
Reasonably Programmable Syntax
Cyrus Omar

Computer Science Department
Carnegie Mellon University

Thesis Defense, Mar. 9, 2017

THESIS COMMITTEE
Jonathan Aldrich, Chair

Robert Harper

Karl Crary

Eric Van Wyk (University of Minnesota)

Hey everyone, thanks for being here at my defense.

1

4Source: Wikimedia Commons.François Viète, In artem analyticem Isagoge (1591)

A − B cubus cubus aequabitur A cubo-cubus − 6 A quadrato-cubus in B + 15
A quad.quad. in B quad. − 20 A cubus in B cubum + 15A quadratum in B
quad.-quad − 6 A B quad.-cub. + B cubus-cubus

So I want to start with just a little bit of historical context. If you were a
mathematician in 1591, your writing would look like this – you’d have variables
like A and B – those had been around for a while – and you had notation for
addition and subtraction, that had been invented only about 50 years earlier, but
everything else, all the other operations and connectives in your mathematics
would be written out in full Latin sentences.

What you’re looking at is actually an equation – it’s the expansion of A – B to the
sixth power…

Now as you can imagine, as mathematicians started considering more sophisticated
structures, this style became unwieldy, and indeed today ...

4

5Source: Wikimedia Commons.François Viète, In artem analyticem Isagoge (1591)

A − B cubus cubus aequabitur A cubo-cubus − 6 A quadrato-cubus in B + 15
A quad.quad. in B quad. − 20 A cubus in B cubum + 15A quadratum in B
quad.-quad − 6 A B quad.-cub. + B cubus-cubus

... we would notate the same equation in this way. Using
additional notational conventions that you’re surely familiar
with.

5

6Source: Wikimedia Commons.

This has become the usual thing – as mathematics advances, new notation follows.

Here a century later is Leibniz, who was a big fan of new notation, introducing the
now-familiar symbol for integration.

6

7Cayley, A Memoir on the Theory of Matrices (1855)

This is Cayley with an early take on modern matrix notation. Still in it’s awkward
teenage years.

There are many many more examples throughout modern mathematics and
science.

7

8

“Syntactic sugar” has emerged as a valuable tool for
communicating formal structures to humans.

And this practice of inventing specialized syntactic forms strictly to abbreviate
certain common idioms more concisely or somehow more suggestively has
continued to this day – it has emerged…

And I do want to emphasize that this is about humans. There’s the formal structure
itself, which you might think of Platonically, and then there is the drawing and this
too is a thing that you can also study and tweak. So keep that mind.

Now syntactic sugar is valuable not only in mathematical writing, but also in
programming.

8

9

Cons(1, Cons(x, Cons(f(x), Cons(f(f(x)), Cons(f(f(x)), Nil)))))

Lists in Standard ML

So consider a general-purpose language like Standard ML where you can define a variety
of datatypes, for example the list datatype which defines two constructors, Nil and
Cons. You can string those together to form list expressions like this.

Semantically, this is great. But if you look at this as a drawing of a list, it’s a bit
unsatisfying. In fact, if you’ll allow me to be a little bit facetious, it should remind you a
bit of mathematics circa the 16th century where you have variables and numerals but
everything else is written out laboriously in words. So that’s unsatisfying. Fortunately,
the designers of Standard ML thought to include

9

10

[1, x, f(x), f(f(x))]

DERIVED FORM

EXPANSION

Cons(1, Cons(x, Cons(f(x), Cons(f(f(x)), Cons(f(f(x)), Nil)))))

Lists in Standard ML

…derived forms for list expressions (and also list patterns, I’ll get back to list patterns in a
moment.)in the textual syntax of the language. They look like that. A derived form is
given meaning not directly but by its expansion to the basic forms, where you explicitly
apply the constructors.

10

11

fun greet(name : string) =>
 H1Element(NoAttributes, Seq(
 TextNode(“Welcome back, “), TextNode(name)))

HTML

Now of course the list datatype is semantically ordinary. The designers of the
language could also have given the same treatment to other datatypes and in
fact some other languages do. For example, consider a datatype encoding HTML
elements.

You might have constructors like H1Element and TextNode and so on, and this gets
pretty laborious if you’re writing programs for the web. Moreover, there is a
standardized syntax for HTML that people have for various reasons achieved
consensus around

11

12

fun greet(name : string) =>
 <h1>Welcome back, <[name]></h1>

USING DERIVED FORMS

EXPANDED

fun greet(name : string) =>
 H1Element(NoAttributes, Seq(
 TextNode(“Welcome back, “), TextNode(name)))

HTML

So maybe you’d like derived syntax for expressions of this HTML element type,
based on the standardized syntax for HTML extended, because we're
programmatically generating HTML, with some forms for splicing in expressions
of various types.

For example, here we have a spliced string form, and that means that, in the
corresponding part of the expansion, that spliced expression of string type
appears wrapped in a text node constructor.

12

13

fun children_of_heading(elem : html_element) =>
 match elem with
 | <h1><{x}></h1> => Some x
 | <h2><{x}></h2> => Some x
 | <h3><{x}></h3> => Some x
 | <h4><{x}></h4> => Some x
 | <h5><{x}></h5> => Some x
 | <h6><{x}></h6> => Some x
 | _ => None
 end

USING DERIVED FORMS

HTML Patterns

Similarly with patterns matching values of type html_element.

So, there are languages that support such things. For example, Adam Chlipala's
Ur/Web.

But now we’ve gotta return to this observation that these two datatypes are quite
ordinary

13

15

Many More Possibilities

● Lists, sets, maps, vectors, matrices, …

● Regular expressions, SQL, other query languages

/AT{any_dna_base}GC/

● Dates, times, URLs, paths, …

`http://example.com:{my_port}/server`

● Quasiquotation, object language syntax, grammars
● Mathematical and scientific notations (e.g. SMILE)

`C=C-{{benzene}}`

There are actually lots of examples like this…

15

16

Syntactic SugarLanguageLibrary

Large Languages

So if we take this approach where the language designer is going to decide a priori
which constructs to privilege with derived forms, then the language and the
standard library it is codefined with is going to start getting pretty large. And that
means that alternative library designs will be at a distinct disadvantage as well.

16

17

Syntactic SugarLanguageLibrary
UN
SU
ST
AI
NA
BL
E

Large Languages

This is clearly unsustainable.

17

19

LanguageLibrary

A Better Approach: Programmable Syntax

Syntactic Sugar

A better approach is to design a language with programmable
syntax, meaning that it gives library provider the ability to
define syntactic sugar themselves, by some mechanism.

19

20

fun greet(name : string) => <h1>Hello, <[name]></h1>

rx, html, json, kdb, list, xml

Direct Syntax Extension

So there have been some number of proposed mechanisms.

The most direct of these simply give library providers the ability
to extend the context free grammar of the language with new
derived forms.

And I want to actually talk about these first, because the
problems with this approach are really what motivate my
work.

20

21

fun greet(name : string) => <h1>Hello, <[name]></h1>

rx, html, json, kdb, list, xml

Direct Syntax Extension
SugarJ, SugarHaskell [Erdweg et al, 2011; 2013]

So first let’s talk about a system that takes this direct syntax
extension approach to its extreme, and that’s the work by
Sebastian Erdweg and colleagues on SugarJ and
subsequent variations like SugarHaskell and others.

When you’re using system, you can come across a function
greet that takes a string, name,

And then it uses what is apparently HTML syntax, like we’ve
talked about, installed by one of these libraries.

21

22

fun greet(name : string) => <h1>Hello, <[name]></h1>

rx, html, json, kdb, list, xml

Direct Syntax Extension

And here’s the first problem –

22

how do we determine which library, and where within it, is
responsible for this form?

In fact, there is no clear protocol for doing that.

23

fun greet(name : string) => <h1>Hello, <[name]></h1>

Responsibility: Where is this form defined?

rx, html, json, kdb, list, xml

Direct Syntax Extension

23

Even worse, it may be the case that multiple libraries attempted to
install this form, creating a conflict. Here you might have noticed that
there is both an html and xml library that was imported, for whatever
reason who cares.

So this is already quite problematic if you’re trying to do “programming
in the large”, meaning that you’re using a variety of independently
developed libraries.

24

fun greet(name : string) => <h1>Hello, <[name]></h1>

Responsibility: Where is this form defined?

Determinism: Can there be syntactic conflicts?

rx, html, json, kdb, list, xml

Direct Syntax Extension

24

But that’s not all.

Another question that you might have is “where are these spliced
terms exactly?”

Here, I’ve primed you so you perhaps recall that name is a spliced
term but h1 and Hello are not.

25

fun greet(name : string) => <h1>Hello, <[name]></h1>

Segmentation: Where are the spliced terms?

Responsibility: Where is this form defined?

Determinism: Can there be syntactic conflicts?

rx, html, json, kdb, list, xml

Direct Syntax Extension

25

But consider another example,

we’ve done some computation, bound x,
And then used another piece of what is apparently user-defined

syntax.
Again, it’s not clear who is responsible, and if there might conflicts, but

now its clearly unclear where the spliced terms are. Are those x’s in
there spliced terms? What about that R? Or that 2?

26

fun greet(name : string) => <h1>Hello, <[name]></h1>
let x = compute_x()
let q = {(!R)@&{&/x!/:2_!x}'!R}

Segmentation: Where are the spliced terms?

Responsibility: Where is this form defined?

Determinism: Can there be syntactic conflicts?

rx, html, json, kdb, list, xml

Direct Syntax Extension

26

Alright well maybe we’ll punt on that for a moment and consider
another question: what type does the expansion have, i.e. here what
type will q have?

Unclear without looking at the expansion.

Compare that to the situation where you don’t know what type x has.
Well, there is a clear protocol, you go follow the binding structure of
the language and find the type of compute_x and that’s all you need
to know. You don’t need to look at the body of the function.

27

fun greet(name : string) => <h1>Hello, <[name]></h1>
let x = compute_x()
let q = {(!R)@&{&/x!/:2_!x}'!R}

Typing: What type does the expansion have?

Segmentation: Where are the spliced terms?

Responsibility: Where is this form defined?

Determinism: Can there be syntactic conflicts?

rx, html, json, kdb, list, xml

Direct Syntax Extension

27

And speaking of binding structure, that again is quite important, particularly in
large programs where you have a large number of bindings.

Let’s consider again this HTML form up here. Is the expansion of this form
context independent, or might itmake some assumptions about what’s
bound? For example, might it assume helper functions are in scope that we
don’t otherwise use?

Similarly, what about in spliced terms? For example, can we be sure that the
variable in this example actually refers to the function argument? Or might it
capture another binding that uses the same identifier from somewhere in the
expansion? That would certainly obscure the binding structure of the
language.

Responsibility: Where is this form defined?

28

fun greet(name : string) => <h1>Hello, <[name]></h1>
let x = compute_x()
let q = {(!R)@&{&/x!/:2_!x}'!R}

Determinism: Can there be syntactic conflicts?

Typing: What type does the expansion have?

Binding: Is the expansion context-dependent?
Which variables are in scope in spliced terms?

Segmentation: Where are the spliced terms?

rx, html, json, kdb, list, xml

Direct Syntax Extension

28

So to summarize here, the problem is we can’t hold the expansion and
the logic that computes that expansion abstract if we want to reason
about basic things like this, answer basic questions like this. We’re
missing abstract reasoning principles.

Responsibility: Where is this form defined?

29

fun greet(name : string) => <h1>Hello, <[name]></h1>
let x = compute_x()
let q = {(!R)@&{&/x!/:2_!x}'!R}

Determinism: Can there be syntactic conflicts?

Typing: What type does the expansion have?

Binding: Is the expansion context-dependent?
Which variables are in scope in spliced terms?

Segmentation: Where are the spliced terms?

rx, html, json, kdb, list, xml

Direct Syntax Extension

29

There has been some work on addressing some of these problems in
clever ways. For example, in 2013 Lorenzen and Erdweg came up
with an interesting system where each new derived form comes
equipped a derived typing rule and the system attempts to
automatically prove the expansion logic sound, so that ends up
making it easier to reason about typing, at least if you’re able to read
a full typing derivation – it’s not always as simple as just reading off
an annotation.

30

fun greet(name : string) => <h1>Hello, <[name]></h1>
let x = compute_x()
let q = {(!R)@&{&/x!/:2_!x}'!R}

Binding: Is the expansion context-dependent?
Which variables are in scope in spliced terms?

Segmentation: Where are the spliced terms?

rx, html, json, kdb, list, xml

Direct Syntax Extension
Lorenzen and Erdweg, 2013

Responsibility: Where is this form defined?

Determinism: Can there be syntactic conflicts?

Typing: What type does the expansion have?

30

Work by Scwerdfeger and Van Wyk has looked at the problem of
determinsm and come up with a nice set of constraints on a class of
context-free grammars that allow you to modularly prove
determinism. The main constraint is that you have prefix each new
form with this marking terminal, and that they all be distinct, and
there are various clever mechanisms for dealing with that.

This maintains determinism and also helps you determinism
responsibility because each marking terminal is uniquely affiliated
with a syntax extension, but this mechanism doesn’t address these
other questions.

31

fun greet(name : string) => #html <h1>Hello, <[name]></h1>
let x = compute_x()
let q = #kquery {(!R)@&{&/x!/:2_!x}'!R}

Typing: What type does the expansion have?

Binding: Is the expansion context-dependent?
Which variables are in scope in spliced terms?

Segmentation: Where are the spliced terms?

rx, html, json, kdb, list, xml

Direct Syntax Extension

Determinism: Can there be syntactic conflicts?

Responsibility: Where is this form defined?

Schwerdfeger and Van Wyk, 2009

31

Another class of systems are ...

Responsibility: Where is this form defined?

32

fun greet(name : string) => <h1>Hello, <[name]></h1>
let x = compute_x()
let q = {(!R)@&{&/x!/:2_!x}'!R}

Determinism: Can there be syntactic conflicts?

Typing: What type does the expansion have?

Segmentation: Where are the spliced terms?

rx, html, json, kdb, list, xml

Direct Syntax Extension
Infix and mixfix systems, e.g. Griffin, 1988; Danielsson and Norell, 2008

Binding: Is the expansion context-dependent?
Which variables are in scope in spliced terms?

32

There are a number of other systems

Responsibility: Where is this form defined?

33

fun greet(name : string) => <h1>Hello, <[name]></h1>
let x = compute_x()
let q = {(!R)@&{&/x!/:2_!x}'!R}

Determinism: Can there be syntactic conflicts?

Typing: What type does the expansion have?

Segmentation: Where are the spliced terms?

rx, html, json, kdb, list, xml

Direct Syntax Extension
Infix and mixfix systems, e.g. Griffin, 1988; Danielsson and Norell, 2008

Binding: Is the expansion context-dependent?
Which variables are in scope in spliced terms?

33

34

My thesis introduces...

a language (in the ML tradition) with programmable syntax that
allows programmers (and their tools) to reason abstractly about
responsibility, determinism, segmentation, typing and binding.

Determinism: Can there be syntactic conflicts?

Responsibility: Where is this form defined?

Typing: What type does the expansion have?

Binding: Is the expansion context-dependent?
Which variables are in scope in spliced terms?

Segmentation: Where are the spliced terms?

So that motivates the work that I'm presenting here. My thesis
introduces a … The level of syntactic control is comparable
to direct syntax extension systems.

34

Here’s how it works (next slide)

35

fun greet(name : string) => $html `<h1>Hello, <[name]></h1>`
let x = compute_x()
let q = $kquery `(!R)@&{&/x!/:2_!x}'!R`

Typed Literal Macros (TLMs)

rx, html, json, kdb, list, xml

35

So the first thing we do is give up on the idea of actually extending the
grammar of the language. The grammar is fixed. However, in that
grammar are these forms that we call generalized literal forms,
which are syntactically very flexible.

36

fun greet(name : string) => $html `<h1>Hello, <[name]></h1>`
let x = compute_x()
let q = $kquery `(!R)@&{&/x!/:2_!x}'!R`

Typed Literal Macros (TLMs)

Generalized Literal Forms:

rx, html, json, kdb, list, xml

36

Generalized literal form are given meaning by expansion at compile-
time, actually during the typing process, by the applied typed literal
macro (or TLM). TLM names are prefixed by $.

37

fun greet(name : string) => $html `<h1>Hello, <[name]></h1>`
let x = compute_x()
let q = $kquery `(!R)@&{&/x!/:2_!x}'!R`

Typed Literal Macros (TLMs)

rx, html, json, kdb, list, xml

37

Let’s take a look at the html example first.

38

fun greet(name : string) => $html `<h1>Hello, <[name]></h1>`
let x = compute_x()
let q = $kquery `(!R)@&{&/x!/:2_!x}'!R`

Typed Literal Macros (TLMs)

rx, html, json, kdb, list, xml

H1Element(NoAttributes,
 Seq(TextNode(“Hello, “, TextNode(name))

typed expansion

38

Now immediately that addresses a couple of problems. The applied
TLM is responsible. And there are no conflicts because the CFG is
not modified. Can reason modularly about syntactic determinism.

39

fun greet(name : string) => $html `<h1>Hello, <[name]></h1>`
let x = compute_x()
let q = $kquery `(!R)@&{&/x!/:2_!x}'!R`

Typed Literal Macros (TLMs)

rx, html, json, kdb, list, xml

Determinism: Can there be syntactic conflicts?

Responsibility: Where is this form defined?

39

What about the issue of reasoning about segmentation? That’s
actually perhaps the most interesting bit of all this.

40

fun greet(name : string) => $html `<h1>Hello, <[name]></h1>`
let x = compute_x()
let q = $kquery `(!R)@&{&/x!/:2_!x}'!R`

Typed Literal Macros (TLMs)

rx, html, json, kdb, list, xml

Determinism: Can there be syntactic conflicts?

Responsibility: Where is this form defined?

Segmentation: Where are the spliced terms?

40

That requires us to consider typed expansion in more detail. In fact,
when performing typed expansion for a TSM application, we
proceed in two steps.

41

fun greet(name : string) => $html `<h1>Hello, <[name]></h1>`
let x = compute_x()
let q = $kquery `(!R)@&{&/x!/:2_!x}'!R`

Typed Literal Macros (TLMs)

rx, html, json, kdb, list, xml

H1Element(NoAttributes,
 Seq(TextNode(“Hello, “, TextNode(name))

typed expansion

41

First the TSM generates a “proto-expansion”. Then we validate that.

What’s a proto-expansion?

42

fun greet(name : string) => $html `<h1>Hello, <[name]></h1>`
let x = compute_x()
let q = $kquery `(!R)@&{&/x!/:2_!x}'!R`

Typed Literal Macros (TLMs)

rx, html, json, kdb, list, xml

proto-expansion
generation

H1Element(NoAttributes,
 Seq(TextNode “Hello, “, TextNode spliced<14; 18; string>)

H1Element(NoAttributes,
 Seq(TextNode “Hello, “, TextNode(name))

proto-expansion
validation

42

An expansion, but with spliced segments represented abstractly by
location, rather than inserted directly. They must be disjoint.

43

fun greet(name : string) => $html `<h1>Hello, <[name]></h1>`
let x = compute_x()
let q = $kquery `(!R)@&{&/x!/:2_!x}'!R`

Typed Literal Macros (TLMs)

rx, html, json, kdb, list, xml

proto-expansion
generation

H1Element(NoAttributes,
 Seq(TextNode “Hello, “, TextNode spliced<14; 18; string>)

H1Element(NoAttributes,
 Seq(TextNode “Hello, “, TextNode(name))

proto-expansion
validation

Check that a segmentation exists.

43

To communicate the segmentation itself, we need only reveal the
segmentation.

44

fun greet(name : string) => $html `<h1>Hello, <[name]></h1>`
let x = compute_x()
let q = $kquery `(!R)@&{&/x!/:2_!x}'!R`

Typed Literal Macros (TLMs)

rx, html, json, kdb, list, xml

proto-expansion
generation

H1Element(NoAttributes,
 Seq(TextNode “Hello, “, TextNode spliced<14; 18; string>)

H1Element(NoAttributes,
 Seq(TextNode “Hello, “, TextNode(name))

proto-expansion
validation

44

Using colors.

45

fun greet(name : string) => $html `<h1>Hello, <[name]></h1>`
let x = compute_x()
let q = $kquery `(!R)@&{&/x!/:2_!x}'!R`

Typed Literal Macros (TLMs)

rx, html, json, kdb, list, xml

proto-expansion
generation

H1Element(NoAttributes,
 Seq(TextNode “Hello, “, TextNode spliced<14; 18; string>)

H1Element(NoAttributes,
 Seq(TextNode “Hello, “, TextNode(name))

proto-expansion
validation

45

So that addresses this problem of segmentation. Now...

46

fun greet(name : string) => $html `<h1>Hello, <[name]></h1>`
let x = compute_x()
let q = $kquery `(!R)@&{&/x!/:2_!x}'!R`

Typed Literal Macros (TLMs)

rx, html, json, kdb, list, xml

Determinism: Can there be syntactic conflicts?

Responsibility: Where is this form defined?

Segmentation: Where are the spliced terms?

46

What about typing?

47

fun greet(name : string) => $html `<h1>Hello, <[name]></h1>`
let x = compute_x()
let q = $kquery `(!R)@&{&/x!/:2_!x}'!R`

Typed Literal Macros (TLMs)

rx, html, json, kdb, list, xml

Determinism: Can there be syntactic conflicts?

Responsibility: Where is this form defined?

Segmentation: Where are the spliced terms?

Typing: What type does the expansion have?

47

For that, let’s actually look at a TLM definition. Notice that it has a type
annotation!

48

fun greet(name : string) => $html `<h1>Hello, <[name]></h1>`
let x = compute_x()
let q = $kquery `(!R)@&{&/x!/:2_!x}'!R`

Typed Literal Macros (TLMs)

rx, html, json, kdb, list, xml

Determinism: Can there be syntactic conflicts?

Responsibility: Where is this form defined?

Segmentation: Where are the spliced terms?

Typing: What type does the expansion have?

syntax $html at html_element by
 static fn(body : body) : parse_result(proto_expr) =>
 (* … *)
end

48

Proto-expansion validation checks the expansion against that
annotation, and also checks spliced segments against
corresponding type annotation. That means you can reason
abstractly about types – you need not examine the full expansion,
but rather only the annotations.

49

fun greet(name : string) => $html `<h1>Hello, <[name]></h1>`
let x = compute_x()
let q = $kquery `(!R)@&{&/x!/:2_!x}'!R`

Typed Literal Macros (TLMs)

rx, html, json, kdb, list, xml

syntax $html at html_element by
 static fn(body : body) : parse_result(proto_expr) =>
 (* … *)
end

proto-expansion
generation

H1Element(NoAttributes,
 Seq(TextNode “Hello, “, TextNode spliced<14; 18; string>)

H1Element(NoAttributes,
 Seq(TextNode “Hello, “, TextNode(name))

proto-expansion
validation

Typecheck proto-expansion,
and all spliced terms.

49

Finally, ...

50

fun greet(name : string) => $html `<h1>Hello, <[name]></h1>`
let x = compute_x()
let q = $kquery `(!R)@&{&/x!/:2_!x}'!R`

Typed Literal Macros (TLMs)

rx, html, json, kdb, list, xml

Determinism: Can there be syntactic conflicts?

Responsibility: Where is this form defined?

Segmentation: Where are the spliced terms?

Typing: What type does the expansion have?

syntax $html at html_element by
 static fn(body : body) : parse_result(proto_expr) =>
 (* … *)
end

50

What about binding?

51

fun greet(name : string) => $html `<h1>Hello, <[name]></h1>`
let x = compute_x()
let q = $kquery `(!R)@&{&/x!/:2_!x}'!R`

Typed Literal Macros (TLMs)

rx, html, json, kdb, list, xml

Determinism: Can there be syntactic conflicts?

Responsibility: Where is this form defined?

Segmentation: Where are the spliced terms?

Typing: What type does the expansion have?

Binding: Is the expansion context-dependent?
Which variables are in scope in spliced terms?

51

Again, proto-expansion validation to the rescue. Here, we enforce a
very strong hygienic binding discipline.

52

fun greet(name : string) => $html `<h1>Hello, <[name]></h1>`
let x = compute_x()
let q = $kquery `(!R)@&{&/x!/:2_!x}'!R`

Typed Literal Macros (TLMs)

rx, html, json, kdb, list, xml

proto-expansion
generation

H1Element(NoAttributes,
 Seq(TextNode “Hello, “, TextNode spliced<14; 18; string>)

H1Element(NoAttributes,
 Seq(TextNode “Hello, “, TextNode(name))

proto-expansion
validation

Enforce context-independence.

52

If you aren’t context-independent, validation fails. (Parametric TLMs,
introduced shortly, allow you to use helpers in a hygienic manner.)

53

fun greet(name : string) => $html `<h1>Hello, <[name]></h1>`
let x = compute_x()
let q = $kquery `(!R)@&{&/x!/:2_!x}'!R`

Typed Literal Macros (TLMs)

rx, html, json, kdb, list, xml

proto-expansion
generation

helper(NoAttributes,
 Seq(TextNode “Hello, “, TextNode spliced<14; 18; string>)

proto-expansion
validation

Enforce context-independence.

X

53

It also avoids capture of bindings in the expansion by the spliced
segments.

54

fun greet(name : string) => $html `<h1>Hello, <[name]></h1>`
let x = compute_x()
let q = $kquery `(!R)@&{&/x!/:2_!x}'!R`

Typed Literal Macros (TLMs)

rx, html, json, kdb, list, xml

proto-expansion
generation

let name = … in H1Element(NoAttributes,
 Seq(TextNode “Hello, “, TextNode spliced<14; 18; string>)

let name’ = … in H1Element(NoAttributes,
 Seq(TextNode “Hello, “, TextNode(name))

proto-expansion
validation

Avoid capture.

54

So that’s it, we’ve recovered all these nice reasoning principles in a
setting with high syntactic control.

55

fun greet(name : string) => $html `<h1>Hello, <[name]></h1>`
let x = compute_x()
let q = $kquery `(!R)@&{&/x!/:2_!x}'!R`

Typed Literal Macros (TLMs)

rx, html, json, kdb, list, xml

Determinism: Can there be syntactic conflicts?

Responsibility: Where is this form defined?

Segmentation: Where are the spliced terms?

Typing: What type does the expansion have?

Binding: Is the expansion context-dependent?
Which variables are in scope in spliced terms?

55

We can communicate the necessary information using secondary
notation in a straightforward way. The full expansion can be held
abstract.

56

fun greet(name : string) => $html `<h1>Hello, <[name]></h1>`
let x = compute_x()
let q = $kquery `(!R)@&{&/x!/:2_!x}'!R`

Typed Literal Macros (TLMs)

rx, html, json, kdb, list, xml

Determinism: Can there be syntactic conflicts?

Responsibility: Where is this form defined?

Segmentation: Where are the spliced terms?

Typing: What type does the expansion have?

Binding: Is the expansion context-dependent?
Which variables are in scope in spliced terms?

56

57

miniVerse

Unexpanded expression

Expanded expressionTSM context

Here is just a taste of the semantics. Typed expansion from an
unexpanded language (where literal bodies remain
unparsed) to an expanded language, where no literals
remain.

57

58

miniVerse

All of those reasoning principles – the green bubbles – I talked
about are formally established.

58

59

fun heading_body(elem : html_element) =>
 match elem with
 | $html `<h1><{x}></h1>` => Some x
 | $html `<h2><{x}></h2>` => Some x
 | $html `<h3><{x}></h3>` => Some x
 | $html `<h4><{x}></h4>` => Some x
 | $html `<h5><{x}></h5>` => Some x
 | $html `<h6><{x}></h6>` => Some x
 | _ => None
 end

Pattern TLMs

The thesis talks not just about expression TLMs, but also
pattern TLMs.

59

60

fun heading_body(elem : html_element) =>
 match elem using $html with
 | `<h1><{x}></h1>` => Some x
 | `<h2><{x}></h2>` => Some x
 | `<h3><{x}></h3>` => Some x
 | `<h4><{x}></h4>` => Some x
 | `<h5><{x}></h5>` => Some x
 | `<h6><{x}></h6>` => Some x
 | _ => None
 end

Pattern TLMs

More conveniently..

60

61

signature DICT = sig
 type t(‘a)
 val empty : t(‘a)
 val extend : t(‘a) → ‘a → t(‘a)
 (* … *)
end

syntax $dict (D : DICT) ‘a at D.t(‘a) by (* … *) end

Parametric TLMs

And also addresses the problem of defining TLMs not just at
one type but over type- and module-parameterized families
of types, like you might have in ML. This also makes it easier
to deal with the context-independence constraint – you can
pass in helper functions via modules.

61

62

signature DICT = sig
 type t(‘a)
 val empty : t(‘a)
 val extend : t(‘a) → ‘a → t(‘a)
 (* … *)
end

syntax $dict (D : DICT) ‘a at D.t(‘a) by (* … *) end

module HashDict : DICT = (* … *)

$dict HashDict int {key1 → value, key2 → value2}

Parametric TLMs

62

63

signature DICT = sig
 type t(‘a)
 val empty : t(‘a)
 val extend : t(‘a) → ‘a → t(‘a)
 (* … *)
end

syntax $dict (D : DICT) ‘a at D.t(‘a) by (* … *) end

module HashDict : DICT = (* … *)

let syntax $d = $dict HashDict in
 $d int {key1 → value, key2 → value2}
end

Parametric TLMs

You can partially apply parameters to make things more convenient.

63

64

implicit syntax $html in
heading_body(`<h1>Hello, {name}</h1>`)

TLM Implicits

Finally, for small literal bodies and frequently applied TLMs, we
can use a mechanism of TLM implicits defined in the
dissertation to further reduce syntactic cost.

64

65

My thesis introduces...

a language (in the ML tradition) with programmable syntax that
allows programmers (and their tools) to reason abstractly about
responsibility, determinism, segmentation, typing and binding.

Determinism: Can there be syntactic conflicts?

Responsibility: Where is this form defined?

Typing: What type does the expansion have?

Binding: Is the expansion context-dependent?
Which variables are in scope in spliced terms?

Segmentation: Where are the spliced terms?

So my thesis introduces a mechanism that allows
programmers to define new syntactic sugar while maintaing
the ability to reason abstractly, meaning without examining
the expansion itself, or the expansion logic, about these
things: responsibility, determinism, segmentation, typing and
binding.

65

66

Mechanisms of syntactic control

Direct Syntax Extension
✔ High level of syntactic control
✗ Must reason about the expansion

Typed Literal Macros (TLMs)
✔ High level of syntactic control
✔ Abstract reasoning principles

Typed Term-Rewriting Macros
✗ Limited syntactic control
✔ Abstract reasoning principles

Here is again the comparison to the other two approaches.

66

67

Thank you!

<3

See the acknowledgments section of my dissertation itself for a
lot of nice words about a lot of nice people:

http://www.cs.cmu.edu/~comar/omar-thesis.pdf.

67

68

Dynamic String Parsing

● Can’t evaluate expressions in patterns.

● Awkward at best to support flexible splicing.
✗ list_parse “{1, x, x+1, x+y}”
✗ list_parse `{^(1), ^(x), ^(x + 1) :: ^(xs)}`

(Slind, 1991)

● Parse errors are reported dynamically.

● Cost is incurred every time evaluation hits the
expression.

Bonus slide! Why can’t we just parse strings at run-time????

68

