
1

In Euclid’s days, mathematics was mostly communicated in “long form”, that is in prose. As you can see –
 a lot of words, some diagrams, but no symbolic constructions. In fact, modern mathematical notation didn
’t arise until about the 1600s.

2

We’ve come a long way since then. Today, when we want to make a proposition about, say, the asymptoti
c behavior of a function, we have a specialized notation available. This communicates the same idea muc
h more efficiently, both for reader and writer, decreasing mental register pressure, if you will. In mathemati
cs and mathematical science, coming up with new notation and, as in this example, repurposing existing
notation has become almost a sport.

3

This process is almost fractal in nature. Mathematicians constantly develop new notations, often layering
and composing prior notations, to capture the common idioms in their domain. For example, Dirac develo
ped bra-ket notation in recognition of how common this particular combination of operations is in quantum
 physics. Bra-kets are composed of bra’s and ket’s.

4

The concrete syntax of programming languages also includes specialized notations. For example, commo
n data structures like lists are often privileged with literal syntax like this.

5

A few languages stray farther than this. For example some languages also include concrete syntax for reg
ular expressions. You can achieve the same semantics in languages without this syntax, but to do it, you
have to essentially encode the abstract syntax of regular expressions using data types. That is, you have
to give up the benefits of concrete syntax. All too often, this is too hard a bargain, so programmers start s
acrificing some semantic properties to partially recover the syntactic convenience of built in syntax. The m
ost common technique is to use string representations. This is, we argue, a bad idea, for several reasons.

6

Moreover, this can cause major security vulnerabilities. For example, consider SQL queries. Some langua
ges include syntactic support for queries (LINQ), but to achieve the same semantics in other languages re
quires again essentially encoding the abstract syntax of SQL using data types. So again, users attempt to
recover the concrete syntax of SQL by using string representations, to devastating effect – injection attack
s are one of the most serious security threats on the web today. Trivializing this compulsion is, I think, a m
istake for the research community.

7

Indeed, these aren’t isolated examples. In our paper, we conducted a small corpus analysis of Java progr
ams, looking at constructor arguments of type String. We found that a rather alarming fraction of these stri
ng arguments actually appear to capture some sort of parseable concrete syntax for something that might
 be encoded as a data type. You can see the breakdown in the table below – a lot of them are identifiers,
but there are hundreds of other examples.

8

If we want to decrease the cost of using richer representations, this data presents a major challenge to th
e traditional PL design methodology, where new concrete syntax is slowly added to a language by its desi
gners. Indeed, this methodology is unsustainable.

9

A better approach, and one that more closely tracks mathematical practice, is to create an extensible lang
uage building in clean, uniform syntax for the foundational constructs, but leaving derived forms to library
authors.

10

11

12

13

14

We present our solution in the paper as a language design for Wyvern, a language being developed by o
ur group to support secure web and mobile programming within a single statically-typed language.

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

