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List Syntax

DERIVED FORM
[1I 2’ 3’ 4’ 5]

EXPANSION

Cons(1, Cons(2, Cons(3, Cons(4, Cons(5, Nil)))))



HTML Syntax

DERIVED FORM

<hl>Welcome back, <%name></hl>

EXPANSION

H1Element (Empty, Seq(
TextNode (“Welcome back, “), TextNode(name)))



Regular Expression Syntax

DERIVED FORM
/A|T|G|C/

EXPANSION

Or(Str “A”, Or(Str “T”, Or(Str “G”, Str “C")))



Many Examples %

- Lists, sets, maps, multisets, vectors, arrays, ...

- Monadic commands (ala Haskell do notation)

- Regular expressions, SQL, other database query languages
- HTML, CSS, SASS, LESS, JSON, ...

- Dates, times, URLSs, paths, ...

- Quasiquotation, object language syntax

- Grammars

- Mathematical and scientific notations (e.g. SMILE)



Large Languages




A Better Approach: Programmable Syntax

% %
A
CJ

Library . Language . Derived Forms



import rx, html, json, kdb, list, xml

let x = /A|T|G|C/
fun greet(name : string) => <hl>Hello, <%name></hl>



import rx, html, json, kdb, list, xml

let x = /A|T|G|C/
fun greet(name : string) => <hl>Hello, <%name></hl>

Composability: Can there be conflicts?
With the base language? Between extensions?
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import rx, html, json, kdb, list, xml

let x = /A|T|G|C/
fun greet(name : string) => <hl>Hello, <%name></hl>
let q = {(!/R)@&{&/Xx!/:2 !x}"'!R}

Composability: Can there be conflicts?
With the base language? Between extensions?

|dentifiability: Where did this syntax come from?
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import rx, html, json, kdb, list, xml

let x = /A|T|G|C/
fun greet(name : string) => <hl>Hello, <%name></hl>
let q = {(!/R)@&{&/Xx!/:2 !x}"'!R}

Composability: Can there be conflicts?
With the base language? Between extensions?

> D

|dentifiability: Where did this syntax come from?

Type Discipline: What type does q have?

12




import rx, html, json, kdb, list, xml

let x = /A|T|G|C/
fun greet(name : string) => <hl>Hello, <%name></hl>
let q = {(!/R)@&{&/Xx!/:2 !x}"'!R}

Composability: Can there be conflicts?
With the base language? Between extensions?

> D

|dentifiability: Where did this syntax come from?

/—ﬁ‘

Type Discipline: What type does q have?

Hygiene: Can | rename other variables safely?
(or does the expansion capture specific variables?)
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Our Solution: Typed Syntax Macros (TSMs) D

import rx, html, json, kdb, list, xml

let x = rx.$regex /A|T|G|C/
fun greet(name : string) => html.$html <hl>Hello, <%name></hl>
let q = kdb.$query {('R)@&{&/x!/:2 !x}'!R}

Composability: Can there be conflicts?
With the base language? Between extensions?

|dentifiability: Where did this syntax come from?

Type Discipline: What type does q have?

Hygiene: Can | rename other variables safely?
(or does the expansion capture specific variables?)
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Our Solution: Typed Syntax Macros (TSMs) D

import rx, html, json, kdb, list, xml

let x = rx.$regex /A|T|G|C/
fun greet(name : string) => html.$html <hl>Hello, <%name></hl>
let q = kdb.$query {(!'R)@&{&/x!/:2 !x}'!R}

A fixed set of available outer delimiters
prevent conflict.

Composability: Can there be conflicts?
With the base language? Between extensions?

Hygiene: Can | rename other variables safely?
(or does the expansion capture specific variables?)
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Our Solution: Typed Syntax Macros (TSMs) D

syntax $query at Query {
static fn(body : Body) : Exp option => (* .. query parser here .. *)
}
4

import rx, html, json, kdb, list, xml

let x = rx.$regex /A|T|G|C/
fun greet(name : string) => html.$html <hl>Hello, <%name></hl>
let g = kdb.$query {('R)@&{&/x!/:2 !x}"'IR}

Composability: Can there be conflicts?
With the base language? Between extensions?

|dentifiability: Where did this syntax come from?

Type Discipline: What type does g have?

Hygiene: Can | rename other variables safely?

(or does the expansion capture specific variables?)




Our Solution: Typed Syntax Macros (TSMs) D

syntax $query at Query {
static fn(boditms .
} Type annotation requires that

expansmn be of this type

(* .. query parser here .. *)

import rx, html
let x = rx.$regex /A|T|G|C/

fun greet(name : string) => html.$html <hl>Hello, <%name></hl>
let g = kdb.$query {('R)@&{&/x!/:2 !x}"'IR}

Composability: Can there be conflicts?
With the base language? Between extensions?

|dentifiability: Where did this syntax come from?

Hygiene: Can | rename other variables safely?
(or does the expansion capture specific variables?)
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Our Solution: Typed Syntax Macros (TSMs) D

import rx, html, json, kdb, list, xml

let x = rx.$regex /A|T|G|C/
fun greet(name : string) => html.$html <hl>Hello, <%name></hl>
let q = kdb.$query {(!'R)@&{&/x!/:2 !x}'!R}
Only spliced subexpressions can
refer to surrounding context.

Composability: Can there be conflicts?
With the base language? Between extensions?

|dentifiability: Where did this syntax come from?

Type Discipline: What type does q have?

Hygiene: Can | rename other variables safely?
(or does the expansion capture specific variables?)



Our Solution: Typed Syntax Macros (TSMs) D

import rx, html, json, kdb, list, xml

let x = rx.$regex /A|T|G|C/
fun greet(name : string) => html.$html <hl>Hello, <%name></hl>
let g = kdb.$query {('R)@&{&/x!/:2 !x}"'IR}

Composability: Can there be conflicts?
With the base language? Between extensions?

|dentifiability: Where did this syntax come from?

Type Discipline: What type does q have?

Hygiene: Can | rename other variables safely?
(or does the expansion capture specific variables?)
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Our Solution: Typed Syntax Macros (TSMs) D

Expanded expressions
Al'Fée~e:T
o
€ € .
Unexpanded expressions
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Pattern TSMs g

pattern syntax $html at HTML {
static fn(body : Body) : Pat option => (* .. HTML pattern parser .. *)
}

import rx, html, json, kdb, list, xml
fun get name(x : HTML) => match x with

html.$html <hl>Hello, <%name></hl> => name
| => raise Error
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Pattern TSMs g

pattern syntax $html at HTML {
static fn(body : Body) : Pat option => (* .. HTML pattern parser .. *)
}

.
import rx, html, json, kdb, list, xml

fun get name(x : HTML) => match x with
html.$html <hl>Hello, <%name></hl> => name
| => raise Error

Only spliced subpatterns can

bind variables.
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The ML Module System

Abstract Datatypes

signature RX = sig
type t
val Empty : t
val Str : string -> t
val Seq : t * t -> t
val Or : t * t -> t
val Star : t -> t
val case : (t -> 'a ->
(string -> 'a) ->
(t *t -> 'a) ->
(t *t -> 'a) ->
(t -> "a)
-> ’a)
end



The ML Module System

Abstract Datatypes

signature RX = sig

type t
val Empty : t
val Str : string -> t

val Seq : t * t -> t
val Or : t * t -> t
val Star : t -> t
val case : (t -> "a ->
(string -> 'a) ->
(t *t -> 'a) ->
(t *t -> 'a) ->
(t -> "a)
-> ’a)
end

structure Rxl :> RX = struct
type t = string
(* .. *)

end

structure Rx2 :> RX = struct
type t = Empty | Str of string

| Seq of t * t | Or of t * t

| Star of t
(* . *)
end
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The ML Module System

Abstract Datatypes
structure Rxl :> RX = struct

signature RX = sig type t = string
type t (* .. *)
val Empty : t end

val Str : string -> t
val Seq : t * t -> t

val Or : t * t -> t structure Rx2 :> RX = struct

val Star : t -> t type t = Empty | Str of string

val case : (t -> 'a -> | Seq of t * t | Or of t * t
(string -> 'a) -> | Star of t
(t *t -> "a) -> (* . *)
(t *t -> 'a) -> end
(t -> "a)
-> ’a)

end

let base = Rx1.0r(Rx1.Str(“A”), Rx1.0r(Rx1.Str(“T"),
Rx1.0r(Rx1.Str(“G"”), Rx1.Str(“C"))))
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Our Solution: Parameterized TSMs

Definition
syntax $rx(R : RX) at R.t {
static fn(body : Body) : Exp option => (* ..
}
Usage

let base = $rx Rx1 /A |T|G|C/
let renzyme = $rx Rxl /GC%{base}GC/

rx parser here ..

*)
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Our Solution: Parameterized TSMs

Definition
syntax $rx(R : RX) at R.t {

}

static fn(body : Body) : Exp option => (* ..

Usage

let base
let renzy

$rx Rx1 /AN |G|C/
e = $rx Rx1l /GC%{base}GC/

rx parser here ..

*)
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Our Solution: Type-Specific Languages (TSLs) g

Definition

structure Rxl :> RX = struct
type t = string
(* o *)

end with syntax $rx
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Our Solution: Type-Specific Languages (TSLs) g

Definition

structure Rx1l :> RX = struct
type t = string
(* . *)

end with syntax $rx

The TSM $rx (Rx1) is now associated

with abstract type Rx1. t.
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Our Solution: Type-Specific Languages (TSLs) g

Definition

structure Rx1l :> RX = struct
type t = string
(* . *)

end with syntax $rx

The TSM $rx (Rx1) is now associated

with abstract type Rx1. t.

Usage

let base : Rxl.t = /A|T|G|C/
let renzyme : Rx1l.t = /GC%{base}G(C/

When a literal form appears by itself,
the TSM associated with

the type it is being checked against
IS applied.
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Our Solution: Type-Specific Languages (TSLs) g

We associate TSMs with abstract types at abstraction boundaries.

functor F(R : RX with syntax $rx) =
struct

val x : R.t = /A|T|G|C/
end
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Our Solution: Type-Specific Languages (TSLs) g

functor G() :> RX = struct
type t = string
(L)

end with syntax $rx

G() (* Gl.t has TSL $rx(Gl) *)
G() (* G2.t has TSL $rx(G2) *)

structure G1
structure G2

We associate TSMs with abstract types at abstraction boundaries.
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Conclusion %

Large Languages and Syntactic DSLs considered harmful.

Typed syntax macros (TSMs) allow library providers to
programmatically introduce new typed syntactic expansions in a
safe, hygienic and modular manner.

Ongoing/Future Work

- Non-textual display forms in a structured editor.
- Modularly programmable type structure.
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