Safely Composable
Type-Specific Languages (TSLs)

Cyrus Omar

Darya Kurilova

Ligia Nistor

Benjamin Chung

Alex Potanin (Victoria University of Wellington)
Jonathan Aldrich

School of Computer Science
Carnegie Mellon University

[ECOOP14]

Euclid’'s Elements. Source: Wikimedia Commons. 2

In Euclid’s days, mathematics was mostly communicated in “long form”, that is in prose. As you can see —
a lot of words, some diagrams, but no symbolic constructions. In fact, modern mathematical notation didn
't arise until about the 1600s.

MATHEMATICS

There exists a positive constant M such that for all sufficiently large
values of x, the absolute value of fapplied to x is at most M
multiplied by x squared.

We’ve come a long way since then. Today, when we want to make a proposition about, say, the asymptoti
¢ behavior of a function, we have a specialized notation available. This communicates the same idea muc
h more efficiently, both for reader and writer, decreasing mental register pressure, if you will. In mathemati

cs and mathematical science, coming up with new notation and, as in this example, repurposing existing
notation has become almost a sport.

QUANTUM PHYSICS

By
B,
(A1 45 - a4y
By

(A1B) = ((4) (1B))

This process is almost fractal in nature. Mathematicians constantly develop new notations, often layering

and composing prior notations, to capture the common idioms in their domain. For example, Dirac develo
ped bra-ket notation in recognition of how common this particular combination of operations is in quantum
physics. Bra-kets are composed of bra’s and ket’s.

DATA STRUCTURES

L, 2, 3, 4, 5]

Cons(1l, Cons(2, Cons(3, Cons(4, Cons(5, Nil)))))

The concrete syntax of programming languages also includes specialized notations. For example, commo
n data structures like lists are often privileged with literal syntax like this.

REGULAR EXPRESSIONS

/\d\d:\d\d\w? ((a|p)\.?m\.?)/

Concat(Digit, Concat(Digit, Concat(Char ':', Concat(Digit, Concat(Digit,
Concat (ZeroOrMore(Whitespace), Group(Concat(Group(Or(Char 'a',

Char 'p')), Concat(Optional(Char '.'), Concat(Char 'm',

Optional(Char '.")))))))))))

rx_from_str("\\d\\d:\\d\\d\\w?((a|p)\\.?2m\\.?)")

parsing happens at run-time string literals have their own syntax

cf. Spisha JP 2012 nar et al

A few languages stray farther than this. For example some languages also include concrete syntax for reg
ular expressions. You can achieve the same semantics in languages without this syntax, but to do it, you
have to essentially encode the abstract syntax of regular expressions using data types. That is, you have
to give up the benefits of concrete syntax. All too often, this is too hard a bargain, so programmers start s
acrificing some semantic properties to partially recover the syntactic convenience of built in syntax. The m
ost common technique is to use string representations. This is, we argue, a bad idea, for several reasons.

QUERY LANGUAGES (SQL)

query(db, <SELECT * FROM users WHERE name={name} AND pwhash={hash(pw)}>)

query(db, Select(AllColumns, "users", [
WhereClause(AndPredicate(EqualsPredicate("name", StringLit(name)),
EqualsPredicate("pwhash", IntLit(hash(pw))))]))

injection attacks

query(db, "SELECT * FROM users WHERE name=\""+name+"\" AND pwhash="+hash(pw))

"; DROP TABLE users --

Moreover, this can cause major security vulnerabilities. For example, consider SQL queries. Some langua
ges include syntactic support for queries (LINQ), but to achieve the same semantics in other languages re
quires again essentially encoding the abstract syntax of SQL using data types. So again, users attempt to
recover the concrete syntax of SQL by using string representations, to devastating effect — injection attack
s are one of the most serious security threats on the web today. Trivializing this compulsion is, | think, a m
istake for the research community.

String representations are ubiquitous.

Count

Total classes sampled (Qualitas corpus) 124,873
Type of String Number|Percentage
Identifier 15,642 81%
Directory path 823 4%
Pattern 495 3%
URL/URI 396 2%

Consthhets?tBkesla siringadgyneent 1,9330}1611@%%)

HTML/XML, IP address, version, etc.)
Total: 19,288 100%

Indeed, these aren’t isolated examples. In our paper, we conducted a small corpus analysis of Java progr
ams, looking at constructor arguments of type String. We found that a rather alarming fraction of these stri
ng arguments actually appear to capture some sort of parseable concrete syntax for something that might
be encoded as a data type. You can see the breakdown in the table below — a lot of them are identifiers,
but there are hundreds of other examples.

Traditionally: Specialized synta ' es the
cooperation of the language deg

Library [:] Language . Syntax

If we want to decrease the cost of using richer representations, this data presents a major challenge to th
e traditional PL design methodology, where new concrete syntax is slowly added to a language by its desi
gners. Indeed, this methodology is unsustainable.

X

Better approach: an extensible language where
derived syntax can be distributed in libraries.

o ¢
o |

A
@

Library [:] Language . Syntax

A better approach, and one that more closely tracks mathematical practice, is to create an extensible lang
uage building in clean, uniform syntax for the foundational constructs, but leaving derived forms to library
authors.

We want to permit expressive syntax extensions.

But if you give each extension too much control, they may
interfere with one another.

The type of an arbitrary piece of syntax can also be difficult
to determine.

11

Prior Work: Sugar* [Erdweg et al, OOPSLA 2011; GPCE 2013]

e Libraries can arbitrarily extend the syntax of the language
e Extensions can interfere:
e Pairsvs. n-tuples - what does (1, 2) mean?
e HTMLyvs. XML - what does ABC mean?
e Setsvs. Ordered/Unordered Dicts vs. JSON - what does { } mean?
o Different implementations of the same abstraction

Prior Work: Copper [schwerdfeger and Van Wyk, PLDI 2009)]

X

e Libraries can extend the syntax of the language in limited ways

e The examples above cannot directly be expressed.

12

The Argument So Far

e Specialized notations are preferable to general-purpose
notations and string notations in a variety of situations.

e [tis unsustainable for language designers to attempt to
anticipate all useful specialized notations.

e Butitis also a bad idea to give users free reign to add
arbitrary specialized notations to a base grammar.

13

Our Solution: Type-Specific Languages (TSLs)

e Libraries cannot extend the base syntax of the language

e Instead, syntax is associated with types and can only be
used to create values of that type within delimiters.

e Interference is not possible.

Recent Work: Protea, [lchikawa and Chiba, Modularity 2014]

e Types are used to disambiguate parse forests generated by
ambiguous extensions to the base syntax.

e Interference less likely but may not be eliminated.

14

Wyvern

e Goals: Secure web and mobile programming within a single
statically-typed language.

e Must support a variety of types:
e Client-side programming (HTML, CSS)
e Server-side programming (Databases)
e Security policies and architecture specifications

We present our solution in the paper as a language design for Wyvern, a language being developed by o
ur group to support secure web and mobile programming within a single statically-typed language.

15

Wyvern Example base language

URL TSL

. - objtype URL
B (2, 1zM050L)) 0 val protocol : String
val subdomain : String
(7 oo €3)
serve('products.nameless.com'

In the base language, several inline delimiters can be used to
create a TSL literal:

“literal body here, ~“inner backticks ™~ must be doubled®
'literal body here, ''inner single quotes'' must be doubled'
{literal body here, {inner braces} must be balanced}
[literal body here, [inner brackets] must be balanced]

<literal body here, <inner angle brackets> must be balanced>

16

Wyvern Example

serve : (URL, HTML) -> ()

serve('products.nameless.com', ~)

>html
>head
>title Product Listing
>style ~
body { font-family: {bodyFont} }
>body

>div[id="search”]

< SearchBox(”Products”)
>ul[id=“products”]

< items_from query(query(db, -~))

base language
URL TSL

HTML TSL

CSS TSL
String TSL
SQL TSL

SELECT * FROM products COUNT {n_products}

17

Wyvern Example base language

URL TSL
HTML TSL
serve : (URL, HTML) -> () CSS TSL
String TSL
serve('products.nameless.com', ~) SQL TSL
>html
>head
>title Product Listing
>stvle ~

If you use the TSL forward reference, ~, there are no restrictions
on the literal body starting on the next line.
* Indentation (“layout”) determines the end of the body.
* One per line, anywhere an expression would otherwise be.
<7itemé_from_quéry(query(db, ~))
SELECT * FROM products COUNT {n_products}

18

Associating a Parser with a type

casetype HTML
Text of String
BodyElement of (Attributes, HTML)
StyleElement of (Attributes, CSS)

metadata = new
val parser : Parser = new
def parse(s : ParseStream) : Exp

(* Wyvern

parse + elabor

casetype Exp =
Var of ID
Lam of (ID, EXp)
Ap of (Exp, Exp)

19

Associating a grammar with a type

casetype HTML

Text of String

BodyElement of (Attributes, HTML)

StyleElement of (Attributes, CSS)

r;lc;;adata ~ ney Grammarsare TSLs for Parsers! Layout Constraints
(Adams, POPL 2013)

val parser : Parser = -~
fn attrs, children => 'BodyElement(($attrs, S$children))’

Quotations are TSLs for Exps!

20

X

° ° >ul[id=“products”]
spl].Clng < items_from query(query(db, ~))

SELECT * FROM products COUNT {n_products}

casetype HTML =
Text of String
BodyElement of (Attributes, HTML)
StyleElement of (Attributes, CSS)

e Hygiene: The semantics tracks
metadata = new host EXPs. Only these can refer to
val parser : Parser = surrounding variables.

fn attrs, childrz.=> 'BodyElement(($attrs, S$children))’
- EXE
fn e => e

21

X

° ° >ul[id=“products”]
spl].Clng < items_from query(query(db, ~))

SELECT * FROM products COUNT {n_products}

casetype HTML =
Text of String
BodyElement of (Attributes, HTML)
StyleElement of (Attributes, CSS)

e Hygiene: The semantics tracks
metadata = new host EXPs. Only these can refer to
val parser : Parser = surrounding variables.

fn attrs, childrz.=> 'BodyElement(($attrs, S$children))’
x - EXF
fn e => -~

items_from qu ery, db, -~)
SELECT * FR ducts COUNT {n_products}

22

X

Bidirectionally Typed Elaboration Semantics

under

typing context /" and named type context O,

e elaborates to ¢ and synthesizes type 7
e elaborates to 7 if analyzed against type 7

e

x € n=ua i ou=x
easc|7](e) | hase[7](¢) iasc[7](i)
elet(e;x.e) | hlet(é:x.¢) ilet(i; i)
elam(| hlam(z.¢) ilam(x.7)
eap(e;e) | hap(é:é) iap(i;i)
lit[body| spliced|e]

T-lit

I' Fo lit{body| ~ i <= named|T]

23

X

Bidirectionally Typed Elaboration Semantics

under typing context /" and named type context ©,

e elaborates to 7 and synthesizes type 7
e elaborates to 7 if analyzed against type 7

e =T € n=ua i ou=x

| easc[7](e) | hase[7](¢) iasc[7](i)

| elet(e | hlet(é;2.¢) ilet(i; 2.i)

| elam(| hlam(zx.¢) ilam(xz.7)

| eap(e:e) | hap(é:é) iap(isi)
lit[body| spliced|e]

parsestream(body) = i,
metadata(7").parser.parse(ips) | OK (iast)
iast T€ I';0Fe é~v i < named|T]
T-lit

I' e lit[body] ~ i <= named|T

24

Benefits

e Safely Composable
e TSLs are distributed in libraries, along with types
e No link-time parsing ambiguities possible
e Hygiene + local rewriting ensures compositional reasoning
e Reasonable
o Can easily tell when a TSL is being used
e Candetermine which TSL is being used by identifying expected type
e TSLs always generate a value of the corresponding type
e Simple
e Single mechanism that can be described in a few sentences
e Parser generators and quasiquotes arise as libraries
e Flexible
e A large number of syntax extensions can be seen as type-specific languages
e Layout-delimited literals (~) can contain arbitrary syntax

25

Limitations

Decidability of Compilation

e Because user-defined code is being evaluated during typechecking,

compilation might not terminate.

IDE support is trickier

Ongoing Work

Polymorphism

Keyword-delimited syntax extensions
Abstract type members

Pattern syntax

Type-Aware Splicing

26

Implementation

e The Wyvern language includes an evolving variant of this
mechanism:

http://www.github.com/wyvernlang/wyvern
e The core calculus is implemented as described in the paper
using Scala; the internal language is a subset of Scala.

ttp://www.github.com/wyvernlang/ts

e Let's talk about adding extensibility to your language.

27

Types Organize Languages

e Types represent an organizational unit for programming
languages and systems.

e They can be used for more than just ensuring that programs
cannot go wrong:
e Syntax extensions (thi

e IDE extensions (Omar et al., "Active Code Completion”, ICSE 2012)
public Color getDefaultColor() { public Celer getDefaultColor() {
return retarn new ColorC
e,

navy

e,
_.HDD..E.:[D. Enter | 128); ravy
e

R:0 G:0 B:128
(a))

o Type system extensions (submitted)

28

The Argument
For a New Human-Parser Interaction

e Specialized notations are preferable to general-purpose
notations and string representations in many situations.

e |tis unsustainable for language designers to attempt to
anticipate all useful specialized notations.

e Butitis also difficult to reason about the syntax and
semantics if we give users free reign to add arbitrary
specialized notations to a base grammar.

e Associating syntax extensions with types is a principled,
practical approach to this problem with minor drawbacks.

29

29

