Modularly Programmable Syntax

Cyrus Omar
Jonathan Aldrich

Computer Science Department
Carnegie Mellon University

[CMU POP Retreat 2015]

List Syntax

DERIVED FORM
[1I 2’ 3’ 4’ 5]

EXPANSION

Cons(1, Cons(2, Cons(3, Cons(4, Cons(5, Nil)))))

HTML Syntax

DERIVED FORM

<hl>Welcome back, <%name></hl>

EXPANSION

H1Element (Empty, Seq(
TextNode (“Welcome back, “), TextNode(name)))

Regular Expression Syntax

DERIVED FORM
/A|T|G|C/

EXPANSION

Or(Str “A”, Or(Str “T”, Or(Str “G”, Str “C")))

Many Examples %

- Lists, sets, maps, multisets, vectors, arrays, ...

- Monadic commands (ala Haskell do notation)

- Regular expressions, SQL, other database query languages
- HTML, CSS, SASS, LESS, JSON, ...

- Dates, times, URLSs, paths, ...

- Quasiquotation, object language syntax

- Grammars

- Mathematical and scientific notations (e.g. SMILE)

Large Languages

A Better Approach: Programmable Syntax

% %
A
CJ

Library . Language . Derived Forms

import rx, html, json, kdb, list, xml

let x = /A|T|G|C/
fun greet(name : string) => <hl>Hello, <%name></hl>

import rx, html, json, kdb, list, xml

let x = /A|T|G|C/
fun greet(name : string) => <hl>Hello, <%name></hl>

Composability: Can there be conflicts?
With the base language? Between extensions?

10

import rx, html, json, kdb, list, xml

let x = /A|T|G|C/
fun greet(name : string) => <hl>Hello, <%name></hl>
let q = {(!/R)@&{&/Xx!/:2 !x}"'!R}

Composability: Can there be conflicts?
With the base language? Between extensions?

|dentifiability: Where did this syntax come from?

11

import rx, html, json, kdb, list, xml

let x = /A|T|G|C/
fun greet(name : string) => <hl>Hello, <%name></hl>
let q = {(!/R)@&{&/Xx!/:2 !x}"'!R}

Composability: Can there be conflicts?
With the base language? Between extensions?

> D

|dentifiability: Where did this syntax come from?

Type Discipline: What type does q have?

12

import rx, html, json, kdb, list, xml

let x = /A|T|G|C/
fun greet(name : string) => <hl>Hello, <%name></hl>
let q = {(!/R)@&{&/Xx!/:2 !x}"'!R}

Composability: Can there be conflicts?
With the base language? Between extensions?

> D

|dentifiability: Where did this syntax come from?

/—ﬁ‘

Type Discipline: What type does q have?

Hygiene: Can | rename other variables safely?
(or does the expansion capture specific variables?)

13

Our Solution: Typed Syntax Macros (TSMs) D

import rx, html, json, kdb, list, xml

let x = rx.$regex /A|T|G|C/
fun greet(name : string) => html.$html <hl>Hello, <%name></hl>
let q = kdb.$query {('R)@&{&/x!/:2 !x}'!R}

Composability: Can there be conflicts?
With the base language? Between extensions?

|dentifiability: Where did this syntax come from?

Type Discipline: What type does q have?

Hygiene: Can | rename other variables safely?
(or does the expansion capture specific variables?)

14

Our Solution: Typed Syntax Macros (TSMs) D

import rx, html, json, kdb, list, xml

let x = rx.$regex /A|T|G|C/
fun greet(name : string) => html.$html <hl>Hello, <%name></hl>
let q = kdb.$query {(!'R)@&{&/x!/:2 !x}'!R}

A fixed set of available outer delimiters
prevent conflict.

Composability: Can there be conflicts?
With the base language? Between extensions?

Hygiene: Can | rename other variables safely?
(or does the expansion capture specific variables?)

15

Our Solution: Typed Syntax Macros (TSMs) D

syntax $query at Query {
static fn(body : Body) : Exp option => (* .. query parser here .. *)
}
4

import rx, html, json, kdb, list, xml

let x = rx.$regex /A|T|G|C/
fun greet(name : string) => html.$html <hl>Hello, <%name></hl>
let g = kdb.$query {('R)@&{&/x!/:2 !x}"'IR}

Composability: Can there be conflicts?
With the base language? Between extensions?

|dentifiability: Where did this syntax come from?

Type Discipline: What type does g have?

Hygiene: Can | rename other variables safely?

(or does the expansion capture specific variables?)

Our Solution: Typed Syntax Macros (TSMs) D

syntax $query at Query {
static fn(boditms .
} Type annotation requires that

expansmn be of this type

(* .. query parser here .. *)

import rx, html
let x = rx.$regex /A|T|G|C/

fun greet(name : string) => html.$html <hl>Hello, <%name></hl>
let g = kdb.$query {('R)@&{&/x!/:2 !x}"'IR}

Composability: Can there be conflicts?
With the base language? Between extensions?

|dentifiability: Where did this syntax come from?

Hygiene: Can | rename other variables safely?
(or does the expansion capture specific variables?)

17

Our Solution: Typed Syntax Macros (TSMs) D

import rx, html, json, kdb, list, xml

let x = rx.$regex /A|T|G|C/
fun greet(name : string) => html.$html <hl>Hello, <%name></hl>
let q = kdb.$query {(!'R)@&{&/x!/:2 !x}'!R}
Only spliced subexpressions can
refer to surrounding context.

Composability: Can there be conflicts?
With the base language? Between extensions?

|dentifiability: Where did this syntax come from?

Type Discipline: What type does q have?

Hygiene: Can | rename other variables safely?
(or does the expansion capture specific variables?)

Our Solution: Typed Syntax Macros (TSMs) D

import rx, html, json, kdb, list, xml

let x = rx.$regex /A|T|G|C/
fun greet(name : string) => html.$html <hl>Hello, <%name></hl>
let g = kdb.$query {('R)@&{&/x!/:2 !x}"'IR}

Composability: Can there be conflicts?
With the base language? Between extensions?

|dentifiability: Where did this syntax come from?

Type Discipline: What type does q have?

Hygiene: Can | rename other variables safely?
(or does the expansion capture specific variables?)

19

Our Solution: Typed Syntax Macros (TSMs) D

Expanded expressions
Al'Fée~e:T
o
€ € .
Unexpanded expressions

20

Pattern TSMs g

pattern syntax $html at HTML {
static fn(body : Body) : Pat option => (* .. HTML pattern parser .. *)
}

import rx, html, json, kdb, list, xml
fun get name(x : HTML) => match x with

html.$html <hl>Hello, <%name></hl> => name
| => raise Error

21

Pattern TSMs g

pattern syntax $html at HTML {
static fn(body : Body) : Pat option => (* .. HTML pattern parser .. *)
}

.
import rx, html, json, kdb, list, xml

fun get name(x : HTML) => match x with
html.$html <hl>Hello, <%name></hl> => name
| => raise Error

Only spliced subpatterns can

bind variables.

22

The ML Module System

Abstract Datatypes

signature RX = sig
type t
val Empty : t
val Str : string -> t
val Seq : t * t -> t
val Or : t * t -> t
val Star : t -> t
val case : (t -> 'a ->
(string -> 'a) ->
(t *t -> 'a) ->
(t *t -> 'a) ->
(t -> "a)
-> ’a)
end

The ML Module System

Abstract Datatypes

signature RX = sig

type t
val Empty : t
val Str : string -> t

val Seq : t * t -> t
val Or : t * t -> t
val Star : t -> t
val case : (t -> "a ->
(string -> 'a) ->
(t *t -> 'a) ->
(t *t -> 'a) ->
(t -> "a)
-> ’a)
end

structure Rxl :> RX = struct
type t = string
(* .. *)

end

structure Rx2 :> RX = struct
type t = Empty | Str of string

| Seq of t * t | Or of t * t

| Star of t
(* . *)
end

24

The ML Module System

Abstract Datatypes
structure Rxl :> RX = struct

signature RX = sig type t = string
type t (* .. *)
val Empty : t end

val Str : string -> t
val Seq : t * t -> t

val Or : t * t -> t structure Rx2 :> RX = struct

val Star : t -> t type t = Empty | Str of string

val case : (t -> 'a -> | Seq of t * t | Or of t * t
(string -> 'a) -> | Star of t
(t *t -> "a) -> (* . *)
(t *t -> 'a) -> end
(t -> "a)
-> ’a)

end

let base = Rx1.0r(Rx1.Str(“A”), Rx1.0r(Rx1.Str(“T"),
Rx1.0r(Rx1.Str(“G"”), Rx1.Str(“C"))))

25

Our Solution: Parameterized TSMs

Definition
syntax $rx(R : RX) at R.t {
static fn(body : Body) : Exp option => (* ..
}
Usage

let base = $rx Rx1 /A |T|G|C/
let renzyme = $rx Rxl /GC%{base}GC/

rx parser here ..

*)

26

Our Solution: Parameterized TSMs

Definition
syntax $rx(R : RX) at R.t {

}

static fn(body : Body) : Exp option => (* ..

Usage

let base
let renzy

$rx Rx1 /AN |G|C/
e = $rx Rx1l /GC%{base}GC/

rx parser here ..

*)

27

Our Solution: Type-Specific Languages (TSLs) g

Definition

structure Rxl :> RX = struct
type t = string
(* o *)

end with syntax $rx

28

Our Solution: Type-Specific Languages (TSLs) g

Definition

structure Rx1l :> RX = struct
type t = string
(* . *)

end with syntax $rx

The TSM $rx (Rx1) is now associated

with abstract type Rx1. t.

29

Our Solution: Type-Specific Languages (TSLs) g

Definition

structure Rx1l :> RX = struct
type t = string
(* . *)

end with syntax $rx

The TSM $rx (Rx1) is now associated

with abstract type Rx1. t.

Usage

let base : Rxl.t = /A|T|G|C/
let renzyme : Rx1l.t = /GC%{base}G(C/

When a literal form appears by itself,
the TSM associated with

the type it is being checked against
IS applied.

30

Our Solution: Type-Specific Languages (TSLs) g

We associate TSMs with abstract types at abstraction boundaries.

functor F(R : RX with syntax $rx) =
struct

val x : R.t = /A|T|G|C/
end

31

Our Solution: Type-Specific Languages (TSLs) g

functor G() :> RX = struct
type t = string
(L)

end with syntax $rx

G() (* Gl.t has TSL $rx(Gl) *)
G() (* G2.t has TSL $rx(G2) *)

structure G1
structure G2

We associate TSMs with abstract types at abstraction boundaries.

32

Conclusion %

Large Languages and Syntactic DSLs considered harmful.

Typed syntax macros (TSMs) allow library providers to
programmatically introduce new typed syntactic expansions in a
safe, hygienic and modular manner.

Ongoing/Future Work

- Non-textual display forms in a structured editor.
- Modularly programmable type structure.

33

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

