1542499
http://dx.doi.org/10.1007/978-3-540-88059-2_5
http://dx.doi.org/10.1007/978-3-642-40447-4_5
http://dx.doi.org/10.1007/978-3-642-40447-4_5

[120] SML/NJ Documentation. The Visible Compiler. http://www.smlnj.org/doc/
Compiler/pages/compiler.html. 3.1.2

[121] Eric Spishak, Werner Dietl, and Michael D Ernst. A type system for regular
expressions. In Workshop on Formal Techniques for Java-like Programs (FTfJP), 2012. 4

[122] Andreas Stefik and Susanna Siebert. An empirical investigation into programming
language syntax. TOCE, 13(4):19, 2013. URL http://doi.acm.org/10.1145/
2534973. 2.2

[123] Christopher A Stone and Robert Harper. Extensional equivalence and singleton
types. ACM Transactions on Computational Logic (TOCL), 7(4):676–722, 2006. 5.2.2

[124] Don Syme, Adam Granicz, and Antonio Cisternino. Expert F# 3.0. Apress, 2012.
1.1.2

[125] Walid Taha. Multi-Stage Programming: Its Theory and Applications. PhD thesis,
Oregon Graduate Institute of Science and Technology, 1999. 6.1

[126] Walid Taha and Patricia Johann. Staged notational definitions. In GPCE, 2003. URL
http://dx.doi.org/10.1007/978-3-540-39815-8_6. 2.4.4

[127] D. R. Tarditi and A. W. Appel. ML-Yacc, Version 2.0 Documentation, 1990. 2.4.5

[128] Tim Teitelbaum and Thomas Reps. The Cornell Program Synthesizer: A Syntax-
directed Programming Environment. Commun. ACM, 24(9):563–573, 1981. 2.4.8,
8.3.14

[129] Ken Thompson. Programming techniques: Regular expression search algorithm.
Commun. ACM, 11(6):419–422, June 1968. URL http://doi.acm.org/10.1145/
363347.363387. 2.3.2

[130] Mark van den Brand and Eelco Visser. Generation of formatters for context-
free languages. ACM Trans. Softw. Eng. Methodol., 5(1):1–41, 1996. URL http:
//doi.acm.org/10.1145/226155.226156. 8.3.13

[131] Arie van Deursen, Paul Klint, and Frank Tip. Origin tracking. J. Symb. Com-
put., pages 523–545, 1993. URL http://dx.doi.org/10.1016/S0747-7171(06)
80004-0. 3.1.2

[132] E. Visser. Stratego: A language for program transformation based on rewriting
strategies (system description). In Rewriting Techniques and Applications, 2001. 2.4.5

[133] Markus Voelter, Janet Siegmund, Thorsten Berger, and Bernd Kolb. Towards
User-Friendly Projectional Editors. In International Conference on Software Language
Engineering (SLE), 2014. 2.4.8

[134] W3C. XHTML 1.0 The Extensible HyperText Markup Language. 1, 2000. 1.2.1

[135] Martin P. Ward. Language-oriented programming. Software - Concepts and Tools, 15
(4):147–161, 1994. 1.2.1

[136] Arthur Whitney and Dennis Shasha. Lots o’ticks: Real time high performance time
series queries on billions of trades and quotes. SIGMOD Rec., 30(2):617–617, May
2001. ISSN 0163-5808. doi: 10.1145/376284.375783. URL http://doi.acm.org/10.

283

http://www.smlnj.org/doc/Compiler/pages/compiler.html
http://www.smlnj.org/doc/Compiler/pages/compiler.html
http://doi.acm.org/10.1145/2534973
http://doi.acm.org/10.1145/2534973
http://dx.doi.org/10.1007/978-3-540-39815-8_6
http://doi.acm.org/10.1145/363347.363387
http://doi.acm.org/10.1145/363347.363387
http://doi.acm.org/10.1145/226155.226156
http://doi.acm.org/10.1145/226155.226156
http://dx.doi.org/10.1016/S0747-7171(06)80004-0
http://dx.doi.org/10.1016/S0747-7171(06)80004-0
http://doi.acm.org/10.1145/376284.375783
http://doi.acm.org/10.1145/376284.375783
http://doi.acm.org/10.1145/376284.375783

1145/376284.375783. 1.2.1

[137] Jacob Wieland. Parsing Mixfix Expressions. PhD thesis, Technische Universitat
Berlin, 2009. 2.4.4

[138] Eric Van Wyk and August Schwerdfeger. Context-aware scanning for parsing ex-
tensible languages. In GPCE, 2007. URL http://doi.acm.org/10.1145/1289971.
1289983. 1.2.1, 1.2.1, 2.4.5, 2.4.8

[139] Jeremy Yallop and Leo White. Modular macros (extended abstract). In OCaml
Users and Developers Workshop, 2015. 6.3

284

http://doi.acm.org/10.1145/376284.375783
http://doi.acm.org/10.1145/376284.375783
http://doi.acm.org/10.1145/376284.375783
http://doi.acm.org/10.1145/1289971.1289983
http://doi.acm.org/10.1145/1289971.1289983

	1 Introduction
	1.1 Motivation
	1.1.1 Informal Mathematical Practice
	1.1.2 Derived Forms in General-Purpose Languages

	1.2 Existing Mechanisms of Syntactic Control
	1.2.1 Syntax Dialects
	1.2.2 Term Rewriting Systems

	1.3 Contributions
	1.3.1 Outline
	1.3.2 Thesis Statement

	1.4 VerseML
	1.5 Disclaimers

	2 Background
	2.1 Preliminaries
	2.2 Cognitive Cost
	2.3 Motivating Definitions
	2.3.1 Lists
	2.3.2 Regular Expressions

	2.4 Existing Approaches
	2.4.1 Standard Abstraction Mechanisms
	2.4.2 Dynamic Quotation Parsing
	2.4.3 Fixity Directives
	2.4.4 Mixfix Syntax Definitions
	2.4.5 Grammar-Based Syntax Definition Systems
	2.4.6 Parser Combinator Systems
	2.4.7 Examples of Syntax Dialects
	2.4.8 Problems with Syntax Dialects
	2.4.9 Non-Local Term Rewriting Systems
	2.4.10 Term-Rewriting Macro Systems

	3 Simple Expression TLMs (seTLMs)
	3.1 Simple Expression TLMs By Example
	3.1.1 TLM Application
	3.1.2 TLM Definitions
	3.1.3 Splicing
	3.1.4 Segmentations
	3.1.5 Proto-Expansion Validation
	3.1.6 Final Expansion
	3.1.7 Comparison to the Dialect-Oriented Approach

	3.2 miniVerseSE
	3.2.1 Overview
	3.2.2 Syntax of the Expanded Language
	3.2.3 Statics of the Expanded Language
	3.2.4 Structural Dynamics
	3.2.5 Syntax of the Unexpanded Language
	3.2.6 Typed Expansion
	3.2.7 seTLM Definitions
	3.2.8 seTLM Application
	3.2.9 Syntax of Proto-Expansions
	3.2.10 Proto-Expansion Validation
	3.2.11 Metatheory

	4 Simple Pattern TLMs (spTLMs)
	4.1 Simple Pattern TLMs By Example
	4.1.1 Usage
	4.1.2 Definition
	4.1.3 Splicing
	4.1.4 Segmentations
	4.1.5 Proto-Expansion Validation
	4.1.6 Final Expansion

	4.2 miniVerseU
	4.2.1 Syntax of the Expanded Language
	4.2.2 Statics of the Expanded Language
	4.2.3 Structural Dynamics
	4.2.4 Syntax of the Unexpanded Language
	4.2.5 Typed Expansion
	4.2.6 spTLM Definition
	4.2.7 spTLM Application
	4.2.8 Syntax of Proto-Expansions
	4.2.9 Proto-Expansion Validation
	4.2.10 Metatheory

	5 Parametric TLMs (pTLMs)
	5.1 Parametric TLMs By Example
	5.1.1 Type Parameters
	5.1.2 Module Parameters

	5.2 miniVerseP
	5.2.1 Syntax of the Expanded Language (XL)
	5.2.2 Statics of the Expanded Language
	5.2.3 Structural Dynamics
	5.2.4 Syntax of the Unexpanded Language
	5.2.5 Typed Expansion
	5.2.6 TLM Definitions
	5.2.7 TLM Abbreviations
	5.2.8 TLM Application
	5.2.9 Syntax of Proto-Expansions
	5.2.10 Proto-Expansion Validation
	5.2.11 Metatheory

	6 Static Evaluation
	6.1 Static Values
	6.2 Applying TLMs Within TLM Definitions
	6.2.1 Quasiquotation
	6.2.2 Grammar-Based Parser Generators

	6.3 Library Management
	6.4 miniVersePH
	6.4.1 Syntax of Unexpanded Modules
	6.4.2 Module Expansion
	6.4.3 Metatheory

	7 TLM Implicits
	7.1 TLM Implicits By Example
	7.1.1 Designation and Usage
	7.1.2 Analytic and Synthetic Positions

	7.2 Bidirectional miniVerseS
	7.2.1 Expanded Language
	7.2.2 Syntax of the Unexpanded Language
	7.2.3 Bidirectionally Typed Expansion
	7.2.4 Bidirectional Proto-Expansion Validation
	7.2.5 Metatheory

	7.3 Parametric TLM Implicits

	8 Discussion & Conclusion
	8.1 Summary of Contributions
	8.2 Summary of Related Work
	8.3 Limitations & Future Research Directions
	8.3.1 Integration Into a Full-Scale Functional Language Definition
	8.3.2 Integration Into Languages From Other Design Traditions
	8.3.3 Constraint-Based Type Inference
	8.3.4 Module Expression Syntax Macros
	8.3.5 Parameterized Implicit Designations
	8.3.6 Exportable Implicit Designations
	8.3.7 Controlled Capture
	8.3.8 Type-Aware Splicing
	8.3.9 TLM Application in Proto-Expansions
	8.3.10 Mechanically Reasoning About Parse Functions
	8.3.11 Refactoring Unexpanded Terms
	8.3.12 Integration with Editor Services
	8.3.13 Pretty Printing
	8.3.14 Structure Editing

	8.4 Concluding Remarks

	LaTeX Source Code and Updates
	A Conventions
	A.1 Typographic Conventions

	B miniVerseSE and miniVerseS
	B.1 Expanded Language (XL)
	B.1.1 Syntax
	B.1.2 Statics
	B.1.3 Structural Dynamics

	B.2 Unexpanded Language (UL)
	B.2.1 Syntax
	B.2.2 Type Expansion
	B.2.3 Typed Expression Expansion

	B.3 Proto-Expansion Validation
	B.3.1 Syntax of Proto-Expansions
	B.3.2 Proto-Type Validation
	B.3.3 Proto-Expression Validation
	B.3.4 Proto-Pattern Validation

	B.4 Metatheory
	B.4.1 Type Expansion
	B.4.2 Typed Pattern Expansion
	B.4.3 Typed Expression Expansion
	B.4.4 Abstract Reasoning Principles

	C miniVerseP
	C.1 Expanded Language (XL)
	C.1.1 Syntax
	C.1.2 Statics
	C.1.3 Structural Dynamics

	C.2 Unexpanded Language (UL)
	C.2.1 Syntax
	C.2.2 Typed Expansion

	C.3 Proto-Expansion Validation
	C.3.1 Syntax of Proto-Expansions
	C.3.2 Deparameterization
	C.3.3 Proto-Expansion Validation

	C.4 Metatheory
	C.4.1 TLM Expressions
	C.4.2 Typed Expansion
	C.4.3 Abstract Reasoning Principles

	D Bidirectional miniVerseS
	D.1 Expanded Language (XL)
	D.2 Unexpanded Language (UL)
	D.2.1 Syntax
	D.2.2 Bidirectionally Typed Expansion

	D.3 Proto-Expansion Validation
	D.3.1 Syntax of Proto-Expansions
	D.3.2 Proto-Expansion Validation

	D.4 Metatheory
	D.4.1 Typed Pattern Expansion
	D.4.2 Typed Expression and Rule Expansion
	D.4.3 Abstract Reasoning Principles

	Bibliography

