Reasonably Programmable Syntax

Cyrus Omar THESIS COMMITTEE
Jonathan Aldrich, Chair
Robert Harper
Karl Crary
Eric Van Wyk (University of Minnesota)

Computer Science Department
Carnegie Mellon University

Thesis Defense, Mar. 9, 2017

Hey everyone, thanks for being here at my defense.

A - B cubus cubus aequabitur A cubo-cubus - 6 A quadrato-cubus in B + 15
A quad.quad. in Bquad. - 20 A cubus in Bcubum + 15A quadratum in B
quad.-quad - 6 A B quad.-cub. + B cubus-cubus

Francois Viete, In artem analyticem Isagoge (1591)

So | want to start with just a little bit of historical context. If you were a
mathematician in 1591, your writing would look like this — you'd have variables
like A and B — those had been around for a while — and you had notation for
addition and subtraction, that had been invented only about 50 years earlier, but
everything else, all the other operations and connectives in your mathematics

would be written out in full Latin sentences.

What you're looking at is actually an equation — it's the expansion of A— B to the
sixth power...

Now as you can imagine, as mathematicians started considering more sophisticated
structures, this style became unwieldy, and indeed today ...

A - B cubus cubus aequabitur A cubo-cubus - 6 A quadrato-cubus in B + 15
A quad.quad. in Bquad. - 20 A cubus in Bcubum + 15A quadratum in B
quad.-quad - 6 A B quad.-cub. + B cubus-cubus

(A-B)S =A% - 6A°B + 154" B? — 204*B® + 154°B' - 6AB* + B°.

Francois Viete, In artem analyticem Isagoge (1591)

... we would notate the same equation in this way. Using
additional notational conventions that you're surely familiar

with.

Fi6. 124.—Facsimile of manuseript of Leibniz, dated Oct. 29, 1675, in which
his sign of integration first appears. (Tuken from C. I Gerhardt's Briefucchsel
von G. W. Leibniz mit Mothemalkern [1899).)

Source: Wikimedia Commons. 6

This has become the usual thing — as mathematics advances, new notation follows.

Here a century later is Leibniz, who was a big fan of new notation, introducing the
now-familiar symbol for integration.

Cayley, A Memoir on the Theory of Matrices (1855)

This is Cayley with an early take on modern matrix notation. Still in it's awkward
teenage years.

There are many many more examples throughout modern mathematics and
science.

“Syntactic sugar” has emerged as a valuable tool for
communicating formal structures to humans.

And this practice of inventing specialized syntactic forms strictly to abbreviate
certain common idioms more concisely or somehow more suggestively has
continued to this day — it has emerged...

And | do want to emphasize that this is about humans. There’s the formal structure
itself, which you might think of Platonically, and then there is the drawing and this
too is a thing that you can also study and tweak. So keep that mind.

Now syntactic sugar is valuable not only in mathematical writing, but also in
programming.

Lists in Standard ML %

Cons (1, Cons(x, Cons(f(x), Cons(f(f(x)), Cons(f(f(x)), Nil)))))

So consider a general-purpose language like Standard ML where you can define a variety
of datatypes, for example the list datatype which defines two constructors, Nil and
Cons. You can string those together to form list expressions like this.

Semantically, this is great. But if you look at this as a drawing of a list, it's a bit
unsatisfying. In fact, if you'll allow me to be a little bit facetious, it should remind you a
bit of mathematics circa the 16" century where you have variables and numerals but
everything else is written out laboriously in words. So that’s unsatisfying. Fortunately,
the designers of Standard ML thought to include

Lists in Standard ML %

DERIVED FORM
[1, x, f(x), F(f(x))]

EXPANSION

Cons (1, Cons(x, Cons(f(x), Cons(f(f(x)), Cons(f(f(x)), Nil)))))

..derived forms for list expressions (and also list patterns, I'll get back to list patterns in a
moment.)in the textual syntax of the language. They look like that. A derived form is
given meaning not directly but by its expansion to the basic forms, where you explicitly
apply the constructors.

10

HTML %

fun greet(name : string) =>
H1Element (NoAttributes, Seq(
TextNode(“Welcome back, “), TextNode(name)))

Now of course the list datatype is semantically ordinary. The designers of the
language could also have given the same treatment to other datatypes and in
fact some other languages do. For example, consider a datatype encoding HTML
elements.

You might have constructors like H1Element and TextNode and so on, and this gets
pretty laborious if you're writing programs for the web. Moreover, there is a
standardized syntax for HTML that people have for various reasons achieved
consensus around

11

HTML

USING DERIVED FORMS

fun greet(name : string) =>
<h1l>Welcome back, <[name]></hl>

EXPANDED

fun greet(name : string) =>
H1Element (NoAttributes, Seq(
TextNode(“Welcome back, “), TextNode(name)))

So maybe you'd like derived syntax for expressions of this HTML element type,
based on the standardized syntax for HTML extended, because we're
programmatically generating HTML, with some forms for splicing in expressions

of various types.

For example, here we have a spliced string form, and that means that, in the
corresponding part of the expansion, that spliced expression of string type

appears wrapped in a text node constructor.

12

HTML Patterns %

USING DERIVED FORMS

fun children_of_heading(elem : html_element) =>
match elem with

<hl><{x}></h1l> => Some X

<h2><{x}></h2> => Some x

<h3><{x}></h3> => Some x

<h4><{x}></h4> => Some x

<h5><{x}></h5> => Some x

<h6><{x}></h6> => Some x

| _=>None

end

Similarly with patterns matching values of type html_element.

So, there are languages that support such things. For example, Adam Chlipala's
Ur/Web.

But now we’ve gotta return to this observation that these two datatypes are quite
ordinary

13

Many More Possibilities

* Lists, sets, maps, vectors, matrices, ...

* Regular expressions, SQL, other query languages
/AT{any dna base}GC/

* Dates, times, URLs, paths, ...
“http://example.com:{my_port}/server’

* Quasiquotation, object language syntax, grammars
* Mathematical and scientific notations (e.g. SMILE)

‘C=C-{{benzene}}

There are actually lots of examples like this...

15

Large Languages %

e

Library D Language . Syntactic Sugar

So if we take this approach where the language designer is going to decide a priori
which constructs to privilege with derived forms, then the language and the
standard library it is codefined with is going to start getting pretty large. And that
means that alternative library designs will be at a distinct disadvantage as well.

16

Large Languages

This is clearly unsustainable.

Library . Language . Syntactic Sugar

17

A Better Approach: Programmable Syntax :‘}g

.
A
@

Library D Language . Syntactic Sugar

A better approach is to design a language with programmable
syntax, meaning that it gives library provider the ability to
define syntactic sugar themselves, by some mechanism.

19

Direct Syntax Extension %

rx, html, json, kdb, list, xml

fun greet(name : string) => <hl>Hello, <[name]></hl>

So there have been some number of proposed mechanisms.

The most direct of these simply give library providers the ability
to extend the context free grammar of the language with new
derived forms.

And | want to actually talk about these first, because the
problems with this approach are really what motivate my
work.

20

Direct Syntax Extension %
SugarJ, SugarHaskell [Erdweg et al, 2011; 2013]

rx, html, json, kdb, list, xml

fun greet(name : string) => <hl>Hello, <[name]></hl>

So first let’s talk about a system that takes this direct syntax
extension approach to its extreme, and that’s the work by
Sebastian Erdweg and colleagues on SugarJ and
subsequent variations like SugarHaskell and others.

When you're using system, you can come across a function

greet that takes a string, name,
And then it uses what is apparently HTML syntax, like we've
talked about, installed by one of these libraries.

21

Direct Syntax Extension

rx, html, json, kdb, list, xml

fun greet(name : string) => <hl>Hello, <[name]></hl>

And here’s the first problem —

22

22

Direct Syntax Extension ;g

rx, html, json, kdb, list, xml

fun greet(name : string) => <hl>Hello, <[name]></hl>

R .
P "ﬁ.; ’ L] Responsibility: Where is this form defined?
i A)

how do we determine which library, and where within it, is
responsible for this form?

In fact, there is no clear protocol for doing that.

23

Direct Syntax Extension :%g

rx, html, json, kdb, list, xml

fun greet(name : string) => <hl>Hello, <[name]></hl>

!g | Responsibility: Where is this form defined?
4 3 Determinism: Can there be syntactic conflicts?

Even worse, it may be the case that multiple libraries attempted to
install this form, creating a conflict. Here you might have noticed that
there is both an html and xml library that was imported, for whatever
reason who cares.

So this is already quite problematic if you're trying to do “programming
in the large”, meaning that you’re using a variety of independently
developed libraries.

24

Direct Syntax Extension ;%g

rx, html, json, kdb, list, xml

fun greet(name : string) => <hl>Hello, <[name]></hl>

: ‘ Responsibility: Where is this form defined?
Determinism: Can there be syntactic conflicts?
Segmentation: Where are the spliced terms?
s

But that's not all.

Another question that you might have is “where are these spliced
terms exactly?”

Here, I've primed you so you perhaps recall that name is a spliced
term but hl and Hello are not.

25

Direct Syntax Extension %

rx, html, json, kdb, list, xml

fun greet(name : string) => <hl>Hello, <[name]></hl>
let x = compute x()
let g = {(!R)@&{&/x!/:2_!x}"'!R}

o 4 Responsibility: Where is this form defined?
" e Yy = Determinism: Can there be syntactic conflicts?
g Segmentation: Where are the spliced terms?
0]
.

But consider another example,

we’ve done some computation, bound x,

And then used another piece of what is apparently user-defined
syntax.

Again, it's not clear who is responsible, and if there might conflicts, but
now its clearly unclear where the spliced terms are. Are those x’s in
there spliced terms? What about that R? Or that 27?

26

Direct Syntax Extension :%g

rx, html, json, kdb, list, xml

fun greet(name : string) => <hl>Hello, <[name]></hl>
let x = compute x()
let g = {(!R)@&{&/x!/:2_!x}"'!R}

b / 4 Responsibility: Where is this form defined?

| o A —
I ’?ﬁ B ‘?‘ Determinism: Can there be syntactic conflicts?
7 B 4
1;‘ q Seamentation: Where are the spliced terms?
f
4 73 5
E- gy Typing: What type does the expansion have?

AL cpn il

Alright well maybe we’ll punt on that for a moment and consider

another question: what type does the expansion have, i.e. here what
type will g have?

Unclear without looking at the expansion.
Compare that to the situation where you don’'t know what type x has.
Well, there is a clear protocol, you go follow the binding structure of

the language and find the type of compute x and that’s all you need
to know. You don’t need to look at the body of the function.

27

Direct Syntax Extension %

rx, html, json, kdb, list, xml

fun greet(name : string) => <hl>Hello, <[name]></hl>
let x = compute x()
let g = {(!R)@&{&/x!/:2_!x}"'!R}

. . 4 Responsibility: Where is this form defined?
a3

Determinism: Can there be syntactic conflicts?

| J‘.# - q Seamentation: Where are the spliced terms?
3 &' g Typing: What type does the expansion have?
i

Binding: Is the expansion context-dependent?

Which variables are in scope in spliced terms?

And speaking of binding structure, that again is quite important, particularly in
large programs where you have a large number of bindings.

Let’s consider again this HTML form up here. Is the expansion of this form
context independent, or might itmake some assumptions about what's
bound? For example, might it assume helper functions are in scope that we
don’t otherwise use?

Similarly, what about in spliced terms? For example, can we be sure that the
variable in this example actually refers to the function argument? Or might it
capture another binding that uses the same identifier from somewhere in the
expansion? That would certainly obscure the binding structure of the
language.

28

Direct Syntax Extension ;%g

rx, html, json, kdb, list, xml

fun greet(name : string) => <hl>Hello, <[name]></hl>
let x = compute x()
let g = {(!R)@&{&/x!/:2_!x}"'!R}

: ‘ Responsibility: Where is this form defined?
Determinism: Can there be syntactic conflicts?
Segmentation: Where are the spliced terms?

Typing: What type does the expansion have?

Binding: Is the expansion context-dependent?

Which variables are in scope in spliced terms?

So to summarize here, the problem is we can’t hold the expansion and
the logic that computes that expansion abstract if we want to reason
about basic things like this, answer basic questions like this. We're
missing abstract reasoning principles.

29

Direct Syntax Extension %
Lorenzen and Erdweg, 2013

rx, html, json, kdb, list, xml

fun greet(name : string) => <hl>Hello, <[name]></hl>
let x = compute x()
let g = {(!R)@&{&/x!/:2_!x}"'!R}

, . 4 Responsibility: Where is this form defined?
a3 -

Wﬁ) = Determinism: Can there be syntactic conflicts?

o 5 i :

B
"{‘

4
oL s

E: Segmentation: Where are the spliced terms?
‘L W Typing: What type does the expansion have?
¥ .

Binding: Is the expansion context-dependent?

Which variables are in scope in spliced terms?

There has been some work on addressing some of these problems in
clever ways. For example, in 2013 Lorenzen and Erdweg came up
with an interesting system where each new derived form comes
equipped a derived typing rule and the system attempts to
automatically prove the expansion logic sound, so that ends up
making it easier to reason about typing, at least if you're able to read
a full typing derivation — it's not always as simple as just reading off
an annotation.

30

Direct Syntax Extension %
Schwerdfeger and Van Wyk, 2009

rx, html, json, kdb, list, xml

fun greet(name : string) => #html <hl>Hello, <[name]></hl>
let x = compute x()
let g = #kquery {(!R)@&{&/x!/:2_!x}'!R}

e e e

Binding: Is the expansion context-dependent?

Which variables are in scope in spliced terms?

Work by Scwerdfeger and Van Wyk has looked at the problem of
determinsm and come up with a nice set of constraints on a class of
context-free grammars that allow you to modularly prove
determinism. The main constraint is that you have prefix each new
form with this marking terminal, and that they all be distinct, and
there are various clever mechanisms for dealing with that.

This maintains determinism and also helps you determinism
responsibility because each marking terminal is uniquely affiliated
with a syntax extension, but this mechanism doesn’t address these
other questions.

31

Direct Syntax Extension
Infix and mixfix systems, e.g. Griffin, 1988; Danielsson and Norell, 2008

rx, html, json, kdb, list, xml

fun greet(name : string) => <hl>Hello, <[name]></hl>
let x = compute x()

let g = {('R)@S{&/x!/:2 Ix}' IR}

Responsibility: Where is this form defined?

Determinism: Can there be syntactic conflicts?

Segmentation: Where are the spliced terms?

Typing: What type does the expansion have?

Binding: Is the expansion context-dependent?

Which variables are in scope in spliced terms?

32

Another class of systems are ...

X

32

Direct Syntax Extension
Infix and mixfix systems, e.g. Griffin, 1988; Danielsson and Norell, 2008

rx, html, json, kdb, list, xml

fun greet(name : string) => <hi>Hello—<fnamel></hi>
let x = compute x()
let q = RIS A2 xR}

Responsibility: Where is this form defined?

Determinism: Can there be syntactic conflicts?

Segmentation: Where are the spliced terms?
Typing: What type does the expansion have?

Binding: Is the expansion context-dependent?

Which variables are in scope in spliced terms?

33

There are a number of other systems

X

33

My thesis introduces... ;‘g

a language (in the ML tradition) with programmable syntax that
allows programmers (and their tools) to reason abstractly about
responsibility, determinism, segmentation, typing and binding.

o Determinism: Can there be syntactic conflicts?
Segmentation: Where are the spliced terms?
Wy

Typing: What type does the expansion have?

Binding: Is the expansion context-dependent?

Which variables are in scope in spliced terms?

So that motivates the work that I'm presenting here. My thesis

introduces a ... The level of syntactic control is comparable
to direct syntax extension systems.

34

Typed Literal Macros (TLMs)

rx, html, json, kdb, list, xml

fun greet(name : string) => $html ‘<hl>Hello, <[name]l></h1>"
let x = compute x()
let q = $kquery " (!'R)@&{&/x!/:2 !'x}'!R’

35

Here’s how it works (next slide)

35

Typed Literal Macros (TLMs) %

rx, html, json, kdb, list, xml

fun greet(name : string) => $html “<hl>Hello, <[name]></h1>"
let x = compute x()
let q = $kquery " (!'R)@&{&/x!/:2 !'x}'!R’

Generalized Literal Forms:

"body cannot contain an apostrophe’

‘body cannot contain a backtick®

[body cannot contain unmatched square
h

q brackets]
{body cannot contain an unmatche d curly brace}
/body cannot contain a forward slash/
\body cannot contain a backslash\

So the first thing we do is give up on the idea of actually extending the
grammar of the language. The grammar is fixed. However, in that
grammar are these forms that we call generalized literal forms,
which are syntactically very flexible.

36

Typed Literal Macros (TLMs) %

rx, html, json, kdb, list, xml

fun greet(name : string) => $html “<hl>Hello, <[name]></h1>"
let x = compute x()
let q = $kquery ' (!'R)@&{&/x!/:2 !'x}'!R’

Generalized literal form are given meaning by expansion at compile-
time, actually during the typing process, by the applied typed literal
macro (or TLM). TLM names are prefixed by $.

37

Typed Literal Macros (TLMs)

rx, html, json, kdb, list, xml
fun greet(name : string) => $html ‘<hl>Hello, <[name]></h1>"

let x = compute x()
let q = $kquery " (!'R)@&{&/x!/:2 !'x}'!IR’

typed expansion

\j
H1Element (NoAttributes,
Seq(TextNode(“Hello, “, TextNode(name))

38

Let’s take a look at the html example first.

38

Typed Literal Macros (TLMs) %

rx, html, json, kdb, list, xml

fun greet(name : string) => $html ‘<hl>Hello, <[name]></h1>"
let x = compute_ x()
let q = $kquery " (!R)@&{&/x!/:2_!x}"!R’

1 Y ‘ Responsibility: Where is this form defined?
=T &
o N Determinism: Can there be syntactic conflicts?

Now immediately that addresses a couple of problems. The applied
TLM is responsible. And there are no conflicts because the CFG is
not modified. Can reason modularly about syntactic determinism.

39

Typed Literal Macros (TLMs) ;g

rx, html, json, kdb, list, xml

fun greet(name : string) => $html ‘<hl>Hello, <[name]></h1>"
let x = compute x()
let q = $kquery " (!'R)@&{&/x!/:2 !'x}'!IR’

Responsibility: Where is this form defined?
Determinism: Can there be syntactic conflicts?
Segmentation: Where are the spliced terms?

What about the issue of reasoning about segmentation? That's
actually perhaps the most interesting bit of all this.

40

Typed Literal Macros (TLMs) %

rx, html, json, kdb, list, xml
fun greet(name : string) => $html “<hl>Hello, <[name]></h1>"

let x = compute x()
let q = $kquery " (!'R)@&{&/x!/:2 !'x}'!IR’

typed expansion

\J
H1Element (NoAttributes,
Seq(TextNode(“Hello, “, TextNode(name))

That requires us to consider typed expansion in more detail. In fact,
when performing typed expansion for a TSM application, we
proceed in two steps.

41

Typed Literal Macros (TLMs) }}g

rx, html, json, kdb, list, xml

fun greet(name : string) => $html ‘<hl>Hello, <[name]></h1>"
let x = compute x()
let q = $kquery " (!'R)@&{&/x!/:2 !'x}'!IR’
proto-expansion
generation

H1Element (NoAttributes,
Seq(TextNode “Hello, “, TextNode spliced<l4; 18; string>)

proto-expansion
validation

H1Element (NoAttributes,
Seq(TextNode “Hello, “, TextNode(name))

42

First the TSM generates a “proto-expansion”. Then we validate that.

What's a proto-expansion?

42

Typed Literal Macros (TLMs) %

rx, html, json, kdb, list, xml

fun greet(name : string) => $html ‘<hl>Hello, <[name]></h1>"
let x = compute x()
let q = $kquery " (!'R)@&{&/x!/:2 !'x}'!IR’
proto-expansion
generation

H1Element (NoAttributes,
Seq(TextNode “Hello, “, TextNode spliced<l4; 18; string>)

Check that a segmentation exists. proto-expansion
validation

H1Element (NoAttributes,
Seq(TextNode “Hello, “, TextNode(name))

43

An expansion, but with spliced segments represented abstractly by
location, rather than inserted directly. They must be disjoint.

Typed Literal Macros (TLMs) }}g

rx, html, json, kdb, list, xml
fun greet(name : string) => $html ‘<hl>Hello, <[name]></h1>"

let x = compute x()
let q = $kquery " (!'R)@&{&/x!/:2 !x}'!R" l

proto-expansion
generation

spliced<14; 18; string>

proto-expansion
validation

To communicate the segmentation itself, we need only reveal the
segmentation.

44

Using colors.

Typed Literal Macros (TLMs)

rx, html, json, kdb, list, xml

fun greet(name : string) => $html “<hl>Hello, <[name]></h1>"
let x = compute x()
let q = $kquery " (!'R)@&{&/x!/:2 !'x}'!IR’
proto-expansion
generation

spliced<14; 18; string>

proto-expansion
validation

45

45

Typed Literal Macros (TLMs) ;%g

rx, html, json, kdb, list, xml

fun greet(name : string) => $html ‘<hl>Hello, <[name]></h1>"
let x = compute x()
let q = $kquery " (!R)@&{&/x!/:2_!x}"'IR"

Responsibility: Where is this form defined?

Determinism: Can there be syntactic conflicts?

Segmentation: Where are the spliced terms?

46

So that addresses this problem of segmentation. Now...

46

Typed Literal Macros (TLMs)

rx, html, json, kdb, list, xml

fun greet(name : string) => $html ‘<hl>Hello, <[name]></h1>"
let x = compute x()
let q = $kquery " (!R)@&{&/x!/:2_!x}"'IR"

F

Responsibility: Where is this form defined?

Determinism: Can there be syntactic conflicts?

Segmentation: Where are the spliced terms?
Typing: What type does the expansion have?

47

What about typing?

47

Typed Literal Macros (TLMs) ;g

syntax $html at html_element by
static fn(body : body) : parse result(proto _expr) =>
(* o)
end
4
rx, html, json, kdb, list, xml

fun greet(name : string) => $html “<hl>Hello, <[name]></h1>"
let x = compute x()

let q = $kquery ' (!R)@&{&/x!/:2 !x}'IR"

Responsibility: Where is this form defined?

Determinism: Can there be syntactic conflicts?

Segmentation: Where are the spliced terms?

Typing: What type does the expansion have?

48

For that, let’s actually look at a TLM definition. Notice that it has a type
annotation!

Typed Literal Macros (TLMs) }}S

syntax $html at html_element by
static fn(body : body) : parse result(proto _expr) =>
(* o)
end
4

rx, html, json, kdb, list, xml
fun greet(name : string) => $html “<hl>Hello, <[name]></h1>"

let x = compute x()
let q = $kquery " (!'R)@&{&/x!/:2 !x}'!R" l

proto-expansion
generation

H1Element (NoAttributes,
Seq(TextNode “Hello, “, TextNode spliced<l4; 18; string>)

Typecheck proto-expansion, proto-expansion
and all spliced terms. validation

H1Element (NoAttributes,
Seq(TextNode “Hello, “, TextNode(name))

Proto-expansion validation checks the expansion against that
annotation, and also checks spliced segments against
corresponding type annotation. That means you can reason
abstractly about types — you need not examine the full expansion,
but rather only the annotations.

Finally, ...

Typed Literal Macros (TLMs)

syntax $html at html_element by
static fn(body : body) : parse result(proto _expr) =>
* *

()
end
4

rx, html, json, kdb, list, xml

fun greet(name : string) => $html ‘<hl>Hello, <[name]></h1>"
let x = compute x()
let q = $kquery " (!R)@&{&/x!/:2_!x}"'IR"

Responsibility: Where is this form defined?

Determinism: Can there be syntactic conflicts?

Segmentation: Where are the spliced terms?
Typing: What type does the expansion have?

50

50

Typed Literal Macros (TLMs)

rx, html, json, kdb, list, xml

fun greet(name :

string) => $html “<hl>Hello, <[name]></hl>"

let x = compute x()
let q = $kquery " (!R)@&{&/x!/:2_!x}"'IR"

What about binding?

Responsibility: Where is this form defined?

Determinism: Can there be syntactic conflicts?

Segmentation: Where are the spliced terms?

Typing: What type does the expansion have?

Binding: Is the expansion context-dependent?
Which variables are in scope in spliced terms? 51

51

Typed Literal Macros (TLMs) ;‘}5

rx, html, json, kdb, list, xml

fun greet(name : string) => $html “<hl>Hello, <[name]></h1>"
let x = compute x()
let q = $kquery " (!'R)@&{&/x!/:2 !'x}'!IR’
proto-expansion
generation

H1Element (NoAttributes,
Seq(TextNode “Hello, “, TextNode spliced<l4; 18; string>)

Enforce context-independence. proto-expansion
validation

H1Element (NoAttributes,
Seq(TextNode “Hello, “, TextNode(name))

52

Again, proto-expansion validation to the rescue. Here, we enforce a

very strong hygienic binding discipline.

52

Typed Literal Macros (TLMs) ;‘}5

rx, html, json, kdb, list, xml
fun greet(name : string) => $html “<hl>Hello, <[name]></h1>"

let x = compute x()
let q = $kquery " (!'R)@&{&/x!/:2 !'x}'!IR’
proto-expansion
generation

helper(NoAttributes,
Seq(TextNode “Hello, “, TextNode spliced<l4; 18; string>)

Enforce context-independence. proto-expansion
validation

X

If you aren’t context-independent, validation fails. (Parametric TLMs,
introduced shortly, allow you to use helpers in a hygienic manner.)

Typed Literal Macros (TLMs) 3},5

rx, html, json, kdb, list, xml

fun greet(name : string) => $html “<hl>Hello, <[name]></h1>"
let x = compute x()
let q = $kquery " (!'R)@&{&/x!/:2 !'x}'!IR’

proto-expansion

generation
let name = .. in H1Element(NoAttributes,
Seq(TextNode “Hello, “, TextNode spliced<l4; 18; string>)
Avoid capture. proto-expansion
validation
let name’ = .. in HlElement(NoAttributes,

Seq(TextNode “Hello, “, TextNode(name))

It also avoids capture of bindings in the expansion by the spliced
segments.

54

Typed Literal Macros (TLMs)

rx, html, json, kdb, list, xml

fun greet(name : string) => $html “<hl>Hello, <[name]></h1>"
let x = compute x()

let q = $kquery ' (!R)@&{&/x!/:2 !x}'IR"

Responsibility: Where is this form defined?

Determinism: Can there be syntactic conflicts?

Segmentation: Where are the spliced terms?
Typing: What type does the expansion have?

o 4 >.
) Binding: Is the expansion context-dependent?
RS ol Which variables are in scope in spliced terms? s
R s

So that’s it, we’'ve recovered all these nice reasoning principles in a

setting with high syntactic control.

55

Typed Literal Macros (TLMs) ;g

rx, html, json, kdb, list, xml

fun greet(name : string) => $html “<hl>Hello, <[name]></h1>"
let x = compute x()

let q = $kquery ' (!R)@&{&/x!/:2 !x}'IR"

[cesoniy vnereis st genecy
:

Binding: Is the expansion context-dependent?

Which variables are in scope in spliced terms? 56

We can communicate the necessary information using secondary

notation in a straightforward way. The full expansion can be held
abstract.

56

miniVerse :‘g

Unexpanded expression
Vo PaN
Al Fgé~e:T
A L]
'T e e .

Here is just a taste of the semantics. Typed expansion from an
unexpanded language (where literal bodies remain
unparsed) to an expanded language, where no literals
remain.

57

miniVerse

Theorem B.31 (seTSM Abstract Reasoning Principles). If (D;A) (G;T) by @ ‘b* ~e: T

then:

. (Typing) ¥ = ¥',a ~ a — setsm(T; eparse) and AT e : T

. b \Body Chody

. €parse(€pody) | inj[SuccessE] (eproto)

. €proto TPrExpr €

. (Segmentation) seg(¢) segments b

. summary(e) = {splicedt[m; ni]}o<i<n, U {splicede[m;; n;; T to<i<n,

. (Typing 2) {(D;A) + parseUTyp(subseq(b; mj;n})) ~+ T typeto<icn, and {A F

—_

NG R W N

© %

=

All of those reasoning principles — the green bubbles — | talked

T type}0§i<nl}/

. (Typing 3) {@ HPA0Y 4 v 1 typeocicp, and {A 1 T typetocicey,
. (Typing 4) {(D;A) (G;T) by parseUExp(subseq(b;m;n;)) ~ e @ Tihocicn,, and

{ATF et Ti}o<icn,

. (Capture Avoidance) e = [{T//ti}o<icn,, {€i/ Xi}o<icne,)e' for some {ti}o<icn, and

{Xi}ogi\»;”(,x‘, and e

. (Context Independence) fu(e') C {t; }o<icmy, U{Xi}o<icnn,

about are formally established.

58

X

58

Pattern TLMs %

fun heading_body(elem : html_element) =>
match elem with
| $html “<hl><{x}></h1>" => Some Xx
| $html “<h2><{x}></h2>" => Some Xx
| $html ‘<h3><{x}></h3>" => Some x
| $html “<hd><{x}></h4>" => Some X
| $html “<h5><{x}></h5>" => Some X
| $html “<h6><{x}></h6>" => Some X
| => None
e

nd

59

The thesis talks not just about expression TLMs, but also
pattern TLMs.

Pattern TLMs

fun heading_body(elem : html_element) =>
match elem using $html with

| “<hl><{x}></h1>" => Some Xx
| “<h2><{x}></h2>" => Some X
| “<h3><{x}></h3>" => Some X
| “<hd><{x}></h4>" => Some X
| <h5><{x}></h5>" => Some X
| <h6><{x}></h6>" => Some X
| _ => None

end

More conveniently..

60

60

Parametric TLMs %

signature DICT = sig
type t(‘a)
val empty : t(‘a)
val extend : t(‘a) - ‘a - t(‘a)
(* . %)
end

syntax $dict (D : DICT) ‘a at D.t(‘a) by (* .. *) end

And also addresses the problem of defining TLMs not just at
one type but over type- and module-parameterized families
of types, like you might have in ML. This also makes it easier
to deal with the context-independence constraint — you can
pass in helper functions via modules.

61

Parametric TLMs

signature DICT = sig
type t(‘a)
val empty : t(‘a)
val extend : t(‘a) - ‘a - t(‘a)
(* . %)
end

syntax $dict (D : DICT) ‘a at D.t(‘a) by (* .. *) end
module HashDict : DICT = (* .. *)

$dict HashDict int {keyl - value, key2 - value2}

62

62

Parametric TLMs 3}5

signature DICT = sig
type t(‘a)
val empty : t(‘a)
val extend : t(‘a) - ‘a - t(‘a)
(* . %)
end

syntax $dict (D : DICT) ‘a at D.t(‘a) by (* .. *) end
module HashDict : DICT = (* .. *)
let syntax $d = $dict HashDict in

$d int {keyl - value, key2 - value2}
end

63

You can partially apply parameters to make things more convenient.

63

TLM Implicits E

implicit syntax $html i
heading_body (" <hl>Hello { me}</h1>")

Finally, for small literal bodies and frequently applied TLMs, we
can use a mechanism of TLM implicits defined in the
dissertation to further reduce syntactic cost.

64

My thesis introduces... ;‘}g

a language (in the ML tradition) with programmable syntax that
allows programmers (and their tools) to reason abstractly about
responsibility, determinism, segmentation, typing and binding.

Responsibility: Where is this form defined?
Determinism: Can there be syntactic conflicts?
Segmentation: Where are the spliced terms?

Typing: What type does the expansion have?

Binding: Is the expansion context-dependent?
Which variables are in scope in spliced terms?

So my thesis introduces a mechanism that allows
programmers to define new syntactic sugar while maintaing
the ability to reason abstractly, meaning without examining
the expansion itself, or the expansion logic, about these
things: responsibility, determinism, segmentation, typing and
binding.

65

Mechanisms of syntactic control 3}5

Direct Syntax Extension Typed Term-Rewriting Macros
v High level of syntactic control X Limited syntactic control
X Must reason about the expansion v Abstract reasoning principles

Typed Literal Macros (TLMs)
v High level of syntactic control
v Abstract reasoning principles

66

Here is again the comparison to the other two approaches.

66

Thank you!

<3

See the acknowledgments section of my dissertation itself for a
lot of nice words about a lot of nice people:

http://www.cs.cmu.edu/~comar/omar-thesis.pdf.

67

Dynamic String Parsing %

* Can’t evaluate expressions in patterns.

* Awkward at best to support flexible splicing.
X list_parse “{1, x, x+1, x+y}”
X list_parse "{A(1), A(x), A(x +1) = A(xs)}

* Parse errors are reported dynamically.

* Cost is incurred every time evaluation hits the
expression.

68

Bonus slide! Why can’t we just parse strings at run-time????

68

