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[1, 2, 3, 4, 5]

DERIVED FORM

EXPANSION

Cons(1, Cons(2, Cons(3, Cons(4, Cons(5, Nil)))))

List Syntax
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<h1>Welcome back, <%name></h1>

DERIVED FORM

EXPANSION

H1Element(Empty, Seq(
  TextNode(“Welcome back, “), TextNode(name)))

HTML Syntax
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/A|T|G|C/

DERIVED FORM

EXPANSION

Or(Str “A”, Or(Str “T”, Or(Str “G”, Str “C”)))

Regular Expression Syntax
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Many Examples

- Lists, sets, maps, multisets, vectors, arrays, …
- Monadic commands (ala Haskell do notation)
- Regular expressions, SQL, other database query languages
- HTML, CSS, SASS, LESS, JSON, ...
- Dates, times, URLs, paths, …
- Quasiquotation, object language syntax
- Grammars
- Mathematical and scientific notations (e.g. SMILE)
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LanguageLibrary

A Better Approach: Programmable Syntax

Derived Forms
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import rx, html, json, kdb, list, xml

let x = /A|T|G|C/
fun greet(name : string) => <h1>Hello, <%name></h1>
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import rx, html, json, kdb, list, xml

let x = /A|T|G|C/
fun greet(name : string) => <h1>Hello, <%name></h1>

Composability: Can there be conflicts? 
With the base language? Between extensions?
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import rx, html, json, kdb, list, xml

let x = /A|T|G|C/
fun greet(name : string) => <h1>Hello, <%name></h1>
let q = {(!R)@&{&/x!/:2_!x}'!R}

Composability: Can there be conflicts? 
With the base language? Between extensions?

Identifiability: Where did this syntax come from?
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import rx, html, json, kdb, list, xml

let x = /A|T|G|C/
fun greet(name : string) => <h1>Hello, <%name></h1>
let q = {(!R)@&{&/x!/:2_!x}'!R}

Composability: Can there be conflicts? 
With the base language? Between extensions?

Identifiability: Where did this syntax come from?

Type Discipline: What type does q have?
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import rx, html, json, kdb, list, xml

let x = /A|T|G|C/
fun greet(name : string) => <h1>Hello, <%name></h1>
let q = {(!R)@&{&/x!/:2_!x}'!R}

Composability: Can there be conflicts? 
With the base language? Between extensions?

Identifiability: Where did this syntax come from?

Type Discipline: What type does q have?

Hygiene: Can I rename other variables safely? 
(or does the expansion capture specific variables?)



14

Our Solution: Typed Syntax Macros (TSMs)

Composability: Can there be conflicts? 
With the base language? Between extensions?

Identifiability: Where did this syntax come from?

Type Discipline: What type does q have?

Hygiene: Can I rename other variables safely? 
(or does the expansion capture specific variables?)

import rx, html, json, kdb, list, xml

let x = rx.$regex /A|T|G|C/
fun greet(name : string) => html.$html <h1>Hello, <%name></h1>
let q = kdb.$query {(!R)@&{&/x!/:2_!x}'!R}
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import rx, html, json, kdb, list, xml

let x = rx.$regex /A|T|G|C/
fun greet(name : string) => html.$html <h1>Hello, <%name></h1>
let q = kdb.$query {(!R)@&{&/x!/:2_!x}'!R}

Our Solution: Typed Syntax Macros (TSMs)

Composability: Can there be conflicts? 
With the base language? Between extensions?

Identifiability: Where did this syntax come from?

Type Discipline: What type does q have?

Hygiene: Can I rename other variables safely? 
(or does the expansion capture specific variables?)

A fixed set of available outer delimiters 
prevent conflict.



16

import rx, html, json, kdb, list, xml

let x = rx.$regex /A|T|G|C/
fun greet(name : string) => html.$html <h1>Hello, <%name></h1>
let q = kdb.$query {(!R)@&{&/x!/:2_!x}'!R}

Our Solution: Typed Syntax Macros (TSMs)

Composability: Can there be conflicts? 
With the base language? Between extensions?

Identifiability: Where did this syntax come from?

Type Discipline: What type does q have?

Hygiene: Can I rename other variables safely? 
(or does the expansion capture specific variables?)

syntax $query at Query {
  static fn(body : Body) : Exp option => (* … query parser here … *)
}



syntax $query at Query {
  static fn(body : Body) : Exp option => (* … query parser here … *)
}
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import rx, html, json, kdb, list, xml

let x = rx.$regex /A|T|G|C/
fun greet(name : string) => html.$html <h1>Hello, <%name></h1>
let q = kdb.$query {(!R)@&{&/x!/:2_!x}'!R}

Our Solution: Typed Syntax Macros (TSMs)

Composability: Can there be conflicts? 
With the base language? Between extensions?

Identifiability: Where did this syntax come from?

Type Discipline: What type does q have?

Hygiene: Can I rename other variables safely? 
(or does the expansion capture specific variables?)

Type annotation requires that 
expansion be of this type.
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import rx, html, json, kdb, list, xml

let x = rx.$regex /A|T|G|C/
fun greet(name : string) => html.$html <h1>Hello, <%name></h1>
let q = kdb.$query {(!R)@&{&/x!/:2_!x}'!R}

Our Solution: Typed Syntax Macros (TSMs)

Composability: Can there be conflicts? 
With the base language? Between extensions?

Identifiability: Where did this syntax come from?

Type Discipline: What type does q have?

Hygiene: Can I rename other variables safely? 
(or does the expansion capture specific variables?)

Only spliced subexpressions can 
refer to surrounding context.
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import rx, html, json, kdb, list, xml

let x = rx.$regex /A|T|G|C/
fun greet(name : string) => html.$html <h1>Hello, <%name></h1>
let q = kdb.$query {(!R)@&{&/x!/:2_!x}'!R}

Our Solution: Typed Syntax Macros (TSMs)

Composability: Can there be conflicts? 
With the base language? Between extensions?

Identifiability: Where did this syntax come from?

Type Discipline: What type does q have?

Hygiene: Can I rename other variables safely? 
(or does the expansion capture specific variables?)
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Our Solution: Typed Syntax Macros (TSMs)

Unexpanded expressions

Expanded expressions
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import rx, html, json, kdb, list, xml

fun get_name(x : HTML) => match x with 
    html.$html <h1>Hello, <%name></h1> => name
  | _ => raise Error

Pattern TSMs
pattern syntax $html at HTML {
  static fn(body : Body) : Pat option => (* … HTML pattern parser … *)
}
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import rx, html, json, kdb, list, xml

fun get_name(x : HTML) => match x with 
    html.$html <h1>Hello, <%name></h1> => name
  | _ => raise Error

Pattern TSMs
pattern syntax $html at HTML {
  static fn(body : Body) : Pat option => (* … HTML pattern parser … *)
}

Only spliced subpatterns can 
bind variables.
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The ML Module System

signature RX = sig
  type t
  val Empty : t
  val Str : string -> t
  val Seq : t * t -> t
  val Or : t * t -> t
  val Star : t -> t
  val case : (t -> ’a -> 
    (string -> ’a) -> 
    (t * t -> ’a) -> 
    (t * t -> ’a) -> 
    (t -> ’a) 
    -> ’a)
end

Abstract Datatypes
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The ML Module System

signature RX = sig
  type t
  val Empty : t
  val Str : string -> t
  val Seq : t * t -> t
  val Or : t * t -> t
  val Star : t -> t
  val case : (t -> ’a -> 
    (string -> ’a) -> 
    (t * t -> ’a) -> 
    (t * t -> ’a) -> 
    (t -> ’a) 
    -> ’a)
end

Abstract Datatypes
structure Rx1 :> RX = struct
  type t = string
  (* … *)
end

structure Rx2 :> RX = struct
  type t = Empty | Str of string 
         | Seq of t * t | Or of t * t 
         | Star of t
  (* … *)
end

...
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The ML Module System

signature RX = sig
  type t
  val Empty : t
  val Str : string -> t
  val Seq : t * t -> t
  val Or : t * t -> t
  val Star : t -> t
  val case : (t -> ’a -> 
    (string -> ’a) -> 
    (t * t -> ’a) -> 
    (t * t -> ’a) -> 
    (t -> ’a) 
    -> ’a)
end

Abstract Datatypes
structure Rx1 :> RX = struct
  type t = string
  (* … *)
end

structure Rx2 :> RX = struct
  type t = Empty | Str of string 
         | Seq of t * t | Or of t * t 
         | Star of t
  (* … *)
end

...

let base = Rx1.Or(Rx1.Str(“A”), Rx1.Or(Rx1.Str(“T”),
  Rx1.Or(Rx1.Str(“G”), Rx1.Str(“C”))))
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Our Solution: Parameterized TSMs

syntax $rx(R : RX) at R.t {
  static fn(body : Body) : Exp option => (* … rx parser here … *)
}

let base = $rx Rx1 /A|T|G|C/
let renzyme = $rx Rx1 /GC%{base}GC/

Definition

Usage



27

Our Solution: Parameterized TSMs

syntax $rx(R : RX) at R.t {
  static fn(body : Body) : Exp option => (* … rx parser here … *)
}

let base = $rx Rx1 /A|T|G|C/
let renzyme = $rx Rx1 /GC%{base}GC/

Definition

Usage
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structure Rx1 :> RX = struct
  type t = string
  (* … *)
end with syntax $rx

Definition

Our Solution: Type-Specific Languages (TSLs)
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structure Rx1 :> RX = struct
  type t = string
  (* … *)
end with syntax $rx

Definition

Our Solution: Type-Specific Languages (TSLs)

The TSM $rx(Rx1) is now associated
with abstract type Rx1.t.
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structure Rx1 :> RX = struct
  type t = string
  (* … *)
end with syntax $rx

Definition

Our Solution: Type-Specific Languages (TSLs)

let base : Rx1.t = /A|T|G|C/
let renzyme : Rx1.t = /GC%{base}GC/

Usage

When a literal form appears by itself,
the TSM associated with 

the type it is being checked against 
is applied.

The TSM $rx(Rx1) is now associated
with abstract type Rx1.t.
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functor F(R : RX with syntax $rx) = 
struct
  val x : R.t = /A|T|G|C/
end

Our Solution: Type-Specific Languages (TSLs)

We associate TSMs with abstract types at abstraction boundaries.
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functor G() :> RX = struct
  type t = string
  (* … *)
end with syntax $rx

structure G1 = G() (* G1.t has TSL $rx(G1) *) 
structure G2 = G() (* G2.t has TSL $rx(G2) *)

Our Solution: Type-Specific Languages (TSLs)

We associate TSMs with abstract types at abstraction boundaries.
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Conclusion

Large Languages and Syntactic DSLs considered harmful.

Typed syntax macros (TSMs) allow library providers to 
programmatically introduce new typed syntactic expansions in a 
safe, hygienic and modular manner.

Ongoing/Future Work

Large Languages and Syntactic DSLs considered harmful.

Typed syntax macros (TSMs) allow library providers to 
programmatically introduce new typed syntactic expansions in a 
safe, hygienic and modular manner.

- Non-textual display forms in a structured editor.
- Modularly programmable type structure.
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