
Statistical Models of Typed Syntax Trees
Cyrus Omar

Carnegie Mellon University

Many tools could benefit from an understanding of
the statistics of natural programs.

code completion
engines

predictive programming
interfaces

code compression
engines

Many tools could benefit from an understanding of
the statistics of natural programs.

code smell detectors

� ������ �	�
 �����
����������
���� � ������
� ������ �
��� �� ����� ����
� ��������
��	� ��� �����	��
�� ����
�	���! ��������
" ����#	��$	��%���&'()	�! ����
* ������ �
��� ���
����	� #	��$	��%���&'(��++���	�
���,���� ����
- ��������)	� � �#	��$	��%���&'(�
���! ��������
. �������� ����
/ ��������)	� � ��� #	��$	��%���01
��
�
��������1�
�	��
����! ��������
2 ����
	3��4�
�)	��! ����
�5 6 6

Fig. 5: Token heatmap of a ForkJoinPool snippet on the elasticsearch project. The background color of each token
represents the probability (color scale—left) assigned by two 3-gram models. The left (right) snippet shows the token
probabilities of the full (collapsed) 3-gram. The underlined tokens are those that the LM returns the probability for a previously
unseen (UNK) token.

they are those that allow the expressiveness in programming
languages. Using the findings in Section IV, we now examine
how different types of identifiers are learned.

Figure 6 depicts the learning curves for two sample test
projects we previously used. For each project we plot the
learning curve of a n-gram model trained collapsing all identi-
fiers except from a specific type. Figure 6c shows the number
of extra bits per token required to predict each identifier
type letting us infer the difficulty of predicting each type of
identifier. As expected the fully collapsed token sequences are
the easiest to predict and have consistently the lowest cross
entropy across projects. This is a reasonable observation and
further verifies the observations in Figure 4b.

The collapsed n-gram using method name identifiers has
the second best cross entropy. Predicting method names adds
on average only 0.2 bits per token. Predicting type identifiers
comes second in difficulty after method names. Thus type
identifiers are harder to predict in code increasing the cross
entropy on average by about 0.5 bits per token. We hypothesize
that this happens because methods represent “actions” that can
be more easily predicted based on context, compared to types
that represent more abstract concepts or because we usually
have a large hierarchy of types (through inheritance) that share
common method names (e.g. the Collection interface in
Java).

Finally, variable name identifiers increase the cross entropy
by about 0.9 bits, reducing the token probabilities by almost
an order of magnitude compared to the full collapsed n-gram
LM. Again this shows the significance of the variable names
to the domain of each project and the (obvious) importance
they have when appearing in a sequence of code tokens.

The most surprising result (Figure 6c) is the average number
of extra bits of cross entropy required for each type of token:
the model performance on methods and types does not signif-
icantly improve, irrespectively of the amount of lines of code
we train it. In contrast, the n-gram model gradually becomes
better at predicting variable name identifiers, although they are
harder to learn. This is surprising given our prior knowledge
for variable names: Although in general they are harder to
predict, they are more easily learned in large corpora. This

implies that from the large number of distinct variable names
few of them are frequently reused and are more context
dependent. Looking back at Figure 5 we can now better
explain why in line 1 the variable name task is fairly easy
to predict compared to the Runnable type name.

VI. USING MASSIVE n-GRAM MODELS TO ANALYZE NEW
CODE

In this section, we apply the giga-token language model to
gain new insights into software projects. First, we consider
whether cross entropy could be used as a code complexity
metric (Section VI-A), as a complement to existing metrics
such as cyclomatic complexity. Then we examine how cross
entropy varies across files (Section VI-B) and (Section VI-C)
across projects. We find that on average interfaces appear
simpler than classes that implement core logic, and projects
that most define APIs or provide examples have lower cross
entropy than research code. Finally, we define a new metric,
called identifier information metric, that attempts to measure
how domain specific a file is based on how unpredictable
its identifiers are to a language model (Section VI-D3). We
find that the identifier information metric can successfully
differentiate utility classes from core logic, even on projects
that do not occur in the LM’s training set.

A. n-gram Log Probability as a Code Complexity Metric

Code complexity metrics quantify how understandable a
piece of code is and are useful in software quality assurance.
A multitude of metrics have been proposed [6], including Mc-
Cabe’s cyclomatic complexity (CC) and lines of code (LOC).
In this section, we consider whether n-gram log probability
(NGLP) can be used as a complementary complexity metric.
First it is interesting to examine the distribution of the existing
complexity metrics across a large test corpus. This is shown
in Figures 7a and 7b. We see that both CC and LOC follow
a power law, in which most methods have low values of
complexity but there is a long tail of high complexity methods.

It is intriguing to consider the possibility that NGLP could
be used as an additional complexity metric, since one might
expect that code that is more difficult to predict is more
complex. For this idea to be credible, we would expect NGLP

class Sagan extends Astronomer {!
 void beforeBed() {!
!
 }!
!
 Planet favorite = Planet.NEPTUNE;!
}

 observe(favorite)!

enum Planet { !
 MERCURY, !
 VENUS, !
 …,!
 NEPTUNE !
}

class Astronomer {!
 void observe(Planet p) {…}!
}

Running Example

To develop a probability distribution for code, we
need to first choose a representation of code

class Sagan extends Astronomer {!
 void beforeBed() {!
!
 }!
!
 Planet favorite = Planet.NEPTUNE;!
}

 observe(favorite)!

enum Planet { !
 MERCURY, !
 VENUS, !
 …,!
 NEPTUNE !
}

class Astronomer {!
 void observe(Planet p) {…}!
}

Running Example

Previous Work: Programs are Token Sequences

observe (favorite)P(() {|)

¡ n-­‐‑grams (Hindle et al, ICSE 2012) ¡ n-­‐‑grams (Hindle et al, ICSE 2012)

¡ n-­‐‑grams (Hindle et al., ICSE 2012; Allamanis & Su>on, MSR 2013)
¡ topic modeling + part of speech analysis (Nguyen et al., FSE 2013)

Our Approach: Programs are Syntax Trees

¡ n-­‐‑grams (Hindle et al, ICSE 2012) ¡ n-­‐‑grams (Hindle et al, ICSE 2012)

call var thisvar this field P(
|

.observe(

class Sagan extends Astronomer {!
 void beforeBed() {!
!
 }!
!
 Planet favorite = Planet.NEPTUNE;!
}

 observe(favorite)!

enum Planet { !
 MERCURY, !
 VENUS, !
 …,!
 NEPTUNE !
}

class Astronomer {!
 void observe(Planet p) {…}!
}

Running Example

.favorite)

StatisticalModelingofTypedSyntaxTrees

Cyrus Omar, Salil Joshi, Flávio Cruz

{comar, salilj, fmfernan}@cs.cmu.edu

Motivation

Many kinds of tools can benefit from better models of the statistical structure
of the code that developers write:
• Code completion engines in source code editors
• Code compression engines for sending programs over the network
• Predictive interfaces for conveying commands via devices with limited

bandwidth (e.g. mobile phones, wearable computers like Google Glass, or
rehabilitative interfaces like Stephen Hawking uses)

• Automated bug fixing tools that aim to restrict their search space to
consider only seemingly “natural” code patches

Previous Work: Token Sequences

Previous work has represented source code as a sequence of tokens, so that
natural language modeling techniques can be repurposed to assign probabilities
to program tokens conditioned on their surrounding tokens:

• n-gram models use observed frequencies conditioned on the n (typically
3-15) preceding tokens [1]

• SLAMC associates additional semantic information (available during lex-
ing) with tokens, and uses several topic modeling techniques [2]

Our Work: Typed Syntax Trees

Token sequences are unstructured representations of mathematical objects with
a rich structure and semantics: typed syntax trees. As a result, these meth-
ods often assign non-zero probabilities to malformed and ill-typed programs,
and can neglect, or consider only in an ad hoc manner, non-local structural or
semantic regularities.

To avoid these limitations, we investigate models where probabil-

ities are assigned to typed syntax trees directly.

Example

hi

A Language-General Framework

Type (⌧)

%% ++
Form (�) // Expression (e)

Role (⇢)

99 33

Typing Context (�)

OO

Our objective is to learn P(e|⌧, ⇢,�), the probability of an expression, e, given
its type, ⌧ , the surrounding typing context, �, which tracks the signatures of
names in scope, and the structural context, ⇢, which captures information about
how e is being used (e.g. whether e is the guard of a conditional, an argument
to a function, etc.).

To make the model tractable, we will marginalize over a random variable
representing the form of e, written �:

P(e|⌧, ⇢,�) =
X

�2�

P(e|�, ⌧, ⇢,�)P(�|⌧, ⇢)

A Statistical Model of Java

To develop a simple model of Java within this conceptual framework, we will
consider:

• both primitive types (e.g. int) and classes
• a typing context, �, that tracks the signatures of variables, fields, methods

and classes/interfaces in scope
• structural contexts ⇢ 2 {stmt,asgn,arg,other}, representing expressions

appearing at the top-level, as the right side of an assignment statement,
as an argument to a method or in any other context

• forms � = {lit,meth,var}, representing literals (for primitive numeric
types, strings and enums), method calls and variables, respectively.
TODO: elaborate

Form-Specific Distributions

where
Plit(e|⌧, ⇢,�) =

#{e, ⌧, ⇢}
#{lit, ⌧, ⇢}

P(x|�, ⌧, ⇢,�) =
⇢ 1

var(�,⌧) x : ⌧ 2 � and � = var

0 o/w

P(n|�, ⌧, ⇢,�) =

8
<

:

Plaplace(n;µ)+plitseen
#{n,lit,⌧,⇢}
#{lit,⌧,⇢}

1+plistseen
� = lit and ⌧ numeric

0 o/w

P(e.x|�, ⌧, ⇢,�) =

8
<

:
P(e|⌧e, target,�)

1
|fields(⌧

e

)|+pfield
seen

#{⌧
e

.x,⌧,⇢}
#{⌧

e

._,⌧,⇢}
1+pfield

seen
� = field and � ` e : ⌧e and x 2 fields(⌧e)

0 o/w

Pmeth(e|⌧, ⇢,�) =

8
>>><

>>>:

⇣
Punseen(⌧, ⇢)

1
|M(�,⌧)| M(e)

+(1� Punseen(⌧, ⇢))
#{e,⌧,⇢}

#{meth,⌧,⇢}

⌘
⇥

Qn
i=1 P (ei|⌧i,arg,�)

0 o/w
Punseen(⌧, ⇢) =

|{m|#{m,meth, ⌧, ⇢} > 0}|
#{meth, ⌧, ⇢}+ ⌘

Here,
• M(e) = (e ⌘ o.m(e1, . . . , en)) ^ � ` o : ⌧0 ^ ⌧0.m : ⌧1, . . . , ⌧n ! ⌧

• M(�, ⌧) is the set of unused methods with return type ⌧ :
{m|m : ⌧1, . . . , tn ! ⌧ ^#{m,meth, ⌧, ⇢} = 0}

• And V (�, ⌧) is the set of variables of in scope with type ⌧

Implementation

We implemented our method as a plugin to the Eclipse IDE utilizing the JDT
(Java Development Tools) library. This allows us to use Eclipse’s Java parser
and typechecker, and gives us accesss to functions for walking through Java
source code that make it easier to collect the statistics we need.

We compared our results to probabilities generated using an n-gram model,
with n = 3. The n-grams were generated using a version of the CMU Language
Modeling Toolkit and the probabilities were computing using various Python
scripts.

Results

We tested our predictor using ten-fold cross validation on a few open source
projects and measured the average probability of the observed expression ac-
cording to our model. We compared this to the average probabilities given as
by an n-gram model:

While these results are promising, we did notice that a large number of observed
expressions are assigned 0 probability by our model. An important reason for
this was situations where the predictor was forced to give up due to insufficient
training data. Improved handling of this situation will greatly improve our
prediction accuracy.

Conclusions

Our tests show that our method performs significantly better than an n-gram
model. This indicates that taking language semantics into account is useful for
code prediction systems.

References

[1] A. Hindle, E. T. Barr, Z. Su, M. Gabel, and P. Devanbu. On the naturalness of software. In
Software Engineering (ICSE), 2012 34th International Conference on, pages 837–847. IEEE,
2012.

[2] T. T. Nguyen, A. T. Nguyen, H. A. Nguyen, and T. N. Nguyen. A statistical semantic language
model for source code. In Proceedings of the 2013 9th Joint Meeting on Foundations of

Software Engineering, ESEC/FSE 2013, pages 532–542, New York, NY, USA, 2013. ACM.

Acknowledgement

The n-gram model used for comparison was from: Hindle, Abram, et al. "On
the naturalness of software." (ICSE 2012)
Thanks to Rachel Aurand for portions of the n-gram implementation

= stmt,

role

Our Approach: Programs are Typed Syntax Trees

StatisticalModelingofTypedSyntaxTrees

Cyrus Omar, Salil Joshi, Flávio Cruz

{comar, salilj, fmfernan}@cs.cmu.edu

Motivation

Many kinds of tools can benefit from better models of the statistical structure
of the code that developers write:
• Code completion engines in source code editors
• Code compression engines for sending programs over the network
• Predictive interfaces for conveying commands via devices with limited

bandwidth (e.g. mobile phones, wearable computers like Google Glass, or
rehabilitative interfaces like Stephen Hawking uses)

• Automated bug fixing tools that aim to restrict their search space to
consider only seemingly “natural” code patches

Previous Work: Token Sequences

Previous work has represented source code as a sequence of tokens, so that
natural language modeling techniques can be repurposed to assign probabilities
to program tokens conditioned on their surrounding tokens:

• n-gram models use observed frequencies conditioned on the n (typically
3-15) preceding tokens [1]

• SLAMC associates additional semantic information (available during lex-
ing) with tokens, and uses several topic modeling techniques [2]

Our Work: Typed Syntax Trees

Token sequences are unstructured representations of mathematical objects with
a rich structure and semantics: typed syntax trees. As a result, these meth-
ods often assign non-zero probabilities to malformed and ill-typed programs,
and can neglect, or consider only in an ad hoc manner, non-local structural or
semantic regularities.

To avoid these limitations, we investigate models where probabil-

ities are assigned to typed syntax trees directly.

Example

hi

A Language-General Framework

Type (⌧)

%% ++
Form (�) // Expression (e)

Role (⇢)

99 33

Typing Context (�)

OO

Our objective is to learn P(e|⌧, ⇢,�), the probability of an expression, e, given
its type, ⌧ , the surrounding typing context, �, which tracks the signatures of
names in scope, and the structural context, ⇢, which captures information about
how e is being used (e.g. whether e is the guard of a conditional, an argument
to a function, etc.).

To make the model tractable, we will marginalize over a random variable
representing the form of e, written �:

P(e|⌧, ⇢,�) =
X

�2�

P(e|�, ⌧, ⇢,�)P(�|⌧, ⇢)

A Statistical Model of Java

To develop a simple model of Java within this conceptual framework, we will
consider:

• both primitive types (e.g. int) and classes
• a typing context, �, that tracks the signatures of variables, fields, methods

and classes/interfaces in scope
• structural contexts ⇢ 2 {stmt,asgn,arg,other}, representing expressions

appearing at the top-level, as the right side of an assignment statement,
as an argument to a method or in any other context

• forms � = {lit,meth,var}, representing literals (for primitive numeric
types, strings and enums), method calls and variables, respectively.
TODO: elaborate

Form-Specific Distributions

where
Plit(e|⌧, ⇢,�) =

#{e, ⌧, ⇢}
#{lit, ⌧, ⇢}

P(x|�, ⌧, ⇢,�) =
⇢ 1

var(�,⌧) x : ⌧ 2 � and � = var

0 o/w

P(n|�, ⌧, ⇢,�) =

8
<

:

Plaplace(n;µ)+plitseen
#{n,lit,⌧,⇢}
#{lit,⌧,⇢}

1+plistseen
� = lit and ⌧ numeric

0 o/w

P(e.x|�, ⌧, ⇢,�) =

8
<

:
P(e|⌧e, target,�)

1
|fields(⌧

e

)|+pfield
seen

#{⌧
e

.x,⌧,⇢}
#{⌧

e

._,⌧,⇢}
1+pfield

seen
� = field and � ` e : ⌧e and x 2 fields(⌧e)

0 o/w

Pmeth(e|⌧, ⇢,�) =

8
>>><

>>>:

⇣
Punseen(⌧, ⇢)

1
|M(�,⌧)| M(e)

+(1� Punseen(⌧, ⇢))
#{e,⌧,⇢}

#{meth,⌧,⇢}

⌘
⇥

Qn
i=1 P (ei|⌧i,arg,�)

0 o/w
Punseen(⌧, ⇢) =

|{m|#{m,meth, ⌧, ⇢} > 0}|
#{meth, ⌧, ⇢}+ ⌘

Here,
• M(e) = (e ⌘ o.m(e1, . . . , en)) ^ � ` o : ⌧0 ^ ⌧0.m : ⌧1, . . . , ⌧n ! ⌧

• M(�, ⌧) is the set of unused methods with return type ⌧ :
{m|m : ⌧1, . . . , tn ! ⌧ ^#{m,meth, ⌧, ⇢} = 0}

• And V (�, ⌧) is the set of variables of in scope with type ⌧

Implementation

We implemented our method as a plugin to the Eclipse IDE utilizing the JDT
(Java Development Tools) library. This allows us to use Eclipse’s Java parser
and typechecker, and gives us accesss to functions for walking through Java
source code that make it easier to collect the statistics we need.

We compared our results to probabilities generated using an n-gram model,
with n = 3. The n-grams were generated using a version of the CMU Language
Modeling Toolkit and the probabilities were computing using various Python
scripts.

Results

We tested our predictor using ten-fold cross validation on a few open source
projects and measured the average probability of the observed expression ac-
cording to our model. We compared this to the average probabilities given as
by an n-gram model:

While these results are promising, we did notice that a large number of observed
expressions are assigned 0 probability by our model. An important reason for
this was situations where the predictor was forced to give up due to insufficient
training data. Improved handling of this situation will greatly improve our
prediction accuracy.

Conclusions

Our tests show that our method performs significantly better than an n-gram
model. This indicates that taking language semantics into account is useful for
code prediction systems.

References

[1] A. Hindle, E. T. Barr, Z. Su, M. Gabel, and P. Devanbu. On the naturalness of software. In
Software Engineering (ICSE), 2012 34th International Conference on, pages 837–847. IEEE,
2012.

[2] T. T. Nguyen, A. T. Nguyen, H. A. Nguyen, and T. N. Nguyen. A statistical semantic language
model for source code. In Proceedings of the 2013 9th Joint Meeting on Foundations of

Software Engineering, ESEC/FSE 2013, pages 532–542, New York, NY, USA, 2013. ACM.

Acknowledgement

The n-gram model used for comparison was from: Hindle, Abram, et al. "On
the naturalness of software." (ICSE 2012)
Thanks to Rachel Aurand for portions of the n-gram implementation

= void,)

StatisticalModelingofTypedSyntaxTrees

Cyrus Omar, Salil Joshi, Flávio Cruz

{comar, salilj, fmfernan}@cs.cmu.edu

Motivation

Many kinds of tools can benefit from better models of the statistical structure
of the code that developers write:
• Code completion engines in source code editors
• Code compression engines for sending programs over the network
• Predictive interfaces for conveying commands via devices with limited

bandwidth (e.g. mobile phones, wearable computers like Google Glass, or
rehabilitative interfaces like Stephen Hawking uses)

• Automated bug fixing tools that aim to restrict their search space to
consider only seemingly “natural” code patches

Previous Work: Token Sequences

Previous work has represented source code as a sequence of tokens, so that
natural language modeling techniques can be repurposed to assign probabilities
to program tokens conditioned on their surrounding tokens:

• n-gram models use observed frequencies conditioned on the n (typically
3-15) preceding tokens [1]

• SLAMC associates additional semantic information (available during lex-
ing) with tokens, and uses several topic modeling techniques [2]

Our Work: Typed Syntax Trees

Token sequences are unstructured representations of mathematical objects with
a rich structure and semantics: typed syntax trees. As a result, these meth-
ods often assign non-zero probabilities to malformed and ill-typed programs,
and can neglect, or consider only in an ad hoc manner, non-local structural or
semantic regularities.

To avoid these limitations, we investigate models where probabil-

ities are assigned to typed syntax trees directly.

Example

hi

A Language-General Framework

Type (⌧)

%% ++
Form (�) // Expression (e)

Role (⇢)

99 33

Typing Context (�)

OO

Our objective is to learn P(e|⌧, ⇢,�), the probability of an expression, e, given
its type, ⌧ , the surrounding typing context, �, which tracks the signatures of
names in scope, and the structural context, ⇢, which captures information about
how e is being used (e.g. whether e is the guard of a conditional, an argument
to a function, etc.).

To make the model tractable, we will marginalize over a random variable
representing the form of e, written �:

P(e|⌧, ⇢,�) =
X

�2�

P(e|�, ⌧, ⇢,�)P(�|⌧, ⇢)

A Statistical Model of Java

To develop a simple model of Java within this conceptual framework, we will
consider:

• both primitive types (e.g. int) and classes
• a typing context, �, that tracks the signatures of variables, fields, methods

and classes/interfaces in scope
• structural contexts ⇢ 2 {stmt,asgn,arg,other}, representing expressions

appearing at the top-level, as the right side of an assignment statement,
as an argument to a method or in any other context

• forms � = {lit,meth,var}, representing literals (for primitive numeric
types, strings and enums), method calls and variables, respectively.
TODO: elaborate

Form-Specific Distributions

where
Plit(e|⌧, ⇢,�) =

#{e, ⌧, ⇢}
#{lit, ⌧, ⇢}

P(x|�, ⌧, ⇢,�) =
⇢ 1

var(�,⌧) x : ⌧ 2 � and � = var

0 o/w

P(n|�, ⌧, ⇢,�) =

8
<

:

Plaplace(n;µ)+plitseen
#{n,lit,⌧,⇢}
#{lit,⌧,⇢}

1+plistseen
� = lit and ⌧ numeric

0 o/w

P(e.x|�, ⌧, ⇢,�) =

8
<

:
P(e|⌧e, target,�)

1
|fields(⌧

e

)|+pfield
seen

#{⌧
e

.x,⌧,⇢}
#{⌧

e

._,⌧,⇢}
1+pfield

seen
� = field and � ` e : ⌧e and x 2 fields(⌧e)

0 o/w

Pmeth(e|⌧, ⇢,�) =

8
>>><

>>>:

⇣
Punseen(⌧, ⇢)

1
|M(�,⌧)| M(e)

+(1� Punseen(⌧, ⇢))
#{e,⌧,⇢}

#{meth,⌧,⇢}

⌘
⇥

Qn
i=1 P (ei|⌧i,arg,�)

0 o/w
Punseen(⌧, ⇢) =

|{m|#{m,meth, ⌧, ⇢} > 0}|
#{meth, ⌧, ⇢}+ ⌘

Here,
• M(e) = (e ⌘ o.m(e1, . . . , en)) ^ � ` o : ⌧0 ^ ⌧0.m : ⌧1, . . . , ⌧n ! ⌧

• M(�, ⌧) is the set of unused methods with return type ⌧ :
{m|m : ⌧1, . . . , tn ! ⌧ ^#{m,meth, ⌧, ⇢} = 0}

• And V (�, ⌧) is the set of variables of in scope with type ⌧

Implementation

We implemented our method as a plugin to the Eclipse IDE utilizing the JDT
(Java Development Tools) library. This allows us to use Eclipse’s Java parser
and typechecker, and gives us accesss to functions for walking through Java
source code that make it easier to collect the statistics we need.

We compared our results to probabilities generated using an n-gram model,
with n = 3. The n-grams were generated using a version of the CMU Language
Modeling Toolkit and the probabilities were computing using various Python
scripts.

Results

We tested our predictor using ten-fold cross validation on a few open source
projects and measured the average probability of the observed expression ac-
cording to our model. We compared this to the average probabilities given as
by an n-gram model:

While these results are promising, we did notice that a large number of observed
expressions are assigned 0 probability by our model. An important reason for
this was situations where the predictor was forced to give up due to insufficient
training data. Improved handling of this situation will greatly improve our
prediction accuracy.

Conclusions

Our tests show that our method performs significantly better than an n-gram
model. This indicates that taking language semantics into account is useful for
code prediction systems.

References

[1] A. Hindle, E. T. Barr, Z. Su, M. Gabel, and P. Devanbu. On the naturalness of software. In
Software Engineering (ICSE), 2012 34th International Conference on, pages 837–847. IEEE,
2012.

[2] T. T. Nguyen, A. T. Nguyen, H. A. Nguyen, and T. N. Nguyen. A statistical semantic language
model for source code. In Proceedings of the 2013 9th Joint Meeting on Foundations of

Software Engineering, ESEC/FSE 2013, pages 532–542, New York, NY, USA, 2013. ACM.

Acknowledgement

The n-gram model used for comparison was from: Hindle, Abram, et al. "On
the naturalness of software." (ICSE 2012)
Thanks to Rachel Aurand for portions of the n-gram implementation

= stmt,

StatisticalModelingofTypedSyntaxTrees

Cyrus Omar, Salil Joshi, Flávio Cruz

{comar, salilj, fmfernan}@cs.cmu.edu

Motivation

Many kinds of tools can benefit from better models of the statistical structure
of the code that developers write:
• Code completion engines in source code editors
• Code compression engines for sending programs over the network
• Predictive interfaces for conveying commands via devices with limited

bandwidth (e.g. mobile phones, wearable computers like Google Glass, or
rehabilitative interfaces like Stephen Hawking uses)

• Automated bug fixing tools that aim to restrict their search space to
consider only seemingly “natural” code patches

Previous Work: Token Sequences

Previous work has represented source code as a sequence of tokens, so that
natural language modeling techniques can be repurposed to assign probabilities
to program tokens conditioned on their surrounding tokens:

• n-gram models use observed frequencies conditioned on the n (typically
3-15) preceding tokens [1]

• SLAMC associates additional semantic information (available during lex-
ing) with tokens, and uses several topic modeling techniques [2]

Our Work: Typed Syntax Trees

Token sequences are unstructured representations of mathematical objects with
a rich structure and semantics: typed syntax trees. As a result, these meth-
ods often assign non-zero probabilities to malformed and ill-typed programs,
and can neglect, or consider only in an ad hoc manner, non-local structural or
semantic regularities.

To avoid these limitations, we investigate models where probabil-

ities are assigned to typed syntax trees directly.

Example

hi

A Language-General Framework

Type (⌧)

%% ++
Form (�) // Expression (e)

Role (⇢)

99 33

Typing Context (�)

OO

Our objective is to learn P(e|⌧, ⇢,�), the probability of an expression, e, given
its type, ⌧ , the surrounding typing context, �, which tracks the signatures of
names in scope, and the structural context, ⇢, which captures information about
how e is being used (e.g. whether e is the guard of a conditional, an argument
to a function, etc.).

To make the model tractable, we will marginalize over a random variable
representing the form of e, written �:

P(e|⌧, ⇢,�) =
X

�2�

P(e|�, ⌧, ⇢,�)P(�|⌧, ⇢)

A Statistical Model of Java

To develop a simple model of Java within this conceptual framework, we will
consider:

• both primitive types (e.g. int) and classes
• a typing context, �, that tracks the signatures of variables, fields, methods

and classes/interfaces in scope
• structural contexts ⇢ 2 {stmt,asgn,arg,other}, representing expressions

appearing at the top-level, as the right side of an assignment statement,
as an argument to a method or in any other context

• forms � = {lit,meth,var}, representing literals (for primitive numeric
types, strings and enums), method calls and variables, respectively.
TODO: elaborate

Form-Specific Distributions

where
Plit(e|⌧, ⇢,�) =

#{e, ⌧, ⇢}
#{lit, ⌧, ⇢}

P(x|�, ⌧, ⇢,�) =
⇢ 1

var(�,⌧) x : ⌧ 2 � and � = var

0 o/w

P(n|�, ⌧, ⇢,�) =

8
<

:

Plaplace(n;µ)+plitseen
#{n,lit,⌧,⇢}
#{lit,⌧,⇢}

1+plistseen
� = lit and ⌧ numeric

0 o/w

P(e.x|�, ⌧, ⇢,�) =

8
<

:
P(e|⌧e, target,�)

1
|fields(⌧

e

)|+pfield
seen

#{⌧
e

.x,⌧,⇢}
#{⌧

e

._,⌧,⇢}
1+pfield

seen
� = field and � ` e : ⌧e and x 2 fields(⌧e)

0 o/w

Pmeth(e|⌧, ⇢,�) =

8
>>><

>>>:

⇣
Punseen(⌧, ⇢)

1
|M(�,⌧)| M(e)

+(1� Punseen(⌧, ⇢))
#{e,⌧,⇢}

#{meth,⌧,⇢}

⌘
⇥

Qn
i=1 P (ei|⌧i,arg,�)

0 o/w
Punseen(⌧, ⇢) =

|{m|#{m,meth, ⌧, ⇢} > 0}|
#{meth, ⌧, ⇢}+ ⌘

Here,
• M(e) = (e ⌘ o.m(e1, . . . , en)) ^ � ` o : ⌧0 ^ ⌧0.m : ⌧1, . . . , ⌧n ! ⌧

• M(�, ⌧) is the set of unused methods with return type ⌧ :
{m|m : ⌧1, . . . , tn ! ⌧ ^#{m,meth, ⌧, ⇢} = 0}

• And V (�, ⌧) is the set of variables of in scope with type ⌧

Implementation

We implemented our method as a plugin to the Eclipse IDE utilizing the JDT
(Java Development Tools) library. This allows us to use Eclipse’s Java parser
and typechecker, and gives us accesss to functions for walking through Java
source code that make it easier to collect the statistics we need.

We compared our results to probabilities generated using an n-gram model,
with n = 3. The n-grams were generated using a version of the CMU Language
Modeling Toolkit and the probabilities were computing using various Python
scripts.

Results

We tested our predictor using ten-fold cross validation on a few open source
projects and measured the average probability of the observed expression ac-
cording to our model. We compared this to the average probabilities given as
by an n-gram model:

While these results are promising, we did notice that a large number of observed
expressions are assigned 0 probability by our model. An important reason for
this was situations where the predictor was forced to give up due to insufficient
training data. Improved handling of this situation will greatly improve our
prediction accuracy.

Conclusions

Our tests show that our method performs significantly better than an n-gram
model. This indicates that taking language semantics into account is useful for
code prediction systems.

References

[1] A. Hindle, E. T. Barr, Z. Su, M. Gabel, and P. Devanbu. On the naturalness of software. In
Software Engineering (ICSE), 2012 34th International Conference on, pages 837–847. IEEE,
2012.

[2] T. T. Nguyen, A. T. Nguyen, H. A. Nguyen, and T. N. Nguyen. A statistical semantic language
model for source code. In Proceedings of the 2013 9th Joint Meeting on Foundations of

Software Engineering, ESEC/FSE 2013, pages 532–542, New York, NY, USA, 2013. ACM.

Acknowledgement

The n-gram model used for comparison was from: Hindle, Abram, et al. "On
the naturalness of software." (ICSE 2012)
Thanks to Rachel Aurand for portions of the n-gram implementation

class Sagan extends Astronomer {!
 void beforeBed() {!
!
 }!
!
 Planet favorite = Planet.NEPTUNE;!
}

 observe(favorite)!

enum Planet { !
 MERCURY, !
 VENUS, !
 …,!
 NEPTUNE !
}

class Astronomer {!
 void observe(Planet p) {…}!
}

Running Example

)

typerole typing
context

call var thisvar this field P(
|

.observe(.favorite)

class Sagan extends Astronomer {!
 void beforeBed() {!
!
 }!
!
 Planet favorite = Planet.NEPTUNE;!
}

 observe(favorite)!

enum Planet { !
 MERCURY, !
 VENUS, !
 …,!
 NEPTUNE !
}

class Astronomer {!
 void observe(Planet p) {…}!
}

Running Example

StatisticalModelingofTypedSyntaxTrees

Cyrus Omar, Salil Joshi, Flávio Cruz

{comar, salilj, fmfernan}@cs.cmu.edu

Motivation

Many kinds of tools can benefit from better models of the statistical structure
of the code that developers write:
• Code completion engines in source code editors
• Code compression engines for sending programs over the network
• Predictive interfaces for conveying commands via devices with limited

bandwidth (e.g. mobile phones, wearable computers like Google Glass, or
rehabilitative interfaces like Stephen Hawking uses)

• Automated bug fixing tools that aim to restrict their search space to
consider only seemingly “natural” code patches

Previous Work: Token Sequences

Previous work has represented source code as a sequence of tokens, so that
natural language modeling techniques can be repurposed to assign probabilities
to program tokens conditioned on their surrounding tokens:

• n-gram models use observed frequencies conditioned on the n (typically
3-15) preceding tokens [1]

• SLAMC associates additional semantic information (available during lex-
ing) with tokens, and uses several topic modeling techniques [2]

Our Work: Typed Syntax Trees

Token sequences are unstructured representations of mathematical objects with
a rich structure and semantics: typed syntax trees. As a result, these meth-
ods often assign non-zero probabilities to malformed and ill-typed programs,
and can neglect, or consider only in an ad hoc manner, non-local structural or
semantic regularities.

To avoid these limitations, we investigate models where probabil-

ities are assigned to typed syntax trees directly.

Example

hi

A Language-General Framework

Type (⌧)

%% ++
Form (�) // Expression (e)

Role (⇢)

99 33

Typing Context (�)

OO

Our objective is to learn P(e|⌧, ⇢,�), the probability of an expression, e, given
its type, ⌧ , the surrounding typing context, �, which tracks the signatures of
names in scope, and the structural context, ⇢, which captures information about
how e is being used (e.g. whether e is the guard of a conditional, an argument
to a function, etc.).

To make the model tractable, we will marginalize over a random variable
representing the form of e, written �:

P(e|⌧, ⇢,�) =
X

�2�

P(e|�, ⌧, ⇢,�)P(�|⌧, ⇢)

A Statistical Model of Java

To develop a simple model of Java within this conceptual framework, we will
consider:

• both primitive types (e.g. int) and classes
• a typing context, �, that tracks the signatures of variables, fields, methods

and classes/interfaces in scope
• structural contexts ⇢ 2 {stmt,asgn,arg,other}, representing expressions

appearing at the top-level, as the right side of an assignment statement,
as an argument to a method or in any other context

• forms � = {lit,meth,var}, representing literals (for primitive numeric
types, strings and enums), method calls and variables, respectively.
TODO: elaborate

Form-Specific Distributions

where
Plit(e|⌧, ⇢,�) =

#{e, ⌧, ⇢}
#{lit, ⌧, ⇢}

P(x|�, ⌧, ⇢,�) =
⇢ 1

var(�,⌧) x : ⌧ 2 � and � = var

0 o/w

P(n|�, ⌧, ⇢,�) =

8
<

:

Plaplace(n;µ)+plitseen
#{n,lit,⌧,⇢}
#{lit,⌧,⇢}

1+plistseen
� = lit and ⌧ numeric

0 o/w

P(e.x|�, ⌧, ⇢,�) =

8
<

:
P(e|⌧e, target,�)

1
|fields(⌧

e

)|+pfield
seen

#{⌧
e

.x,⌧,⇢}
#{⌧

e

._,⌧,⇢}
1+pfield

seen
� = field and � ` e : ⌧e and x 2 fields(⌧e)

0 o/w

Pmeth(e|⌧, ⇢,�) =

8
>>><

>>>:

⇣
Punseen(⌧, ⇢)

1
|M(�,⌧)| M(e)

+(1� Punseen(⌧, ⇢))
#{e,⌧,⇢}

#{meth,⌧,⇢}

⌘
⇥

Qn
i=1 P (ei|⌧i,arg,�)

0 o/w
Punseen(⌧, ⇢) =

|{m|#{m,meth, ⌧, ⇢} > 0}|
#{meth, ⌧, ⇢}+ ⌘

Here,
• M(e) = (e ⌘ o.m(e1, . . . , en)) ^ � ` o : ⌧0 ^ ⌧0.m : ⌧1, . . . , ⌧n ! ⌧

• M(�, ⌧) is the set of unused methods with return type ⌧ :
{m|m : ⌧1, . . . , tn ! ⌧ ^#{m,meth, ⌧, ⇢} = 0}

• And V (�, ⌧) is the set of variables of in scope with type ⌧

Implementation

We implemented our method as a plugin to the Eclipse IDE utilizing the JDT
(Java Development Tools) library. This allows us to use Eclipse’s Java parser
and typechecker, and gives us accesss to functions for walking through Java
source code that make it easier to collect the statistics we need.

We compared our results to probabilities generated using an n-gram model,
with n = 3. The n-grams were generated using a version of the CMU Language
Modeling Toolkit and the probabilities were computing using various Python
scripts.

Results

We tested our predictor using ten-fold cross validation on a few open source
projects and measured the average probability of the observed expression ac-
cording to our model. We compared this to the average probabilities given as
by an n-gram model:

While these results are promising, we did notice that a large number of observed
expressions are assigned 0 probability by our model. An important reason for
this was situations where the predictor was forced to give up due to insufficient
training data. Improved handling of this situation will greatly improve our
prediction accuracy.

Conclusions

Our tests show that our method performs significantly better than an n-gram
model. This indicates that taking language semantics into account is useful for
code prediction systems.

References

[1] A. Hindle, E. T. Barr, Z. Su, M. Gabel, and P. Devanbu. On the naturalness of software. In
Software Engineering (ICSE), 2012 34th International Conference on, pages 837–847. IEEE,
2012.

[2] T. T. Nguyen, A. T. Nguyen, H. A. Nguyen, and T. N. Nguyen. A statistical semantic language
model for source code. In Proceedings of the 2013 9th Joint Meeting on Foundations of

Software Engineering, ESEC/FSE 2013, pages 532–542, New York, NY, USA, 2013. ACM.

Acknowledgement

The n-gram model used for comparison was from: Hindle, Abram, et al. "On
the naturalness of software." (ICSE 2012)
Thanks to Rachel Aurand for portions of the n-gram implementation

= void,)

StatisticalModelingofTypedSyntaxTrees

Cyrus Omar, Salil Joshi, Flávio Cruz

{comar, salilj, fmfernan}@cs.cmu.edu

Motivation

Many kinds of tools can benefit from better models of the statistical structure
of the code that developers write:
• Code completion engines in source code editors
• Code compression engines for sending programs over the network
• Predictive interfaces for conveying commands via devices with limited

bandwidth (e.g. mobile phones, wearable computers like Google Glass, or
rehabilitative interfaces like Stephen Hawking uses)

• Automated bug fixing tools that aim to restrict their search space to
consider only seemingly “natural” code patches

Previous Work: Token Sequences

Previous work has represented source code as a sequence of tokens, so that
natural language modeling techniques can be repurposed to assign probabilities
to program tokens conditioned on their surrounding tokens:

• n-gram models use observed frequencies conditioned on the n (typically
3-15) preceding tokens [1]

• SLAMC associates additional semantic information (available during lex-
ing) with tokens, and uses several topic modeling techniques [2]

Our Work: Typed Syntax Trees

Token sequences are unstructured representations of mathematical objects with
a rich structure and semantics: typed syntax trees. As a result, these meth-
ods often assign non-zero probabilities to malformed and ill-typed programs,
and can neglect, or consider only in an ad hoc manner, non-local structural or
semantic regularities.

To avoid these limitations, we investigate models where probabil-

ities are assigned to typed syntax trees directly.

Example

hi

A Language-General Framework

Type (⌧)

%% ++
Form (�) // Expression (e)

Role (⇢)

99 33

Typing Context (�)

OO

Our objective is to learn P(e|⌧, ⇢,�), the probability of an expression, e, given
its type, ⌧ , the surrounding typing context, �, which tracks the signatures of
names in scope, and the structural context, ⇢, which captures information about
how e is being used (e.g. whether e is the guard of a conditional, an argument
to a function, etc.).

To make the model tractable, we will marginalize over a random variable
representing the form of e, written �:

P(e|⌧, ⇢,�) =
X

�2�

P(e|�, ⌧, ⇢,�)P(�|⌧, ⇢)

A Statistical Model of Java

To develop a simple model of Java within this conceptual framework, we will
consider:

• both primitive types (e.g. int) and classes
• a typing context, �, that tracks the signatures of variables, fields, methods

and classes/interfaces in scope
• structural contexts ⇢ 2 {stmt,asgn,arg,other}, representing expressions

appearing at the top-level, as the right side of an assignment statement,
as an argument to a method or in any other context

• forms � = {lit,meth,var}, representing literals (for primitive numeric
types, strings and enums), method calls and variables, respectively.
TODO: elaborate

Form-Specific Distributions

where
Plit(e|⌧, ⇢,�) =

#{e, ⌧, ⇢}
#{lit, ⌧, ⇢}

P(x|�, ⌧, ⇢,�) =
⇢ 1

var(�,⌧) x : ⌧ 2 � and � = var

0 o/w

P(n|�, ⌧, ⇢,�) =

8
<

:

Plaplace(n;µ)+plitseen
#{n,lit,⌧,⇢}
#{lit,⌧,⇢}

1+plistseen
� = lit and ⌧ numeric

0 o/w

P(e.x|�, ⌧, ⇢,�) =

8
<

:
P(e|⌧e, target,�)

1
|fields(⌧

e

)|+pfield
seen

#{⌧
e

.x,⌧,⇢}
#{⌧

e

._,⌧,⇢}
1+pfield

seen
� = field and � ` e : ⌧e and x 2 fields(⌧e)

0 o/w

Pmeth(e|⌧, ⇢,�) =

8
>>><

>>>:

⇣
Punseen(⌧, ⇢)

1
|M(�,⌧)| M(e)

+(1� Punseen(⌧, ⇢))
#{e,⌧,⇢}

#{meth,⌧,⇢}

⌘
⇥

Qn
i=1 P (ei|⌧i,arg,�)

0 o/w
Punseen(⌧, ⇢) =

|{m|#{m,meth, ⌧, ⇢} > 0}|
#{meth, ⌧, ⇢}+ ⌘

Here,
• M(e) = (e ⌘ o.m(e1, . . . , en)) ^ � ` o : ⌧0 ^ ⌧0.m : ⌧1, . . . , ⌧n ! ⌧

• M(�, ⌧) is the set of unused methods with return type ⌧ :
{m|m : ⌧1, . . . , tn ! ⌧ ^#{m,meth, ⌧, ⇢} = 0}

• And V (�, ⌧) is the set of variables of in scope with type ⌧

Implementation

We implemented our method as a plugin to the Eclipse IDE utilizing the JDT
(Java Development Tools) library. This allows us to use Eclipse’s Java parser
and typechecker, and gives us accesss to functions for walking through Java
source code that make it easier to collect the statistics we need.

We compared our results to probabilities generated using an n-gram model,
with n = 3. The n-grams were generated using a version of the CMU Language
Modeling Toolkit and the probabilities were computing using various Python
scripts.

Results

We tested our predictor using ten-fold cross validation on a few open source
projects and measured the average probability of the observed expression ac-
cording to our model. We compared this to the average probabilities given as
by an n-gram model:

While these results are promising, we did notice that a large number of observed
expressions are assigned 0 probability by our model. An important reason for
this was situations where the predictor was forced to give up due to insufficient
training data. Improved handling of this situation will greatly improve our
prediction accuracy.

Conclusions

Our tests show that our method performs significantly better than an n-gram
model. This indicates that taking language semantics into account is useful for
code prediction systems.

References

[1] A. Hindle, E. T. Barr, Z. Su, M. Gabel, and P. Devanbu. On the naturalness of software. In
Software Engineering (ICSE), 2012 34th International Conference on, pages 837–847. IEEE,
2012.

[2] T. T. Nguyen, A. T. Nguyen, H. A. Nguyen, and T. N. Nguyen. A statistical semantic language
model for source code. In Proceedings of the 2013 9th Joint Meeting on Foundations of

Software Engineering, ESEC/FSE 2013, pages 532–542, New York, NY, USA, 2013. ACM.

Acknowledgement

The n-gram model used for comparison was from: Hindle, Abram, et al. "On
the naturalness of software." (ICSE 2012)
Thanks to Rachel Aurand for portions of the n-gram implementation

= stmt,

StatisticalModelingofTypedSyntaxTrees

Cyrus Omar, Salil Joshi, Flávio Cruz

{comar, salilj, fmfernan}@cs.cmu.edu

Motivation

Many kinds of tools can benefit from better models of the statistical structure
of the code that developers write:
• Code completion engines in source code editors
• Code compression engines for sending programs over the network
• Predictive interfaces for conveying commands via devices with limited

bandwidth (e.g. mobile phones, wearable computers like Google Glass, or
rehabilitative interfaces like Stephen Hawking uses)

• Automated bug fixing tools that aim to restrict their search space to
consider only seemingly “natural” code patches

Previous Work: Token Sequences

Previous work has represented source code as a sequence of tokens, so that
natural language modeling techniques can be repurposed to assign probabilities
to program tokens conditioned on their surrounding tokens:

• n-gram models use observed frequencies conditioned on the n (typically
3-15) preceding tokens [1]

• SLAMC associates additional semantic information (available during lex-
ing) with tokens, and uses several topic modeling techniques [2]

Our Work: Typed Syntax Trees

Token sequences are unstructured representations of mathematical objects with
a rich structure and semantics: typed syntax trees. As a result, these meth-
ods often assign non-zero probabilities to malformed and ill-typed programs,
and can neglect, or consider only in an ad hoc manner, non-local structural or
semantic regularities.

To avoid these limitations, we investigate models where probabil-

ities are assigned to typed syntax trees directly.

Example

hi

A Language-General Framework

Type (⌧)

%% ++
Form (�) // Expression (e)

Role (⇢)

99 33

Typing Context (�)

OO

Our objective is to learn P(e|⌧, ⇢,�), the probability of an expression, e, given
its type, ⌧ , the surrounding typing context, �, which tracks the signatures of
names in scope, and the structural context, ⇢, which captures information about
how e is being used (e.g. whether e is the guard of a conditional, an argument
to a function, etc.).

To make the model tractable, we will marginalize over a random variable
representing the form of e, written �:

P(e|⌧, ⇢,�) =
X

�2�

P(e|�, ⌧, ⇢,�)P(�|⌧, ⇢)

A Statistical Model of Java

To develop a simple model of Java within this conceptual framework, we will
consider:

• both primitive types (e.g. int) and classes
• a typing context, �, that tracks the signatures of variables, fields, methods

and classes/interfaces in scope
• structural contexts ⇢ 2 {stmt,asgn,arg,other}, representing expressions

appearing at the top-level, as the right side of an assignment statement,
as an argument to a method or in any other context

• forms � = {lit,meth,var}, representing literals (for primitive numeric
types, strings and enums), method calls and variables, respectively.
TODO: elaborate

Form-Specific Distributions

where
Plit(e|⌧, ⇢,�) =

#{e, ⌧, ⇢}
#{lit, ⌧, ⇢}

P(x|�, ⌧, ⇢,�) =
⇢ 1

var(�,⌧) x : ⌧ 2 � and � = var

0 o/w

P(n|�, ⌧, ⇢,�) =

8
<

:

Plaplace(n;µ)+plitseen
#{n,lit,⌧,⇢}
#{lit,⌧,⇢}

1+plistseen
� = lit and ⌧ numeric

0 o/w

P(e.x|�, ⌧, ⇢,�) =

8
<

:
P(e|⌧e, target,�)

1
|fields(⌧

e

)|+pfield
seen

#{⌧
e

.x,⌧,⇢}
#{⌧

e

._,⌧,⇢}
1+pfield

seen
� = field and � ` e : ⌧e and x 2 fields(⌧e)

0 o/w

Pmeth(e|⌧, ⇢,�) =

8
>>><

>>>:

⇣
Punseen(⌧, ⇢)

1
|M(�,⌧)| M(e)

+(1� Punseen(⌧, ⇢))
#{e,⌧,⇢}

#{meth,⌧,⇢}

⌘
⇥

Qn
i=1 P (ei|⌧i,arg,�)

0 o/w
Punseen(⌧, ⇢) =

|{m|#{m,meth, ⌧, ⇢} > 0}|
#{meth, ⌧, ⇢}+ ⌘

Here,
• M(e) = (e ⌘ o.m(e1, . . . , en)) ^ � ` o : ⌧0 ^ ⌧0.m : ⌧1, . . . , ⌧n ! ⌧

• M(�, ⌧) is the set of unused methods with return type ⌧ :
{m|m : ⌧1, . . . , tn ! ⌧ ^#{m,meth, ⌧, ⇢} = 0}

• And V (�, ⌧) is the set of variables of in scope with type ⌧

Implementation

We implemented our method as a plugin to the Eclipse IDE utilizing the JDT
(Java Development Tools) library. This allows us to use Eclipse’s Java parser
and typechecker, and gives us accesss to functions for walking through Java
source code that make it easier to collect the statistics we need.

We compared our results to probabilities generated using an n-gram model,
with n = 3. The n-grams were generated using a version of the CMU Language
Modeling Toolkit and the probabilities were computing using various Python
scripts.

Results

We tested our predictor using ten-fold cross validation on a few open source
projects and measured the average probability of the observed expression ac-
cording to our model. We compared this to the average probabilities given as
by an n-gram model:

While these results are promising, we did notice that a large number of observed
expressions are assigned 0 probability by our model. An important reason for
this was situations where the predictor was forced to give up due to insufficient
training data. Improved handling of this situation will greatly improve our
prediction accuracy.

Conclusions

Our tests show that our method performs significantly better than an n-gram
model. This indicates that taking language semantics into account is useful for
code prediction systems.

References

[1] A. Hindle, E. T. Barr, Z. Su, M. Gabel, and P. Devanbu. On the naturalness of software. In
Software Engineering (ICSE), 2012 34th International Conference on, pages 837–847. IEEE,
2012.

[2] T. T. Nguyen, A. T. Nguyen, H. A. Nguyen, and T. N. Nguyen. A statistical semantic language
model for source code. In Proceedings of the 2013 9th Joint Meeting on Foundations of

Software Engineering, ESEC/FSE 2013, pages 532–542, New York, NY, USA, 2013. ACM.

Acknowledgement

The n-gram model used for comparison was from: Hindle, Abram, et al. "On
the naturalness of software." (ICSE 2012)
Thanks to Rachel Aurand for portions of the n-gram implementation

call var thisvar this field P(
|

.observe(.favorite)

StatisticalModelingofTypedSyntaxTrees

Cyrus Omar, Salil Joshi, Flávio Cruz

{comar, salilj, fmfernan}@cs.cmu.edu

Motivation

Many kinds of tools can benefit from better models of the statistical structure
of the code that developers write:
• Code completion engines in source code editors
• Code compression engines for sending programs over the network
• Predictive interfaces for conveying commands via devices with limited

bandwidth (e.g. mobile phones, wearable computers like Google Glass, or
rehabilitative interfaces like Stephen Hawking uses)

• Automated bug fixing tools that aim to restrict their search space to
consider only seemingly “natural” code patches

Previous Work: Token Sequences

Previous work has represented source code as a sequence of tokens, so that
natural language modeling techniques can be repurposed to assign probabilities
to program tokens conditioned on their surrounding tokens:

• n-gram models use observed frequencies conditioned on the n (typically
3-15) preceding tokens [1]

• SLAMC associates additional semantic information (available during lex-
ing) with tokens, and uses several topic modeling techniques [2]

Our Work: Typed Syntax Trees

Token sequences are unstructured representations of mathematical objects with
a rich structure and semantics: typed syntax trees. As a result, these meth-
ods often assign non-zero probabilities to malformed and ill-typed programs,
and can neglect, or consider only in an ad hoc manner, non-local structural or
semantic regularities.

To avoid these limitations, we investigate models where probabil-

ities are assigned to typed syntax trees directly.

Example

hi

A Language-General Framework

Type (⌧)

%% ++
Form (�) // Expression (e)

Role (⇢)

99 33

Typing Context (�)

OO

Our objective is to learn P(e|⌧, ⇢,�), the probability of an expression, e, given
its type, ⌧ , the surrounding typing context, �, which tracks the signatures of
names in scope, and the structural context, ⇢, which captures information about
how e is being used (e.g. whether e is the guard of a conditional, an argument
to a function, etc.).

To make the model tractable, we will marginalize over a random variable
representing the form of e, written �:

P(e|⌧, ⇢,�) =
X

�2�

P(e|�, ⌧, ⇢,�)P(�|⌧, ⇢)

A Statistical Model of Java

To develop a simple model of Java within this conceptual framework, we will
consider:

• both primitive types (e.g. int) and classes
• a typing context, �, that tracks the signatures of variables, fields, methods

and classes/interfaces in scope
• structural contexts ⇢ 2 {stmt,asgn,arg,other}, representing expressions

appearing at the top-level, as the right side of an assignment statement,
as an argument to a method or in any other context

• forms � = {lit,meth,var}, representing literals (for primitive numeric
types, strings and enums), method calls and variables, respectively.
TODO: elaborate

Form-Specific Distributions

where
Plit(e|⌧, ⇢,�) =

#{e, ⌧, ⇢}
#{lit, ⌧, ⇢}

P(x|�, ⌧, ⇢,�) =
⇢ 1

var(�,⌧) x : ⌧ 2 � and � = var

0 o/w

P(n|�, ⌧, ⇢,�) =

8
<

:

Plaplace(n;µ)+plitseen
#{n,lit,⌧,⇢}
#{lit,⌧,⇢}

1+plistseen
� = lit and ⌧ numeric

0 o/w

P(e.x|�, ⌧, ⇢,�) =

8
<

:
P(e|⌧e, target,�)

1
|fields(⌧

e

)|+pfield
seen

#{⌧
e

.x,⌧,⇢}
#{⌧

e

._,⌧,⇢}
1+pfield

seen
� = field and � ` e : ⌧e and x 2 fields(⌧e)

0 o/w

Pmeth(e|⌧, ⇢,�) =

8
>>><

>>>:

⇣
Punseen(⌧, ⇢)

1
|M(�,⌧)| M(e)

+(1� Punseen(⌧, ⇢))
#{e,⌧,⇢}

#{meth,⌧,⇢}

⌘
⇥

Qn
i=1 P (ei|⌧i,arg,�)

0 o/w
Punseen(⌧, ⇢) =

|{m|#{m,meth, ⌧, ⇢} > 0}|
#{meth, ⌧, ⇢}+ ⌘

Here,
• M(e) = (e ⌘ o.m(e1, . . . , en)) ^ � ` o : ⌧0 ^ ⌧0.m : ⌧1, . . . , ⌧n ! ⌧

• M(�, ⌧) is the set of unused methods with return type ⌧ :
{m|m : ⌧1, . . . , tn ! ⌧ ^#{m,meth, ⌧, ⇢} = 0}

• And V (�, ⌧) is the set of variables of in scope with type ⌧

Implementation

We implemented our method as a plugin to the Eclipse IDE utilizing the JDT
(Java Development Tools) library. This allows us to use Eclipse’s Java parser
and typechecker, and gives us accesss to functions for walking through Java
source code that make it easier to collect the statistics we need.

We compared our results to probabilities generated using an n-gram model,
with n = 3. The n-grams were generated using a version of the CMU Language
Modeling Toolkit and the probabilities were computing using various Python
scripts.

Results

We tested our predictor using ten-fold cross validation on a few open source
projects and measured the average probability of the observed expression ac-
cording to our model. We compared this to the average probabilities given as
by an n-gram model:

While these results are promising, we did notice that a large number of observed
expressions are assigned 0 probability by our model. An important reason for
this was situations where the predictor was forced to give up due to insufficient
training data. Improved handling of this situation will greatly improve our
prediction accuracy.

Conclusions

Our tests show that our method performs significantly better than an n-gram
model. This indicates that taking language semantics into account is useful for
code prediction systems.

References

[1] A. Hindle, E. T. Barr, Z. Su, M. Gabel, and P. Devanbu. On the naturalness of software. In
Software Engineering (ICSE), 2012 34th International Conference on, pages 837–847. IEEE,
2012.

[2] T. T. Nguyen, A. T. Nguyen, H. A. Nguyen, and T. N. Nguyen. A statistical semantic language
model for source code. In Proceedings of the 2013 9th Joint Meeting on Foundations of

Software Engineering, ESEC/FSE 2013, pages 532–542, New York, NY, USA, 2013. ACM.

Acknowledgement

The n-gram model used for comparison was from: Hindle, Abram, et al. "On
the naturalness of software." (ICSE 2012)
Thanks to Rachel Aurand for portions of the n-gram implementation

= call,
syntactic

form

=

typerole typing
context

Bayes’ rule!

)P(

StatisticalModelingofTypedSyntaxTrees

Cyrus Omar, Salil Joshi, Flávio Cruz

{comar, salilj, fmfernan}@cs.cmu.edu

Motivation

Many kinds of tools can benefit from better models of the statistical structure
of the code that developers write:
• Code completion engines in source code editors
• Code compression engines for sending programs over the network
• Predictive interfaces for conveying commands via devices with limited

bandwidth (e.g. mobile phones, wearable computers like Google Glass, or
rehabilitative interfaces like Stephen Hawking uses)

• Automated bug fixing tools that aim to restrict their search space to
consider only seemingly “natural” code patches

Previous Work: Token Sequences

Previous work has represented source code as a sequence of tokens, so that
natural language modeling techniques can be repurposed to assign probabilities
to program tokens conditioned on their surrounding tokens:

• n-gram models use observed frequencies conditioned on the n (typically
3-15) preceding tokens [1]

• SLAMC associates additional semantic information (available during lex-
ing) with tokens, and uses several topic modeling techniques [2]

Our Work: Typed Syntax Trees

Token sequences are unstructured representations of mathematical objects with
a rich structure and semantics: typed syntax trees. As a result, these meth-
ods often assign non-zero probabilities to malformed and ill-typed programs,
and can neglect, or consider only in an ad hoc manner, non-local structural or
semantic regularities.

To avoid these limitations, we investigate models where probabil-

ities are assigned to typed syntax trees directly.

Example

hi

A Language-General Framework

Type (⌧)

%% ++
Form (�) // Expression (e)

Role (⇢)

99 33

Typing Context (�)

OO

Our objective is to learn P(e|⌧, ⇢,�), the probability of an expression, e, given
its type, ⌧ , the surrounding typing context, �, which tracks the signatures of
names in scope, and the structural context, ⇢, which captures information about
how e is being used (e.g. whether e is the guard of a conditional, an argument
to a function, etc.).

To make the model tractable, we will marginalize over a random variable
representing the form of e, written �:

P(e|⌧, ⇢,�) =
X

�2�

P(e|�, ⌧, ⇢,�)P(�|⌧, ⇢)

A Statistical Model of Java

To develop a simple model of Java within this conceptual framework, we will
consider:

• both primitive types (e.g. int) and classes
• a typing context, �, that tracks the signatures of variables, fields, methods

and classes/interfaces in scope
• structural contexts ⇢ 2 {stmt,asgn,arg,other}, representing expressions

appearing at the top-level, as the right side of an assignment statement,
as an argument to a method or in any other context

• forms � = {lit,meth,var}, representing literals (for primitive numeric
types, strings and enums), method calls and variables, respectively.
TODO: elaborate

Form-Specific Distributions

where
Plit(e|⌧, ⇢,�) =

#{e, ⌧, ⇢}
#{lit, ⌧, ⇢}

P(x|�, ⌧, ⇢,�) =
⇢ 1

var(�,⌧) x : ⌧ 2 � and � = var

0 o/w

P(n|�, ⌧, ⇢,�) =

8
<

:

Plaplace(n;µ)+plitseen
#{n,lit,⌧,⇢}
#{lit,⌧,⇢}

1+plistseen
� = lit and ⌧ numeric

0 o/w

P(e.x|�, ⌧, ⇢,�) =

8
<

:
P(e|⌧e, target,�)

1
|fields(⌧

e

)|+pfield
seen

#{⌧
e

.x,⌧,⇢}
#{⌧

e

._,⌧,⇢}
1+pfield

seen
� = field and � ` e : ⌧e and x 2 fields(⌧e)

0 o/w

Pmeth(e|⌧, ⇢,�) =

8
>>><

>>>:

⇣
Punseen(⌧, ⇢)

1
|M(�,⌧)| M(e)

+(1� Punseen(⌧, ⇢))
#{e,⌧,⇢}

#{meth,⌧,⇢}

⌘
⇥

Qn
i=1 P (ei|⌧i,arg,�)

0 o/w
Punseen(⌧, ⇢) =

|{m|#{m,meth, ⌧, ⇢} > 0}|
#{meth, ⌧, ⇢}+ ⌘

Here,
• M(e) = (e ⌘ o.m(e1, . . . , en)) ^ � ` o : ⌧0 ^ ⌧0.m : ⌧1, . . . , ⌧n ! ⌧

• M(�, ⌧) is the set of unused methods with return type ⌧ :
{m|m : ⌧1, . . . , tn ! ⌧ ^#{m,meth, ⌧, ⇢} = 0}

• And V (�, ⌧) is the set of variables of in scope with type ⌧

Implementation

We implemented our method as a plugin to the Eclipse IDE utilizing the JDT
(Java Development Tools) library. This allows us to use Eclipse’s Java parser
and typechecker, and gives us accesss to functions for walking through Java
source code that make it easier to collect the statistics we need.

We compared our results to probabilities generated using an n-gram model,
with n = 3. The n-grams were generated using a version of the CMU Language
Modeling Toolkit and the probabilities were computing using various Python
scripts.

Results

We tested our predictor using ten-fold cross validation on a few open source
projects and measured the average probability of the observed expression ac-
cording to our model. We compared this to the average probabilities given as
by an n-gram model:

While these results are promising, we did notice that a large number of observed
expressions are assigned 0 probability by our model. An important reason for
this was situations where the predictor was forced to give up due to insufficient
training data. Improved handling of this situation will greatly improve our
prediction accuracy.

Conclusions

Our tests show that our method performs significantly better than an n-gram
model. This indicates that taking language semantics into account is useful for
code prediction systems.

References

[1] A. Hindle, E. T. Barr, Z. Su, M. Gabel, and P. Devanbu. On the naturalness of software. In
Software Engineering (ICSE), 2012 34th International Conference on, pages 837–847. IEEE,
2012.

[2] T. T. Nguyen, A. T. Nguyen, H. A. Nguyen, and T. N. Nguyen. A statistical semantic language
model for source code. In Proceedings of the 2013 9th Joint Meeting on Foundations of

Software Engineering, ESEC/FSE 2013, pages 532–542, New York, NY, USA, 2013. ACM.

Acknowledgement

The n-gram model used for comparison was from: Hindle, Abram, et al. "On
the naturalness of software." (ICSE 2012)
Thanks to Rachel Aurand for portions of the n-gram implementation

|P(

StatisticalModelingofTypedSyntaxTrees

Cyrus Omar, Salil Joshi, Flávio Cruz

{comar, salilj, fmfernan}@cs.cmu.edu

Motivation

Many kinds of tools can benefit from better models of the statistical structure
of the code that developers write:
• Code completion engines in source code editors
• Code compression engines for sending programs over the network
• Predictive interfaces for conveying commands via devices with limited

bandwidth (e.g. mobile phones, wearable computers like Google Glass, or
rehabilitative interfaces like Stephen Hawking uses)

• Automated bug fixing tools that aim to restrict their search space to
consider only seemingly “natural” code patches

Previous Work: Token Sequences

Previous work has represented source code as a sequence of tokens, so that
natural language modeling techniques can be repurposed to assign probabilities
to program tokens conditioned on their surrounding tokens:

• n-gram models use observed frequencies conditioned on the n (typically
3-15) preceding tokens [1]

• SLAMC associates additional semantic information (available during lex-
ing) with tokens, and uses several topic modeling techniques [2]

Our Work: Typed Syntax Trees

Token sequences are unstructured representations of mathematical objects with
a rich structure and semantics: typed syntax trees. As a result, these meth-
ods often assign non-zero probabilities to malformed and ill-typed programs,
and can neglect, or consider only in an ad hoc manner, non-local structural or
semantic regularities.

To avoid these limitations, we investigate models where probabil-

ities are assigned to typed syntax trees directly.

Example

hi

A Language-General Framework

Type (⌧)

%% ++
Form (�) // Expression (e)

Role (⇢)

99 33

Typing Context (�)

OO

Our objective is to learn P(e|⌧, ⇢,�), the probability of an expression, e, given
its type, ⌧ , the surrounding typing context, �, which tracks the signatures of
names in scope, and the structural context, ⇢, which captures information about
how e is being used (e.g. whether e is the guard of a conditional, an argument
to a function, etc.).

To make the model tractable, we will marginalize over a random variable
representing the form of e, written �:

P(e|⌧, ⇢,�) =
X

�2�

P(e|�, ⌧, ⇢,�)P(�|⌧, ⇢)

A Statistical Model of Java

To develop a simple model of Java within this conceptual framework, we will
consider:

• both primitive types (e.g. int) and classes
• a typing context, �, that tracks the signatures of variables, fields, methods

and classes/interfaces in scope
• structural contexts ⇢ 2 {stmt,asgn,arg,other}, representing expressions

appearing at the top-level, as the right side of an assignment statement,
as an argument to a method or in any other context

• forms � = {lit,meth,var}, representing literals (for primitive numeric
types, strings and enums), method calls and variables, respectively.
TODO: elaborate

Form-Specific Distributions

where
Plit(e|⌧, ⇢,�) =

#{e, ⌧, ⇢}
#{lit, ⌧, ⇢}

P(x|�, ⌧, ⇢,�) =
⇢ 1

var(�,⌧) x : ⌧ 2 � and � = var

0 o/w

P(n|�, ⌧, ⇢,�) =

8
<

:

Plaplace(n;µ)+plitseen
#{n,lit,⌧,⇢}
#{lit,⌧,⇢}

1+plistseen
� = lit and ⌧ numeric

0 o/w

P(e.x|�, ⌧, ⇢,�) =

8
<

:
P(e|⌧e, target,�)

1
|fields(⌧

e

)|+pfield
seen

#{⌧
e

.x,⌧,⇢}
#{⌧

e

._,⌧,⇢}
1+pfield

seen
� = field and � ` e : ⌧e and x 2 fields(⌧e)

0 o/w

Pmeth(e|⌧, ⇢,�) =

8
>>><

>>>:

⇣
Punseen(⌧, ⇢)

1
|M(�,⌧)| M(e)

+(1� Punseen(⌧, ⇢))
#{e,⌧,⇢}

#{meth,⌧,⇢}

⌘
⇥

Qn
i=1 P (ei|⌧i,arg,�)

0 o/w
Punseen(⌧, ⇢) =

|{m|#{m,meth, ⌧, ⇢} > 0}|
#{meth, ⌧, ⇢}+ ⌘

Here,
• M(e) = (e ⌘ o.m(e1, . . . , en)) ^ � ` o : ⌧0 ^ ⌧0.m : ⌧1, . . . , ⌧n ! ⌧

• M(�, ⌧) is the set of unused methods with return type ⌧ :
{m|m : ⌧1, . . . , tn ! ⌧ ^#{m,meth, ⌧, ⇢} = 0}

• And V (�, ⌧) is the set of variables of in scope with type ⌧

Implementation

We implemented our method as a plugin to the Eclipse IDE utilizing the JDT
(Java Development Tools) library. This allows us to use Eclipse’s Java parser
and typechecker, and gives us accesss to functions for walking through Java
source code that make it easier to collect the statistics we need.

We compared our results to probabilities generated using an n-gram model,
with n = 3. The n-grams were generated using a version of the CMU Language
Modeling Toolkit and the probabilities were computing using various Python
scripts.

Results

We tested our predictor using ten-fold cross validation on a few open source
projects and measured the average probability of the observed expression ac-
cording to our model. We compared this to the average probabilities given as
by an n-gram model:

While these results are promising, we did notice that a large number of observed
expressions are assigned 0 probability by our model. An important reason for
this was situations where the predictor was forced to give up due to insufficient
training data. Improved handling of this situation will greatly improve our
prediction accuracy.

Conclusions

Our tests show that our method performs significantly better than an n-gram
model. This indicates that taking language semantics into account is useful for
code prediction systems.

References

[1] A. Hindle, E. T. Barr, Z. Su, M. Gabel, and P. Devanbu. On the naturalness of software. In
Software Engineering (ICSE), 2012 34th International Conference on, pages 837–847. IEEE,
2012.

[2] T. T. Nguyen, A. T. Nguyen, H. A. Nguyen, and T. N. Nguyen. A statistical semantic language
model for source code. In Proceedings of the 2013 9th Joint Meeting on Foundations of

Software Engineering, ESEC/FSE 2013, pages 532–542, New York, NY, USA, 2013. ACM.

Acknowledgement

The n-gram model used for comparison was from: Hindle, Abram, et al. "On
the naturalness of software." (ICSE 2012)
Thanks to Rachel Aurand for portions of the n-gram implementation

StatisticalModelingofTypedSyntaxTrees

Cyrus Omar, Salil Joshi, Flávio Cruz

{comar, salilj, fmfernan}@cs.cmu.edu

Motivation

Many kinds of tools can benefit from better models of the statistical structure
of the code that developers write:
• Code completion engines in source code editors
• Code compression engines for sending programs over the network
• Predictive interfaces for conveying commands via devices with limited

bandwidth (e.g. mobile phones, wearable computers like Google Glass, or
rehabilitative interfaces like Stephen Hawking uses)

• Automated bug fixing tools that aim to restrict their search space to
consider only seemingly “natural” code patches

Previous Work: Token Sequences

Previous work has represented source code as a sequence of tokens, so that
natural language modeling techniques can be repurposed to assign probabilities
to program tokens conditioned on their surrounding tokens:

• n-gram models use observed frequencies conditioned on the n (typically
3-15) preceding tokens [1]

• SLAMC associates additional semantic information (available during lex-
ing) with tokens, and uses several topic modeling techniques [2]

Our Work: Typed Syntax Trees

Token sequences are unstructured representations of mathematical objects with
a rich structure and semantics: typed syntax trees. As a result, these meth-
ods often assign non-zero probabilities to malformed and ill-typed programs,
and can neglect, or consider only in an ad hoc manner, non-local structural or
semantic regularities.

To avoid these limitations, we investigate models where probabil-

ities are assigned to typed syntax trees directly.

Example

hi

A Language-General Framework

Type (⌧)

%% ++
Form (�) // Expression (e)

Role (⇢)

99 33

Typing Context (�)

OO

Our objective is to learn P(e|⌧, ⇢,�), the probability of an expression, e, given
its type, ⌧ , the surrounding typing context, �, which tracks the signatures of
names in scope, and the structural context, ⇢, which captures information about
how e is being used (e.g. whether e is the guard of a conditional, an argument
to a function, etc.).

To make the model tractable, we will marginalize over a random variable
representing the form of e, written �:

P(e|⌧, ⇢,�) =
X

�2�

P(e|�, ⌧, ⇢,�)P(�|⌧, ⇢)

A Statistical Model of Java

To develop a simple model of Java within this conceptual framework, we will
consider:

• both primitive types (e.g. int) and classes
• a typing context, �, that tracks the signatures of variables, fields, methods

and classes/interfaces in scope
• structural contexts ⇢ 2 {stmt,asgn,arg,other}, representing expressions

appearing at the top-level, as the right side of an assignment statement,
as an argument to a method or in any other context

• forms � = {lit,meth,var}, representing literals (for primitive numeric
types, strings and enums), method calls and variables, respectively.
TODO: elaborate

Form-Specific Distributions

where
Plit(e|⌧, ⇢,�) =

#{e, ⌧, ⇢}
#{lit, ⌧, ⇢}

P(x|�, ⌧, ⇢,�) =
⇢ 1

var(�,⌧) x : ⌧ 2 � and � = var

0 o/w

P(n|�, ⌧, ⇢,�) =

8
<

:

Plaplace(n;µ)+plitseen
#{n,lit,⌧,⇢}
#{lit,⌧,⇢}

1+plistseen
� = lit and ⌧ numeric

0 o/w

P(e.x|�, ⌧, ⇢,�) =

8
<

:
P(e|⌧e, target,�)

1
|fields(⌧

e

)|+pfield
seen

#{⌧
e

.x,⌧,⇢}
#{⌧

e

._,⌧,⇢}
1+pfield

seen
� = field and � ` e : ⌧e and x 2 fields(⌧e)

0 o/w

Pmeth(e|⌧, ⇢,�) =

8
>>><

>>>:

⇣
Punseen(⌧, ⇢)

1
|M(�,⌧)| M(e)

+(1� Punseen(⌧, ⇢))
#{e,⌧,⇢}

#{meth,⌧,⇢}

⌘
⇥

Qn
i=1 P (ei|⌧i,arg,�)

0 o/w
Punseen(⌧, ⇢) =

|{m|#{m,meth, ⌧, ⇢} > 0}|
#{meth, ⌧, ⇢}+ ⌘

Here,
• M(e) = (e ⌘ o.m(e1, . . . , en)) ^ � ` o : ⌧0 ^ ⌧0.m : ⌧1, . . . , ⌧n ! ⌧

• M(�, ⌧) is the set of unused methods with return type ⌧ :
{m|m : ⌧1, . . . , tn ! ⌧ ^#{m,meth, ⌧, ⇢} = 0}

• And V (�, ⌧) is the set of variables of in scope with type ⌧

Implementation

We implemented our method as a plugin to the Eclipse IDE utilizing the JDT
(Java Development Tools) library. This allows us to use Eclipse’s Java parser
and typechecker, and gives us accesss to functions for walking through Java
source code that make it easier to collect the statistics we need.

We compared our results to probabilities generated using an n-gram model,
with n = 3. The n-grams were generated using a version of the CMU Language
Modeling Toolkit and the probabilities were computing using various Python
scripts.

Results

We tested our predictor using ten-fold cross validation on a few open source
projects and measured the average probability of the observed expression ac-
cording to our model. We compared this to the average probabilities given as
by an n-gram model:

While these results are promising, we did notice that a large number of observed
expressions are assigned 0 probability by our model. An important reason for
this was situations where the predictor was forced to give up due to insufficient
training data. Improved handling of this situation will greatly improve our
prediction accuracy.

Conclusions

Our tests show that our method performs significantly better than an n-gram
model. This indicates that taking language semantics into account is useful for
code prediction systems.

References

[1] A. Hindle, E. T. Barr, Z. Su, M. Gabel, and P. Devanbu. On the naturalness of software. In
Software Engineering (ICSE), 2012 34th International Conference on, pages 837–847. IEEE,
2012.

[2] T. T. Nguyen, A. T. Nguyen, H. A. Nguyen, and T. N. Nguyen. A statistical semantic language
model for source code. In Proceedings of the 2013 9th Joint Meeting on Foundations of

Software Engineering, ESEC/FSE 2013, pages 532–542, New York, NY, USA, 2013. ACM.

Acknowledgement

The n-gram model used for comparison was from: Hindle, Abram, et al. "On
the naturalness of software." (ICSE 2012)
Thanks to Rachel Aurand for portions of the n-gram implementation

StatisticalModelingofTypedSyntaxTrees

Cyrus Omar, Salil Joshi, Flávio Cruz

{comar, salilj, fmfernan}@cs.cmu.edu

Motivation

Many kinds of tools can benefit from better models of the statistical structure
of the code that developers write:
• Code completion engines in source code editors
• Code compression engines for sending programs over the network
• Predictive interfaces for conveying commands via devices with limited

bandwidth (e.g. mobile phones, wearable computers like Google Glass, or
rehabilitative interfaces like Stephen Hawking uses)

• Automated bug fixing tools that aim to restrict their search space to
consider only seemingly “natural” code patches

Previous Work: Token Sequences

Previous work has represented source code as a sequence of tokens, so that
natural language modeling techniques can be repurposed to assign probabilities
to program tokens conditioned on their surrounding tokens:

• n-gram models use observed frequencies conditioned on the n (typically
3-15) preceding tokens [1]

• SLAMC associates additional semantic information (available during lex-
ing) with tokens, and uses several topic modeling techniques [2]

Our Work: Typed Syntax Trees

Token sequences are unstructured representations of mathematical objects with
a rich structure and semantics: typed syntax trees. As a result, these meth-
ods often assign non-zero probabilities to malformed and ill-typed programs,
and can neglect, or consider only in an ad hoc manner, non-local structural or
semantic regularities.

To avoid these limitations, we investigate models where probabil-

ities are assigned to typed syntax trees directly.

Example

hi

A Language-General Framework

Type (⌧)

%% ++
Form (�) // Expression (e)

Role (⇢)

99 33

Typing Context (�)

OO

Our objective is to learn P(e|⌧, ⇢,�), the probability of an expression, e, given
its type, ⌧ , the surrounding typing context, �, which tracks the signatures of
names in scope, and the structural context, ⇢, which captures information about
how e is being used (e.g. whether e is the guard of a conditional, an argument
to a function, etc.).

To make the model tractable, we will marginalize over a random variable
representing the form of e, written �:

P(e|⌧, ⇢,�) =
X

�2�

P(e|�, ⌧, ⇢,�)P(�|⌧, ⇢)

A Statistical Model of Java

To develop a simple model of Java within this conceptual framework, we will
consider:

• both primitive types (e.g. int) and classes
• a typing context, �, that tracks the signatures of variables, fields, methods

and classes/interfaces in scope
• structural contexts ⇢ 2 {stmt,asgn,arg,other}, representing expressions

appearing at the top-level, as the right side of an assignment statement,
as an argument to a method or in any other context

• forms � = {lit,meth,var}, representing literals (for primitive numeric
types, strings and enums), method calls and variables, respectively.
TODO: elaborate

Form-Specific Distributions

where
Plit(e|⌧, ⇢,�) =

#{e, ⌧, ⇢}
#{lit, ⌧, ⇢}

P(x|�, ⌧, ⇢,�) =
⇢ 1

var(�,⌧) x : ⌧ 2 � and � = var

0 o/w

P(n|�, ⌧, ⇢,�) =

8
<

:

Plaplace(n;µ)+plitseen
#{n,lit,⌧,⇢}
#{lit,⌧,⇢}

1+plistseen
� = lit and ⌧ numeric

0 o/w

P(e.x|�, ⌧, ⇢,�) =

8
<

:
P(e|⌧e, target,�)

1
|fields(⌧

e

)|+pfield
seen

#{⌧
e

.x,⌧,⇢}
#{⌧

e

._,⌧,⇢}
1+pfield

seen
� = field and � ` e : ⌧e and x 2 fields(⌧e)

0 o/w

Pmeth(e|⌧, ⇢,�) =

8
>>><

>>>:

⇣
Punseen(⌧, ⇢)

1
|M(�,⌧)| M(e)

+(1� Punseen(⌧, ⇢))
#{e,⌧,⇢}

#{meth,⌧,⇢}

⌘
⇥

Qn
i=1 P (ei|⌧i,arg,�)

0 o/w
Punseen(⌧, ⇢) =

|{m|#{m,meth, ⌧, ⇢} > 0}|
#{meth, ⌧, ⇢}+ ⌘

Here,
• M(e) = (e ⌘ o.m(e1, . . . , en)) ^ � ` o : ⌧0 ^ ⌧0.m : ⌧1, . . . , ⌧n ! ⌧

• M(�, ⌧) is the set of unused methods with return type ⌧ :
{m|m : ⌧1, . . . , tn ! ⌧ ^#{m,meth, ⌧, ⇢} = 0}

• And V (�, ⌧) is the set of variables of in scope with type ⌧

Implementation

We implemented our method as a plugin to the Eclipse IDE utilizing the JDT
(Java Development Tools) library. This allows us to use Eclipse’s Java parser
and typechecker, and gives us accesss to functions for walking through Java
source code that make it easier to collect the statistics we need.

We compared our results to probabilities generated using an n-gram model,
with n = 3. The n-grams were generated using a version of the CMU Language
Modeling Toolkit and the probabilities were computing using various Python
scripts.

Results

We tested our predictor using ten-fold cross validation on a few open source
projects and measured the average probability of the observed expression ac-
cording to our model. We compared this to the average probabilities given as
by an n-gram model:

While these results are promising, we did notice that a large number of observed
expressions are assigned 0 probability by our model. An important reason for
this was situations where the predictor was forced to give up due to insufficient
training data. Improved handling of this situation will greatly improve our
prediction accuracy.

Conclusions

Our tests show that our method performs significantly better than an n-gram
model. This indicates that taking language semantics into account is useful for
code prediction systems.

References

[1] A. Hindle, E. T. Barr, Z. Su, M. Gabel, and P. Devanbu. On the naturalness of software. In
Software Engineering (ICSE), 2012 34th International Conference on, pages 837–847. IEEE,
2012.

[2] T. T. Nguyen, A. T. Nguyen, H. A. Nguyen, and T. N. Nguyen. A statistical semantic language
model for source code. In Proceedings of the 2013 9th Joint Meeting on Foundations of

Software Engineering, ESEC/FSE 2013, pages 532–542, New York, NY, USA, 2013. ACM.

Acknowledgement

The n-gram model used for comparison was from: Hindle, Abram, et al. "On
the naturalness of software." (ICSE 2012)
Thanks to Rachel Aurand for portions of the n-gram implementation

| ,)

class Sagan extends Astronomer {!
 void beforeBed() {!
!
 }!
!
 Planet favorite = Planet.NEPTUNE;!
}

 observe(favorite)!

enum Planet { !
 MERCURY, !
 VENUS, !
 …,!
 NEPTUNE !
}

class Astronomer {!
 void observe(Planet p) {…}!
}

Running Example

StatisticalModelingofTypedSyntaxTrees

Cyrus Omar, Salil Joshi, Flávio Cruz

{comar, salilj, fmfernan}@cs.cmu.edu

Motivation

Many kinds of tools can benefit from better models of the statistical structure
of the code that developers write:
• Code completion engines in source code editors
• Code compression engines for sending programs over the network
• Predictive interfaces for conveying commands via devices with limited

bandwidth (e.g. mobile phones, wearable computers like Google Glass, or
rehabilitative interfaces like Stephen Hawking uses)

• Automated bug fixing tools that aim to restrict their search space to
consider only seemingly “natural” code patches

Previous Work: Token Sequences

Previous work has represented source code as a sequence of tokens, so that
natural language modeling techniques can be repurposed to assign probabilities
to program tokens conditioned on their surrounding tokens:

• n-gram models use observed frequencies conditioned on the n (typically
3-15) preceding tokens [1]

• SLAMC associates additional semantic information (available during lex-
ing) with tokens, and uses several topic modeling techniques [2]

Our Work: Typed Syntax Trees

Token sequences are unstructured representations of mathematical objects with
a rich structure and semantics: typed syntax trees. As a result, these meth-
ods often assign non-zero probabilities to malformed and ill-typed programs,
and can neglect, or consider only in an ad hoc manner, non-local structural or
semantic regularities.

To avoid these limitations, we investigate models where probabil-

ities are assigned to typed syntax trees directly.

Example

hi

A Language-General Framework

Type (⌧)

%% ++
Form (�) // Expression (e)

Role (⇢)

99 33

Typing Context (�)

OO

Our objective is to learn P(e|⌧, ⇢,�), the probability of an expression, e, given
its type, ⌧ , the surrounding typing context, �, which tracks the signatures of
names in scope, and the structural context, ⇢, which captures information about
how e is being used (e.g. whether e is the guard of a conditional, an argument
to a function, etc.).

To make the model tractable, we will marginalize over a random variable
representing the form of e, written �:

P(e|⌧, ⇢,�) =
X

�2�

P(e|�, ⌧, ⇢,�)P(�|⌧, ⇢)

A Statistical Model of Java

To develop a simple model of Java within this conceptual framework, we will
consider:

• both primitive types (e.g. int) and classes
• a typing context, �, that tracks the signatures of variables, fields, methods

and classes/interfaces in scope
• structural contexts ⇢ 2 {stmt,asgn,arg,other}, representing expressions

appearing at the top-level, as the right side of an assignment statement,
as an argument to a method or in any other context

• forms � = {lit,meth,var}, representing literals (for primitive numeric
types, strings and enums), method calls and variables, respectively.
TODO: elaborate

Form-Specific Distributions

where
Plit(e|⌧, ⇢,�) =

#{e, ⌧, ⇢}
#{lit, ⌧, ⇢}

P(x|�, ⌧, ⇢,�) =
⇢ 1

var(�,⌧) x : ⌧ 2 � and � = var

0 o/w

P(n|�, ⌧, ⇢,�) =

8
<

:

Plaplace(n;µ)+plitseen
#{n,lit,⌧,⇢}
#{lit,⌧,⇢}

1+plistseen
� = lit and ⌧ numeric

0 o/w

P(e.x|�, ⌧, ⇢,�) =

8
<

:
P(e|⌧e, target,�)

1
|fields(⌧

e

)|+pfield
seen

#{⌧
e

.x,⌧,⇢}
#{⌧

e

._,⌧,⇢}
1+pfield

seen
� = field and � ` e : ⌧e and x 2 fields(⌧e)

0 o/w

Pmeth(e|⌧, ⇢,�) =

8
>>><

>>>:

⇣
Punseen(⌧, ⇢)

1
|M(�,⌧)| M(e)

+(1� Punseen(⌧, ⇢))
#{e,⌧,⇢}

#{meth,⌧,⇢}

⌘
⇥

Qn
i=1 P (ei|⌧i,arg,�)

0 o/w
Punseen(⌧, ⇢) =

|{m|#{m,meth, ⌧, ⇢} > 0}|
#{meth, ⌧, ⇢}+ ⌘

Here,
• M(e) = (e ⌘ o.m(e1, . . . , en)) ^ � ` o : ⌧0 ^ ⌧0.m : ⌧1, . . . , ⌧n ! ⌧

• M(�, ⌧) is the set of unused methods with return type ⌧ :
{m|m : ⌧1, . . . , tn ! ⌧ ^#{m,meth, ⌧, ⇢} = 0}

• And V (�, ⌧) is the set of variables of in scope with type ⌧

Implementation

We implemented our method as a plugin to the Eclipse IDE utilizing the JDT
(Java Development Tools) library. This allows us to use Eclipse’s Java parser
and typechecker, and gives us accesss to functions for walking through Java
source code that make it easier to collect the statistics we need.

We compared our results to probabilities generated using an n-gram model,
with n = 3. The n-grams were generated using a version of the CMU Language
Modeling Toolkit and the probabilities were computing using various Python
scripts.

Results

We tested our predictor using ten-fold cross validation on a few open source
projects and measured the average probability of the observed expression ac-
cording to our model. We compared this to the average probabilities given as
by an n-gram model:

While these results are promising, we did notice that a large number of observed
expressions are assigned 0 probability by our model. An important reason for
this was situations where the predictor was forced to give up due to insufficient
training data. Improved handling of this situation will greatly improve our
prediction accuracy.

Conclusions

Our tests show that our method performs significantly better than an n-gram
model. This indicates that taking language semantics into account is useful for
code prediction systems.

References

[1] A. Hindle, E. T. Barr, Z. Su, M. Gabel, and P. Devanbu. On the naturalness of software. In
Software Engineering (ICSE), 2012 34th International Conference on, pages 837–847. IEEE,
2012.

[2] T. T. Nguyen, A. T. Nguyen, H. A. Nguyen, and T. N. Nguyen. A statistical semantic language
model for source code. In Proceedings of the 2013 9th Joint Meeting on Foundations of

Software Engineering, ESEC/FSE 2013, pages 532–542, New York, NY, USA, 2013. ACM.

Acknowledgement

The n-gram model used for comparison was from: Hindle, Abram, et al. "On
the naturalness of software." (ICSE 2012)
Thanks to Rachel Aurand for portions of the n-gram implementation

= void,)

StatisticalModelingofTypedSyntaxTrees

Cyrus Omar, Salil Joshi, Flávio Cruz

{comar, salilj, fmfernan}@cs.cmu.edu

Motivation

Many kinds of tools can benefit from better models of the statistical structure
of the code that developers write:
• Code completion engines in source code editors
• Code compression engines for sending programs over the network
• Predictive interfaces for conveying commands via devices with limited

bandwidth (e.g. mobile phones, wearable computers like Google Glass, or
rehabilitative interfaces like Stephen Hawking uses)

• Automated bug fixing tools that aim to restrict their search space to
consider only seemingly “natural” code patches

Previous Work: Token Sequences

Previous work has represented source code as a sequence of tokens, so that
natural language modeling techniques can be repurposed to assign probabilities
to program tokens conditioned on their surrounding tokens:

• n-gram models use observed frequencies conditioned on the n (typically
3-15) preceding tokens [1]

• SLAMC associates additional semantic information (available during lex-
ing) with tokens, and uses several topic modeling techniques [2]

Our Work: Typed Syntax Trees

Token sequences are unstructured representations of mathematical objects with
a rich structure and semantics: typed syntax trees. As a result, these meth-
ods often assign non-zero probabilities to malformed and ill-typed programs,
and can neglect, or consider only in an ad hoc manner, non-local structural or
semantic regularities.

To avoid these limitations, we investigate models where probabil-

ities are assigned to typed syntax trees directly.

Example

hi

A Language-General Framework

Type (⌧)

%% ++
Form (�) // Expression (e)

Role (⇢)

99 33

Typing Context (�)

OO

Our objective is to learn P(e|⌧, ⇢,�), the probability of an expression, e, given
its type, ⌧ , the surrounding typing context, �, which tracks the signatures of
names in scope, and the structural context, ⇢, which captures information about
how e is being used (e.g. whether e is the guard of a conditional, an argument
to a function, etc.).

To make the model tractable, we will marginalize over a random variable
representing the form of e, written �:

P(e|⌧, ⇢,�) =
X

�2�

P(e|�, ⌧, ⇢,�)P(�|⌧, ⇢)

A Statistical Model of Java

To develop a simple model of Java within this conceptual framework, we will
consider:

• both primitive types (e.g. int) and classes
• a typing context, �, that tracks the signatures of variables, fields, methods

and classes/interfaces in scope
• structural contexts ⇢ 2 {stmt,asgn,arg,other}, representing expressions

appearing at the top-level, as the right side of an assignment statement,
as an argument to a method or in any other context

• forms � = {lit,meth,var}, representing literals (for primitive numeric
types, strings and enums), method calls and variables, respectively.
TODO: elaborate

Form-Specific Distributions

where
Plit(e|⌧, ⇢,�) =

#{e, ⌧, ⇢}
#{lit, ⌧, ⇢}

P(x|�, ⌧, ⇢,�) =
⇢ 1

var(�,⌧) x : ⌧ 2 � and � = var

0 o/w

P(n|�, ⌧, ⇢,�) =

8
<

:

Plaplace(n;µ)+plitseen
#{n,lit,⌧,⇢}
#{lit,⌧,⇢}

1+plistseen
� = lit and ⌧ numeric

0 o/w

P(e.x|�, ⌧, ⇢,�) =

8
<

:
P(e|⌧e, target,�)

1
|fields(⌧

e

)|+pfield
seen

#{⌧
e

.x,⌧,⇢}
#{⌧

e

._,⌧,⇢}
1+pfield

seen
� = field and � ` e : ⌧e and x 2 fields(⌧e)

0 o/w

Pmeth(e|⌧, ⇢,�) =

8
>>><

>>>:

⇣
Punseen(⌧, ⇢)

1
|M(�,⌧)| M(e)

+(1� Punseen(⌧, ⇢))
#{e,⌧,⇢}

#{meth,⌧,⇢}

⌘
⇥

Qn
i=1 P (ei|⌧i,arg,�)

0 o/w
Punseen(⌧, ⇢) =

|{m|#{m,meth, ⌧, ⇢} > 0}|
#{meth, ⌧, ⇢}+ ⌘

Here,
• M(e) = (e ⌘ o.m(e1, . . . , en)) ^ � ` o : ⌧0 ^ ⌧0.m : ⌧1, . . . , ⌧n ! ⌧

• M(�, ⌧) is the set of unused methods with return type ⌧ :
{m|m : ⌧1, . . . , tn ! ⌧ ^#{m,meth, ⌧, ⇢} = 0}

• And V (�, ⌧) is the set of variables of in scope with type ⌧

Implementation

We implemented our method as a plugin to the Eclipse IDE utilizing the JDT
(Java Development Tools) library. This allows us to use Eclipse’s Java parser
and typechecker, and gives us accesss to functions for walking through Java
source code that make it easier to collect the statistics we need.

We compared our results to probabilities generated using an n-gram model,
with n = 3. The n-grams were generated using a version of the CMU Language
Modeling Toolkit and the probabilities were computing using various Python
scripts.

Results

We tested our predictor using ten-fold cross validation on a few open source
projects and measured the average probability of the observed expression ac-
cording to our model. We compared this to the average probabilities given as
by an n-gram model:

While these results are promising, we did notice that a large number of observed
expressions are assigned 0 probability by our model. An important reason for
this was situations where the predictor was forced to give up due to insufficient
training data. Improved handling of this situation will greatly improve our
prediction accuracy.

Conclusions

Our tests show that our method performs significantly better than an n-gram
model. This indicates that taking language semantics into account is useful for
code prediction systems.

References

[1] A. Hindle, E. T. Barr, Z. Su, M. Gabel, and P. Devanbu. On the naturalness of software. In
Software Engineering (ICSE), 2012 34th International Conference on, pages 837–847. IEEE,
2012.

[2] T. T. Nguyen, A. T. Nguyen, H. A. Nguyen, and T. N. Nguyen. A statistical semantic language
model for source code. In Proceedings of the 2013 9th Joint Meeting on Foundations of

Software Engineering, ESEC/FSE 2013, pages 532–542, New York, NY, USA, 2013. ACM.

Acknowledgement

The n-gram model used for comparison was from: Hindle, Abram, et al. "On
the naturalness of software." (ICSE 2012)
Thanks to Rachel Aurand for portions of the n-gram implementation

= stmt,

StatisticalModelingofTypedSyntaxTrees

Cyrus Omar, Salil Joshi, Flávio Cruz

{comar, salilj, fmfernan}@cs.cmu.edu

Motivation

Many kinds of tools can benefit from better models of the statistical structure
of the code that developers write:
• Code completion engines in source code editors
• Code compression engines for sending programs over the network
• Predictive interfaces for conveying commands via devices with limited

bandwidth (e.g. mobile phones, wearable computers like Google Glass, or
rehabilitative interfaces like Stephen Hawking uses)

• Automated bug fixing tools that aim to restrict their search space to
consider only seemingly “natural” code patches

Previous Work: Token Sequences

Previous work has represented source code as a sequence of tokens, so that
natural language modeling techniques can be repurposed to assign probabilities
to program tokens conditioned on their surrounding tokens:

• n-gram models use observed frequencies conditioned on the n (typically
3-15) preceding tokens [1]

• SLAMC associates additional semantic information (available during lex-
ing) with tokens, and uses several topic modeling techniques [2]

Our Work: Typed Syntax Trees

Token sequences are unstructured representations of mathematical objects with
a rich structure and semantics: typed syntax trees. As a result, these meth-
ods often assign non-zero probabilities to malformed and ill-typed programs,
and can neglect, or consider only in an ad hoc manner, non-local structural or
semantic regularities.

To avoid these limitations, we investigate models where probabil-

ities are assigned to typed syntax trees directly.

Example

hi

A Language-General Framework

Type (⌧)

%% ++
Form (�) // Expression (e)

Role (⇢)

99 33

Typing Context (�)

OO

Our objective is to learn P(e|⌧, ⇢,�), the probability of an expression, e, given
its type, ⌧ , the surrounding typing context, �, which tracks the signatures of
names in scope, and the structural context, ⇢, which captures information about
how e is being used (e.g. whether e is the guard of a conditional, an argument
to a function, etc.).

To make the model tractable, we will marginalize over a random variable
representing the form of e, written �:

P(e|⌧, ⇢,�) =
X

�2�

P(e|�, ⌧, ⇢,�)P(�|⌧, ⇢)

A Statistical Model of Java

To develop a simple model of Java within this conceptual framework, we will
consider:

• both primitive types (e.g. int) and classes
• a typing context, �, that tracks the signatures of variables, fields, methods

and classes/interfaces in scope
• structural contexts ⇢ 2 {stmt,asgn,arg,other}, representing expressions

appearing at the top-level, as the right side of an assignment statement,
as an argument to a method or in any other context

• forms � = {lit,meth,var}, representing literals (for primitive numeric
types, strings and enums), method calls and variables, respectively.
TODO: elaborate

Form-Specific Distributions

where
Plit(e|⌧, ⇢,�) =

#{e, ⌧, ⇢}
#{lit, ⌧, ⇢}

P(x|�, ⌧, ⇢,�) =
⇢ 1

var(�,⌧) x : ⌧ 2 � and � = var

0 o/w

P(n|�, ⌧, ⇢,�) =

8
<

:

Plaplace(n;µ)+plitseen
#{n,lit,⌧,⇢}
#{lit,⌧,⇢}

1+plistseen
� = lit and ⌧ numeric

0 o/w

P(e.x|�, ⌧, ⇢,�) =

8
<

:
P(e|⌧e, target,�)

1
|fields(⌧

e

)|+pfield
seen

#{⌧
e

.x,⌧,⇢}
#{⌧

e

._,⌧,⇢}
1+pfield

seen
� = field and � ` e : ⌧e and x 2 fields(⌧e)

0 o/w

Pmeth(e|⌧, ⇢,�) =

8
>>><

>>>:

⇣
Punseen(⌧, ⇢)

1
|M(�,⌧)| M(e)

+(1� Punseen(⌧, ⇢))
#{e,⌧,⇢}

#{meth,⌧,⇢}

⌘
⇥

Qn
i=1 P (ei|⌧i,arg,�)

0 o/w
Punseen(⌧, ⇢) =

|{m|#{m,meth, ⌧, ⇢} > 0}|
#{meth, ⌧, ⇢}+ ⌘

Here,
• M(e) = (e ⌘ o.m(e1, . . . , en)) ^ � ` o : ⌧0 ^ ⌧0.m : ⌧1, . . . , ⌧n ! ⌧

• M(�, ⌧) is the set of unused methods with return type ⌧ :
{m|m : ⌧1, . . . , tn ! ⌧ ^#{m,meth, ⌧, ⇢} = 0}

• And V (�, ⌧) is the set of variables of in scope with type ⌧

Implementation

We implemented our method as a plugin to the Eclipse IDE utilizing the JDT
(Java Development Tools) library. This allows us to use Eclipse’s Java parser
and typechecker, and gives us accesss to functions for walking through Java
source code that make it easier to collect the statistics we need.

We compared our results to probabilities generated using an n-gram model,
with n = 3. The n-grams were generated using a version of the CMU Language
Modeling Toolkit and the probabilities were computing using various Python
scripts.

Results

We tested our predictor using ten-fold cross validation on a few open source
projects and measured the average probability of the observed expression ac-
cording to our model. We compared this to the average probabilities given as
by an n-gram model:

While these results are promising, we did notice that a large number of observed
expressions are assigned 0 probability by our model. An important reason for
this was situations where the predictor was forced to give up due to insufficient
training data. Improved handling of this situation will greatly improve our
prediction accuracy.

Conclusions

Our tests show that our method performs significantly better than an n-gram
model. This indicates that taking language semantics into account is useful for
code prediction systems.

References

[1] A. Hindle, E. T. Barr, Z. Su, M. Gabel, and P. Devanbu. On the naturalness of software. In
Software Engineering (ICSE), 2012 34th International Conference on, pages 837–847. IEEE,
2012.

[2] T. T. Nguyen, A. T. Nguyen, H. A. Nguyen, and T. N. Nguyen. A statistical semantic language
model for source code. In Proceedings of the 2013 9th Joint Meeting on Foundations of

Software Engineering, ESEC/FSE 2013, pages 532–542, New York, NY, USA, 2013. ACM.

Acknowledgement

The n-gram model used for comparison was from: Hindle, Abram, et al. "On
the naturalness of software." (ICSE 2012)
Thanks to Rachel Aurand for portions of the n-gram implementation

)

call var thisvar this field P(
|

.observe(.favorite)

P(

StatisticalModelingofTypedSyntaxTrees

Cyrus Omar, Salil Joshi, Flávio Cruz

{comar, salilj, fmfernan}@cs.cmu.edu

Motivation

Many kinds of tools can benefit from better models of the statistical structure
of the code that developers write:
• Code completion engines in source code editors
• Code compression engines for sending programs over the network
• Predictive interfaces for conveying commands via devices with limited

bandwidth (e.g. mobile phones, wearable computers like Google Glass, or
rehabilitative interfaces like Stephen Hawking uses)

• Automated bug fixing tools that aim to restrict their search space to
consider only seemingly “natural” code patches

Previous Work: Token Sequences

Previous work has represented source code as a sequence of tokens, so that
natural language modeling techniques can be repurposed to assign probabilities
to program tokens conditioned on their surrounding tokens:

• n-gram models use observed frequencies conditioned on the n (typically
3-15) preceding tokens [1]

• SLAMC associates additional semantic information (available during lex-
ing) with tokens, and uses several topic modeling techniques [2]

Our Work: Typed Syntax Trees

Token sequences are unstructured representations of mathematical objects with
a rich structure and semantics: typed syntax trees. As a result, these meth-
ods often assign non-zero probabilities to malformed and ill-typed programs,
and can neglect, or consider only in an ad hoc manner, non-local structural or
semantic regularities.

To avoid these limitations, we investigate models where probabil-

ities are assigned to typed syntax trees directly.

Example

hi

A Language-General Framework

Type (⌧)

%% ++
Form (�) // Expression (e)

Role (⇢)

99 33

Typing Context (�)

OO

Our objective is to learn P(e|⌧, ⇢,�), the probability of an expression, e, given
its type, ⌧ , the surrounding typing context, �, which tracks the signatures of
names in scope, and the structural context, ⇢, which captures information about
how e is being used (e.g. whether e is the guard of a conditional, an argument
to a function, etc.).

To make the model tractable, we will marginalize over a random variable
representing the form of e, written �:

P(e|⌧, ⇢,�) =
X

�2�

P(e|�, ⌧, ⇢,�)P(�|⌧, ⇢)

A Statistical Model of Java

To develop a simple model of Java within this conceptual framework, we will
consider:

• both primitive types (e.g. int) and classes
• a typing context, �, that tracks the signatures of variables, fields, methods

and classes/interfaces in scope
• structural contexts ⇢ 2 {stmt,asgn,arg,other}, representing expressions

appearing at the top-level, as the right side of an assignment statement,
as an argument to a method or in any other context

• forms � = {lit,meth,var}, representing literals (for primitive numeric
types, strings and enums), method calls and variables, respectively.
TODO: elaborate

Form-Specific Distributions

where
Plit(e|⌧, ⇢,�) =

#{e, ⌧, ⇢}
#{lit, ⌧, ⇢}

P(x|�, ⌧, ⇢,�) =
⇢ 1

var(�,⌧) x : ⌧ 2 � and � = var

0 o/w

P(n|�, ⌧, ⇢,�) =

8
<

:

Plaplace(n;µ)+plitseen
#{n,lit,⌧,⇢}
#{lit,⌧,⇢}

1+plistseen
� = lit and ⌧ numeric

0 o/w

P(e.x|�, ⌧, ⇢,�) =

8
<

:
P(e|⌧e, target,�)

1
|fields(⌧

e

)|+pfield
seen

#{⌧
e

.x,⌧,⇢}
#{⌧

e

._,⌧,⇢}
1+pfield

seen
� = field and � ` e : ⌧e and x 2 fields(⌧e)

0 o/w

Pmeth(e|⌧, ⇢,�) =

8
>>><

>>>:

⇣
Punseen(⌧, ⇢)

1
|M(�,⌧)| M(e)

+(1� Punseen(⌧, ⇢))
#{e,⌧,⇢}

#{meth,⌧,⇢}

⌘
⇥

Qn
i=1 P (ei|⌧i,arg,�)

0 o/w
Punseen(⌧, ⇢) =

|{m|#{m,meth, ⌧, ⇢} > 0}|
#{meth, ⌧, ⇢}+ ⌘

Here,
• M(e) = (e ⌘ o.m(e1, . . . , en)) ^ � ` o : ⌧0 ^ ⌧0.m : ⌧1, . . . , ⌧n ! ⌧

• M(�, ⌧) is the set of unused methods with return type ⌧ :
{m|m : ⌧1, . . . , tn ! ⌧ ^#{m,meth, ⌧, ⇢} = 0}

• And V (�, ⌧) is the set of variables of in scope with type ⌧

Implementation

We implemented our method as a plugin to the Eclipse IDE utilizing the JDT
(Java Development Tools) library. This allows us to use Eclipse’s Java parser
and typechecker, and gives us accesss to functions for walking through Java
source code that make it easier to collect the statistics we need.

We compared our results to probabilities generated using an n-gram model,
with n = 3. The n-grams were generated using a version of the CMU Language
Modeling Toolkit and the probabilities were computing using various Python
scripts.

Results

We tested our predictor using ten-fold cross validation on a few open source
projects and measured the average probability of the observed expression ac-
cording to our model. We compared this to the average probabilities given as
by an n-gram model:

While these results are promising, we did notice that a large number of observed
expressions are assigned 0 probability by our model. An important reason for
this was situations where the predictor was forced to give up due to insufficient
training data. Improved handling of this situation will greatly improve our
prediction accuracy.

Conclusions

Our tests show that our method performs significantly better than an n-gram
model. This indicates that taking language semantics into account is useful for
code prediction systems.

References

[1] A. Hindle, E. T. Barr, Z. Su, M. Gabel, and P. Devanbu. On the naturalness of software. In
Software Engineering (ICSE), 2012 34th International Conference on, pages 837–847. IEEE,
2012.

[2] T. T. Nguyen, A. T. Nguyen, H. A. Nguyen, and T. N. Nguyen. A statistical semantic language
model for source code. In Proceedings of the 2013 9th Joint Meeting on Foundations of

Software Engineering, ESEC/FSE 2013, pages 532–542, New York, NY, USA, 2013. ACM.

Acknowledgement

The n-gram model used for comparison was from: Hindle, Abram, et al. "On
the naturalness of software." (ICSE 2012)
Thanks to Rachel Aurand for portions of the n-gram implementation

|

StatisticalModelingofTypedSyntaxTrees

Cyrus Omar, Salil Joshi, Flávio Cruz

{comar, salilj, fmfernan}@cs.cmu.edu

Motivation

Many kinds of tools can benefit from better models of the statistical structure
of the code that developers write:
• Code completion engines in source code editors
• Code compression engines for sending programs over the network
• Predictive interfaces for conveying commands via devices with limited

bandwidth (e.g. mobile phones, wearable computers like Google Glass, or
rehabilitative interfaces like Stephen Hawking uses)

• Automated bug fixing tools that aim to restrict their search space to
consider only seemingly “natural” code patches

Previous Work: Token Sequences

Previous work has represented source code as a sequence of tokens, so that
natural language modeling techniques can be repurposed to assign probabilities
to program tokens conditioned on their surrounding tokens:

• n-gram models use observed frequencies conditioned on the n (typically
3-15) preceding tokens [1]

• SLAMC associates additional semantic information (available during lex-
ing) with tokens, and uses several topic modeling techniques [2]

Our Work: Typed Syntax Trees

Token sequences are unstructured representations of mathematical objects with
a rich structure and semantics: typed syntax trees. As a result, these meth-
ods often assign non-zero probabilities to malformed and ill-typed programs,
and can neglect, or consider only in an ad hoc manner, non-local structural or
semantic regularities.

To avoid these limitations, we investigate models where probabil-

ities are assigned to typed syntax trees directly.

Example

hi

A Language-General Framework

Type (⌧)

%% ++
Form (�) // Expression (e)

Role (⇢)

99 33

Typing Context (�)

OO

Our objective is to learn P(e|⌧, ⇢,�), the probability of an expression, e, given
its type, ⌧ , the surrounding typing context, �, which tracks the signatures of
names in scope, and the structural context, ⇢, which captures information about
how e is being used (e.g. whether e is the guard of a conditional, an argument
to a function, etc.).

To make the model tractable, we will marginalize over a random variable
representing the form of e, written �:

P(e|⌧, ⇢,�) =
X

�2�

P(e|�, ⌧, ⇢,�)P(�|⌧, ⇢)

A Statistical Model of Java

To develop a simple model of Java within this conceptual framework, we will
consider:

• both primitive types (e.g. int) and classes
• a typing context, �, that tracks the signatures of variables, fields, methods

and classes/interfaces in scope
• structural contexts ⇢ 2 {stmt,asgn,arg,other}, representing expressions

appearing at the top-level, as the right side of an assignment statement,
as an argument to a method or in any other context

• forms � = {lit,meth,var}, representing literals (for primitive numeric
types, strings and enums), method calls and variables, respectively.
TODO: elaborate

Form-Specific Distributions

where
Plit(e|⌧, ⇢,�) =

#{e, ⌧, ⇢}
#{lit, ⌧, ⇢}

P(x|�, ⌧, ⇢,�) =
⇢ 1

var(�,⌧) x : ⌧ 2 � and � = var

0 o/w

P(n|�, ⌧, ⇢,�) =

8
<

:

Plaplace(n;µ)+plitseen
#{n,lit,⌧,⇢}
#{lit,⌧,⇢}

1+plistseen
� = lit and ⌧ numeric

0 o/w

P(e.x|�, ⌧, ⇢,�) =

8
<

:
P(e|⌧e, target,�)

1
|fields(⌧

e

)|+pfield
seen

#{⌧
e

.x,⌧,⇢}
#{⌧

e

._,⌧,⇢}
1+pfield

seen
� = field and � ` e : ⌧e and x 2 fields(⌧e)

0 o/w

Pmeth(e|⌧, ⇢,�) =

8
>>><

>>>:

⇣
Punseen(⌧, ⇢)

1
|M(�,⌧)| M(e)

+(1� Punseen(⌧, ⇢))
#{e,⌧,⇢}

#{meth,⌧,⇢}

⌘
⇥

Qn
i=1 P (ei|⌧i,arg,�)

0 o/w
Punseen(⌧, ⇢) =

|{m|#{m,meth, ⌧, ⇢} > 0}|
#{meth, ⌧, ⇢}+ ⌘

Here,
• M(e) = (e ⌘ o.m(e1, . . . , en)) ^ � ` o : ⌧0 ^ ⌧0.m : ⌧1, . . . , ⌧n ! ⌧

• M(�, ⌧) is the set of unused methods with return type ⌧ :
{m|m : ⌧1, . . . , tn ! ⌧ ^#{m,meth, ⌧, ⇢} = 0}

• And V (�, ⌧) is the set of variables of in scope with type ⌧

Implementation

We implemented our method as a plugin to the Eclipse IDE utilizing the JDT
(Java Development Tools) library. This allows us to use Eclipse’s Java parser
and typechecker, and gives us accesss to functions for walking through Java
source code that make it easier to collect the statistics we need.

We compared our results to probabilities generated using an n-gram model,
with n = 3. The n-grams were generated using a version of the CMU Language
Modeling Toolkit and the probabilities were computing using various Python
scripts.

Results

We tested our predictor using ten-fold cross validation on a few open source
projects and measured the average probability of the observed expression ac-
cording to our model. We compared this to the average probabilities given as
by an n-gram model:

While these results are promising, we did notice that a large number of observed
expressions are assigned 0 probability by our model. An important reason for
this was situations where the predictor was forced to give up due to insufficient
training data. Improved handling of this situation will greatly improve our
prediction accuracy.

Conclusions

Our tests show that our method performs significantly better than an n-gram
model. This indicates that taking language semantics into account is useful for
code prediction systems.

References

[1] A. Hindle, E. T. Barr, Z. Su, M. Gabel, and P. Devanbu. On the naturalness of software. In
Software Engineering (ICSE), 2012 34th International Conference on, pages 837–847. IEEE,
2012.

[2] T. T. Nguyen, A. T. Nguyen, H. A. Nguyen, and T. N. Nguyen. A statistical semantic language
model for source code. In Proceedings of the 2013 9th Joint Meeting on Foundations of

Software Engineering, ESEC/FSE 2013, pages 532–542, New York, NY, USA, 2013. ACM.

Acknowledgement

The n-gram model used for comparison was from: Hindle, Abram, et al. "On
the naturalness of software." (ICSE 2012)
Thanks to Rachel Aurand for portions of the n-gram implementation

= call,

=
)P(

StatisticalModelingofTypedSyntaxTrees

Cyrus Omar, Salil Joshi, Flávio Cruz

{comar, salilj, fmfernan}@cs.cmu.edu

Motivation

Many kinds of tools can benefit from better models of the statistical structure
of the code that developers write:
• Code completion engines in source code editors
• Code compression engines for sending programs over the network
• Predictive interfaces for conveying commands via devices with limited

bandwidth (e.g. mobile phones, wearable computers like Google Glass, or
rehabilitative interfaces like Stephen Hawking uses)

• Automated bug fixing tools that aim to restrict their search space to
consider only seemingly “natural” code patches

Previous Work: Token Sequences

Previous work has represented source code as a sequence of tokens, so that
natural language modeling techniques can be repurposed to assign probabilities
to program tokens conditioned on their surrounding tokens:

• n-gram models use observed frequencies conditioned on the n (typically
3-15) preceding tokens [1]

• SLAMC associates additional semantic information (available during lex-
ing) with tokens, and uses several topic modeling techniques [2]

Our Work: Typed Syntax Trees

Token sequences are unstructured representations of mathematical objects with
a rich structure and semantics: typed syntax trees. As a result, these meth-
ods often assign non-zero probabilities to malformed and ill-typed programs,
and can neglect, or consider only in an ad hoc manner, non-local structural or
semantic regularities.

To avoid these limitations, we investigate models where probabil-

ities are assigned to typed syntax trees directly.

Example

hi

A Language-General Framework

Type (⌧)

%% ++
Form (�) // Expression (e)

Role (⇢)

99 33

Typing Context (�)

OO

Our objective is to learn P(e|⌧, ⇢,�), the probability of an expression, e, given
its type, ⌧ , the surrounding typing context, �, which tracks the signatures of
names in scope, and the structural context, ⇢, which captures information about
how e is being used (e.g. whether e is the guard of a conditional, an argument
to a function, etc.).

To make the model tractable, we will marginalize over a random variable
representing the form of e, written �:

P(e|⌧, ⇢,�) =
X

�2�

P(e|�, ⌧, ⇢,�)P(�|⌧, ⇢)

A Statistical Model of Java

To develop a simple model of Java within this conceptual framework, we will
consider:

• both primitive types (e.g. int) and classes
• a typing context, �, that tracks the signatures of variables, fields, methods

and classes/interfaces in scope
• structural contexts ⇢ 2 {stmt,asgn,arg,other}, representing expressions

appearing at the top-level, as the right side of an assignment statement,
as an argument to a method or in any other context

• forms � = {lit,meth,var}, representing literals (for primitive numeric
types, strings and enums), method calls and variables, respectively.
TODO: elaborate

Form-Specific Distributions

where
Plit(e|⌧, ⇢,�) =

#{e, ⌧, ⇢}
#{lit, ⌧, ⇢}

P(x|�, ⌧, ⇢,�) =
⇢ 1

var(�,⌧) x : ⌧ 2 � and � = var

0 o/w

P(n|�, ⌧, ⇢,�) =

8
<

:

Plaplace(n;µ)+plitseen
#{n,lit,⌧,⇢}
#{lit,⌧,⇢}

1+plistseen
� = lit and ⌧ numeric

0 o/w

P(e.x|�, ⌧, ⇢,�) =

8
<

:
P(e|⌧e, target,�)

1
|fields(⌧

e

)|+pfield
seen

#{⌧
e

.x,⌧,⇢}
#{⌧

e

._,⌧,⇢}
1+pfield

seen
� = field and � ` e : ⌧e and x 2 fields(⌧e)

0 o/w

Pmeth(e|⌧, ⇢,�) =

8
>>><

>>>:

⇣
Punseen(⌧, ⇢)

1
|M(�,⌧)| M(e)

+(1� Punseen(⌧, ⇢))
#{e,⌧,⇢}

#{meth,⌧,⇢}

⌘
⇥

Qn
i=1 P (ei|⌧i,arg,�)

0 o/w
Punseen(⌧, ⇢) =

|{m|#{m,meth, ⌧, ⇢} > 0}|
#{meth, ⌧, ⇢}+ ⌘

Here,
• M(e) = (e ⌘ o.m(e1, . . . , en)) ^ � ` o : ⌧0 ^ ⌧0.m : ⌧1, . . . , ⌧n ! ⌧

• M(�, ⌧) is the set of unused methods with return type ⌧ :
{m|m : ⌧1, . . . , tn ! ⌧ ^#{m,meth, ⌧, ⇢} = 0}

• And V (�, ⌧) is the set of variables of in scope with type ⌧

Implementation

We implemented our method as a plugin to the Eclipse IDE utilizing the JDT
(Java Development Tools) library. This allows us to use Eclipse’s Java parser
and typechecker, and gives us accesss to functions for walking through Java
source code that make it easier to collect the statistics we need.

We compared our results to probabilities generated using an n-gram model,
with n = 3. The n-grams were generated using a version of the CMU Language
Modeling Toolkit and the probabilities were computing using various Python
scripts.

Results

We tested our predictor using ten-fold cross validation on a few open source
projects and measured the average probability of the observed expression ac-
cording to our model. We compared this to the average probabilities given as
by an n-gram model:

While these results are promising, we did notice that a large number of observed
expressions are assigned 0 probability by our model. An important reason for
this was situations where the predictor was forced to give up due to insufficient
training data. Improved handling of this situation will greatly improve our
prediction accuracy.

Conclusions

Our tests show that our method performs significantly better than an n-gram
model. This indicates that taking language semantics into account is useful for
code prediction systems.

References

[1] A. Hindle, E. T. Barr, Z. Su, M. Gabel, and P. Devanbu. On the naturalness of software. In
Software Engineering (ICSE), 2012 34th International Conference on, pages 837–847. IEEE,
2012.

[2] T. T. Nguyen, A. T. Nguyen, H. A. Nguyen, and T. N. Nguyen. A statistical semantic language
model for source code. In Proceedings of the 2013 9th Joint Meeting on Foundations of

Software Engineering, ESEC/FSE 2013, pages 532–542, New York, NY, USA, 2013. ACM.

Acknowledgement

The n-gram model used for comparison was from: Hindle, Abram, et al. "On
the naturalness of software." (ICSE 2012)
Thanks to Rachel Aurand for portions of the n-gram implementation

StatisticalModelingofTypedSyntaxTrees

Cyrus Omar, Salil Joshi, Flávio Cruz

{comar, salilj, fmfernan}@cs.cmu.edu

Motivation

Many kinds of tools can benefit from better models of the statistical structure
of the code that developers write:
• Code completion engines in source code editors
• Code compression engines for sending programs over the network
• Predictive interfaces for conveying commands via devices with limited

bandwidth (e.g. mobile phones, wearable computers like Google Glass, or
rehabilitative interfaces like Stephen Hawking uses)

• Automated bug fixing tools that aim to restrict their search space to
consider only seemingly “natural” code patches

Previous Work: Token Sequences

Previous work has represented source code as a sequence of tokens, so that
natural language modeling techniques can be repurposed to assign probabilities
to program tokens conditioned on their surrounding tokens:

• n-gram models use observed frequencies conditioned on the n (typically
3-15) preceding tokens [1]

• SLAMC associates additional semantic information (available during lex-
ing) with tokens, and uses several topic modeling techniques [2]

Our Work: Typed Syntax Trees

Token sequences are unstructured representations of mathematical objects with
a rich structure and semantics: typed syntax trees. As a result, these meth-
ods often assign non-zero probabilities to malformed and ill-typed programs,
and can neglect, or consider only in an ad hoc manner, non-local structural or
semantic regularities.

To avoid these limitations, we investigate models where probabil-

ities are assigned to typed syntax trees directly.

Example

hi

A Language-General Framework

Type (⌧)

%% ++
Form (�) // Expression (e)

Role (⇢)

99 33

Typing Context (�)

OO

Our objective is to learn P(e|⌧, ⇢,�), the probability of an expression, e, given
its type, ⌧ , the surrounding typing context, �, which tracks the signatures of
names in scope, and the structural context, ⇢, which captures information about
how e is being used (e.g. whether e is the guard of a conditional, an argument
to a function, etc.).

To make the model tractable, we will marginalize over a random variable
representing the form of e, written �:

P(e|⌧, ⇢,�) =
X

�2�

P(e|�, ⌧, ⇢,�)P(�|⌧, ⇢)

A Statistical Model of Java

To develop a simple model of Java within this conceptual framework, we will
consider:

• both primitive types (e.g. int) and classes
• a typing context, �, that tracks the signatures of variables, fields, methods

and classes/interfaces in scope
• structural contexts ⇢ 2 {stmt,asgn,arg,other}, representing expressions

appearing at the top-level, as the right side of an assignment statement,
as an argument to a method or in any other context

• forms � = {lit,meth,var}, representing literals (for primitive numeric
types, strings and enums), method calls and variables, respectively.
TODO: elaborate

Form-Specific Distributions

where
Plit(e|⌧, ⇢,�) =

#{e, ⌧, ⇢}
#{lit, ⌧, ⇢}

P(x|�, ⌧, ⇢,�) =
⇢ 1

var(�,⌧) x : ⌧ 2 � and � = var

0 o/w

P(n|�, ⌧, ⇢,�) =

8
<

:

Plaplace(n;µ)+plitseen
#{n,lit,⌧,⇢}
#{lit,⌧,⇢}

1+plistseen
� = lit and ⌧ numeric

0 o/w

P(e.x|�, ⌧, ⇢,�) =

8
<

:
P(e|⌧e, target,�)

1
|fields(⌧

e

)|+pfield
seen

#{⌧
e

.x,⌧,⇢}
#{⌧

e

._,⌧,⇢}
1+pfield

seen
� = field and � ` e : ⌧e and x 2 fields(⌧e)

0 o/w

Pmeth(e|⌧, ⇢,�) =

8
>>><

>>>:

⇣
Punseen(⌧, ⇢)

1
|M(�,⌧)| M(e)

+(1� Punseen(⌧, ⇢))
#{e,⌧,⇢}

#{meth,⌧,⇢}

⌘
⇥

Qn
i=1 P (ei|⌧i,arg,�)

0 o/w
Punseen(⌧, ⇢) =

|{m|#{m,meth, ⌧, ⇢} > 0}|
#{meth, ⌧, ⇢}+ ⌘

Here,
• M(e) = (e ⌘ o.m(e1, . . . , en)) ^ � ` o : ⌧0 ^ ⌧0.m : ⌧1, . . . , ⌧n ! ⌧

• M(�, ⌧) is the set of unused methods with return type ⌧ :
{m|m : ⌧1, . . . , tn ! ⌧ ^#{m,meth, ⌧, ⇢} = 0}

• And V (�, ⌧) is the set of variables of in scope with type ⌧

Implementation

We implemented our method as a plugin to the Eclipse IDE utilizing the JDT
(Java Development Tools) library. This allows us to use Eclipse’s Java parser
and typechecker, and gives us accesss to functions for walking through Java
source code that make it easier to collect the statistics we need.

We compared our results to probabilities generated using an n-gram model,
with n = 3. The n-grams were generated using a version of the CMU Language
Modeling Toolkit and the probabilities were computing using various Python
scripts.

Results

We tested our predictor using ten-fold cross validation on a few open source
projects and measured the average probability of the observed expression ac-
cording to our model. We compared this to the average probabilities given as
by an n-gram model:

While these results are promising, we did notice that a large number of observed
expressions are assigned 0 probability by our model. An important reason for
this was situations where the predictor was forced to give up due to insufficient
training data. Improved handling of this situation will greatly improve our
prediction accuracy.

Conclusions

Our tests show that our method performs significantly better than an n-gram
model. This indicates that taking language semantics into account is useful for
code prediction systems.

References

[1] A. Hindle, E. T. Barr, Z. Su, M. Gabel, and P. Devanbu. On the naturalness of software. In
Software Engineering (ICSE), 2012 34th International Conference on, pages 837–847. IEEE,
2012.

[2] T. T. Nguyen, A. T. Nguyen, H. A. Nguyen, and T. N. Nguyen. A statistical semantic language
model for source code. In Proceedings of the 2013 9th Joint Meeting on Foundations of

Software Engineering, ESEC/FSE 2013, pages 532–542, New York, NY, USA, 2013. ACM.

Acknowledgement

The n-gram model used for comparison was from: Hindle, Abram, et al. "On
the naturalness of software." (ICSE 2012)
Thanks to Rachel Aurand for portions of the n-gram implementation

StatisticalModelingofTypedSyntaxTrees

Cyrus Omar, Salil Joshi, Flávio Cruz

{comar, salilj, fmfernan}@cs.cmu.edu

Motivation

Many kinds of tools can benefit from better models of the statistical structure
of the code that developers write:
• Code completion engines in source code editors
• Code compression engines for sending programs over the network
• Predictive interfaces for conveying commands via devices with limited

bandwidth (e.g. mobile phones, wearable computers like Google Glass, or
rehabilitative interfaces like Stephen Hawking uses)

• Automated bug fixing tools that aim to restrict their search space to
consider only seemingly “natural” code patches

Previous Work: Token Sequences

Previous work has represented source code as a sequence of tokens, so that
natural language modeling techniques can be repurposed to assign probabilities
to program tokens conditioned on their surrounding tokens:

• n-gram models use observed frequencies conditioned on the n (typically
3-15) preceding tokens [1]

• SLAMC associates additional semantic information (available during lex-
ing) with tokens, and uses several topic modeling techniques [2]

Our Work: Typed Syntax Trees

Token sequences are unstructured representations of mathematical objects with
a rich structure and semantics: typed syntax trees. As a result, these meth-
ods often assign non-zero probabilities to malformed and ill-typed programs,
and can neglect, or consider only in an ad hoc manner, non-local structural or
semantic regularities.

To avoid these limitations, we investigate models where probabil-

ities are assigned to typed syntax trees directly.

Example

hi

A Language-General Framework

Type (⌧)

%% ++
Form (�) // Expression (e)

Role (⇢)

99 33

Typing Context (�)

OO

Our objective is to learn P(e|⌧, ⇢,�), the probability of an expression, e, given
its type, ⌧ , the surrounding typing context, �, which tracks the signatures of
names in scope, and the structural context, ⇢, which captures information about
how e is being used (e.g. whether e is the guard of a conditional, an argument
to a function, etc.).

To make the model tractable, we will marginalize over a random variable
representing the form of e, written �:

P(e|⌧, ⇢,�) =
X

�2�

P(e|�, ⌧, ⇢,�)P(�|⌧, ⇢)

A Statistical Model of Java

To develop a simple model of Java within this conceptual framework, we will
consider:

• both primitive types (e.g. int) and classes
• a typing context, �, that tracks the signatures of variables, fields, methods

and classes/interfaces in scope
• structural contexts ⇢ 2 {stmt,asgn,arg,other}, representing expressions

appearing at the top-level, as the right side of an assignment statement,
as an argument to a method or in any other context

• forms � = {lit,meth,var}, representing literals (for primitive numeric
types, strings and enums), method calls and variables, respectively.
TODO: elaborate

Form-Specific Distributions

where
Plit(e|⌧, ⇢,�) =

#{e, ⌧, ⇢}
#{lit, ⌧, ⇢}

P(x|�, ⌧, ⇢,�) =
⇢ 1

var(�,⌧) x : ⌧ 2 � and � = var

0 o/w

P(n|�, ⌧, ⇢,�) =

8
<

:

Plaplace(n;µ)+plitseen
#{n,lit,⌧,⇢}
#{lit,⌧,⇢}

1+plistseen
� = lit and ⌧ numeric

0 o/w

P(e.x|�, ⌧, ⇢,�) =

8
<

:
P(e|⌧e, target,�)

1
|fields(⌧

e

)|+pfield
seen

#{⌧
e

.x,⌧,⇢}
#{⌧

e

._,⌧,⇢}
1+pfield

seen
� = field and � ` e : ⌧e and x 2 fields(⌧e)

0 o/w

Pmeth(e|⌧, ⇢,�) =

8
>>><

>>>:

⇣
Punseen(⌧, ⇢)

1
|M(�,⌧)| M(e)

+(1� Punseen(⌧, ⇢))
#{e,⌧,⇢}

#{meth,⌧,⇢}

⌘
⇥

Qn
i=1 P (ei|⌧i,arg,�)

0 o/w
Punseen(⌧, ⇢) =

|{m|#{m,meth, ⌧, ⇢} > 0}|
#{meth, ⌧, ⇢}+ ⌘

Here,
• M(e) = (e ⌘ o.m(e1, . . . , en)) ^ � ` o : ⌧0 ^ ⌧0.m : ⌧1, . . . , ⌧n ! ⌧

• M(�, ⌧) is the set of unused methods with return type ⌧ :
{m|m : ⌧1, . . . , tn ! ⌧ ^#{m,meth, ⌧, ⇢} = 0}

• And V (�, ⌧) is the set of variables of in scope with type ⌧

Implementation

We implemented our method as a plugin to the Eclipse IDE utilizing the JDT
(Java Development Tools) library. This allows us to use Eclipse’s Java parser
and typechecker, and gives us accesss to functions for walking through Java
source code that make it easier to collect the statistics we need.

We compared our results to probabilities generated using an n-gram model,
with n = 3. The n-grams were generated using a version of the CMU Language
Modeling Toolkit and the probabilities were computing using various Python
scripts.

Results

We tested our predictor using ten-fold cross validation on a few open source
projects and measured the average probability of the observed expression ac-
cording to our model. We compared this to the average probabilities given as
by an n-gram model:

While these results are promising, we did notice that a large number of observed
expressions are assigned 0 probability by our model. An important reason for
this was situations where the predictor was forced to give up due to insufficient
training data. Improved handling of this situation will greatly improve our
prediction accuracy.

Conclusions

Our tests show that our method performs significantly better than an n-gram
model. This indicates that taking language semantics into account is useful for
code prediction systems.

References

[1] A. Hindle, E. T. Barr, Z. Su, M. Gabel, and P. Devanbu. On the naturalness of software. In
Software Engineering (ICSE), 2012 34th International Conference on, pages 837–847. IEEE,
2012.

[2] T. T. Nguyen, A. T. Nguyen, H. A. Nguyen, and T. N. Nguyen. A statistical semantic language
model for source code. In Proceedings of the 2013 9th Joint Meeting on Foundations of

Software Engineering, ESEC/FSE 2013, pages 532–542, New York, NY, USA, 2013. ACM.

Acknowledgement

The n-gram model used for comparison was from: Hindle, Abram, et al. "On
the naturalness of software." (ICSE 2012)
Thanks to Rachel Aurand for portions of the n-gram implementation

|
= P(Sagan.observe

StatisticalModelingofTypedSyntaxTrees

Cyrus Omar, Salil Joshi, Flávio Cruz

{comar, salilj, fmfernan}@cs.cmu.edu

Motivation

Many kinds of tools can benefit from better models of the statistical structure
of the code that developers write:
• Code completion engines in source code editors
• Code compression engines for sending programs over the network
• Predictive interfaces for conveying commands via devices with limited

bandwidth (e.g. mobile phones, wearable computers like Google Glass, or
rehabilitative interfaces like Stephen Hawking uses)

• Automated bug fixing tools that aim to restrict their search space to
consider only seemingly “natural” code patches

Previous Work: Token Sequences

Previous work has represented source code as a sequence of tokens, so that
natural language modeling techniques can be repurposed to assign probabilities
to program tokens conditioned on their surrounding tokens:

• n-gram models use observed frequencies conditioned on the n (typically
3-15) preceding tokens [1]

• SLAMC associates additional semantic information (available during lex-
ing) with tokens, and uses several topic modeling techniques [2]

Our Work: Typed Syntax Trees

Token sequences are unstructured representations of mathematical objects with
a rich structure and semantics: typed syntax trees. As a result, these meth-
ods often assign non-zero probabilities to malformed and ill-typed programs,
and can neglect, or consider only in an ad hoc manner, non-local structural or
semantic regularities.

To avoid these limitations, we investigate models where probabil-

ities are assigned to typed syntax trees directly.

Example

hi

A Language-General Framework

Type (⌧)

%% ++
Form (�) // Expression (e)

Role (⇢)

99 33

Typing Context (�)

OO

Our objective is to learn P(e|⌧, ⇢,�), the probability of an expression, e, given
its type, ⌧ , the surrounding typing context, �, which tracks the signatures of
names in scope, and the structural context, ⇢, which captures information about
how e is being used (e.g. whether e is the guard of a conditional, an argument
to a function, etc.).

To make the model tractable, we will marginalize over a random variable
representing the form of e, written �:

P(e|⌧, ⇢,�) =
X

�2�

P(e|�, ⌧, ⇢,�)P(�|⌧, ⇢)

A Statistical Model of Java

To develop a simple model of Java within this conceptual framework, we will
consider:

• both primitive types (e.g. int) and classes
• a typing context, �, that tracks the signatures of variables, fields, methods

and classes/interfaces in scope
• structural contexts ⇢ 2 {stmt,asgn,arg,other}, representing expressions

appearing at the top-level, as the right side of an assignment statement,
as an argument to a method or in any other context

• forms � = {lit,meth,var}, representing literals (for primitive numeric
types, strings and enums), method calls and variables, respectively.
TODO: elaborate

Form-Specific Distributions

where
Plit(e|⌧, ⇢,�) =

#{e, ⌧, ⇢}
#{lit, ⌧, ⇢}

P(x|�, ⌧, ⇢,�) =
⇢ 1

var(�,⌧) x : ⌧ 2 � and � = var

0 o/w

P(n|�, ⌧, ⇢,�) =

8
<

:

Plaplace(n;µ)+plitseen
#{n,lit,⌧,⇢}
#{lit,⌧,⇢}

1+plistseen
� = lit and ⌧ numeric

0 o/w

P(e.x|�, ⌧, ⇢,�) =

8
<

:
P(e|⌧e, target,�)

1
|fields(⌧

e

)|+pfield
seen

#{⌧
e

.x,⌧,⇢}
#{⌧

e

._,⌧,⇢}
1+pfield

seen
� = field and � ` e : ⌧e and x 2 fields(⌧e)

0 o/w

Pmeth(e|⌧, ⇢,�) =

8
>>><

>>>:

⇣
Punseen(⌧, ⇢)

1
|M(�,⌧)| M(e)

+(1� Punseen(⌧, ⇢))
#{e,⌧,⇢}

#{meth,⌧,⇢}

⌘
⇥

Qn
i=1 P (ei|⌧i,arg,�)

0 o/w
Punseen(⌧, ⇢) =

|{m|#{m,meth, ⌧, ⇢} > 0}|
#{meth, ⌧, ⇢}+ ⌘

Here,
• M(e) = (e ⌘ o.m(e1, . . . , en)) ^ � ` o : ⌧0 ^ ⌧0.m : ⌧1, . . . , ⌧n ! ⌧

• M(�, ⌧) is the set of unused methods with return type ⌧ :
{m|m : ⌧1, . . . , tn ! ⌧ ^#{m,meth, ⌧, ⇢} = 0}

• And V (�, ⌧) is the set of variables of in scope with type ⌧

Implementation

We implemented our method as a plugin to the Eclipse IDE utilizing the JDT
(Java Development Tools) library. This allows us to use Eclipse’s Java parser
and typechecker, and gives us accesss to functions for walking through Java
source code that make it easier to collect the statistics we need.

We compared our results to probabilities generated using an n-gram model,
with n = 3. The n-grams were generated using a version of the CMU Language
Modeling Toolkit and the probabilities were computing using various Python
scripts.

Results

We tested our predictor using ten-fold cross validation on a few open source
projects and measured the average probability of the observed expression ac-
cording to our model. We compared this to the average probabilities given as
by an n-gram model:

While these results are promising, we did notice that a large number of observed
expressions are assigned 0 probability by our model. An important reason for
this was situations where the predictor was forced to give up due to insufficient
training data. Improved handling of this situation will greatly improve our
prediction accuracy.

Conclusions

Our tests show that our method performs significantly better than an n-gram
model. This indicates that taking language semantics into account is useful for
code prediction systems.

References

[1] A. Hindle, E. T. Barr, Z. Su, M. Gabel, and P. Devanbu. On the naturalness of software. In
Software Engineering (ICSE), 2012 34th International Conference on, pages 837–847. IEEE,
2012.

[2] T. T. Nguyen, A. T. Nguyen, H. A. Nguyen, and T. N. Nguyen. A statistical semantic language
model for source code. In Proceedings of the 2013 9th Joint Meeting on Foundations of

Software Engineering, ESEC/FSE 2013, pages 532–542, New York, NY, USA, 2013. ACM.

Acknowledgement

The n-gram model used for comparison was from: Hindle, Abram, et al. "On
the naturalness of software." (ICSE 2012)
Thanks to Rachel Aurand for portions of the n-gram implementation

= void,

StatisticalModelingofTypedSyntaxTrees

Cyrus Omar, Salil Joshi, Flávio Cruz

{comar, salilj, fmfernan}@cs.cmu.edu

Motivation

Many kinds of tools can benefit from better models of the statistical structure
of the code that developers write:
• Code completion engines in source code editors
• Code compression engines for sending programs over the network
• Predictive interfaces for conveying commands via devices with limited

bandwidth (e.g. mobile phones, wearable computers like Google Glass, or
rehabilitative interfaces like Stephen Hawking uses)

• Automated bug fixing tools that aim to restrict their search space to
consider only seemingly “natural” code patches

Previous Work: Token Sequences

Previous work has represented source code as a sequence of tokens, so that
natural language modeling techniques can be repurposed to assign probabilities
to program tokens conditioned on their surrounding tokens:

• n-gram models use observed frequencies conditioned on the n (typically
3-15) preceding tokens [1]

• SLAMC associates additional semantic information (available during lex-
ing) with tokens, and uses several topic modeling techniques [2]

Our Work: Typed Syntax Trees

Token sequences are unstructured representations of mathematical objects with
a rich structure and semantics: typed syntax trees. As a result, these meth-
ods often assign non-zero probabilities to malformed and ill-typed programs,
and can neglect, or consider only in an ad hoc manner, non-local structural or
semantic regularities.

To avoid these limitations, we investigate models where probabil-

ities are assigned to typed syntax trees directly.

Example

hi

A Language-General Framework

Type (⌧)

%% ++
Form (�) // Expression (e)

Role (⇢)

99 33

Typing Context (�)

OO

Our objective is to learn P(e|⌧, ⇢,�), the probability of an expression, e, given
its type, ⌧ , the surrounding typing context, �, which tracks the signatures of
names in scope, and the structural context, ⇢, which captures information about
how e is being used (e.g. whether e is the guard of a conditional, an argument
to a function, etc.).

To make the model tractable, we will marginalize over a random variable
representing the form of e, written �:

P(e|⌧, ⇢,�) =
X

�2�

P(e|�, ⌧, ⇢,�)P(�|⌧, ⇢)

A Statistical Model of Java

To develop a simple model of Java within this conceptual framework, we will
consider:

• both primitive types (e.g. int) and classes
• a typing context, �, that tracks the signatures of variables, fields, methods

and classes/interfaces in scope
• structural contexts ⇢ 2 {stmt,asgn,arg,other}, representing expressions

appearing at the top-level, as the right side of an assignment statement,
as an argument to a method or in any other context

• forms � = {lit,meth,var}, representing literals (for primitive numeric
types, strings and enums), method calls and variables, respectively.
TODO: elaborate

Form-Specific Distributions

where
Plit(e|⌧, ⇢,�) =

#{e, ⌧, ⇢}
#{lit, ⌧, ⇢}

P(x|�, ⌧, ⇢,�) =
⇢ 1

var(�,⌧) x : ⌧ 2 � and � = var

0 o/w

P(n|�, ⌧, ⇢,�) =

8
<

:

Plaplace(n;µ)+plitseen
#{n,lit,⌧,⇢}
#{lit,⌧,⇢}

1+plistseen
� = lit and ⌧ numeric

0 o/w

P(e.x|�, ⌧, ⇢,�) =

8
<

:
P(e|⌧e, target,�)

1
|fields(⌧

e

)|+pfield
seen

#{⌧
e

.x,⌧,⇢}
#{⌧

e

._,⌧,⇢}
1+pfield

seen
� = field and � ` e : ⌧e and x 2 fields(⌧e)

0 o/w

Pmeth(e|⌧, ⇢,�) =

8
>>><

>>>:

⇣
Punseen(⌧, ⇢)

1
|M(�,⌧)| M(e)

+(1� Punseen(⌧, ⇢))
#{e,⌧,⇢}

#{meth,⌧,⇢}

⌘
⇥

Qn
i=1 P (ei|⌧i,arg,�)

0 o/w
Punseen(⌧, ⇢) =

|{m|#{m,meth, ⌧, ⇢} > 0}|
#{meth, ⌧, ⇢}+ ⌘

Here,
• M(e) = (e ⌘ o.m(e1, . . . , en)) ^ � ` o : ⌧0 ^ ⌧0.m : ⌧1, . . . , ⌧n ! ⌧

• M(�, ⌧) is the set of unused methods with return type ⌧ :
{m|m : ⌧1, . . . , tn ! ⌧ ^#{m,meth, ⌧, ⇢} = 0}

• And V (�, ⌧) is the set of variables of in scope with type ⌧

Implementation

We implemented our method as a plugin to the Eclipse IDE utilizing the JDT
(Java Development Tools) library. This allows us to use Eclipse’s Java parser
and typechecker, and gives us accesss to functions for walking through Java
source code that make it easier to collect the statistics we need.

We compared our results to probabilities generated using an n-gram model,
with n = 3. The n-grams were generated using a version of the CMU Language
Modeling Toolkit and the probabilities were computing using various Python
scripts.

Results

We tested our predictor using ten-fold cross validation on a few open source
projects and measured the average probability of the observed expression ac-
cording to our model. We compared this to the average probabilities given as
by an n-gram model:

While these results are promising, we did notice that a large number of observed
expressions are assigned 0 probability by our model. An important reason for
this was situations where the predictor was forced to give up due to insufficient
training data. Improved handling of this situation will greatly improve our
prediction accuracy.

Conclusions

Our tests show that our method performs significantly better than an n-gram
model. This indicates that taking language semantics into account is useful for
code prediction systems.

References

[1] A. Hindle, E. T. Barr, Z. Su, M. Gabel, and P. Devanbu. On the naturalness of software. In
Software Engineering (ICSE), 2012 34th International Conference on, pages 837–847. IEEE,
2012.

[2] T. T. Nguyen, A. T. Nguyen, H. A. Nguyen, and T. N. Nguyen. A statistical semantic language
model for source code. In Proceedings of the 2013 9th Joint Meeting on Foundations of

Software Engineering, ESEC/FSE 2013, pages 532–542, New York, NY, USA, 2013. ACM.

Acknowledgement

The n-gram model used for comparison was from: Hindle, Abram, et al. "On
the naturalness of software." (ICSE 2012)
Thanks to Rachel Aurand for portions of the n-gram implementation

= stmt,

StatisticalModelingofTypedSyntaxTrees

Cyrus Omar, Salil Joshi, Flávio Cruz

{comar, salilj, fmfernan}@cs.cmu.edu

Motivation

Many kinds of tools can benefit from better models of the statistical structure
of the code that developers write:
• Code completion engines in source code editors
• Code compression engines for sending programs over the network
• Predictive interfaces for conveying commands via devices with limited

bandwidth (e.g. mobile phones, wearable computers like Google Glass, or
rehabilitative interfaces like Stephen Hawking uses)

• Automated bug fixing tools that aim to restrict their search space to
consider only seemingly “natural” code patches

Previous Work: Token Sequences

Previous work has represented source code as a sequence of tokens, so that
natural language modeling techniques can be repurposed to assign probabilities
to program tokens conditioned on their surrounding tokens:

• n-gram models use observed frequencies conditioned on the n (typically
3-15) preceding tokens [1]

• SLAMC associates additional semantic information (available during lex-
ing) with tokens, and uses several topic modeling techniques [2]

Our Work: Typed Syntax Trees

Token sequences are unstructured representations of mathematical objects with
a rich structure and semantics: typed syntax trees. As a result, these meth-
ods often assign non-zero probabilities to malformed and ill-typed programs,
and can neglect, or consider only in an ad hoc manner, non-local structural or
semantic regularities.

To avoid these limitations, we investigate models where probabil-

ities are assigned to typed syntax trees directly.

Example

hi

A Language-General Framework

Type (⌧)

%% ++
Form (�) // Expression (e)

Role (⇢)

99 33

Typing Context (�)

OO

Our objective is to learn P(e|⌧, ⇢,�), the probability of an expression, e, given
its type, ⌧ , the surrounding typing context, �, which tracks the signatures of
names in scope, and the structural context, ⇢, which captures information about
how e is being used (e.g. whether e is the guard of a conditional, an argument
to a function, etc.).

To make the model tractable, we will marginalize over a random variable
representing the form of e, written �:

P(e|⌧, ⇢,�) =
X

�2�

P(e|�, ⌧, ⇢,�)P(�|⌧, ⇢)

A Statistical Model of Java

To develop a simple model of Java within this conceptual framework, we will
consider:

• both primitive types (e.g. int) and classes
• a typing context, �, that tracks the signatures of variables, fields, methods

and classes/interfaces in scope
• structural contexts ⇢ 2 {stmt,asgn,arg,other}, representing expressions

appearing at the top-level, as the right side of an assignment statement,
as an argument to a method or in any other context

• forms � = {lit,meth,var}, representing literals (for primitive numeric
types, strings and enums), method calls and variables, respectively.
TODO: elaborate

Form-Specific Distributions

where
Plit(e|⌧, ⇢,�) =

#{e, ⌧, ⇢}
#{lit, ⌧, ⇢}

P(x|�, ⌧, ⇢,�) =
⇢ 1

var(�,⌧) x : ⌧ 2 � and � = var

0 o/w

P(n|�, ⌧, ⇢,�) =

8
<

:

Plaplace(n;µ)+plitseen
#{n,lit,⌧,⇢}
#{lit,⌧,⇢}

1+plistseen
� = lit and ⌧ numeric

0 o/w

P(e.x|�, ⌧, ⇢,�) =

8
<

:
P(e|⌧e, target,�)

1
|fields(⌧

e

)|+pfield
seen

#{⌧
e

.x,⌧,⇢}
#{⌧

e

._,⌧,⇢}
1+pfield

seen
� = field and � ` e : ⌧e and x 2 fields(⌧e)

0 o/w

Pmeth(e|⌧, ⇢,�) =

8
>>><

>>>:

⇣
Punseen(⌧, ⇢)

1
|M(�,⌧)| M(e)

+(1� Punseen(⌧, ⇢))
#{e,⌧,⇢}

#{meth,⌧,⇢}

⌘
⇥

Qn
i=1 P (ei|⌧i,arg,�)

0 o/w
Punseen(⌧, ⇢) =

|{m|#{m,meth, ⌧, ⇢} > 0}|
#{meth, ⌧, ⇢}+ ⌘

Here,
• M(e) = (e ⌘ o.m(e1, . . . , en)) ^ � ` o : ⌧0 ^ ⌧0.m : ⌧1, . . . , ⌧n ! ⌧

• M(�, ⌧) is the set of unused methods with return type ⌧ :
{m|m : ⌧1, . . . , tn ! ⌧ ^#{m,meth, ⌧, ⇢} = 0}

• And V (�, ⌧) is the set of variables of in scope with type ⌧

Implementation

We implemented our method as a plugin to the Eclipse IDE utilizing the JDT
(Java Development Tools) library. This allows us to use Eclipse’s Java parser
and typechecker, and gives us accesss to functions for walking through Java
source code that make it easier to collect the statistics we need.

We compared our results to probabilities generated using an n-gram model,
with n = 3. The n-grams were generated using a version of the CMU Language
Modeling Toolkit and the probabilities were computing using various Python
scripts.

Results

We tested our predictor using ten-fold cross validation on a few open source
projects and measured the average probability of the observed expression ac-
cording to our model. We compared this to the average probabilities given as
by an n-gram model:

While these results are promising, we did notice that a large number of observed
expressions are assigned 0 probability by our model. An important reason for
this was situations where the predictor was forced to give up due to insufficient
training data. Improved handling of this situation will greatly improve our
prediction accuracy.

Conclusions

Our tests show that our method performs significantly better than an n-gram
model. This indicates that taking language semantics into account is useful for
code prediction systems.

References

[1] A. Hindle, E. T. Barr, Z. Su, M. Gabel, and P. Devanbu. On the naturalness of software. In
Software Engineering (ICSE), 2012 34th International Conference on, pages 837–847. IEEE,
2012.

[2] T. T. Nguyen, A. T. Nguyen, H. A. Nguyen, and T. N. Nguyen. A statistical semantic language
model for source code. In Proceedings of the 2013 9th Joint Meeting on Foundations of

Software Engineering, ESEC/FSE 2013, pages 532–542, New York, NY, USA, 2013. ACM.

Acknowledgement

The n-gram model used for comparison was from: Hindle, Abram, et al. "On
the naturalness of software." (ICSE 2012)
Thanks to Rachel Aurand for portions of the n-gram implementation

|)
|

StatisticalModelingofTypedSyntaxTrees

Cyrus Omar, Salil Joshi, Flávio Cruz

{comar, salilj, fmfernan}@cs.cmu.edu

Motivation

Many kinds of tools can benefit from better models of the statistical structure
of the code that developers write:
• Code completion engines in source code editors
• Code compression engines for sending programs over the network
• Predictive interfaces for conveying commands via devices with limited

bandwidth (e.g. mobile phones, wearable computers like Google Glass, or
rehabilitative interfaces like Stephen Hawking uses)

• Automated bug fixing tools that aim to restrict their search space to
consider only seemingly “natural” code patches

Previous Work: Token Sequences

Previous work has represented source code as a sequence of tokens, so that
natural language modeling techniques can be repurposed to assign probabilities
to program tokens conditioned on their surrounding tokens:

• n-gram models use observed frequencies conditioned on the n (typically
3-15) preceding tokens [1]

• SLAMC associates additional semantic information (available during lex-
ing) with tokens, and uses several topic modeling techniques [2]

Our Work: Typed Syntax Trees

Token sequences are unstructured representations of mathematical objects with
a rich structure and semantics: typed syntax trees. As a result, these meth-
ods often assign non-zero probabilities to malformed and ill-typed programs,
and can neglect, or consider only in an ad hoc manner, non-local structural or
semantic regularities.

To avoid these limitations, we investigate models where probabil-

ities are assigned to typed syntax trees directly.

Example

hi

A Language-General Framework

Type (⌧)

%% ++
Form (�) // Expression (e)

Role (⇢)

99 33

Typing Context (�)

OO

Our objective is to learn P(e|⌧, ⇢,�), the probability of an expression, e, given
its type, ⌧ , the surrounding typing context, �, which tracks the signatures of
names in scope, and the structural context, ⇢, which captures information about
how e is being used (e.g. whether e is the guard of a conditional, an argument
to a function, etc.).

To make the model tractable, we will marginalize over a random variable
representing the form of e, written �:

P(e|⌧, ⇢,�) =
X

�2�

P(e|�, ⌧, ⇢,�)P(�|⌧, ⇢)

A Statistical Model of Java

To develop a simple model of Java within this conceptual framework, we will
consider:

• both primitive types (e.g. int) and classes
• a typing context, �, that tracks the signatures of variables, fields, methods

and classes/interfaces in scope
• structural contexts ⇢ 2 {stmt,asgn,arg,other}, representing expressions

appearing at the top-level, as the right side of an assignment statement,
as an argument to a method or in any other context

• forms � = {lit,meth,var}, representing literals (for primitive numeric
types, strings and enums), method calls and variables, respectively.
TODO: elaborate

Form-Specific Distributions

where
Plit(e|⌧, ⇢,�) =

#{e, ⌧, ⇢}
#{lit, ⌧, ⇢}

P(x|�, ⌧, ⇢,�) =
⇢ 1

var(�,⌧) x : ⌧ 2 � and � = var

0 o/w

P(n|�, ⌧, ⇢,�) =

8
<

:

Plaplace(n;µ)+plitseen
#{n,lit,⌧,⇢}
#{lit,⌧,⇢}

1+plistseen
� = lit and ⌧ numeric

0 o/w

P(e.x|�, ⌧, ⇢,�) =

8
<

:
P(e|⌧e, target,�)

1
|fields(⌧

e

)|+pfield
seen

#{⌧
e

.x,⌧,⇢}
#{⌧

e

._,⌧,⇢}
1+pfield

seen
� = field and � ` e : ⌧e and x 2 fields(⌧e)

0 o/w

Pmeth(e|⌧, ⇢,�) =

8
>>><

>>>:

⇣
Punseen(⌧, ⇢)

1
|M(�,⌧)| M(e)

+(1� Punseen(⌧, ⇢))
#{e,⌧,⇢}

#{meth,⌧,⇢}

⌘
⇥

Qn
i=1 P (ei|⌧i,arg,�)

0 o/w
Punseen(⌧, ⇢) =

|{m|#{m,meth, ⌧, ⇢} > 0}|
#{meth, ⌧, ⇢}+ ⌘

Here,
• M(e) = (e ⌘ o.m(e1, . . . , en)) ^ � ` o : ⌧0 ^ ⌧0.m : ⌧1, . . . , ⌧n ! ⌧

• M(�, ⌧) is the set of unused methods with return type ⌧ :
{m|m : ⌧1, . . . , tn ! ⌧ ^#{m,meth, ⌧, ⇢} = 0}

• And V (�, ⌧) is the set of variables of in scope with type ⌧

Implementation

We implemented our method as a plugin to the Eclipse IDE utilizing the JDT
(Java Development Tools) library. This allows us to use Eclipse’s Java parser
and typechecker, and gives us accesss to functions for walking through Java
source code that make it easier to collect the statistics we need.

We compared our results to probabilities generated using an n-gram model,
with n = 3. The n-grams were generated using a version of the CMU Language
Modeling Toolkit and the probabilities were computing using various Python
scripts.

Results

We tested our predictor using ten-fold cross validation on a few open source
projects and measured the average probability of the observed expression ac-
cording to our model. We compared this to the average probabilities given as
by an n-gram model:

While these results are promising, we did notice that a large number of observed
expressions are assigned 0 probability by our model. An important reason for
this was situations where the predictor was forced to give up due to insufficient
training data. Improved handling of this situation will greatly improve our
prediction accuracy.

Conclusions

Our tests show that our method performs significantly better than an n-gram
model. This indicates that taking language semantics into account is useful for
code prediction systems.

References

[1] A. Hindle, E. T. Barr, Z. Su, M. Gabel, and P. Devanbu. On the naturalness of software. In
Software Engineering (ICSE), 2012 34th International Conference on, pages 837–847. IEEE,
2012.

[2] T. T. Nguyen, A. T. Nguyen, H. A. Nguyen, and T. N. Nguyen. A statistical semantic language
model for source code. In Proceedings of the 2013 9th Joint Meeting on Foundations of

Software Engineering, ESEC/FSE 2013, pages 532–542, New York, NY, USA, 2013. ACM.

Acknowledgement

The n-gram model used for comparison was from: Hindle, Abram, et al. "On
the naturalness of software." (ICSE 2012)
Thanks to Rachel Aurand for portions of the n-gram implementation

= Sagan,

StatisticalModelingofTypedSyntaxTrees

Cyrus Omar, Salil Joshi, Flávio Cruz

{comar, salilj, fmfernan}@cs.cmu.edu

Motivation

Many kinds of tools can benefit from better models of the statistical structure
of the code that developers write:
• Code completion engines in source code editors
• Code compression engines for sending programs over the network
• Predictive interfaces for conveying commands via devices with limited

bandwidth (e.g. mobile phones, wearable computers like Google Glass, or
rehabilitative interfaces like Stephen Hawking uses)

• Automated bug fixing tools that aim to restrict their search space to
consider only seemingly “natural” code patches

Previous Work: Token Sequences

Previous work has represented source code as a sequence of tokens, so that
natural language modeling techniques can be repurposed to assign probabilities
to program tokens conditioned on their surrounding tokens:

• n-gram models use observed frequencies conditioned on the n (typically
3-15) preceding tokens [1]

• SLAMC associates additional semantic information (available during lex-
ing) with tokens, and uses several topic modeling techniques [2]

Our Work: Typed Syntax Trees

Token sequences are unstructured representations of mathematical objects with
a rich structure and semantics: typed syntax trees. As a result, these meth-
ods often assign non-zero probabilities to malformed and ill-typed programs,
and can neglect, or consider only in an ad hoc manner, non-local structural or
semantic regularities.

To avoid these limitations, we investigate models where probabil-

ities are assigned to typed syntax trees directly.

Example

hi

A Language-General Framework

Type (⌧)

%% ++
Form (�) // Expression (e)

Role (⇢)

99 33

Typing Context (�)

OO

Our objective is to learn P(e|⌧, ⇢,�), the probability of an expression, e, given
its type, ⌧ , the surrounding typing context, �, which tracks the signatures of
names in scope, and the structural context, ⇢, which captures information about
how e is being used (e.g. whether e is the guard of a conditional, an argument
to a function, etc.).

To make the model tractable, we will marginalize over a random variable
representing the form of e, written �:

P(e|⌧, ⇢,�) =
X

�2�

P(e|�, ⌧, ⇢,�)P(�|⌧, ⇢)

A Statistical Model of Java

To develop a simple model of Java within this conceptual framework, we will
consider:

• both primitive types (e.g. int) and classes
• a typing context, �, that tracks the signatures of variables, fields, methods

and classes/interfaces in scope
• structural contexts ⇢ 2 {stmt,asgn,arg,other}, representing expressions

appearing at the top-level, as the right side of an assignment statement,
as an argument to a method or in any other context

• forms � = {lit,meth,var}, representing literals (for primitive numeric
types, strings and enums), method calls and variables, respectively.
TODO: elaborate

Form-Specific Distributions

where
Plit(e|⌧, ⇢,�) =

#{e, ⌧, ⇢}
#{lit, ⌧, ⇢}

P(x|�, ⌧, ⇢,�) =
⇢ 1

var(�,⌧) x : ⌧ 2 � and � = var

0 o/w

P(n|�, ⌧, ⇢,�) =

8
<

:

Plaplace(n;µ)+plitseen
#{n,lit,⌧,⇢}
#{lit,⌧,⇢}

1+plistseen
� = lit and ⌧ numeric

0 o/w

P(e.x|�, ⌧, ⇢,�) =

8
<

:
P(e|⌧e, target,�)

1
|fields(⌧

e

)|+pfield
seen

#{⌧
e

.x,⌧,⇢}
#{⌧

e

._,⌧,⇢}
1+pfield

seen
� = field and � ` e : ⌧e and x 2 fields(⌧e)

0 o/w

Pmeth(e|⌧, ⇢,�) =

8
>>><

>>>:

⇣
Punseen(⌧, ⇢)

1
|M(�,⌧)| M(e)

+(1� Punseen(⌧, ⇢))
#{e,⌧,⇢}

#{meth,⌧,⇢}

⌘
⇥

Qn
i=1 P (ei|⌧i,arg,�)

0 o/w
Punseen(⌧, ⇢) =

|{m|#{m,meth, ⌧, ⇢} > 0}|
#{meth, ⌧, ⇢}+ ⌘

Here,
• M(e) = (e ⌘ o.m(e1, . . . , en)) ^ � ` o : ⌧0 ^ ⌧0.m : ⌧1, . . . , ⌧n ! ⌧

• M(�, ⌧) is the set of unused methods with return type ⌧ :
{m|m : ⌧1, . . . , tn ! ⌧ ^#{m,meth, ⌧, ⇢} = 0}

• And V (�, ⌧) is the set of variables of in scope with type ⌧

Implementation

We implemented our method as a plugin to the Eclipse IDE utilizing the JDT
(Java Development Tools) library. This allows us to use Eclipse’s Java parser
and typechecker, and gives us accesss to functions for walking through Java
source code that make it easier to collect the statistics we need.

We compared our results to probabilities generated using an n-gram model,
with n = 3. The n-grams were generated using a version of the CMU Language
Modeling Toolkit and the probabilities were computing using various Python
scripts.

Results

We tested our predictor using ten-fold cross validation on a few open source
projects and measured the average probability of the observed expression ac-
cording to our model. We compared this to the average probabilities given as
by an n-gram model:

While these results are promising, we did notice that a large number of observed
expressions are assigned 0 probability by our model. An important reason for
this was situations where the predictor was forced to give up due to insufficient
training data. Improved handling of this situation will greatly improve our
prediction accuracy.

Conclusions

Our tests show that our method performs significantly better than an n-gram
model. This indicates that taking language semantics into account is useful for
code prediction systems.

References

[1] A. Hindle, E. T. Barr, Z. Su, M. Gabel, and P. Devanbu. On the naturalness of software. In
Software Engineering (ICSE), 2012 34th International Conference on, pages 837–847. IEEE,
2012.

[2] T. T. Nguyen, A. T. Nguyen, H. A. Nguyen, and T. N. Nguyen. A statistical semantic language
model for source code. In Proceedings of the 2013 9th Joint Meeting on Foundations of

Software Engineering, ESEC/FSE 2013, pages 532–542, New York, NY, USA, 2013. ACM.

Acknowledgement

The n-gram model used for comparison was from: Hindle, Abram, et al. "On
the naturalness of software." (ICSE 2012)
Thanks to Rachel Aurand for portions of the n-gram implementation

= targ,

StatisticalModelingofTypedSyntaxTrees

Cyrus Omar, Salil Joshi, Flávio Cruz

{comar, salilj, fmfernan}@cs.cmu.edu

Motivation

Many kinds of tools can benefit from better models of the statistical structure
of the code that developers write:
• Code completion engines in source code editors
• Code compression engines for sending programs over the network
• Predictive interfaces for conveying commands via devices with limited

bandwidth (e.g. mobile phones, wearable computers like Google Glass, or
rehabilitative interfaces like Stephen Hawking uses)

• Automated bug fixing tools that aim to restrict their search space to
consider only seemingly “natural” code patches

Previous Work: Token Sequences

Previous work has represented source code as a sequence of tokens, so that
natural language modeling techniques can be repurposed to assign probabilities
to program tokens conditioned on their surrounding tokens:

• n-gram models use observed frequencies conditioned on the n (typically
3-15) preceding tokens [1]

• SLAMC associates additional semantic information (available during lex-
ing) with tokens, and uses several topic modeling techniques [2]

Our Work: Typed Syntax Trees

Token sequences are unstructured representations of mathematical objects with
a rich structure and semantics: typed syntax trees. As a result, these meth-
ods often assign non-zero probabilities to malformed and ill-typed programs,
and can neglect, or consider only in an ad hoc manner, non-local structural or
semantic regularities.

To avoid these limitations, we investigate models where probabil-

ities are assigned to typed syntax trees directly.

Example

hi

A Language-General Framework

Type (⌧)

%% ++
Form (�) // Expression (e)

Role (⇢)

99 33

Typing Context (�)

OO

Our objective is to learn P(e|⌧, ⇢,�), the probability of an expression, e, given
its type, ⌧ , the surrounding typing context, �, which tracks the signatures of
names in scope, and the structural context, ⇢, which captures information about
how e is being used (e.g. whether e is the guard of a conditional, an argument
to a function, etc.).

To make the model tractable, we will marginalize over a random variable
representing the form of e, written �:

P(e|⌧, ⇢,�) =
X

�2�

P(e|�, ⌧, ⇢,�)P(�|⌧, ⇢)

A Statistical Model of Java

To develop a simple model of Java within this conceptual framework, we will
consider:

• both primitive types (e.g. int) and classes
• a typing context, �, that tracks the signatures of variables, fields, methods

and classes/interfaces in scope
• structural contexts ⇢ 2 {stmt,asgn,arg,other}, representing expressions

appearing at the top-level, as the right side of an assignment statement,
as an argument to a method or in any other context

• forms � = {lit,meth,var}, representing literals (for primitive numeric
types, strings and enums), method calls and variables, respectively.
TODO: elaborate

Form-Specific Distributions

where
Plit(e|⌧, ⇢,�) =

#{e, ⌧, ⇢}
#{lit, ⌧, ⇢}

P(x|�, ⌧, ⇢,�) =
⇢ 1

var(�,⌧) x : ⌧ 2 � and � = var

0 o/w

P(n|�, ⌧, ⇢,�) =

8
<

:

Plaplace(n;µ)+plitseen
#{n,lit,⌧,⇢}
#{lit,⌧,⇢}

1+plistseen
� = lit and ⌧ numeric

0 o/w

P(e.x|�, ⌧, ⇢,�) =

8
<

:
P(e|⌧e, target,�)

1
|fields(⌧

e

)|+pfield
seen

#{⌧
e

.x,⌧,⇢}
#{⌧

e

._,⌧,⇢}
1+pfield

seen
� = field and � ` e : ⌧e and x 2 fields(⌧e)

0 o/w

Pmeth(e|⌧, ⇢,�) =

8
>>><

>>>:

⇣
Punseen(⌧, ⇢)

1
|M(�,⌧)| M(e)

+(1� Punseen(⌧, ⇢))
#{e,⌧,⇢}

#{meth,⌧,⇢}

⌘
⇥

Qn
i=1 P (ei|⌧i,arg,�)

0 o/w
Punseen(⌧, ⇢) =

|{m|#{m,meth, ⌧, ⇢} > 0}|
#{meth, ⌧, ⇢}+ ⌘

Here,
• M(e) = (e ⌘ o.m(e1, . . . , en)) ^ � ` o : ⌧0 ^ ⌧0.m : ⌧1, . . . , ⌧n ! ⌧

• M(�, ⌧) is the set of unused methods with return type ⌧ :
{m|m : ⌧1, . . . , tn ! ⌧ ^#{m,meth, ⌧, ⇢} = 0}

• And V (�, ⌧) is the set of variables of in scope with type ⌧

Implementation

We implemented our method as a plugin to the Eclipse IDE utilizing the JDT
(Java Development Tools) library. This allows us to use Eclipse’s Java parser
and typechecker, and gives us accesss to functions for walking through Java
source code that make it easier to collect the statistics we need.

We compared our results to probabilities generated using an n-gram model,
with n = 3. The n-grams were generated using a version of the CMU Language
Modeling Toolkit and the probabilities were computing using various Python
scripts.

Results

We tested our predictor using ten-fold cross validation on a few open source
projects and measured the average probability of the observed expression ac-
cording to our model. We compared this to the average probabilities given as
by an n-gram model:

While these results are promising, we did notice that a large number of observed
expressions are assigned 0 probability by our model. An important reason for
this was situations where the predictor was forced to give up due to insufficient
training data. Improved handling of this situation will greatly improve our
prediction accuracy.

Conclusions

Our tests show that our method performs significantly better than an n-gram
model. This indicates that taking language semantics into account is useful for
code prediction systems.

References

[1] A. Hindle, E. T. Barr, Z. Su, M. Gabel, and P. Devanbu. On the naturalness of software. In
Software Engineering (ICSE), 2012 34th International Conference on, pages 837–847. IEEE,
2012.

[2] T. T. Nguyen, A. T. Nguyen, H. A. Nguyen, and T. N. Nguyen. A statistical semantic language
model for source code. In Proceedings of the 2013 9th Joint Meeting on Foundations of

Software Engineering, ESEC/FSE 2013, pages 532–542, New York, NY, USA, 2013. ACM.

Acknowledgement

The n-gram model used for comparison was from: Hindle, Abram, et al. "On
the naturalness of software." (ICSE 2012)
Thanks to Rachel Aurand for portions of the n-gram implementation

)P(var this

P(|

StatisticalModelingofTypedSyntaxTrees

Cyrus Omar, Salil Joshi, Flávio Cruz

{comar, salilj, fmfernan}@cs.cmu.edu

Motivation

Many kinds of tools can benefit from better models of the statistical structure
of the code that developers write:
• Code completion engines in source code editors
• Code compression engines for sending programs over the network
• Predictive interfaces for conveying commands via devices with limited

bandwidth (e.g. mobile phones, wearable computers like Google Glass, or
rehabilitative interfaces like Stephen Hawking uses)

• Automated bug fixing tools that aim to restrict their search space to
consider only seemingly “natural” code patches

Previous Work: Token Sequences

Previous work has represented source code as a sequence of tokens, so that
natural language modeling techniques can be repurposed to assign probabilities
to program tokens conditioned on their surrounding tokens:

• n-gram models use observed frequencies conditioned on the n (typically
3-15) preceding tokens [1]

• SLAMC associates additional semantic information (available during lex-
ing) with tokens, and uses several topic modeling techniques [2]

Our Work: Typed Syntax Trees

Token sequences are unstructured representations of mathematical objects with
a rich structure and semantics: typed syntax trees. As a result, these meth-
ods often assign non-zero probabilities to malformed and ill-typed programs,
and can neglect, or consider only in an ad hoc manner, non-local structural or
semantic regularities.

To avoid these limitations, we investigate models where probabil-

ities are assigned to typed syntax trees directly.

Example

hi

A Language-General Framework

Type (⌧)

%% ++
Form (�) // Expression (e)

Role (⇢)

99 33

Typing Context (�)

OO

Our objective is to learn P(e|⌧, ⇢,�), the probability of an expression, e, given
its type, ⌧ , the surrounding typing context, �, which tracks the signatures of
names in scope, and the structural context, ⇢, which captures information about
how e is being used (e.g. whether e is the guard of a conditional, an argument
to a function, etc.).

To make the model tractable, we will marginalize over a random variable
representing the form of e, written �:

P(e|⌧, ⇢,�) =
X

�2�

P(e|�, ⌧, ⇢,�)P(�|⌧, ⇢)

A Statistical Model of Java

To develop a simple model of Java within this conceptual framework, we will
consider:

• both primitive types (e.g. int) and classes
• a typing context, �, that tracks the signatures of variables, fields, methods

and classes/interfaces in scope
• structural contexts ⇢ 2 {stmt,asgn,arg,other}, representing expressions

appearing at the top-level, as the right side of an assignment statement,
as an argument to a method or in any other context

• forms � = {lit,meth,var}, representing literals (for primitive numeric
types, strings and enums), method calls and variables, respectively.
TODO: elaborate

Form-Specific Distributions

where
Plit(e|⌧, ⇢,�) =

#{e, ⌧, ⇢}
#{lit, ⌧, ⇢}

P(x|�, ⌧, ⇢,�) =
⇢ 1

var(�,⌧) x : ⌧ 2 � and � = var

0 o/w

P(n|�, ⌧, ⇢,�) =

8
<

:

Plaplace(n;µ)+plitseen
#{n,lit,⌧,⇢}
#{lit,⌧,⇢}

1+plistseen
� = lit and ⌧ numeric

0 o/w

P(e.x|�, ⌧, ⇢,�) =

8
<

:
P(e|⌧e, target,�)

1
|fields(⌧

e

)|+pfield
seen

#{⌧
e

.x,⌧,⇢}
#{⌧

e

._,⌧,⇢}
1+pfield

seen
� = field and � ` e : ⌧e and x 2 fields(⌧e)

0 o/w

Pmeth(e|⌧, ⇢,�) =

8
>>><

>>>:

⇣
Punseen(⌧, ⇢)

1
|M(�,⌧)| M(e)

+(1� Punseen(⌧, ⇢))
#{e,⌧,⇢}

#{meth,⌧,⇢}

⌘
⇥

Qn
i=1 P (ei|⌧i,arg,�)

0 o/w
Punseen(⌧, ⇢) =

|{m|#{m,meth, ⌧, ⇢} > 0}|
#{meth, ⌧, ⇢}+ ⌘

Here,
• M(e) = (e ⌘ o.m(e1, . . . , en)) ^ � ` o : ⌧0 ^ ⌧0.m : ⌧1, . . . , ⌧n ! ⌧

• M(�, ⌧) is the set of unused methods with return type ⌧ :
{m|m : ⌧1, . . . , tn ! ⌧ ^#{m,meth, ⌧, ⇢} = 0}

• And V (�, ⌧) is the set of variables of in scope with type ⌧

Implementation

We implemented our method as a plugin to the Eclipse IDE utilizing the JDT
(Java Development Tools) library. This allows us to use Eclipse’s Java parser
and typechecker, and gives us accesss to functions for walking through Java
source code that make it easier to collect the statistics we need.

We compared our results to probabilities generated using an n-gram model,
with n = 3. The n-grams were generated using a version of the CMU Language
Modeling Toolkit and the probabilities were computing using various Python
scripts.

Results

We tested our predictor using ten-fold cross validation on a few open source
projects and measured the average probability of the observed expression ac-
cording to our model. We compared this to the average probabilities given as
by an n-gram model:

While these results are promising, we did notice that a large number of observed
expressions are assigned 0 probability by our model. An important reason for
this was situations where the predictor was forced to give up due to insufficient
training data. Improved handling of this situation will greatly improve our
prediction accuracy.

Conclusions

Our tests show that our method performs significantly better than an n-gram
model. This indicates that taking language semantics into account is useful for
code prediction systems.

References

[1] A. Hindle, E. T. Barr, Z. Su, M. Gabel, and P. Devanbu. On the naturalness of software. In
Software Engineering (ICSE), 2012 34th International Conference on, pages 837–847. IEEE,
2012.

[2] T. T. Nguyen, A. T. Nguyen, H. A. Nguyen, and T. N. Nguyen. A statistical semantic language
model for source code. In Proceedings of the 2013 9th Joint Meeting on Foundations of

Software Engineering, ESEC/FSE 2013, pages 532–542, New York, NY, USA, 2013. ACM.

Acknowledgement

The n-gram model used for comparison was from: Hindle, Abram, et al. "On
the naturalness of software." (ICSE 2012)
Thanks to Rachel Aurand for portions of the n-gram implementation

= Planet,

StatisticalModelingofTypedSyntaxTrees

Cyrus Omar, Salil Joshi, Flávio Cruz

{comar, salilj, fmfernan}@cs.cmu.edu

Motivation

Many kinds of tools can benefit from better models of the statistical structure
of the code that developers write:
• Code completion engines in source code editors
• Code compression engines for sending programs over the network
• Predictive interfaces for conveying commands via devices with limited

bandwidth (e.g. mobile phones, wearable computers like Google Glass, or
rehabilitative interfaces like Stephen Hawking uses)

• Automated bug fixing tools that aim to restrict their search space to
consider only seemingly “natural” code patches

Previous Work: Token Sequences

Previous work has represented source code as a sequence of tokens, so that
natural language modeling techniques can be repurposed to assign probabilities
to program tokens conditioned on their surrounding tokens:

• n-gram models use observed frequencies conditioned on the n (typically
3-15) preceding tokens [1]

• SLAMC associates additional semantic information (available during lex-
ing) with tokens, and uses several topic modeling techniques [2]

Our Work: Typed Syntax Trees

Token sequences are unstructured representations of mathematical objects with
a rich structure and semantics: typed syntax trees. As a result, these meth-
ods often assign non-zero probabilities to malformed and ill-typed programs,
and can neglect, or consider only in an ad hoc manner, non-local structural or
semantic regularities.

To avoid these limitations, we investigate models where probabil-

ities are assigned to typed syntax trees directly.

Example

hi

A Language-General Framework

Type (⌧)

%% ++
Form (�) // Expression (e)

Role (⇢)

99 33

Typing Context (�)

OO

Our objective is to learn P(e|⌧, ⇢,�), the probability of an expression, e, given
its type, ⌧ , the surrounding typing context, �, which tracks the signatures of
names in scope, and the structural context, ⇢, which captures information about
how e is being used (e.g. whether e is the guard of a conditional, an argument
to a function, etc.).

To make the model tractable, we will marginalize over a random variable
representing the form of e, written �:

P(e|⌧, ⇢,�) =
X

�2�

P(e|�, ⌧, ⇢,�)P(�|⌧, ⇢)

A Statistical Model of Java

To develop a simple model of Java within this conceptual framework, we will
consider:

• both primitive types (e.g. int) and classes
• a typing context, �, that tracks the signatures of variables, fields, methods

and classes/interfaces in scope
• structural contexts ⇢ 2 {stmt,asgn,arg,other}, representing expressions

appearing at the top-level, as the right side of an assignment statement,
as an argument to a method or in any other context

• forms � = {lit,meth,var}, representing literals (for primitive numeric
types, strings and enums), method calls and variables, respectively.
TODO: elaborate

Form-Specific Distributions

where
Plit(e|⌧, ⇢,�) =

#{e, ⌧, ⇢}
#{lit, ⌧, ⇢}

P(x|�, ⌧, ⇢,�) =
⇢ 1

var(�,⌧) x : ⌧ 2 � and � = var

0 o/w

P(n|�, ⌧, ⇢,�) =

8
<

:

Plaplace(n;µ)+plitseen
#{n,lit,⌧,⇢}
#{lit,⌧,⇢}

1+plistseen
� = lit and ⌧ numeric

0 o/w

P(e.x|�, ⌧, ⇢,�) =

8
<

:
P(e|⌧e, target,�)

1
|fields(⌧

e

)|+pfield
seen

#{⌧
e

.x,⌧,⇢}
#{⌧

e

._,⌧,⇢}
1+pfield

seen
� = field and � ` e : ⌧e and x 2 fields(⌧e)

0 o/w

Pmeth(e|⌧, ⇢,�) =

8
>>><

>>>:

⇣
Punseen(⌧, ⇢)

1
|M(�,⌧)| M(e)

+(1� Punseen(⌧, ⇢))
#{e,⌧,⇢}

#{meth,⌧,⇢}

⌘
⇥

Qn
i=1 P (ei|⌧i,arg,�)

0 o/w
Punseen(⌧, ⇢) =

|{m|#{m,meth, ⌧, ⇢} > 0}|
#{meth, ⌧, ⇢}+ ⌘

Here,
• M(e) = (e ⌘ o.m(e1, . . . , en)) ^ � ` o : ⌧0 ^ ⌧0.m : ⌧1, . . . , ⌧n ! ⌧

• M(�, ⌧) is the set of unused methods with return type ⌧ :
{m|m : ⌧1, . . . , tn ! ⌧ ^#{m,meth, ⌧, ⇢} = 0}

• And V (�, ⌧) is the set of variables of in scope with type ⌧

Implementation

We implemented our method as a plugin to the Eclipse IDE utilizing the JDT
(Java Development Tools) library. This allows us to use Eclipse’s Java parser
and typechecker, and gives us accesss to functions for walking through Java
source code that make it easier to collect the statistics we need.

We compared our results to probabilities generated using an n-gram model,
with n = 3. The n-grams were generated using a version of the CMU Language
Modeling Toolkit and the probabilities were computing using various Python
scripts.

Results

We tested our predictor using ten-fold cross validation on a few open source
projects and measured the average probability of the observed expression ac-
cording to our model. We compared this to the average probabilities given as
by an n-gram model:

While these results are promising, we did notice that a large number of observed
expressions are assigned 0 probability by our model. An important reason for
this was situations where the predictor was forced to give up due to insufficient
training data. Improved handling of this situation will greatly improve our
prediction accuracy.

Conclusions

Our tests show that our method performs significantly better than an n-gram
model. This indicates that taking language semantics into account is useful for
code prediction systems.

References

[1] A. Hindle, E. T. Barr, Z. Su, M. Gabel, and P. Devanbu. On the naturalness of software. In
Software Engineering (ICSE), 2012 34th International Conference on, pages 837–847. IEEE,
2012.

[2] T. T. Nguyen, A. T. Nguyen, H. A. Nguyen, and T. N. Nguyen. A statistical semantic language
model for source code. In Proceedings of the 2013 9th Joint Meeting on Foundations of

Software Engineering, ESEC/FSE 2013, pages 532–542, New York, NY, USA, 2013. ACM.

Acknowledgement

The n-gram model used for comparison was from: Hindle, Abram, et al. "On
the naturalness of software." (ICSE 2012)
Thanks to Rachel Aurand for portions of the n-gram implementation

= arg,

StatisticalModelingofTypedSyntaxTrees

Cyrus Omar, Salil Joshi, Flávio Cruz

{comar, salilj, fmfernan}@cs.cmu.edu

Motivation

Many kinds of tools can benefit from better models of the statistical structure
of the code that developers write:
• Code completion engines in source code editors
• Code compression engines for sending programs over the network
• Predictive interfaces for conveying commands via devices with limited

bandwidth (e.g. mobile phones, wearable computers like Google Glass, or
rehabilitative interfaces like Stephen Hawking uses)

• Automated bug fixing tools that aim to restrict their search space to
consider only seemingly “natural” code patches

Previous Work: Token Sequences

Previous work has represented source code as a sequence of tokens, so that
natural language modeling techniques can be repurposed to assign probabilities
to program tokens conditioned on their surrounding tokens:

• n-gram models use observed frequencies conditioned on the n (typically
3-15) preceding tokens [1]

• SLAMC associates additional semantic information (available during lex-
ing) with tokens, and uses several topic modeling techniques [2]

Our Work: Typed Syntax Trees

Token sequences are unstructured representations of mathematical objects with
a rich structure and semantics: typed syntax trees. As a result, these meth-
ods often assign non-zero probabilities to malformed and ill-typed programs,
and can neglect, or consider only in an ad hoc manner, non-local structural or
semantic regularities.

To avoid these limitations, we investigate models where probabil-

ities are assigned to typed syntax trees directly.

Example

hi

A Language-General Framework

Type (⌧)

%% ++
Form (�) // Expression (e)

Role (⇢)

99 33

Typing Context (�)

OO

Our objective is to learn P(e|⌧, ⇢,�), the probability of an expression, e, given
its type, ⌧ , the surrounding typing context, �, which tracks the signatures of
names in scope, and the structural context, ⇢, which captures information about
how e is being used (e.g. whether e is the guard of a conditional, an argument
to a function, etc.).

To make the model tractable, we will marginalize over a random variable
representing the form of e, written �:

P(e|⌧, ⇢,�) =
X

�2�

P(e|�, ⌧, ⇢,�)P(�|⌧, ⇢)

A Statistical Model of Java

To develop a simple model of Java within this conceptual framework, we will
consider:

• both primitive types (e.g. int) and classes
• a typing context, �, that tracks the signatures of variables, fields, methods

and classes/interfaces in scope
• structural contexts ⇢ 2 {stmt,asgn,arg,other}, representing expressions

appearing at the top-level, as the right side of an assignment statement,
as an argument to a method or in any other context

• forms � = {lit,meth,var}, representing literals (for primitive numeric
types, strings and enums), method calls and variables, respectively.
TODO: elaborate

Form-Specific Distributions

where
Plit(e|⌧, ⇢,�) =

#{e, ⌧, ⇢}
#{lit, ⌧, ⇢}

P(x|�, ⌧, ⇢,�) =
⇢ 1

var(�,⌧) x : ⌧ 2 � and � = var

0 o/w

P(n|�, ⌧, ⇢,�) =

8
<

:

Plaplace(n;µ)+plitseen
#{n,lit,⌧,⇢}
#{lit,⌧,⇢}

1+plistseen
� = lit and ⌧ numeric

0 o/w

P(e.x|�, ⌧, ⇢,�) =

8
<

:
P(e|⌧e, target,�)

1
|fields(⌧

e

)|+pfield
seen

#{⌧
e

.x,⌧,⇢}
#{⌧

e

._,⌧,⇢}
1+pfield

seen
� = field and � ` e : ⌧e and x 2 fields(⌧e)

0 o/w

Pmeth(e|⌧, ⇢,�) =

8
>>><

>>>:

⇣
Punseen(⌧, ⇢)

1
|M(�,⌧)| M(e)

+(1� Punseen(⌧, ⇢))
#{e,⌧,⇢}

#{meth,⌧,⇢}

⌘
⇥

Qn
i=1 P (ei|⌧i,arg,�)

0 o/w
Punseen(⌧, ⇢) =

|{m|#{m,meth, ⌧, ⇢} > 0}|
#{meth, ⌧, ⇢}+ ⌘

Here,
• M(e) = (e ⌘ o.m(e1, . . . , en)) ^ � ` o : ⌧0 ^ ⌧0.m : ⌧1, . . . , ⌧n ! ⌧

• M(�, ⌧) is the set of unused methods with return type ⌧ :
{m|m : ⌧1, . . . , tn ! ⌧ ^#{m,meth, ⌧, ⇢} = 0}

• And V (�, ⌧) is the set of variables of in scope with type ⌧

Implementation

We implemented our method as a plugin to the Eclipse IDE utilizing the JDT
(Java Development Tools) library. This allows us to use Eclipse’s Java parser
and typechecker, and gives us accesss to functions for walking through Java
source code that make it easier to collect the statistics we need.

We compared our results to probabilities generated using an n-gram model,
with n = 3. The n-grams were generated using a version of the CMU Language
Modeling Toolkit and the probabilities were computing using various Python
scripts.

Results

We tested our predictor using ten-fold cross validation on a few open source
projects and measured the average probability of the observed expression ac-
cording to our model. We compared this to the average probabilities given as
by an n-gram model:

While these results are promising, we did notice that a large number of observed
expressions are assigned 0 probability by our model. An important reason for
this was situations where the predictor was forced to give up due to insufficient
training data. Improved handling of this situation will greatly improve our
prediction accuracy.

Conclusions

Our tests show that our method performs significantly better than an n-gram
model. This indicates that taking language semantics into account is useful for
code prediction systems.

References

[1] A. Hindle, E. T. Barr, Z. Su, M. Gabel, and P. Devanbu. On the naturalness of software. In
Software Engineering (ICSE), 2012 34th International Conference on, pages 837–847. IEEE,
2012.

[2] T. T. Nguyen, A. T. Nguyen, H. A. Nguyen, and T. N. Nguyen. A statistical semantic language
model for source code. In Proceedings of the 2013 9th Joint Meeting on Foundations of

Software Engineering, ESEC/FSE 2013, pages 532–542, New York, NY, USA, 2013. ACM.

Acknowledgement

The n-gram model used for comparison was from: Hindle, Abram, et al. "On
the naturalness of software." (ICSE 2012)
Thanks to Rachel Aurand for portions of the n-gram implementation

)var thisfield .favorite

,)

))P(

StatisticalModelingofTypedSyntaxTrees

Cyrus Omar, Salil Joshi, Flávio Cruz

{comar, salilj, fmfernan}@cs.cmu.edu

Motivation

Many kinds of tools can benefit from better models of the statistical structure
of the code that developers write:
• Code completion engines in source code editors
• Code compression engines for sending programs over the network
• Predictive interfaces for conveying commands via devices with limited

bandwidth (e.g. mobile phones, wearable computers like Google Glass, or
rehabilitative interfaces like Stephen Hawking uses)

• Automated bug fixing tools that aim to restrict their search space to
consider only seemingly “natural” code patches

Previous Work: Token Sequences

Previous work has represented source code as a sequence of tokens, so that
natural language modeling techniques can be repurposed to assign probabilities
to program tokens conditioned on their surrounding tokens:

• n-gram models use observed frequencies conditioned on the n (typically
3-15) preceding tokens [1]

• SLAMC associates additional semantic information (available during lex-
ing) with tokens, and uses several topic modeling techniques [2]

Our Work: Typed Syntax Trees

Token sequences are unstructured representations of mathematical objects with
a rich structure and semantics: typed syntax trees. As a result, these meth-
ods often assign non-zero probabilities to malformed and ill-typed programs,
and can neglect, or consider only in an ad hoc manner, non-local structural or
semantic regularities.

To avoid these limitations, we investigate models where probabil-

ities are assigned to typed syntax trees directly.

Example

hi

A Language-General Framework

Type (⌧)

%% ++
Form (�) // Expression (e)

Role (⇢)

99 33

Typing Context (�)

OO

Our objective is to learn P(e|⌧, ⇢,�), the probability of an expression, e, given
its type, ⌧ , the surrounding typing context, �, which tracks the signatures of
names in scope, and the structural context, ⇢, which captures information about
how e is being used (e.g. whether e is the guard of a conditional, an argument
to a function, etc.).

To make the model tractable, we will marginalize over a random variable
representing the form of e, written �:

P(e|⌧, ⇢,�) =
X

�2�

P(e|�, ⌧, ⇢,�)P(�|⌧, ⇢)

A Statistical Model of Java

To develop a simple model of Java within this conceptual framework, we will
consider:

• both primitive types (e.g. int) and classes
• a typing context, �, that tracks the signatures of variables, fields, methods

and classes/interfaces in scope
• structural contexts ⇢ 2 {stmt,asgn,arg,other}, representing expressions

appearing at the top-level, as the right side of an assignment statement,
as an argument to a method or in any other context

• forms � = {lit,meth,var}, representing literals (for primitive numeric
types, strings and enums), method calls and variables, respectively.
TODO: elaborate

Form-Specific Distributions

where
Plit(e|⌧, ⇢,�) =

#{e, ⌧, ⇢}
#{lit, ⌧, ⇢}

P(x|�, ⌧, ⇢,�) =
⇢ 1

var(�,⌧) x : ⌧ 2 � and � = var

0 o/w

P(n|�, ⌧, ⇢,�) =

8
<

:

Plaplace(n;µ)+plitseen
#{n,lit,⌧,⇢}
#{lit,⌧,⇢}

1+plistseen
� = lit and ⌧ numeric

0 o/w

P(e.x|�, ⌧, ⇢,�) =

8
<

:
P(e|⌧e, target,�)

1
|fields(⌧

e

)|+pfield
seen

#{⌧
e

.x,⌧,⇢}
#{⌧

e

._,⌧,⇢}
1+pfield

seen
� = field and � ` e : ⌧e and x 2 fields(⌧e)

0 o/w

Pmeth(e|⌧, ⇢,�) =

8
>>><

>>>:

⇣
Punseen(⌧, ⇢)

1
|M(�,⌧)| M(e)

+(1� Punseen(⌧, ⇢))
#{e,⌧,⇢}

#{meth,⌧,⇢}

⌘
⇥

Qn
i=1 P (ei|⌧i,arg,�)

0 o/w
Punseen(⌧, ⇢) =

|{m|#{m,meth, ⌧, ⇢} > 0}|
#{meth, ⌧, ⇢}+ ⌘

Here,
• M(e) = (e ⌘ o.m(e1, . . . , en)) ^ � ` o : ⌧0 ^ ⌧0.m : ⌧1, . . . , ⌧n ! ⌧

• M(�, ⌧) is the set of unused methods with return type ⌧ :
{m|m : ⌧1, . . . , tn ! ⌧ ^#{m,meth, ⌧, ⇢} = 0}

• And V (�, ⌧) is the set of variables of in scope with type ⌧

Implementation

We implemented our method as a plugin to the Eclipse IDE utilizing the JDT
(Java Development Tools) library. This allows us to use Eclipse’s Java parser
and typechecker, and gives us accesss to functions for walking through Java
source code that make it easier to collect the statistics we need.

We compared our results to probabilities generated using an n-gram model,
with n = 3. The n-grams were generated using a version of the CMU Language
Modeling Toolkit and the probabilities were computing using various Python
scripts.

Results

We tested our predictor using ten-fold cross validation on a few open source
projects and measured the average probability of the observed expression ac-
cording to our model. We compared this to the average probabilities given as
by an n-gram model:

While these results are promising, we did notice that a large number of observed
expressions are assigned 0 probability by our model. An important reason for
this was situations where the predictor was forced to give up due to insufficient
training data. Improved handling of this situation will greatly improve our
prediction accuracy.

Conclusions

Our tests show that our method performs significantly better than an n-gram
model. This indicates that taking language semantics into account is useful for
code prediction systems.

References

[1] A. Hindle, E. T. Barr, Z. Su, M. Gabel, and P. Devanbu. On the naturalness of software. In
Software Engineering (ICSE), 2012 34th International Conference on, pages 837–847. IEEE,
2012.

[2] T. T. Nguyen, A. T. Nguyen, H. A. Nguyen, and T. N. Nguyen. A statistical semantic language
model for source code. In Proceedings of the 2013 9th Joint Meeting on Foundations of

Software Engineering, ESEC/FSE 2013, pages 532–542, New York, NY, USA, 2013. ACM.

Acknowledgement

The n-gram model used for comparison was from: Hindle, Abram, et al. "On
the naturalness of software." (ICSE 2012)
Thanks to Rachel Aurand for portions of the n-gram implementation

|P(

StatisticalModelingofTypedSyntaxTrees

Cyrus Omar, Salil Joshi, Flávio Cruz

{comar, salilj, fmfernan}@cs.cmu.edu

Motivation

Many kinds of tools can benefit from better models of the statistical structure
of the code that developers write:
• Code completion engines in source code editors
• Code compression engines for sending programs over the network
• Predictive interfaces for conveying commands via devices with limited

bandwidth (e.g. mobile phones, wearable computers like Google Glass, or
rehabilitative interfaces like Stephen Hawking uses)

• Automated bug fixing tools that aim to restrict their search space to
consider only seemingly “natural” code patches

Previous Work: Token Sequences

Previous work has represented source code as a sequence of tokens, so that
natural language modeling techniques can be repurposed to assign probabilities
to program tokens conditioned on their surrounding tokens:

• n-gram models use observed frequencies conditioned on the n (typically
3-15) preceding tokens [1]

• SLAMC associates additional semantic information (available during lex-
ing) with tokens, and uses several topic modeling techniques [2]

Our Work: Typed Syntax Trees

Token sequences are unstructured representations of mathematical objects with
a rich structure and semantics: typed syntax trees. As a result, these meth-
ods often assign non-zero probabilities to malformed and ill-typed programs,
and can neglect, or consider only in an ad hoc manner, non-local structural or
semantic regularities.

To avoid these limitations, we investigate models where probabil-

ities are assigned to typed syntax trees directly.

Example

hi

A Language-General Framework

Type (⌧)

%% ++
Form (�) // Expression (e)

Role (⇢)

99 33

Typing Context (�)

OO

Our objective is to learn P(e|⌧, ⇢,�), the probability of an expression, e, given
its type, ⌧ , the surrounding typing context, �, which tracks the signatures of
names in scope, and the structural context, ⇢, which captures information about
how e is being used (e.g. whether e is the guard of a conditional, an argument
to a function, etc.).

To make the model tractable, we will marginalize over a random variable
representing the form of e, written �:

P(e|⌧, ⇢,�) =
X

�2�

P(e|�, ⌧, ⇢,�)P(�|⌧, ⇢)

A Statistical Model of Java

To develop a simple model of Java within this conceptual framework, we will
consider:

• both primitive types (e.g. int) and classes
• a typing context, �, that tracks the signatures of variables, fields, methods

and classes/interfaces in scope
• structural contexts ⇢ 2 {stmt,asgn,arg,other}, representing expressions

appearing at the top-level, as the right side of an assignment statement,
as an argument to a method or in any other context

• forms � = {lit,meth,var}, representing literals (for primitive numeric
types, strings and enums), method calls and variables, respectively.
TODO: elaborate

Form-Specific Distributions

where
Plit(e|⌧, ⇢,�) =

#{e, ⌧, ⇢}
#{lit, ⌧, ⇢}

P(x|�, ⌧, ⇢,�) =
⇢ 1

var(�,⌧) x : ⌧ 2 � and � = var

0 o/w

P(n|�, ⌧, ⇢,�) =

8
<

:

Plaplace(n;µ)+plitseen
#{n,lit,⌧,⇢}
#{lit,⌧,⇢}

1+plistseen
� = lit and ⌧ numeric

0 o/w

P(e.x|�, ⌧, ⇢,�) =

8
<

:
P(e|⌧e, target,�)

1
|fields(⌧

e

)|+pfield
seen

#{⌧
e

.x,⌧,⇢}
#{⌧

e

._,⌧,⇢}
1+pfield

seen
� = field and � ` e : ⌧e and x 2 fields(⌧e)

0 o/w

Pmeth(e|⌧, ⇢,�) =

8
>>><

>>>:

⇣
Punseen(⌧, ⇢)

1
|M(�,⌧)| M(e)

+(1� Punseen(⌧, ⇢))
#{e,⌧,⇢}

#{meth,⌧,⇢}

⌘
⇥

Qn
i=1 P (ei|⌧i,arg,�)

0 o/w
Punseen(⌧, ⇢) =

|{m|#{m,meth, ⌧, ⇢} > 0}|
#{meth, ⌧, ⇢}+ ⌘

Here,
• M(e) = (e ⌘ o.m(e1, . . . , en)) ^ � ` o : ⌧0 ^ ⌧0.m : ⌧1, . . . , ⌧n ! ⌧

• M(�, ⌧) is the set of unused methods with return type ⌧ :
{m|m : ⌧1, . . . , tn ! ⌧ ^#{m,meth, ⌧, ⇢} = 0}

• And V (�, ⌧) is the set of variables of in scope with type ⌧

Implementation

We implemented our method as a plugin to the Eclipse IDE utilizing the JDT
(Java Development Tools) library. This allows us to use Eclipse’s Java parser
and typechecker, and gives us accesss to functions for walking through Java
source code that make it easier to collect the statistics we need.

We compared our results to probabilities generated using an n-gram model,
with n = 3. The n-grams were generated using a version of the CMU Language
Modeling Toolkit and the probabilities were computing using various Python
scripts.

Results

We tested our predictor using ten-fold cross validation on a few open source
projects and measured the average probability of the observed expression ac-
cording to our model. We compared this to the average probabilities given as
by an n-gram model:

While these results are promising, we did notice that a large number of observed
expressions are assigned 0 probability by our model. An important reason for
this was situations where the predictor was forced to give up due to insufficient
training data. Improved handling of this situation will greatly improve our
prediction accuracy.

Conclusions

Our tests show that our method performs significantly better than an n-gram
model. This indicates that taking language semantics into account is useful for
code prediction systems.

References

[1] A. Hindle, E. T. Barr, Z. Su, M. Gabel, and P. Devanbu. On the naturalness of software. In
Software Engineering (ICSE), 2012 34th International Conference on, pages 837–847. IEEE,
2012.

[2] T. T. Nguyen, A. T. Nguyen, H. A. Nguyen, and T. N. Nguyen. A statistical semantic language
model for source code. In Proceedings of the 2013 9th Joint Meeting on Foundations of

Software Engineering, ESEC/FSE 2013, pages 532–542, New York, NY, USA, 2013. ACM.

Acknowledgement

The n-gram model used for comparison was from: Hindle, Abram, et al. "On
the naturalness of software." (ICSE 2012)
Thanks to Rachel Aurand for portions of the n-gram implementation

StatisticalModelingofTypedSyntaxTrees

Cyrus Omar, Salil Joshi, Flávio Cruz

{comar, salilj, fmfernan}@cs.cmu.edu

Motivation

Many kinds of tools can benefit from better models of the statistical structure
of the code that developers write:
• Code completion engines in source code editors
• Code compression engines for sending programs over the network
• Predictive interfaces for conveying commands via devices with limited

bandwidth (e.g. mobile phones, wearable computers like Google Glass, or
rehabilitative interfaces like Stephen Hawking uses)

• Automated bug fixing tools that aim to restrict their search space to
consider only seemingly “natural” code patches

Previous Work: Token Sequences

Previous work has represented source code as a sequence of tokens, so that
natural language modeling techniques can be repurposed to assign probabilities
to program tokens conditioned on their surrounding tokens:

• n-gram models use observed frequencies conditioned on the n (typically
3-15) preceding tokens [1]

• SLAMC associates additional semantic information (available during lex-
ing) with tokens, and uses several topic modeling techniques [2]

Our Work: Typed Syntax Trees

Token sequences are unstructured representations of mathematical objects with
a rich structure and semantics: typed syntax trees. As a result, these meth-
ods often assign non-zero probabilities to malformed and ill-typed programs,
and can neglect, or consider only in an ad hoc manner, non-local structural or
semantic regularities.

To avoid these limitations, we investigate models where probabil-

ities are assigned to typed syntax trees directly.

Example

hi

A Language-General Framework

Type (⌧)

%% ++
Form (�) // Expression (e)

Role (⇢)

99 33

Typing Context (�)

OO

Our objective is to learn P(e|⌧, ⇢,�), the probability of an expression, e, given
its type, ⌧ , the surrounding typing context, �, which tracks the signatures of
names in scope, and the structural context, ⇢, which captures information about
how e is being used (e.g. whether e is the guard of a conditional, an argument
to a function, etc.).

To make the model tractable, we will marginalize over a random variable
representing the form of e, written �:

P(e|⌧, ⇢,�) =
X

�2�

P(e|�, ⌧, ⇢,�)P(�|⌧, ⇢)

A Statistical Model of Java

To develop a simple model of Java within this conceptual framework, we will
consider:

• both primitive types (e.g. int) and classes
• a typing context, �, that tracks the signatures of variables, fields, methods

and classes/interfaces in scope
• structural contexts ⇢ 2 {stmt,asgn,arg,other}, representing expressions

appearing at the top-level, as the right side of an assignment statement,
as an argument to a method or in any other context

• forms � = {lit,meth,var}, representing literals (for primitive numeric
types, strings and enums), method calls and variables, respectively.
TODO: elaborate

Form-Specific Distributions

where
Plit(e|⌧, ⇢,�) =

#{e, ⌧, ⇢}
#{lit, ⌧, ⇢}

P(x|�, ⌧, ⇢,�) =
⇢ 1

var(�,⌧) x : ⌧ 2 � and � = var

0 o/w

P(n|�, ⌧, ⇢,�) =

8
<

:

Plaplace(n;µ)+plitseen
#{n,lit,⌧,⇢}
#{lit,⌧,⇢}

1+plistseen
� = lit and ⌧ numeric

0 o/w

P(e.x|�, ⌧, ⇢,�) =

8
<

:
P(e|⌧e, target,�)

1
|fields(⌧

e

)|+pfield
seen

#{⌧
e

.x,⌧,⇢}
#{⌧

e

._,⌧,⇢}
1+pfield

seen
� = field and � ` e : ⌧e and x 2 fields(⌧e)

0 o/w

Pmeth(e|⌧, ⇢,�) =

8
>>><

>>>:

⇣
Punseen(⌧, ⇢)

1
|M(�,⌧)| M(e)

+(1� Punseen(⌧, ⇢))
#{e,⌧,⇢}

#{meth,⌧,⇢}

⌘
⇥

Qn
i=1 P (ei|⌧i,arg,�)

0 o/w
Punseen(⌧, ⇢) =

|{m|#{m,meth, ⌧, ⇢} > 0}|
#{meth, ⌧, ⇢}+ ⌘

Here,
• M(e) = (e ⌘ o.m(e1, . . . , en)) ^ � ` o : ⌧0 ^ ⌧0.m : ⌧1, . . . , ⌧n ! ⌧

• M(�, ⌧) is the set of unused methods with return type ⌧ :
{m|m : ⌧1, . . . , tn ! ⌧ ^#{m,meth, ⌧, ⇢} = 0}

• And V (�, ⌧) is the set of variables of in scope with type ⌧

Implementation

We implemented our method as a plugin to the Eclipse IDE utilizing the JDT
(Java Development Tools) library. This allows us to use Eclipse’s Java parser
and typechecker, and gives us accesss to functions for walking through Java
source code that make it easier to collect the statistics we need.

We compared our results to probabilities generated using an n-gram model,
with n = 3. The n-grams were generated using a version of the CMU Language
Modeling Toolkit and the probabilities were computing using various Python
scripts.

Results

We tested our predictor using ten-fold cross validation on a few open source
projects and measured the average probability of the observed expression ac-
cording to our model. We compared this to the average probabilities given as
by an n-gram model:

While these results are promising, we did notice that a large number of observed
expressions are assigned 0 probability by our model. An important reason for
this was situations where the predictor was forced to give up due to insufficient
training data. Improved handling of this situation will greatly improve our
prediction accuracy.

Conclusions

Our tests show that our method performs significantly better than an n-gram
model. This indicates that taking language semantics into account is useful for
code prediction systems.

References

[1] A. Hindle, E. T. Barr, Z. Su, M. Gabel, and P. Devanbu. On the naturalness of software. In
Software Engineering (ICSE), 2012 34th International Conference on, pages 837–847. IEEE,
2012.

[2] T. T. Nguyen, A. T. Nguyen, H. A. Nguyen, and T. N. Nguyen. A statistical semantic language
model for source code. In Proceedings of the 2013 9th Joint Meeting on Foundations of

Software Engineering, ESEC/FSE 2013, pages 532–542, New York, NY, USA, 2013. ACM.

Acknowledgement

The n-gram model used for comparison was from: Hindle, Abram, et al. "On
the naturalness of software." (ICSE 2012)
Thanks to Rachel Aurand for portions of the n-gram implementation

StatisticalModelingofTypedSyntaxTrees

Cyrus Omar, Salil Joshi, Flávio Cruz

{comar, salilj, fmfernan}@cs.cmu.edu

Motivation

Many kinds of tools can benefit from better models of the statistical structure
of the code that developers write:
• Code completion engines in source code editors
• Code compression engines for sending programs over the network
• Predictive interfaces for conveying commands via devices with limited

bandwidth (e.g. mobile phones, wearable computers like Google Glass, or
rehabilitative interfaces like Stephen Hawking uses)

• Automated bug fixing tools that aim to restrict their search space to
consider only seemingly “natural” code patches

Previous Work: Token Sequences

Previous work has represented source code as a sequence of tokens, so that
natural language modeling techniques can be repurposed to assign probabilities
to program tokens conditioned on their surrounding tokens:

• n-gram models use observed frequencies conditioned on the n (typically
3-15) preceding tokens [1]

• SLAMC associates additional semantic information (available during lex-
ing) with tokens, and uses several topic modeling techniques [2]

Our Work: Typed Syntax Trees

Token sequences are unstructured representations of mathematical objects with
a rich structure and semantics: typed syntax trees. As a result, these meth-
ods often assign non-zero probabilities to malformed and ill-typed programs,
and can neglect, or consider only in an ad hoc manner, non-local structural or
semantic regularities.

To avoid these limitations, we investigate models where probabil-

ities are assigned to typed syntax trees directly.

Example

hi

A Language-General Framework

Type (⌧)

%% ++
Form (�) // Expression (e)

Role (⇢)

99 33

Typing Context (�)

OO

Our objective is to learn P(e|⌧, ⇢,�), the probability of an expression, e, given
its type, ⌧ , the surrounding typing context, �, which tracks the signatures of
names in scope, and the structural context, ⇢, which captures information about
how e is being used (e.g. whether e is the guard of a conditional, an argument
to a function, etc.).

To make the model tractable, we will marginalize over a random variable
representing the form of e, written �:

P(e|⌧, ⇢,�) =
X

�2�

P(e|�, ⌧, ⇢,�)P(�|⌧, ⇢)

A Statistical Model of Java

To develop a simple model of Java within this conceptual framework, we will
consider:

• both primitive types (e.g. int) and classes
• a typing context, �, that tracks the signatures of variables, fields, methods

and classes/interfaces in scope
• structural contexts ⇢ 2 {stmt,asgn,arg,other}, representing expressions

appearing at the top-level, as the right side of an assignment statement,
as an argument to a method or in any other context

• forms � = {lit,meth,var}, representing literals (for primitive numeric
types, strings and enums), method calls and variables, respectively.
TODO: elaborate

Form-Specific Distributions

where
Plit(e|⌧, ⇢,�) =

#{e, ⌧, ⇢}
#{lit, ⌧, ⇢}

P(x|�, ⌧, ⇢,�) =
⇢ 1

var(�,⌧) x : ⌧ 2 � and � = var

0 o/w

P(n|�, ⌧, ⇢,�) =

8
<

:

Plaplace(n;µ)+plitseen
#{n,lit,⌧,⇢}
#{lit,⌧,⇢}

1+plistseen
� = lit and ⌧ numeric

0 o/w

P(e.x|�, ⌧, ⇢,�) =

8
<

:
P(e|⌧e, target,�)

1
|fields(⌧

e

)|+pfield
seen

#{⌧
e

.x,⌧,⇢}
#{⌧

e

._,⌧,⇢}
1+pfield

seen
� = field and � ` e : ⌧e and x 2 fields(⌧e)

0 o/w

Pmeth(e|⌧, ⇢,�) =

8
>>><

>>>:

⇣
Punseen(⌧, ⇢)

1
|M(�,⌧)| M(e)

+(1� Punseen(⌧, ⇢))
#{e,⌧,⇢}

#{meth,⌧,⇢}

⌘
⇥

Qn
i=1 P (ei|⌧i,arg,�)

0 o/w
Punseen(⌧, ⇢) =

|{m|#{m,meth, ⌧, ⇢} > 0}|
#{meth, ⌧, ⇢}+ ⌘

Here,
• M(e) = (e ⌘ o.m(e1, . . . , en)) ^ � ` o : ⌧0 ^ ⌧0.m : ⌧1, . . . , ⌧n ! ⌧

• M(�, ⌧) is the set of unused methods with return type ⌧ :
{m|m : ⌧1, . . . , tn ! ⌧ ^#{m,meth, ⌧, ⇢} = 0}

• And V (�, ⌧) is the set of variables of in scope with type ⌧

Implementation

We implemented our method as a plugin to the Eclipse IDE utilizing the JDT
(Java Development Tools) library. This allows us to use Eclipse’s Java parser
and typechecker, and gives us accesss to functions for walking through Java
source code that make it easier to collect the statistics we need.

We compared our results to probabilities generated using an n-gram model,
with n = 3. The n-grams were generated using a version of the CMU Language
Modeling Toolkit and the probabilities were computing using various Python
scripts.

Results

We tested our predictor using ten-fold cross validation on a few open source
projects and measured the average probability of the observed expression ac-
cording to our model. We compared this to the average probabilities given as
by an n-gram model:

While these results are promising, we did notice that a large number of observed
expressions are assigned 0 probability by our model. An important reason for
this was situations where the predictor was forced to give up due to insufficient
training data. Improved handling of this situation will greatly improve our
prediction accuracy.

Conclusions

Our tests show that our method performs significantly better than an n-gram
model. This indicates that taking language semantics into account is useful for
code prediction systems.

References

[1] A. Hindle, E. T. Barr, Z. Su, M. Gabel, and P. Devanbu. On the naturalness of software. In
Software Engineering (ICSE), 2012 34th International Conference on, pages 837–847. IEEE,
2012.

[2] T. T. Nguyen, A. T. Nguyen, H. A. Nguyen, and T. N. Nguyen. A statistical semantic language
model for source code. In Proceedings of the 2013 9th Joint Meeting on Foundations of

Software Engineering, ESEC/FSE 2013, pages 532–542, New York, NY, USA, 2013. ACM.

Acknowledgement

The n-gram model used for comparison was from: Hindle, Abram, et al. "On
the naturalness of software." (ICSE 2012)
Thanks to Rachel Aurand for portions of the n-gram implementation

| ,)

We are starting to implement this model for Java
using the Eclipse JDT for parsing and keeping track of

StatisticalModelingofTypedSyntaxTrees

Cyrus Omar, Salil Joshi, Flávio Cruz

{comar, salilj, fmfernan}@cs.cmu.edu

Motivation

Many kinds of tools can benefit from better models of the statistical structure
of the code that developers write:
• Code completion engines in source code editors
• Code compression engines for sending programs over the network
• Predictive interfaces for conveying commands via devices with limited

bandwidth (e.g. mobile phones, wearable computers like Google Glass, or
rehabilitative interfaces like Stephen Hawking uses)

• Automated bug fixing tools that aim to restrict their search space to
consider only seemingly “natural” code patches

Previous Work: Token Sequences

Previous work has represented source code as a sequence of tokens, so that
natural language modeling techniques can be repurposed to assign probabilities
to program tokens conditioned on their surrounding tokens:

• n-gram models use observed frequencies conditioned on the n (typically
3-15) preceding tokens [1]

• SLAMC associates additional semantic information (available during lex-
ing) with tokens, and uses several topic modeling techniques [2]

Our Work: Typed Syntax Trees

Token sequences are unstructured representations of mathematical objects with
a rich structure and semantics: typed syntax trees. As a result, these meth-
ods often assign non-zero probabilities to malformed and ill-typed programs,
and can neglect, or consider only in an ad hoc manner, non-local structural or
semantic regularities.

To avoid these limitations, we investigate models where probabil-

ities are assigned to typed syntax trees directly.

Example

hi

A Language-General Framework

Type (⌧)

%% ++
Form (�) // Expression (e)

Role (⇢)

99 33

Typing Context (�)

OO

Our objective is to learn P(e|⌧, ⇢,�), the probability of an expression, e, given
its type, ⌧ , the surrounding typing context, �, which tracks the signatures of
names in scope, and the structural context, ⇢, which captures information about
how e is being used (e.g. whether e is the guard of a conditional, an argument
to a function, etc.).

To make the model tractable, we will marginalize over a random variable
representing the form of e, written �:

P(e|⌧, ⇢,�) =
X

�2�

P(e|�, ⌧, ⇢,�)P(�|⌧, ⇢)

A Statistical Model of Java

To develop a simple model of Java within this conceptual framework, we will
consider:

• both primitive types (e.g. int) and classes
• a typing context, �, that tracks the signatures of variables, fields, methods

and classes/interfaces in scope
• structural contexts ⇢ 2 {stmt,asgn,arg,other}, representing expressions

appearing at the top-level, as the right side of an assignment statement,
as an argument to a method or in any other context

• forms � = {lit,meth,var}, representing literals (for primitive numeric
types, strings and enums), method calls and variables, respectively.
TODO: elaborate

Form-Specific Distributions

where
Plit(e|⌧, ⇢,�) =

#{e, ⌧, ⇢}
#{lit, ⌧, ⇢}

P(x|�, ⌧, ⇢,�) =
⇢ 1

var(�,⌧) x : ⌧ 2 � and � = var

0 o/w

P(n|�, ⌧, ⇢,�) =

8
<

:

Plaplace(n;µ)+plitseen
#{n,lit,⌧,⇢}
#{lit,⌧,⇢}

1+plistseen
� = lit and ⌧ numeric

0 o/w

P(e.x|�, ⌧, ⇢,�) =

8
<

:
P(e|⌧e, target,�)

1
|fields(⌧

e

)|+pfield
seen

#{⌧
e

.x,⌧,⇢}
#{⌧

e

._,⌧,⇢}
1+pfield

seen
� = field and � ` e : ⌧e and x 2 fields(⌧e)

0 o/w

Pmeth(e|⌧, ⇢,�) =

8
>>><

>>>:

⇣
Punseen(⌧, ⇢)

1
|M(�,⌧)| M(e)

+(1� Punseen(⌧, ⇢))
#{e,⌧,⇢}

#{meth,⌧,⇢}

⌘
⇥

Qn
i=1 P (ei|⌧i,arg,�)

0 o/w
Punseen(⌧, ⇢) =

|{m|#{m,meth, ⌧, ⇢} > 0}|
#{meth, ⌧, ⇢}+ ⌘

Here,
• M(e) = (e ⌘ o.m(e1, . . . , en)) ^ � ` o : ⌧0 ^ ⌧0.m : ⌧1, . . . , ⌧n ! ⌧

• M(�, ⌧) is the set of unused methods with return type ⌧ :
{m|m : ⌧1, . . . , tn ! ⌧ ^#{m,meth, ⌧, ⇢} = 0}

• And V (�, ⌧) is the set of variables of in scope with type ⌧

Implementation

We implemented our method as a plugin to the Eclipse IDE utilizing the JDT
(Java Development Tools) library. This allows us to use Eclipse’s Java parser
and typechecker, and gives us accesss to functions for walking through Java
source code that make it easier to collect the statistics we need.

We compared our results to probabilities generated using an n-gram model,
with n = 3. The n-grams were generated using a version of the CMU Language
Modeling Toolkit and the probabilities were computing using various Python
scripts.

Results

We tested our predictor using ten-fold cross validation on a few open source
projects and measured the average probability of the observed expression ac-
cording to our model. We compared this to the average probabilities given as
by an n-gram model:

While these results are promising, we did notice that a large number of observed
expressions are assigned 0 probability by our model. An important reason for
this was situations where the predictor was forced to give up due to insufficient
training data. Improved handling of this situation will greatly improve our
prediction accuracy.

Conclusions

Our tests show that our method performs significantly better than an n-gram
model. This indicates that taking language semantics into account is useful for
code prediction systems.

References

[1] A. Hindle, E. T. Barr, Z. Su, M. Gabel, and P. Devanbu. On the naturalness of software. In
Software Engineering (ICSE), 2012 34th International Conference on, pages 837–847. IEEE,
2012.

[2] T. T. Nguyen, A. T. Nguyen, H. A. Nguyen, and T. N. Nguyen. A statistical semantic language
model for source code. In Proceedings of the 2013 9th Joint Meeting on Foundations of

Software Engineering, ESEC/FSE 2013, pages 532–542, New York, NY, USA, 2013. ACM.

Acknowledgement

The n-gram model used for comparison was from: Hindle, Abram, et al. "On
the naturalness of software." (ICSE 2012)
Thanks to Rachel Aurand for portions of the n-gram implementation

http://www.github.com/cyrus-/syzygy

http://www.github.com/cyrus-/syzygy

To test our implementation, we perform 10-fold cross-validation of
our model on a corpus of several large open source projects and
compare it to the 3-gram model used in Hindle et. al, 2012.

(collaboration with Salil Joshi and Flavio Cruz)

We are taking a first-principles approach to
source code prediction

that combines the foundational techniques of both
statistics and semantics.

StatisticalModelingofTypedSyntaxTrees

Cyrus Omar, Salil Joshi, Flávio Cruz

{comar, salilj, fmfernan}@cs.cmu.edu

Motivation

Many kinds of tools can benefit from better models of the statistical structure
of the code that developers write:
• Code completion engines in source code editors
• Code compression engines for sending programs over the network
• Predictive interfaces for conveying commands via devices with limited

bandwidth (e.g. mobile phones, wearable computers like Google Glass, or
rehabilitative interfaces like Stephen Hawking uses)

• Automated bug fixing tools that aim to restrict their search space to
consider only seemingly “natural” code patches

Previous Work: Token Sequences

Previous work has represented source code as a sequence of tokens, so that
natural language modeling techniques can be repurposed to assign probabilities
to program tokens conditioned on their surrounding tokens:

• n-gram models use observed frequencies conditioned on the n (typically
3-15) preceding tokens [1]

• SLAMC associates additional semantic information (available during lex-
ing) with tokens, and uses several topic modeling techniques [2]

Our Work: Typed Syntax Trees

Token sequences are unstructured representations of mathematical objects with
a rich structure and semantics: typed syntax trees. As a result, these meth-
ods often assign non-zero probabilities to malformed and ill-typed programs,
and can neglect, or consider only in an ad hoc manner, non-local structural or
semantic regularities.

To avoid these limitations, we investigate models where probabil-

ities are assigned to typed syntax trees directly.

Example

hi

A Language-General Framework

Type (⌧)

%% ++
Form (�) // Expression (e)

Role (⇢)

99 33

Typing Context (�)

OO

Our objective is to learn P(e|⌧, ⇢,�), the probability of an expression, e, given
its type, ⌧ , the surrounding typing context, �, which tracks the signatures of
names in scope, and the structural context, ⇢, which captures information about
how e is being used (e.g. whether e is the guard of a conditional, an argument
to a function, etc.).

To make the model tractable, we will marginalize over a random variable
representing the form of e, written �:

P(e|⌧, ⇢,�) =
X

�2�

P(e|�, ⌧, ⇢,�)P(�|⌧, ⇢)

A Statistical Model of Java

To develop a simple model of Java within this conceptual framework, we will
consider:

• both primitive types (e.g. int) and classes
• a typing context, �, that tracks the signatures of variables, fields, methods

and classes/interfaces in scope
• structural contexts ⇢ 2 {stmt,asgn,arg,other}, representing expressions

appearing at the top-level, as the right side of an assignment statement,
as an argument to a method or in any other context

• forms � = {lit,meth,var}, representing literals (for primitive numeric
types, strings and enums), method calls and variables, respectively.
TODO: elaborate

Form-Specific Distributions

where
Plit(e|⌧, ⇢,�) =

#{e, ⌧, ⇢}
#{lit, ⌧, ⇢}

P(x|�, ⌧, ⇢,�) =
⇢ 1

var(�,⌧) x : ⌧ 2 � and � = var

0 o/w

P(n|�, ⌧, ⇢,�) =

8
<

:

Plaplace(n;µ)+plitseen
#{n,lit,⌧,⇢}
#{lit,⌧,⇢}

1+plistseen
� = lit and ⌧ numeric

0 o/w

P(e.x|�, ⌧, ⇢,�) =

8
<

:
P(e|⌧e, target,�)

1
|fields(⌧

e

)|+pfield
seen

#{⌧
e

.x,⌧,⇢}
#{⌧

e

._,⌧,⇢}
1+pfield

seen
� = field and � ` e : ⌧e and x 2 fields(⌧e)

0 o/w

Pmeth(e|⌧, ⇢,�) =

8
>>><

>>>:

⇣
Punseen(⌧, ⇢)

1
|M(�,⌧)| M(e)

+(1� Punseen(⌧, ⇢))
#{e,⌧,⇢}

#{meth,⌧,⇢}

⌘
⇥

Qn
i=1 P (ei|⌧i,arg,�)

0 o/w
Punseen(⌧, ⇢) =

|{m|#{m,meth, ⌧, ⇢} > 0}|
#{meth, ⌧, ⇢}+ ⌘

Here,
• M(e) = (e ⌘ o.m(e1, . . . , en)) ^ � ` o : ⌧0 ^ ⌧0.m : ⌧1, . . . , ⌧n ! ⌧

• M(�, ⌧) is the set of unused methods with return type ⌧ :
{m|m : ⌧1, . . . , tn ! ⌧ ^#{m,meth, ⌧, ⇢} = 0}

• And V (�, ⌧) is the set of variables of in scope with type ⌧

Implementation

We implemented our method as a plugin to the Eclipse IDE utilizing the JDT
(Java Development Tools) library. This allows us to use Eclipse’s Java parser
and typechecker, and gives us accesss to functions for walking through Java
source code that make it easier to collect the statistics we need.

We compared our results to probabilities generated using an n-gram model,
with n = 3. The n-grams were generated using a version of the CMU Language
Modeling Toolkit and the probabilities were computing using various Python
scripts.

Results

We tested our predictor using ten-fold cross validation on a few open source
projects and measured the average probability of the observed expression ac-
cording to our model. We compared this to the average probabilities given as
by an n-gram model:

While these results are promising, we did notice that a large number of observed
expressions are assigned 0 probability by our model. An important reason for
this was situations where the predictor was forced to give up due to insufficient
training data. Improved handling of this situation will greatly improve our
prediction accuracy.

Conclusions

Our tests show that our method performs significantly better than an n-gram
model. This indicates that taking language semantics into account is useful for
code prediction systems.

References

[1] A. Hindle, E. T. Barr, Z. Su, M. Gabel, and P. Devanbu. On the naturalness of software. In
Software Engineering (ICSE), 2012 34th International Conference on, pages 837–847. IEEE,
2012.

[2] T. T. Nguyen, A. T. Nguyen, H. A. Nguyen, and T. N. Nguyen. A statistical semantic language
model for source code. In Proceedings of the 2013 9th Joint Meeting on Foundations of

Software Engineering, ESEC/FSE 2013, pages 532–542, New York, NY, USA, 2013. ACM.

Acknowledgement

The n-gram model used for comparison was from: Hindle, Abram, et al. "On
the naturalness of software." (ICSE 2012)
Thanks to Rachel Aurand for portions of the n-gram implementation

= void,)

StatisticalModelingofTypedSyntaxTrees

Cyrus Omar, Salil Joshi, Flávio Cruz

{comar, salilj, fmfernan}@cs.cmu.edu

Motivation

Many kinds of tools can benefit from better models of the statistical structure
of the code that developers write:
• Code completion engines in source code editors
• Code compression engines for sending programs over the network
• Predictive interfaces for conveying commands via devices with limited

bandwidth (e.g. mobile phones, wearable computers like Google Glass, or
rehabilitative interfaces like Stephen Hawking uses)

• Automated bug fixing tools that aim to restrict their search space to
consider only seemingly “natural” code patches

Previous Work: Token Sequences

Previous work has represented source code as a sequence of tokens, so that
natural language modeling techniques can be repurposed to assign probabilities
to program tokens conditioned on their surrounding tokens:

• n-gram models use observed frequencies conditioned on the n (typically
3-15) preceding tokens [1]

• SLAMC associates additional semantic information (available during lex-
ing) with tokens, and uses several topic modeling techniques [2]

Our Work: Typed Syntax Trees

Token sequences are unstructured representations of mathematical objects with
a rich structure and semantics: typed syntax trees. As a result, these meth-
ods often assign non-zero probabilities to malformed and ill-typed programs,
and can neglect, or consider only in an ad hoc manner, non-local structural or
semantic regularities.

To avoid these limitations, we investigate models where probabil-

ities are assigned to typed syntax trees directly.

Example

hi

A Language-General Framework

Type (⌧)

%% ++
Form (�) // Expression (e)

Role (⇢)

99 33

Typing Context (�)

OO

Our objective is to learn P(e|⌧, ⇢,�), the probability of an expression, e, given
its type, ⌧ , the surrounding typing context, �, which tracks the signatures of
names in scope, and the structural context, ⇢, which captures information about
how e is being used (e.g. whether e is the guard of a conditional, an argument
to a function, etc.).

To make the model tractable, we will marginalize over a random variable
representing the form of e, written �:

P(e|⌧, ⇢,�) =
X

�2�

P(e|�, ⌧, ⇢,�)P(�|⌧, ⇢)

A Statistical Model of Java

To develop a simple model of Java within this conceptual framework, we will
consider:

• both primitive types (e.g. int) and classes
• a typing context, �, that tracks the signatures of variables, fields, methods

and classes/interfaces in scope
• structural contexts ⇢ 2 {stmt,asgn,arg,other}, representing expressions

appearing at the top-level, as the right side of an assignment statement,
as an argument to a method or in any other context

• forms � = {lit,meth,var}, representing literals (for primitive numeric
types, strings and enums), method calls and variables, respectively.
TODO: elaborate

Form-Specific Distributions

where
Plit(e|⌧, ⇢,�) =

#{e, ⌧, ⇢}
#{lit, ⌧, ⇢}

P(x|�, ⌧, ⇢,�) =
⇢ 1

var(�,⌧) x : ⌧ 2 � and � = var

0 o/w

P(n|�, ⌧, ⇢,�) =

8
<

:

Plaplace(n;µ)+plitseen
#{n,lit,⌧,⇢}
#{lit,⌧,⇢}

1+plistseen
� = lit and ⌧ numeric

0 o/w

P(e.x|�, ⌧, ⇢,�) =

8
<

:
P(e|⌧e, target,�)

1
|fields(⌧

e

)|+pfield
seen

#{⌧
e

.x,⌧,⇢}
#{⌧

e

._,⌧,⇢}
1+pfield

seen
� = field and � ` e : ⌧e and x 2 fields(⌧e)

0 o/w

Pmeth(e|⌧, ⇢,�) =

8
>>><

>>>:

⇣
Punseen(⌧, ⇢)

1
|M(�,⌧)| M(e)

+(1� Punseen(⌧, ⇢))
#{e,⌧,⇢}

#{meth,⌧,⇢}

⌘
⇥

Qn
i=1 P (ei|⌧i,arg,�)

0 o/w
Punseen(⌧, ⇢) =

|{m|#{m,meth, ⌧, ⇢} > 0}|
#{meth, ⌧, ⇢}+ ⌘

Here,
• M(e) = (e ⌘ o.m(e1, . . . , en)) ^ � ` o : ⌧0 ^ ⌧0.m : ⌧1, . . . , ⌧n ! ⌧

• M(�, ⌧) is the set of unused methods with return type ⌧ :
{m|m : ⌧1, . . . , tn ! ⌧ ^#{m,meth, ⌧, ⇢} = 0}

• And V (�, ⌧) is the set of variables of in scope with type ⌧

Implementation

We implemented our method as a plugin to the Eclipse IDE utilizing the JDT
(Java Development Tools) library. This allows us to use Eclipse’s Java parser
and typechecker, and gives us accesss to functions for walking through Java
source code that make it easier to collect the statistics we need.

We compared our results to probabilities generated using an n-gram model,
with n = 3. The n-grams were generated using a version of the CMU Language
Modeling Toolkit and the probabilities were computing using various Python
scripts.

Results

We tested our predictor using ten-fold cross validation on a few open source
projects and measured the average probability of the observed expression ac-
cording to our model. We compared this to the average probabilities given as
by an n-gram model:

While these results are promising, we did notice that a large number of observed
expressions are assigned 0 probability by our model. An important reason for
this was situations where the predictor was forced to give up due to insufficient
training data. Improved handling of this situation will greatly improve our
prediction accuracy.

Conclusions

Our tests show that our method performs significantly better than an n-gram
model. This indicates that taking language semantics into account is useful for
code prediction systems.

References

[1] A. Hindle, E. T. Barr, Z. Su, M. Gabel, and P. Devanbu. On the naturalness of software. In
Software Engineering (ICSE), 2012 34th International Conference on, pages 837–847. IEEE,
2012.

[2] T. T. Nguyen, A. T. Nguyen, H. A. Nguyen, and T. N. Nguyen. A statistical semantic language
model for source code. In Proceedings of the 2013 9th Joint Meeting on Foundations of

Software Engineering, ESEC/FSE 2013, pages 532–542, New York, NY, USA, 2013. ACM.

Acknowledgement

The n-gram model used for comparison was from: Hindle, Abram, et al. "On
the naturalness of software." (ICSE 2012)
Thanks to Rachel Aurand for portions of the n-gram implementation

= stmt,

StatisticalModelingofTypedSyntaxTrees

Cyrus Omar, Salil Joshi, Flávio Cruz

{comar, salilj, fmfernan}@cs.cmu.edu

Motivation

Many kinds of tools can benefit from better models of the statistical structure
of the code that developers write:
• Code completion engines in source code editors
• Code compression engines for sending programs over the network
• Predictive interfaces for conveying commands via devices with limited

bandwidth (e.g. mobile phones, wearable computers like Google Glass, or
rehabilitative interfaces like Stephen Hawking uses)

• Automated bug fixing tools that aim to restrict their search space to
consider only seemingly “natural” code patches

Previous Work: Token Sequences

Previous work has represented source code as a sequence of tokens, so that
natural language modeling techniques can be repurposed to assign probabilities
to program tokens conditioned on their surrounding tokens:

• n-gram models use observed frequencies conditioned on the n (typically
3-15) preceding tokens [1]

• SLAMC associates additional semantic information (available during lex-
ing) with tokens, and uses several topic modeling techniques [2]

Our Work: Typed Syntax Trees

Token sequences are unstructured representations of mathematical objects with
a rich structure and semantics: typed syntax trees. As a result, these meth-
ods often assign non-zero probabilities to malformed and ill-typed programs,
and can neglect, or consider only in an ad hoc manner, non-local structural or
semantic regularities.

To avoid these limitations, we investigate models where probabil-

ities are assigned to typed syntax trees directly.

Example

hi

A Language-General Framework

Type (⌧)

%% ++
Form (�) // Expression (e)

Role (⇢)

99 33

Typing Context (�)

OO

Our objective is to learn P(e|⌧, ⇢,�), the probability of an expression, e, given
its type, ⌧ , the surrounding typing context, �, which tracks the signatures of
names in scope, and the structural context, ⇢, which captures information about
how e is being used (e.g. whether e is the guard of a conditional, an argument
to a function, etc.).

To make the model tractable, we will marginalize over a random variable
representing the form of e, written �:

P(e|⌧, ⇢,�) =
X

�2�

P(e|�, ⌧, ⇢,�)P(�|⌧, ⇢)

A Statistical Model of Java

To develop a simple model of Java within this conceptual framework, we will
consider:

• both primitive types (e.g. int) and classes
• a typing context, �, that tracks the signatures of variables, fields, methods

and classes/interfaces in scope
• structural contexts ⇢ 2 {stmt,asgn,arg,other}, representing expressions

appearing at the top-level, as the right side of an assignment statement,
as an argument to a method or in any other context

• forms � = {lit,meth,var}, representing literals (for primitive numeric
types, strings and enums), method calls and variables, respectively.
TODO: elaborate

Form-Specific Distributions

where
Plit(e|⌧, ⇢,�) =

#{e, ⌧, ⇢}
#{lit, ⌧, ⇢}

P(x|�, ⌧, ⇢,�) =
⇢ 1

var(�,⌧) x : ⌧ 2 � and � = var

0 o/w

P(n|�, ⌧, ⇢,�) =

8
<

:

Plaplace(n;µ)+plitseen
#{n,lit,⌧,⇢}
#{lit,⌧,⇢}

1+plistseen
� = lit and ⌧ numeric

0 o/w

P(e.x|�, ⌧, ⇢,�) =

8
<

:
P(e|⌧e, target,�)

1
|fields(⌧

e

)|+pfield
seen

#{⌧
e

.x,⌧,⇢}
#{⌧

e

._,⌧,⇢}
1+pfield

seen
� = field and � ` e : ⌧e and x 2 fields(⌧e)

0 o/w

Pmeth(e|⌧, ⇢,�) =

8
>>><

>>>:

⇣
Punseen(⌧, ⇢)

1
|M(�,⌧)| M(e)

+(1� Punseen(⌧, ⇢))
#{e,⌧,⇢}

#{meth,⌧,⇢}

⌘
⇥

Qn
i=1 P (ei|⌧i,arg,�)

0 o/w
Punseen(⌧, ⇢) =

|{m|#{m,meth, ⌧, ⇢} > 0}|
#{meth, ⌧, ⇢}+ ⌘

Here,
• M(e) = (e ⌘ o.m(e1, . . . , en)) ^ � ` o : ⌧0 ^ ⌧0.m : ⌧1, . . . , ⌧n ! ⌧

• M(�, ⌧) is the set of unused methods with return type ⌧ :
{m|m : ⌧1, . . . , tn ! ⌧ ^#{m,meth, ⌧, ⇢} = 0}

• And V (�, ⌧) is the set of variables of in scope with type ⌧

Implementation

We implemented our method as a plugin to the Eclipse IDE utilizing the JDT
(Java Development Tools) library. This allows us to use Eclipse’s Java parser
and typechecker, and gives us accesss to functions for walking through Java
source code that make it easier to collect the statistics we need.

We compared our results to probabilities generated using an n-gram model,
with n = 3. The n-grams were generated using a version of the CMU Language
Modeling Toolkit and the probabilities were computing using various Python
scripts.

Results

We tested our predictor using ten-fold cross validation on a few open source
projects and measured the average probability of the observed expression ac-
cording to our model. We compared this to the average probabilities given as
by an n-gram model:

While these results are promising, we did notice that a large number of observed
expressions are assigned 0 probability by our model. An important reason for
this was situations where the predictor was forced to give up due to insufficient
training data. Improved handling of this situation will greatly improve our
prediction accuracy.

Conclusions

Our tests show that our method performs significantly better than an n-gram
model. This indicates that taking language semantics into account is useful for
code prediction systems.

References

[1] A. Hindle, E. T. Barr, Z. Su, M. Gabel, and P. Devanbu. On the naturalness of software. In
Software Engineering (ICSE), 2012 34th International Conference on, pages 837–847. IEEE,
2012.

[2] T. T. Nguyen, A. T. Nguyen, H. A. Nguyen, and T. N. Nguyen. A statistical semantic language
model for source code. In Proceedings of the 2013 9th Joint Meeting on Foundations of

Software Engineering, ESEC/FSE 2013, pages 532–542, New York, NY, USA, 2013. ACM.

Acknowledgement

The n-gram model used for comparison was from: Hindle, Abram, et al. "On
the naturalness of software." (ICSE 2012)
Thanks to Rachel Aurand for portions of the n-gram implementation

)

typerole typing
context

call var thisvar this field P(
|

.observe(.favorite)

