
Modularly Programmable Syntax

Cyrus Omar
Jonathan Aldrich

Computer Science Department
Carnegie Mellon University

[CMU POP Retreat 2015]

2

[1, 2, 3, 4, 5]

DERIVED FORM

EXPANSION

Cons(1, Cons(2, Cons(3, Cons(4, Cons(5, Nil)))))

List Syntax

3

<h1>Welcome back, <%name></h1>

DERIVED FORM

EXPANSION

H1Element(Empty, Seq(
 TextNode(“Welcome back, “), TextNode(name)))

HTML Syntax

4

/A|T|G|C/

DERIVED FORM

EXPANSION

Or(Str “A”, Or(Str “T”, Or(Str “G”, Str “C”)))

Regular Expression Syntax

5

Many Examples

- Lists, sets, maps, multisets, vectors, arrays, …
- Monadic commands (ala Haskell do notation)
- Regular expressions, SQL, other database query languages
- HTML, CSS, SASS, LESS, JSON, ...
- Dates, times, URLs, paths, …
- Quasiquotation, object language syntax
- Grammars
- Mathematical and scientific notations (e.g. SMILE)

6

Derived FormsLanguageLibrary
UN
SU
ST
AI
NA
BL
E

Large Languages

8

LanguageLibrary

A Better Approach: Programmable Syntax

Derived Forms

9

import rx, html, json, kdb, list, xml

let x = /A|T|G|C/
fun greet(name : string) => <h1>Hello, <%name></h1>

10

import rx, html, json, kdb, list, xml

let x = /A|T|G|C/
fun greet(name : string) => <h1>Hello, <%name></h1>

Composability: Can there be conflicts?
With the base language? Between extensions?

11

import rx, html, json, kdb, list, xml

let x = /A|T|G|C/
fun greet(name : string) => <h1>Hello, <%name></h1>
let q = {(!R)@&{&/x!/:2_!x}'!R}

Composability: Can there be conflicts?
With the base language? Between extensions?

Identifiability: Where did this syntax come from?

12

import rx, html, json, kdb, list, xml

let x = /A|T|G|C/
fun greet(name : string) => <h1>Hello, <%name></h1>
let q = {(!R)@&{&/x!/:2_!x}'!R}

Composability: Can there be conflicts?
With the base language? Between extensions?

Identifiability: Where did this syntax come from?

Type Discipline: What type does q have?

13

import rx, html, json, kdb, list, xml

let x = /A|T|G|C/
fun greet(name : string) => <h1>Hello, <%name></h1>
let q = {(!R)@&{&/x!/:2_!x}'!R}

Composability: Can there be conflicts?
With the base language? Between extensions?

Identifiability: Where did this syntax come from?

Type Discipline: What type does q have?

Hygiene: Can I rename other variables safely?
(or does the expansion capture specific variables?)

14

Our Solution: Typed Syntax Macros (TSMs)

Composability: Can there be conflicts?
With the base language? Between extensions?

Identifiability: Where did this syntax come from?

Type Discipline: What type does q have?

Hygiene: Can I rename other variables safely?
(or does the expansion capture specific variables?)

import rx, html, json, kdb, list, xml

let x = rx.$regex /A|T|G|C/
fun greet(name : string) => html.$html <h1>Hello, <%name></h1>
let q = kdb.$query {(!R)@&{&/x!/:2_!x}'!R}

15

import rx, html, json, kdb, list, xml

let x = rx.$regex /A|T|G|C/
fun greet(name : string) => html.$html <h1>Hello, <%name></h1>
let q = kdb.$query {(!R)@&{&/x!/:2_!x}'!R}

Our Solution: Typed Syntax Macros (TSMs)

Composability: Can there be conflicts?
With the base language? Between extensions?

Identifiability: Where did this syntax come from?

Type Discipline: What type does q have?

Hygiene: Can I rename other variables safely?
(or does the expansion capture specific variables?)

A fixed set of available outer delimiters
prevent conflict.

16

import rx, html, json, kdb, list, xml

let x = rx.$regex /A|T|G|C/
fun greet(name : string) => html.$html <h1>Hello, <%name></h1>
let q = kdb.$query {(!R)@&{&/x!/:2_!x}'!R}

Our Solution: Typed Syntax Macros (TSMs)

Composability: Can there be conflicts?
With the base language? Between extensions?

Identifiability: Where did this syntax come from?

Type Discipline: What type does q have?

Hygiene: Can I rename other variables safely?
(or does the expansion capture specific variables?)

syntax $query at Query {
 static fn(body : Body) : Exp option => (* … query parser here … *)
}

syntax $query at Query {
 static fn(body : Body) : Exp option => (* … query parser here … *)
}

17

import rx, html, json, kdb, list, xml

let x = rx.$regex /A|T|G|C/
fun greet(name : string) => html.$html <h1>Hello, <%name></h1>
let q = kdb.$query {(!R)@&{&/x!/:2_!x}'!R}

Our Solution: Typed Syntax Macros (TSMs)

Composability: Can there be conflicts?
With the base language? Between extensions?

Identifiability: Where did this syntax come from?

Type Discipline: What type does q have?

Hygiene: Can I rename other variables safely?
(or does the expansion capture specific variables?)

Type annotation requires that
expansion be of this type.

18

import rx, html, json, kdb, list, xml

let x = rx.$regex /A|T|G|C/
fun greet(name : string) => html.$html <h1>Hello, <%name></h1>
let q = kdb.$query {(!R)@&{&/x!/:2_!x}'!R}

Our Solution: Typed Syntax Macros (TSMs)

Composability: Can there be conflicts?
With the base language? Between extensions?

Identifiability: Where did this syntax come from?

Type Discipline: What type does q have?

Hygiene: Can I rename other variables safely?
(or does the expansion capture specific variables?)

Only spliced subexpressions can
refer to surrounding context.

19

import rx, html, json, kdb, list, xml

let x = rx.$regex /A|T|G|C/
fun greet(name : string) => html.$html <h1>Hello, <%name></h1>
let q = kdb.$query {(!R)@&{&/x!/:2_!x}'!R}

Our Solution: Typed Syntax Macros (TSMs)

Composability: Can there be conflicts?
With the base language? Between extensions?

Identifiability: Where did this syntax come from?

Type Discipline: What type does q have?

Hygiene: Can I rename other variables safely?
(or does the expansion capture specific variables?)

20

Our Solution: Typed Syntax Macros (TSMs)

Unexpanded expressions

Expanded expressions

21

import rx, html, json, kdb, list, xml

fun get_name(x : HTML) => match x with
 html.$html <h1>Hello, <%name></h1> => name
 | _ => raise Error

Pattern TSMs
pattern syntax $html at HTML {
 static fn(body : Body) : Pat option => (* … HTML pattern parser … *)
}

22

import rx, html, json, kdb, list, xml

fun get_name(x : HTML) => match x with
 html.$html <h1>Hello, <%name></h1> => name
 | _ => raise Error

Pattern TSMs
pattern syntax $html at HTML {
 static fn(body : Body) : Pat option => (* … HTML pattern parser … *)
}

Only spliced subpatterns can
bind variables.

23

The ML Module System

signature RX = sig
 type t
 val Empty : t
 val Str : string -> t
 val Seq : t * t -> t
 val Or : t * t -> t
 val Star : t -> t
 val case : (t -> ’a ->
 (string -> ’a) ->
 (t * t -> ’a) ->
 (t * t -> ’a) ->
 (t -> ’a)
 -> ’a)
end

Abstract Datatypes

24

The ML Module System

signature RX = sig
 type t
 val Empty : t
 val Str : string -> t
 val Seq : t * t -> t
 val Or : t * t -> t
 val Star : t -> t
 val case : (t -> ’a ->
 (string -> ’a) ->
 (t * t -> ’a) ->
 (t * t -> ’a) ->
 (t -> ’a)
 -> ’a)
end

Abstract Datatypes
structure Rx1 :> RX = struct
 type t = string
 (* … *)
end

structure Rx2 :> RX = struct
 type t = Empty | Str of string
 | Seq of t * t | Or of t * t
 | Star of t
 (* … *)
end

...

25

The ML Module System

signature RX = sig
 type t
 val Empty : t
 val Str : string -> t
 val Seq : t * t -> t
 val Or : t * t -> t
 val Star : t -> t
 val case : (t -> ’a ->
 (string -> ’a) ->
 (t * t -> ’a) ->
 (t * t -> ’a) ->
 (t -> ’a)
 -> ’a)
end

Abstract Datatypes
structure Rx1 :> RX = struct
 type t = string
 (* … *)
end

structure Rx2 :> RX = struct
 type t = Empty | Str of string
 | Seq of t * t | Or of t * t
 | Star of t
 (* … *)
end

...

let base = Rx1.Or(Rx1.Str(“A”), Rx1.Or(Rx1.Str(“T”),
 Rx1.Or(Rx1.Str(“G”), Rx1.Str(“C”))))

26

Our Solution: Parameterized TSMs

syntax $rx(R : RX) at R.t {
 static fn(body : Body) : Exp option => (* … rx parser here … *)
}

let base = $rx Rx1 /A|T|G|C/
let renzyme = $rx Rx1 /GC%{base}GC/

Definition

Usage

27

Our Solution: Parameterized TSMs

syntax $rx(R : RX) at R.t {
 static fn(body : Body) : Exp option => (* … rx parser here … *)
}

let base = $rx Rx1 /A|T|G|C/
let renzyme = $rx Rx1 /GC%{base}GC/

Definition

Usage

28

structure Rx1 :> RX = struct
 type t = string
 (* … *)
end with syntax $rx

Definition

Our Solution: Type-Specific Languages (TSLs)

29

structure Rx1 :> RX = struct
 type t = string
 (* … *)
end with syntax $rx

Definition

Our Solution: Type-Specific Languages (TSLs)

The TSM $rx(Rx1) is now associated
with abstract type Rx1.t.

30

structure Rx1 :> RX = struct
 type t = string
 (* … *)
end with syntax $rx

Definition

Our Solution: Type-Specific Languages (TSLs)

let base : Rx1.t = /A|T|G|C/
let renzyme : Rx1.t = /GC%{base}GC/

Usage

When a literal form appears by itself,
the TSM associated with

the type it is being checked against
is applied.

The TSM $rx(Rx1) is now associated
with abstract type Rx1.t.

31

functor F(R : RX with syntax $rx) =
struct
 val x : R.t = /A|T|G|C/
end

Our Solution: Type-Specific Languages (TSLs)

We associate TSMs with abstract types at abstraction boundaries.

32

functor G() :> RX = struct
 type t = string
 (* … *)
end with syntax $rx

structure G1 = G() (* G1.t has TSL $rx(G1) *)
structure G2 = G() (* G2.t has TSL $rx(G2) *)

Our Solution: Type-Specific Languages (TSLs)

We associate TSMs with abstract types at abstraction boundaries.

33

Conclusion

Large Languages and Syntactic DSLs considered harmful.

Typed syntax macros (TSMs) allow library providers to
programmatically introduce new typed syntactic expansions in a
safe, hygienic and modular manner.

Ongoing/Future Work

Large Languages and Syntactic DSLs considered harmful.

Typed syntax macros (TSMs) allow library providers to
programmatically introduce new typed syntactic expansions in a
safe, hygienic and modular manner.

- Non-textual display forms in a structured editor.
- Modularly programmable type structure.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

