
How do people naturally think
about computation?

Cyrus Omar
Computer Science Department
Carnegie Mellon University

05-899D: Human Aspects of Software
Development (HASD)
Spring 2011 – Lecture 11

Carnegie Mellon University, School of Computer Science

2

Programming is difficult

Carnegie Mellon University, School of Computer Science

3

Programming is difficult
l  Difficult to learn

l  30% of students fail or withdraw from CS1
[Bennedsen and Caspersen 2007]

Carnegie Mellon University, School of Computer Science

4

Programming is difficult
l  Difficult to learn

l  30% of students fail or withdraw from CS1

l  Difficult to do well
[Bennedsen and Caspersen 2007]

Carnegie Mellon University, School of Computer Science

5

Programming is difficult
l  Difficult to learn

l  30% of students fail or withdraw from CS1

l  Difficult to do well
[Bennedsen and Caspersen 2007]

Write a [Pascal] program that repeatedly reads in positive integers, until it
reads the integer 99999. After seeing 99999, it should print out the average.

Rainfall Problem [Soloway et al, 1983]

Carnegie Mellon University, School of Computer Science

6

Programming is difficult
l  Difficult to learn

l  30% of students fail or withdraw from CS1

l  Difficult to do well

l  14% of CS1 students (3/4 through course)
l  36% of CS2 students (3/4 through course)
l  69% of students in Jr./Sr. Systems course

[Bennedsen and Caspersen 2007]

Write a [Pascal] program that repeatedly reads in positive integers, until it
reads the integer 99999. After seeing 99999, it should print out the average.

Rainfall Problem [Soloway et al, 1983]

Carnegie Mellon University, School of Computer Science

7

Why?

Carnegie Mellon University, School of Computer Science

8

What do people have trouble
with?

Carnegie Mellon University, School of Computer Science

9

What do people have trouble
with?

l  Conceiving of a solution?

Carnegie Mellon University, School of Computer Science

10

What do people have trouble
with?

l  Conceiving of a solution?
l  Q: How well can people develop natural

language solutions to programming problems?

l  Formalizing the solution?

Carnegie Mellon University, School of Computer Science

11

What do people have trouble
with?

l  Conceiving of a solution?
l  Q: Can people develop natural language

solutions to programming problems?

l  Formalizing the solution?

Carnegie Mellon University, School of Computer Science

12

What do people have trouble
with?

l  Conceiving of a solution?
l  Q: Can people develop natural language

solutions to programming problems?

l  Formalizing the solution?
l  Languages and APIs are user interfaces
l  Q: Are they intuitive / natural?
l  Q: If not, how could we do better?

Carnegie Mellon University, School of Computer Science

13

Q: Can people develop natural language
solutions to programming problems?

Carnegie Mellon University, School of Computer Science

14

Q: Can people develop natural language
solutions to programming problems?

In this report we show an example natural language

specification and dkcuss strategies used in that specification.

We then discuss two examples of novice programming

difficulties stemming from an inappropriate use of natural

language specification strategies. These examples are

illustrated with video tape transcripts. We conclude with a

brief discussion of the implications of this work.

2. A Natural Language Specification
Consider the following problem:

Problem 1: Please write a set of explieit instructions to
help a junior clerk collect payroll information for a factory.
At the end of the next payday, the clerk will be sitting in
front of the factory doore and has permission to look at
employee pay checks. The clerk is to produce the average
salary for the workers who come out of the door. This
average should include only those workers who come out
before the first supervisor comes out, aad should not
include the supervisor’s salary.

The following natural language specification for this problem,

written by one of our interview subjects, is typical of those

found on a separate written study of this problem:

1. Identify worker, check name on list, cheek wages

2. Write it down

3. Wait for next worker, identify next, check name,
and so on

4. When super comes out, stop

5. Add number of workers you’ve written down
6. Add ail the wages

7. Divide the wages by the number of workers

Miller [1981] studied similar descriptions. In that study he was

looking at the psychological feasibility of programming in a

natural language. Miller concentrated on relatively low level

components of the descriptions. We have focused on how

those components fit together into overall novice strategies.

There are several natural language specification strategies

used here. Note how steps 1 through 4 specify a loop: steps 1

to 3 describe the first iteration of the loop, indicating a

repetition of these steps with the phrase “and so on”. Step 4

adds a stopping condition, assuming that thk condkion will

act as a “demon”. The specification also assumes “canned

procedures” for counting inputs, step 5, and for summing a

series of numbers, step 6. Note however, that these two

procedures are both denoted with the word “add”.

Focusing on the ‘loop” specified in steps 1 through 3, we

describe the strategy of this loop as “perform the first step,

then do the rest in the same way”. (Step 4 additionally

modifies the loop by adding a exit test). Such a strategy is

quite common in this sort of description. In contrast, most

programming languages use a loop with the strategy “for each

value of the variables, perform the following steps”. (Again,

this is often modified by the addkion of an exit test.) The

programming language strategy is diffsrent primarily in that it

specifically discusses how to vary the values through each

iteration.

There are two kinds of differences between this specification

and a program in a typical programming language. Fimt, the

strategies used here are different from those used in most

programming languz~ges. Below we focus on a subject who has

difficulty with a strategy for implementing the body of the

loop. The second difference concerns ltrow many details of the

computation are implicit and must be filled in by human

knowledge about the world. The steps of this description are

at a relatively high level compared to what would be needed in

a standard programming language.

3. Examples of Novice Programming Diftlculties
To show how the conflict in strategies effects novice

programmers, consicler a problem analogous to problem 1, but

simpler and explicitly of a programming nature:

Problem 2: Write a program which repeatedly reads
integers until it reads they integer 99999. After seeing
99999, it should print out the correct average. That is, it
should not count the final 99999.

In a language like Pascal, a correct programming solution to

this problem will have the loop body repesent a ‘middle case”

of the iteration. Novices are much more likely to attempt a
‘perform the first step, then do the rest in the same way”

strategy, even though it is inappropriate in Paecal.3 Consider

the following novice program fragment:

repeat
Sum := O + I
N:=l
SUIS := I + :[
N:E2

untii I = 99999

Now consider the transcript of the subject developing this

program. He underrltands that for each iteration, the program

will need to increment the counter variable N and produce a

new Sum by addhg in the latest valus for I. Here, though, he

implements that by showing how the first iteration will look

(‘Sum := O + 1“ and ‘N := 1“) and then how to repeat

(“Sum := I + I“ and ‘N := 2“).

SubJect: [Writes “Sum := O + 1“] Aad then integer [the
way the subject refers to tbe variabie I], or tbe sum equals
integer, ah, equ ab zero plus integer, .,. The sum is going to
be O pius the integer and the number is gonna be, ah,
number equals 1 [writes “N := I“], aad then , aad then
Sum equais integer pius integer [writes ‘Sum := I + 1“] and
[pause]

3The most common PIscal strategy involves a loop body which looks like:

Sum := Sum t, NeM;
Count := Count + 1;
Read (Neu)

11

Write a [Pascal] program that repeatedly reads in positive integers, until it
reads the integer 99999. After seeing 99999, it should print out the average.

Rainfall Problem [Soloway et al, 1983]

[Bonar & Soloway, 1983]

Carnegie Mellon University, School of Computer Science

15

Q: Can people develop natural language
solutions to programming problems?

In this report we show an example natural language

specification and dkcuss strategies used in that specification.

We then discuss two examples of novice programming

difficulties stemming from an inappropriate use of natural

language specification strategies. These examples are

illustrated with video tape transcripts. We conclude with a

brief discussion of the implications of this work.

2. A Natural Language Specification
Consider the following problem:

Problem 1: Please write a set of explieit instructions to
help a junior clerk collect payroll information for a factory.
At the end of the next payday, the clerk will be sitting in
front of the factory doore and has permission to look at
employee pay checks. The clerk is to produce the average
salary for the workers who come out of the door. This
average should include only those workers who come out
before the first supervisor comes out, aad should not
include the supervisor’s salary.

The following natural language specification for this problem,

written by one of our interview subjects, is typical of those

found on a separate written study of this problem:

1. Identify worker, check name on list, cheek wages

2. Write it down

3. Wait for next worker, identify next, check name,
and so on

4. When super comes out, stop

5. Add number of workers you’ve written down
6. Add ail the wages

7. Divide the wages by the number of workers

Miller [1981] studied similar descriptions. In that study he was

looking at the psychological feasibility of programming in a

natural language. Miller concentrated on relatively low level

components of the descriptions. We have focused on how

those components fit together into overall novice strategies.

There are several natural language specification strategies

used here. Note how steps 1 through 4 specify a loop: steps 1

to 3 describe the first iteration of the loop, indicating a

repetition of these steps with the phrase “and so on”. Step 4

adds a stopping condition, assuming that thk condkion will

act as a “demon”. The specification also assumes “canned

procedures” for counting inputs, step 5, and for summing a

series of numbers, step 6. Note however, that these two

procedures are both denoted with the word “add”.

Focusing on the ‘loop” specified in steps 1 through 3, we

describe the strategy of this loop as “perform the first step,

then do the rest in the same way”. (Step 4 additionally

modifies the loop by adding a exit test). Such a strategy is

quite common in this sort of description. In contrast, most

programming languages use a loop with the strategy “for each

value of the variables, perform the following steps”. (Again,

this is often modified by the addkion of an exit test.) The

programming language strategy is diffsrent primarily in that it

specifically discusses how to vary the values through each

iteration.

There are two kinds of differences between this specification

and a program in a typical programming language. Fimt, the

strategies used here are different from those used in most

programming languz~ges. Below we focus on a subject who has

difficulty with a strategy for implementing the body of the

loop. The second difference concerns ltrow many details of the

computation are implicit and must be filled in by human

knowledge about the world. The steps of this description are

at a relatively high level compared to what would be needed in

a standard programming language.

3. Examples of Novice Programming Diftlculties
To show how the conflict in strategies effects novice

programmers, consicler a problem analogous to problem 1, but

simpler and explicitly of a programming nature:

Problem 2: Write a program which repeatedly reads
integers until it reads they integer 99999. After seeing
99999, it should print out the correct average. That is, it
should not count the final 99999.

In a language like Pascal, a correct programming solution to

this problem will have the loop body repesent a ‘middle case”

of the iteration. Novices are much more likely to attempt a
‘perform the first step, then do the rest in the same way”

strategy, even though it is inappropriate in Paecal.3 Consider

the following novice program fragment:

repeat
Sum := O + I
N:=l
SUIS := I + :[
N:E2

untii I = 99999

Now consider the transcript of the subject developing this

program. He underrltands that for each iteration, the program

will need to increment the counter variable N and produce a

new Sum by addhg in the latest valus for I. Here, though, he

implements that by showing how the first iteration will look

(‘Sum := O + 1“ and ‘N := 1“) and then how to repeat

(“Sum := I + I“ and ‘N := 2“).

SubJect: [Writes “Sum := O + 1“] Aad then integer [the
way the subject refers to tbe variabie I], or tbe sum equals
integer, ah, equ ab zero plus integer, .,. The sum is going to
be O pius the integer and the number is gonna be, ah,
number equals 1 [writes “N := I“], aad then , aad then
Sum equais integer pius integer [writes ‘Sum := I + 1“] and
[pause]

3The most common PIscal strategy involves a loop body which looks like:

Sum := Sum t, NeM;
Count := Count + 1;
Read (Neu)

11

Write a [Pascal] program that repeatedly reads in positive integers, until it
reads the integer 99999. After seeing 99999, it should print out the average.

Rainfall Problem [Soloway et al, 1983]

[Bonar & Soloway, 1983]

Interviewer: What are you thinking?

Subject . Ah, Num equals 2 [writes “Num := 2“], and it
will go on, it would repeat [pokts to all the statemen~ in a
sweeping motion]. If this [pOints tO “Sum := I + I“]
continnes to repeat, this [points to “Nnm := 2“] will
increase. I’m assuming for the moment that this is
sufficient input.

Interviewer: OK, “sufficient input”?

SubJect: Input to [pausel so that the computer will know
that, for each [pausel for each integer entered, you add 1,
you add the integer to the sum [points to “Sum := O + 1“1,
and that this is the first format of that, zero plus integer, N
equals 1, sum equals integer plus integer, number = 2, until
,..

Even though the subject seems fairly confused about how to

express the program in Pascal, he has a very clear idea about

the actions needed for a correct solution. We have found that

thk is typical -- novice programmers are not totally confused

about what needs to be done, just about how to express that

need.

This confusion can occur even when the novice appears to

fully understand a program fragment. Consider, for example,

the following novice. She is writing pseudo-code for the

following problem:

Problem 3: Write a program which reads in 10 integers
and prints the average of those integers.

After working on the problem for a few minutes, she had

written the following:

Repeat
(1) Read a number (Num)

(la) Count := Count+ 1
(2) Add the number to Sum

(2a) Sum := Sum + Num
(3) until Count := 10
(4) Average := Snm div Num
(5) writ.dn (’average = ‘, Average)

Leaving aside some incoosistant pseudo-code notation, this is

correct, At this point, the interviewer asks whether the

statement on line la is the “same kind of statement” as that

on line 2a. The subject seems to understands the role these

two lines play in the program. S-he also recognizes the need

for other associated statements to carry out those roles.

Nonetheless, it appears that she thinks the Pavcal translator

knows far more about thess roles than it does:

Interviewer: Steps la and 2a: are those the same kinds of
statements?

Subject: How’s that, are they the same kind. Ahhh,
ummm, not exactly, because with this [la] you are adding
- you initialize it at zero and you’re adding one to it [points
to the right side of la], which is just a constant kind of
thing.

Interviewer: Yes

SubJect: [pointe to 2a] Sum, initialized to, uhh Sum to
Sum plus Num, ahh - thats [points to left side of 2a] itoring
two values in one, two v ariablss [points to Snm and Nnm

on the right side of 2a]. Thats [now points to la] a counter,
thats what keeps the whole lnnp under control. Whereas
this thing [points to 2a], this WM probably the most
interesting thing about Pascal when I hit it. That you
could have the same, you sorts have the same thing here
[points to la], it was interesting that you could have, you
could save space by having the Sum restoring information
on the left with two different things there [points to right
side of 2a]j so I didn’t need to have two. No, they’re
different to me.

Interviewer: So - in summary, how do you think of la ?

SubJect: I think of this [point to la] as just a constant,
something that keeps the loop under control. And this
[poiuts to 2a] has something tu do with wmetbing that you
are gonna, that stores more kinds of information that you
are going to take out of the loop with you.

This interview explains a result we have from an earlier

written study. We found 100% of novices working on

problems like 2 and 3 were able to correctly write the counter

variable update statement (“Count := Count + I“), whlIe

only 83% could correctly write the rmnuing-tatal variabIe

update (‘Sum := Sum + Num”) [Soloway et al, 1982a] . Why

this difference with statements syntactically and semantically

so similar? With this transcript, we now have some insight

into the problem. Our subject seems to be keying on the role

-- the pragmatic -- of the statements, noticing but

concentrating on the syntactic and semantic regularity. The

running-total variable update is more difficult because it

‘stores information that you are going to take out of the loop

with you”. That is, it ‘has implications outside the loop body.

4. Concluding Remarks
It is not clear exaetly how to reset to the bugs we have

uncovered in novice understanding of programming. In some

cases it may be appropriate to design new languages or

constructs. Often, better instruction would take care of the

problem. The intent of our studies is to better understand the

source of the mismatches and misconceptions that canes novice

bugs. Only once a bug is uncovered and understood are we

ready to create a remedy for that bug.

We find it quite interesting that novices seem to understand

the role or strategy of statements more clearly than the

standard wmantics. Such roles dkcussed here include ‘counter

variable”, “running total variable”, ‘running total loop”, and

“first, then ~st loop”. (See Soloway et al [1982b] for a

detailed discussion of novice looping strategies.) Much work in

programming languages is concerned with allowing a

programmer to more accurately express his or her intentions in

the program. Perhaps we can learn something from novices

here -- our programming systems should support recordkg the

roles the programmer intends for various statements and

variables. As we better understand common roles, we can even

12

Carnegie Mellon University, School of Computer Science

16

Q: Can people develop natural language
solutions to programming problems?

In this report we show an example natural language

specification and dkcuss strategies used in that specification.

We then discuss two examples of novice programming

difficulties stemming from an inappropriate use of natural

language specification strategies. These examples are

illustrated with video tape transcripts. We conclude with a

brief discussion of the implications of this work.

2. A Natural Language Specification
Consider the following problem:

Problem 1: Please write a set of explieit instructions to
help a junior clerk collect payroll information for a factory.
At the end of the next payday, the clerk will be sitting in
front of the factory doore and has permission to look at
employee pay checks. The clerk is to produce the average
salary for the workers who come out of the door. This
average should include only those workers who come out
before the first supervisor comes out, aad should not
include the supervisor’s salary.

The following natural language specification for this problem,

written by one of our interview subjects, is typical of those

found on a separate written study of this problem:

1. Identify worker, check name on list, cheek wages

2. Write it down

3. Wait for next worker, identify next, check name,
and so on

4. When super comes out, stop

5. Add number of workers you’ve written down
6. Add ail the wages

7. Divide the wages by the number of workers

Miller [1981] studied similar descriptions. In that study he was

looking at the psychological feasibility of programming in a

natural language. Miller concentrated on relatively low level

components of the descriptions. We have focused on how

those components fit together into overall novice strategies.

There are several natural language specification strategies

used here. Note how steps 1 through 4 specify a loop: steps 1

to 3 describe the first iteration of the loop, indicating a

repetition of these steps with the phrase “and so on”. Step 4

adds a stopping condition, assuming that thk condkion will

act as a “demon”. The specification also assumes “canned

procedures” for counting inputs, step 5, and for summing a

series of numbers, step 6. Note however, that these two

procedures are both denoted with the word “add”.

Focusing on the ‘loop” specified in steps 1 through 3, we

describe the strategy of this loop as “perform the first step,

then do the rest in the same way”. (Step 4 additionally

modifies the loop by adding a exit test). Such a strategy is

quite common in this sort of description. In contrast, most

programming languages use a loop with the strategy “for each

value of the variables, perform the following steps”. (Again,

this is often modified by the addkion of an exit test.) The

programming language strategy is diffsrent primarily in that it

specifically discusses how to vary the values through each

iteration.

There are two kinds of differences between this specification

and a program in a typical programming language. Fimt, the

strategies used here are different from those used in most

programming languz~ges. Below we focus on a subject who has

difficulty with a strategy for implementing the body of the

loop. The second difference concerns ltrow many details of the

computation are implicit and must be filled in by human

knowledge about the world. The steps of this description are

at a relatively high level compared to what would be needed in

a standard programming language.

3. Examples of Novice Programming Diftlculties
To show how the conflict in strategies effects novice

programmers, consicler a problem analogous to problem 1, but

simpler and explicitly of a programming nature:

Problem 2: Write a program which repeatedly reads
integers until it reads they integer 99999. After seeing
99999, it should print out the correct average. That is, it
should not count the final 99999.

In a language like Pascal, a correct programming solution to

this problem will have the loop body repesent a ‘middle case”

of the iteration. Novices are much more likely to attempt a
‘perform the first step, then do the rest in the same way”

strategy, even though it is inappropriate in Paecal.3 Consider

the following novice program fragment:

repeat
Sum := O + I
N:=l
SUIS := I + :[
N:E2

untii I = 99999

Now consider the transcript of the subject developing this

program. He underrltands that for each iteration, the program

will need to increment the counter variable N and produce a

new Sum by addhg in the latest valus for I. Here, though, he

implements that by showing how the first iteration will look

(‘Sum := O + 1“ and ‘N := 1“) and then how to repeat

(“Sum := I + I“ and ‘N := 2“).

SubJect: [Writes “Sum := O + 1“] Aad then integer [the
way the subject refers to tbe variabie I], or tbe sum equals
integer, ah, equ ab zero plus integer, .,. The sum is going to
be O pius the integer and the number is gonna be, ah,
number equals 1 [writes “N := I“], aad then , aad then
Sum equais integer pius integer [writes ‘Sum := I + 1“] and
[pause]

3The most common PIscal strategy involves a loop body which looks like:

Sum := Sum t, NeM;
Count := Count + 1;
Read (Neu)

11

Write a [Pascal] program that repeatedly reads in positive integers, until it
reads the integer 99999. After seeing 99999, it should print out the average.

Rainfall Problem [Soloway et al, 1983]

[Bonar & Soloway, 1983]

Interviewer: What are you thinking?

Subject . Ah, Num equals 2 [writes “Num := 2“], and it
will go on, it would repeat [pokts to all the statemen~ in a
sweeping motion]. If this [pOints tO “Sum := I + I“]
continnes to repeat, this [points to “Nnm := 2“] will
increase. I’m assuming for the moment that this is
sufficient input.

Interviewer: OK, “sufficient input”?

SubJect: Input to [pausel so that the computer will know
that, for each [pausel for each integer entered, you add 1,
you add the integer to the sum [points to “Sum := O + 1“1,
and that this is the first format of that, zero plus integer, N
equals 1, sum equals integer plus integer, number = 2, until
,..

Even though the subject seems fairly confused about how to

express the program in Pascal, he has a very clear idea about

the actions needed for a correct solution. We have found that

thk is typical -- novice programmers are not totally confused

about what needs to be done, just about how to express that

need.

This confusion can occur even when the novice appears to

fully understand a program fragment. Consider, for example,

the following novice. She is writing pseudo-code for the

following problem:

Problem 3: Write a program which reads in 10 integers
and prints the average of those integers.

After working on the problem for a few minutes, she had

written the following:

Repeat
(1) Read a number (Num)

(la) Count := Count+ 1
(2) Add the number to Sum

(2a) Sum := Sum + Num
(3) until Count := 10
(4) Average := Snm div Num
(5) writ.dn (’average = ‘, Average)

Leaving aside some incoosistant pseudo-code notation, this is

correct, At this point, the interviewer asks whether the

statement on line la is the “same kind of statement” as that

on line 2a. The subject seems to understands the role these

two lines play in the program. S-he also recognizes the need

for other associated statements to carry out those roles.

Nonetheless, it appears that she thinks the Pavcal translator

knows far more about thess roles than it does:

Interviewer: Steps la and 2a: are those the same kinds of
statements?

Subject: How’s that, are they the same kind. Ahhh,
ummm, not exactly, because with this [la] you are adding
- you initialize it at zero and you’re adding one to it [points
to the right side of la], which is just a constant kind of
thing.

Interviewer: Yes

SubJect: [pointe to 2a] Sum, initialized to, uhh Sum to
Sum plus Num, ahh - thats [points to left side of 2a] itoring
two values in one, two v ariablss [points to Snm and Nnm

on the right side of 2a]. Thats [now points to la] a counter,
thats what keeps the whole lnnp under control. Whereas
this thing [points to 2a], this WM probably the most
interesting thing about Pascal when I hit it. That you
could have the same, you sorts have the same thing here
[points to la], it was interesting that you could have, you
could save space by having the Sum restoring information
on the left with two different things there [points to right
side of 2a]j so I didn’t need to have two. No, they’re
different to me.

Interviewer: So - in summary, how do you think of la ?

SubJect: I think of this [point to la] as just a constant,
something that keeps the loop under control. And this
[poiuts to 2a] has something tu do with wmetbing that you
are gonna, that stores more kinds of information that you
are going to take out of the loop with you.

This interview explains a result we have from an earlier

written study. We found 100% of novices working on

problems like 2 and 3 were able to correctly write the counter

variable update statement (“Count := Count + I“), whlIe

only 83% could correctly write the rmnuing-tatal variabIe

update (‘Sum := Sum + Num”) [Soloway et al, 1982a] . Why

this difference with statements syntactically and semantically

so similar? With this transcript, we now have some insight

into the problem. Our subject seems to be keying on the role

-- the pragmatic -- of the statements, noticing but

concentrating on the syntactic and semantic regularity. The

running-total variable update is more difficult because it

‘stores information that you are going to take out of the loop

with you”. That is, it ‘has implications outside the loop body.

4. Concluding Remarks
It is not clear exaetly how to reset to the bugs we have

uncovered in novice understanding of programming. In some

cases it may be appropriate to design new languages or

constructs. Often, better instruction would take care of the

problem. The intent of our studies is to better understand the

source of the mismatches and misconceptions that canes novice

bugs. Only once a bug is uncovered and understood are we

ready to create a remedy for that bug.

We find it quite interesting that novices seem to understand

the role or strategy of statements more clearly than the

standard wmantics. Such roles dkcussed here include ‘counter

variable”, “running total variable”, ‘running total loop”, and

“first, then ~st loop”. (See Soloway et al [1982b] for a

detailed discussion of novice looping strategies.) Much work in

programming languages is concerned with allowing a

programmer to more accurately express his or her intentions in

the program. Perhaps we can learn something from novices

here -- our programming systems should support recordkg the

roles the programmer intends for various statements and

variables. As we better understand common roles, we can even

12

Carnegie Mellon University, School of Computer Science

17

Q: Can people develop natural language
solutions to programming problems?

Make one list of employees who meet either of the following criteria:

 (1) They have a job title of technician and they make 6 dollars/hr. or more.
 (2) They are unmarried and make less than 6 dollars/hr.

List should be organized by employee name.

[Miller, 1981]

Goal: Create directions for somebody else.

Carnegie Mellon University, School of Computer Science

18

Q: Can people develop natural language
solutions to programming problems?

Goal: Create directions for somebody else.

•  Successful: other humans could accomplish tasks with their instructions
•  Set operations, not loops: “For all the last names starting with G…”
•  If operations, but no else.

Make one list of employees who meet either of the following criteria:

 (1) They have a job title of technician and they make 6 dollars/hr. or more.
 (2) They are unmarried and make less than 6 dollars/hr.

List should be organized by employee name.

[Miller, 1981]

Carnegie Mellon University, School of Computer Science

19

Q: Can people develop natural language
solutions to programming problems?

Suppose we sell concert tickets over the telephone in the following way –
when a customer calls in and asks for a number (n) of seats, the seller 1)
finds the n best seats that are available, 2) marks those n seats as
unavailable, and 3) deals with payment options for the customer (e.g. get-
ting credit or debit card number, or sending the tickets to the Will Call
window for pickup).

Suppose we have more than one seller working at the same time. What
problems might we see, and how might we avoid those problems?

[Lewandowski et al., 2007]

Carnegie Mellon University, School of Computer Science

20

Q: Can people develop natural language
solutions to programming problems?

��
���
�����#��� ����!��#"���!������ �����!�����"�������%�!"#���"!����		���� ������$����$!����"��������
�

�

����������� ���
���������������

�'%�"�#(� ��$) � ��� �

/ ��""�) �!�)�#%'��)��$�%$�� ���

/ �)��' ���

�'%+ ����-'��(%$��"�.�(%"*) %$(�)%��%$�*''�$�,�&'%�"�#(���

�����������	���������������������������
�����������������
How do we make the tools better? One obvious possible answer is by moving to a more visual
notation. Since David Smith’s icon-based programming language Pygmalion emerged [Smith
1975], the theory has been that maybe visual reasoning is easier for students. There certainly
have been a lot of studies showing that visualizations in general helped students in computing
[Naps et al. 2003], but relatively few careful studies.

Then, Thomas Green and Marian Petre did a head-to-head comparison between a dataflow-
like programming language and a textual programming language [Green and Petre 1992]. They
created programs in two visual languages that had been shown to work well in previous studies
and in a textual language that had also tested well. Subjects were shown a visual program or
a textual program for a short time, and then asked a question about it (e.g., shown input data
or output results). Understanding the graphical language always took more time. It didn’t matter
how much experience the subject had with visual or textual languages, or what kind of visual
language. Subjects comprehended visual languages more slowly than textual languages.

Green and Petre published several papers on variations of this study [Green et al. 1991]; [Green
and Petre 1996], but the real test came when Tom Moher and his colleagues [Moher et al.
1993] stacked the deck in favor of visual languages. Tom and his graduate students were using
a visual notation, Petri Nets, to teach programming to high school students. He got a copy of
Green and Petre’s materials and created a version where the only visual language used was
Petri Nets. Then, Tom reran the study with himself and his students as subjects. The surprising
result was that textual languages were more easily comprehended again, under every
condition.

Are we wrong about our intuition about visual languages? Does visualization actually reduce
one’s understanding of software? What about those studies that Naps et al. were talking about
[Naps et al. 2003]? Were they wrong?

There is a standard method for comparing multiple studies, called a meta-study. Barbara
Kitchenham describes this procedure in Chapter 3 of this book. Chris Hundhausen, Sarah
Douglas, and John Stasko did this type of analysis on studies of algorithm visualizations
[Hundhausen et al. 2002]. They found that yes, there are a lot of studies showing significant
benefits for algorithm visualizations for students. There are a lot of studies with nonsignificant

�
 � � � � � � � � � � �
 	 �
 � � � � � � 	 � � � � � � � � � � � 	 � � � ���

Download from Wow! eBook <www.wowebook.com>

•  66 CS1 students across 6 schools with no prior experience

(table from Making Software, 2011)

Carnegie Mellon University, School of Computer Science

21

Q: Can people develop natural language
solutions to programming problems?

then the system might display to seller A that
certain seats are open when, in fact, they have
already been reserved by seller B. Thus A will
have to find di�erent seats, which might have, in
the intervening time, been reserved by seller C.
[ID 417]

ID417 elaborated:

Reservation information from each of the com-
puters would have to cross-pollinate to each of
the other computers as soon as the seats changed
status at all, to either of the three states. This in-
troduces the problem of crossed signals. If seller
A and seller B both book seats 145 - 160 at
the exact same time, or within milliseconds of
one another, the instructions for reserving those
seats on each of the other computers would cross
mid-stream, introducing a problematic double-
booking, or even worse, no booking at all. [ID417]

4.3.3 Identifying Other Problems
Along with the main problem, students noticed other is-

sues.
Payment and canceling of orders were two big issues:

Another problem would be if the seats are marked
unavailable before they are sold, the customer
can change their minds before payment and pos-
sibly hinder the sale of those seats to another
customer who might have wanted them at the
same time. [ID420]

... 2. How will payment information be kept and
how can customer information be shared between
sellers? 3. If a customer cancels an order, how is
that information transmitted to the other seller
within a reasonable amount of time? 4. If the
customer does not pay for the tickets at will call,
what happens to it? ... [ID 422]

... Filters would be helpful for the credit card
and debit card numbers to avoid erroneous val-
ues. Throw in a few fields, and again only have
one seller able to work with it at any given time,
avoiding the redudency problem. Unfortunately,
if seats are not allowed to be made available
through the database, a customer could call, re-
serve seats, and then hang up, resulting in empty
seats reserved. ... [ID410]

Further more, at the moment of receving the pay-
ments for those tickets, problems might come up
such as; miss-communication between the sell-
ers,and charging the customer double instead of
one time. [ID419]

Will-call suggested problems for some students:

... Another potential problem arises when cus-
tomers decide to place their tickets at will call.
It is possible for people to have the same name,
so more information such as phone number or
address would need to be collected by the sellers
in order to avoid confusion at the door. [ID105]

Reliability problems also were mentioned:

The computers may malfunction and the seller
may not be able to key in the requested seats.
[ID406]

As noted above when discussing the algorithmic goals,
group sales were noted as a particular problem.

Another problem that could happen is the sell-
ers not selling the seats e⇤ciently to maximize
the amount of people that can attend the event.
Many people buy group tickets to events and ven-
dors sell them seats adjacent to another. Some-
times there will be a few seats not sold next to
those group of seats. Other larger groups won’t
be able purchase seats close to another due to
the lack of ’group’ seats. [ID412]

4.3.4 Centralized Solutions
The three variants of centralized solutions we saw had sig-

nificant distinguishing characteristics. C1 solutions relied on
implicit communication between sellers and a central sys-
tem which makes the reservation or selection on behalf of
the seller. A common characteristic of these implicit com-
munications was that they be “fast”.

These problems might be avoided by having a
computer system that automatically (to the sec-
ond) inputs the seat reservation for that cus-
tomer. [ID438]

Some answers were less specific about the solution, but
still gave evidence of a centralized solution with implicit
communication:

The program would have to temporarily mark
seats that are being looked at during a transac-
tion as unavailable so that vendors couldn’t sell
seats simultaneously. [ID313]

Others were significantly more specific about the solution,
even imposing additional restrictions, yet still leaving doubt
as to the student’s true understanding of the concurrency
issue in question. Here we see evidence of an attempt to
move the potential point of concurrent access in an expressed
solution:

The only real way to avoid this is and still have
multiple sellers is to run the booking on a com-
puter network, with a master list of the seats
available. The process would then go something
like this: a caller calls in and requests n num-
ber of seats. The master list can be ordered in
such a way that it fills the seats front to back,
left to right, and when a seller requests n seats, it
gives the next n seats on the list. Seat orders that
have been cancelled are inserted at the top of the
available list, in order of precedence. The seller
can reserve the seats, ask if the seats are accept-
able to the customer, and if so, proceed with the
transaction. . . This would avoid double booking
because during the time the seller is o�ering the
seats to the customer, they are withheld from the
list, and the other sellers drawing from the list
would not have access to those seats. [ID130]

[Lewandowski et al., 2007]

Carnegie Mellon University, School of Computer Science

22

Q: Can people develop natural language
solutions to programming problems?

[Good et al., 2010]

Figure 2. Errors in triggers and outcomes

Figure 3. Keyword frequency across all answers

3

A. Error analysis

The overall rate of correctness was quite low, with only
24 out of 113 attempted answers being fully correct (21%).
In addition, there were 39 answers (35%) where one element
(either trigger/condition or outcome) was correct. As shown
in Fig. 2, in 41% of answers the outcome was correct and in
35% of answers the trigger/condition was correct. Errors of
omission were by far the most common category (74%). The
most common error made with triggers/conditions was to
miss this element out entirely (27%), with the second most
common error being for the trigger/conditions to be partially
missing (12%). For outcomes, the most common error was a
partially missing outcome (27%), followed by a completely
missing outcome (19%). Vagueness was a problem in
specifying triggers (16%), but not a common problem for
outcomes (3%). Incomplete answers, which seemed to have
been abandoned by the student partway through, accounted
for a small number of errors in both triggers and outcomes
(3% of all answers). Errors of commission, where
participants included incorrect information in their answers,
accounted for a relatively small number of errors in both
triggers and outcomes (7%).

B. Descriptive analysis
By far the most common rule structure used was event-

based (74%), which was expected given the highly event-
based nature of the encounters and the game environment.
Declarative structures were the second most frequent (16%).
Imperative approaches were observed very rarely (4%).

The perspective used most often in the answers was 2nd
person (60%). 1st person perspective was used in a small
number of cases (10%). 3rd person perspective and
combinations of 1st with 2nd and 2nd with 3rd were used
occasionally (7%, 3% and 1% of all answers respectively).
For the remaining 19% of answers, no words which
indicated perspective were used.

The most common tense used in the rules was present
(72%), with past, future and conditional tenses being used
only rarely (10%, 4% and 4% of all answers respectively). In
a small number of cases a combination of different tenses

were used in a single answer (8%). In very rare cases, (3%) it
wasn’t possible to determine the tense.

!"!"

Children (aged 11 and 12) played a short 3D role-playing game and were
asked to describe the rules of the game.

Carnegie Mellon University, School of Computer Science

23

Q: Can people develop natural language
solutions to programming problems?

l  Yes, but…
l  Lots of imprecision and underspecification
l  Novices assume that instructee will interpret

instructions intuitively.

Carnegie Mellon University, School of Computer Science

24

Intuitions about programming
language constructs

FIGURE 1. Depiction of a problem scenario in study one.

some other characteristic of the language or strategy that was employed. Many of
these questions arose from the results of a pilot study. In addition, preliminary review
of the participant data revealed trends in the solutions that the authors thought
were important, so the rating form was supplemented with questions to explore these
as well.

Each question was followed by several categories into which the participant's res-
ponses could be classi"ed. The rater was instructed to look for relevant sentences in the
participant's solution, and classify each one by placing a tickmark in the appropriate
category, also noting which problem the participant was answering when the sentence
was generated. Each question also had an other category, which the rater marked when
the participant's utterance did not fall into any of the supplied categories. When they did
this, they added a brief comment.

Five independent raters categorized the participants' responses. These raters were
experienced computer programmers, who were recruited by posting to Carnegie Mellon
University's electronic bulletin boards and were paid for their assistance. They were
given a one-page instruction sheet describing their task. Each analyst "lled out a copy of
the 17-question rating form for each of the participants. Figure 2 shows one of the
questions from the rating form for study one.

4.5. RESULTS

The participants' solutions ranged from one to seven pages of handwritten text and
drawings. The raters were instructed to use each utterance (statement or sentence) as the
unit of text to analyse. Since each rater independently partitioned the text into these
units, the total number of tickmarks di!ered across raters, so the results are normalized
by looking at the proportion of the tickmarks credited to each category rather than the
raw counts. Although there were variances among the results from individual raters,

242 J. F. PANE E¹ A¸.

[Pane et al., 2001]

l  Twelve fifth graders in a Pittsburgh
public elementary school

l  Equally divided amongst boys and girls
l  No prior experience programming
l  “The participants received no reward

other than the opportunity to leave their
normal classroom for half an hour and
the opportunity to play a computer
game for a few minutes.” J

Carnegie Mellon University, School of Computer Science

25

Intuitions about programming
language constructs

FIGURE 1. Depiction of a problem scenario in study one.

some other characteristic of the language or strategy that was employed. Many of
these questions arose from the results of a pilot study. In addition, preliminary review
of the participant data revealed trends in the solutions that the authors thought
were important, so the rating form was supplemented with questions to explore these
as well.

Each question was followed by several categories into which the participant's res-
ponses could be classi"ed. The rater was instructed to look for relevant sentences in the
participant's solution, and classify each one by placing a tickmark in the appropriate
category, also noting which problem the participant was answering when the sentence
was generated. Each question also had an other category, which the rater marked when
the participant's utterance did not fall into any of the supplied categories. When they did
this, they added a brief comment.

Five independent raters categorized the participants' responses. These raters were
experienced computer programmers, who were recruited by posting to Carnegie Mellon
University's electronic bulletin boards and were paid for their assistance. They were
given a one-page instruction sheet describing their task. Each analyst "lled out a copy of
the 17-question rating form for each of the participants. Figure 2 shows one of the
questions from the rating form for study one.

4.5. RESULTS

The participants' solutions ranged from one to seven pages of handwritten text and
drawings. The raters were instructed to use each utterance (statement or sentence) as the
unit of text to analyse. Since each rater independently partitioned the text into these
units, the total number of tickmarks di!ered across raters, so the results are normalized
by looking at the proportion of the tickmarks credited to each category rather than the
raw counts. Although there were variances among the results from individual raters,

242 J. F. PANE E¹ A¸.

[Pane et al., 2001]

Programming Style
l  54% - production rules or event-based,

beginning with when, if or after.
l  When PacMan eats all the dots, he goes to

the next level.
l  18% - global constraints

l  PacMan cannot go through a wall
l  16% - declarations/other

l  There are 4 monsters.

l  12% - imperative
l  Play this sound. Display this string.

Carnegie Mellon University, School of Computer Science

26

Intuitions about programming
language constructs

FIGURE 1. Depiction of a problem scenario in study one.

some other characteristic of the language or strategy that was employed. Many of
these questions arose from the results of a pilot study. In addition, preliminary review
of the participant data revealed trends in the solutions that the authors thought
were important, so the rating form was supplemented with questions to explore these
as well.

Each question was followed by several categories into which the participant's res-
ponses could be classi"ed. The rater was instructed to look for relevant sentences in the
participant's solution, and classify each one by placing a tickmark in the appropriate
category, also noting which problem the participant was answering when the sentence
was generated. Each question also had an other category, which the rater marked when
the participant's utterance did not fall into any of the supplied categories. When they did
this, they added a brief comment.

Five independent raters categorized the participants' responses. These raters were
experienced computer programmers, who were recruited by posting to Carnegie Mellon
University's electronic bulletin boards and were paid for their assistance. They were
given a one-page instruction sheet describing their task. Each analyst "lled out a copy of
the 17-question rating form for each of the participants. Figure 2 shows one of the
questions from the rating form for study one.

4.5. RESULTS

The participants' solutions ranged from one to seven pages of handwritten text and
drawings. The raters were instructed to use each utterance (statement or sentence) as the
unit of text to analyse. Since each rater independently partitioned the text into these
units, the total number of tickmarks di!ered across raters, so the results are normalized
by looking at the proportion of the tickmarks credited to each category rather than the
raw counts. Although there were variances among the results from individual raters,

242 J. F. PANE E¹ A¸.

[Pane et al., 2001]

Modifying State
l  61% - behaviors were built into the

entity, e.g. OO
l  Get the big dot and the ghost will turn

colors…
l  20% - direct modification of properties

l  After eating a large dot, change the ghosts
from original color to blue.

l  18% - other

Carnegie Mellon University, School of Computer Science

27

Intuitions about programming
language constructs

FIGURE 1. Depiction of a problem scenario in study one.

some other characteristic of the language or strategy that was employed. Many of
these questions arose from the results of a pilot study. In addition, preliminary review
of the participant data revealed trends in the solutions that the authors thought
were important, so the rating form was supplemented with questions to explore these
as well.

Each question was followed by several categories into which the participant's res-
ponses could be classi"ed. The rater was instructed to look for relevant sentences in the
participant's solution, and classify each one by placing a tickmark in the appropriate
category, also noting which problem the participant was answering when the sentence
was generated. Each question also had an other category, which the rater marked when
the participant's utterance did not fall into any of the supplied categories. When they did
this, they added a brief comment.

Five independent raters categorized the participants' responses. These raters were
experienced computer programmers, who were recruited by posting to Carnegie Mellon
University's electronic bulletin boards and were paid for their assistance. They were
given a one-page instruction sheet describing their task. Each analyst "lled out a copy of
the 17-question rating form for each of the participants. Figure 2 shows one of the
questions from the rating form for study one.

4.5. RESULTS

The participants' solutions ranged from one to seven pages of handwritten text and
drawings. The raters were instructed to use each utterance (statement or sentence) as the
unit of text to analyse. Since each rater independently partitioned the text into these
units, the total number of tickmarks di!ered across raters, so the results are normalized
by looking at the proportion of the tickmarks credited to each category rather than the
raw counts. Although there were variances among the results from individual raters,

242 J. F. PANE E¹ A¸.

[Pane et al., 2001]

OR
l  63% - boolean disjunction

l  To make PacMan go up or down, you push
the up or down arrow key

l  20% - clarifying or restating the prior
item
l  When PacMan hits a ghost or a monster,

he loses his life.

l  18% - meaning otherwise
l  5% - other

Carnegie Mellon University, School of Computer Science

28

Intuitions about programming
language constructs

FIGURE 1. Depiction of a problem scenario in study one.

some other characteristic of the language or strategy that was employed. Many of
these questions arose from the results of a pilot study. In addition, preliminary review
of the participant data revealed trends in the solutions that the authors thought
were important, so the rating form was supplemented with questions to explore these
as well.

Each question was followed by several categories into which the participant's res-
ponses could be classi"ed. The rater was instructed to look for relevant sentences in the
participant's solution, and classify each one by placing a tickmark in the appropriate
category, also noting which problem the participant was answering when the sentence
was generated. Each question also had an other category, which the rater marked when
the participant's utterance did not fall into any of the supplied categories. When they did
this, they added a brief comment.

Five independent raters categorized the participants' responses. These raters were
experienced computer programmers, who were recruited by posting to Carnegie Mellon
University's electronic bulletin boards and were paid for their assistance. They were
given a one-page instruction sheet describing their task. Each analyst "lled out a copy of
the 17-question rating form for each of the participants. Figure 2 shows one of the
questions from the rating form for study one.

4.5. RESULTS

The participants' solutions ranged from one to seven pages of handwritten text and
drawings. The raters were instructed to use each utterance (statement or sentence) as the
unit of text to analyse. Since each rater independently partitioned the text into these
units, the total number of tickmarks di!ered across raters, so the results are normalized
by looking at the proportion of the tickmarks credited to each category rather than the
raw counts. Although there were variances among the results from individual raters,

242 J. F. PANE E¹ A¸.

[Pane et al., 2001]

Iteration or looping constructs
l  73% - implicit, where only a terminating

condition is specified
l  Make PacMan go left until a dead end

l  20% - explicit, with keywords such as
repeat, while, and so on, etc.

l  7% - other

•  Loops are hotspots of errors for novice
programmers.

•  Often expect terminating condition to be
checked continuously.

[du Boulay, 1989]

Carnegie Mellon University, School of Computer Science

29 [Pane et al., 2001]

No. First name Last name Average score Performance

1 Sandra Bullock 3000
2 Bill Clinton 60000
3 Cindy Crawford 500
4 Tom Cruise 5000
5 Bill Gates 6000
6 Whitney Houston 4000
7 Michael Jordan 20000
8 Jay Leno 50000
9 David Lettermen 700

10 Will Smith 9000

Question 5A
! Describe in detail what the computer should do to obtain these results.

No. First name Last name Average score Performance

1 Sandra Bullock 3000 Fine
2 Bill Clinton 60000 Extraordinary
3 Cindy Crawford 500 Poor
4 Tom Cruise 5000 Fine
5 Bill Gates 6000 Fine
6 Whitney Houston 4000 Fine
7 Michael Jordan 20000 Extraordinary
8 Jay Leno 50000 Extraordinary
9 David Lettermen 700 Poor

10 Will Smith 9000 Poor

FIGURE 3. Depiction of a problem scenario in study two.

entries for only the rows with the highest sums, adding or subtracting a "xed value to
every value in a column, deleting rows from the table or adding rows to it, and zeroing all
the values in a column. Figure 3 shows one of the scenario depictions. The depictions
were displayed to the participants on paper and they wrote their solutions directly on the
problem pages.

5.3. PROCEDURE

The same procedure was used as in study one, except the sessions were not audiotaped.

5.4. CONTENT ANALYSIS

Once again a form was developed, similar to the one used in study one, so that
independent raters could analyse the data. This rating form had 18 questions. Because
the performance of the "ve analysts in the "rst study was satisfactory, there was general
agreement among them and the task was very tedious, the authors decided that three
analysts were su$cient for the second study. The analysts from the "rst study were
permitted to return for this study because there was no reason to expect their prior

250 J. F. PANE E¹ A¸.

Population: Kids from same population + a few adults
from CMU who had no programming experience.

Carnegie Mellon University, School of Computer Science

30

Intuitions about programming
language constructs

[Pane et al., 2001]

No. First name Last name Average score Performance

1 Sandra Bullock 3000
2 Bill Clinton 60000
3 Cindy Crawford 500
4 Tom Cruise 5000
5 Bill Gates 6000
6 Whitney Houston 4000
7 Michael Jordan 20000
8 Jay Leno 50000
9 David Lettermen 700

10 Will Smith 9000

Question 5A
! Describe in detail what the computer should do to obtain these results.

No. First name Last name Average score Performance

1 Sandra Bullock 3000 Fine
2 Bill Clinton 60000 Extraordinary
3 Cindy Crawford 500 Poor
4 Tom Cruise 5000 Fine
5 Bill Gates 6000 Fine
6 Whitney Houston 4000 Fine
7 Michael Jordan 20000 Extraordinary
8 Jay Leno 50000 Extraordinary
9 David Lettermen 700 Poor

10 Will Smith 9000 Poor

FIGURE 3. Depiction of a problem scenario in study two.

entries for only the rows with the highest sums, adding or subtracting a "xed value to
every value in a column, deleting rows from the table or adding rows to it, and zeroing all
the values in a column. Figure 3 shows one of the scenario depictions. The depictions
were displayed to the participants on paper and they wrote their solutions directly on the
problem pages.

5.3. PROCEDURE

The same procedure was used as in study one, except the sessions were not audiotaped.

5.4. CONTENT ANALYSIS

Once again a form was developed, similar to the one used in study one, so that
independent raters could analyse the data. This rating form had 18 questions. Because
the performance of the "ve analysts in the "rst study was satisfactory, there was general
agreement among them and the task was very tedious, the authors decided that three
analysts were su$cient for the second study. The analysts from the "rst study were
permitted to return for this study because there was no reason to expect their prior

250 J. F. PANE E¹ A¸.

AND
l  47% - boolean conjunction

l  Erase Bill Clinton and Jay Leno
l  76% - incorrect

§  Everybody whose name starts with the letter G
and L…

§  If you score 90 and above

l  43% - sequencing
l  Crossed out the highest score and added

the lower scores
l  4% - specify a range

l  Fine is between 3000 and 20,000
l  5% - other

Carnegie Mellon University, School of Computer Science

31

Intuitions about programming
language constructs

[Pane et al., 2001]

No. First name Last name Average score Performance

1 Sandra Bullock 3000
2 Bill Clinton 60000
3 Cindy Crawford 500
4 Tom Cruise 5000
5 Bill Gates 6000
6 Whitney Houston 4000
7 Michael Jordan 20000
8 Jay Leno 50000
9 David Lettermen 700

10 Will Smith 9000

Question 5A
! Describe in detail what the computer should do to obtain these results.

No. First name Last name Average score Performance

1 Sandra Bullock 3000 Fine
2 Bill Clinton 60000 Extraordinary
3 Cindy Crawford 500 Poor
4 Tom Cruise 5000 Fine
5 Bill Gates 6000 Fine
6 Whitney Houston 4000 Fine
7 Michael Jordan 20000 Extraordinary
8 Jay Leno 50000 Extraordinary
9 David Lettermen 700 Poor

10 Will Smith 9000 Poor

FIGURE 3. Depiction of a problem scenario in study two.

entries for only the rows with the highest sums, adding or subtracting a "xed value to
every value in a column, deleting rows from the table or adding rows to it, and zeroing all
the values in a column. Figure 3 shows one of the scenario depictions. The depictions
were displayed to the participants on paper and they wrote their solutions directly on the
problem pages.

5.3. PROCEDURE

The same procedure was used as in study one, except the sessions were not audiotaped.

5.4. CONTENT ANALYSIS

Once again a form was developed, similar to the one used in study one, so that
independent raters could analyse the data. This rating form had 18 questions. Because
the performance of the "ve analysts in the "rst study was satisfactory, there was general
agreement among them and the task was very tedious, the authors decided that three
analysts were su$cient for the second study. The analysts from the "rst study were
permitted to return for this study because there was no reason to expect their prior

250 J. F. PANE E¹ A¸.

Specifying open intervals
l  36% - words such as below, greater

than were intended to be exclusive
l  The performance of the person with the

average score below 1000 is considered as
poor (assigned good for 1000)

l  22% - …inclusive
l  Poor would be below 999 (assigned poor

for 999)
l  22% - used powers of 10 for ranges

l  If your score is in the hundred’s your
performance is poor.

l  5% - mathematical notation
l  15% - other

Adults were 100% successful
when using mathematical

notation.

Carnegie Mellon University, School of Computer Science

32

Intuitions about programming
language constructs

[Pane et al., 2001]

No. First name Last name Average score Performance

1 Sandra Bullock 3000
2 Bill Clinton 60000
3 Cindy Crawford 500
4 Tom Cruise 5000
5 Bill Gates 6000
6 Whitney Houston 4000
7 Michael Jordan 20000
8 Jay Leno 50000
9 David Lettermen 700

10 Will Smith 9000

Question 5A
! Describe in detail what the computer should do to obtain these results.

No. First name Last name Average score Performance

1 Sandra Bullock 3000 Fine
2 Bill Clinton 60000 Extraordinary
3 Cindy Crawford 500 Poor
4 Tom Cruise 5000 Fine
5 Bill Gates 6000 Fine
6 Whitney Houston 4000 Fine
7 Michael Jordan 20000 Extraordinary
8 Jay Leno 50000 Extraordinary
9 David Lettermen 700 Poor

10 Will Smith 9000 Poor

FIGURE 3. Depiction of a problem scenario in study two.

entries for only the rows with the highest sums, adding or subtracting a "xed value to
every value in a column, deleting rows from the table or adding rows to it, and zeroing all
the values in a column. Figure 3 shows one of the scenario depictions. The depictions
were displayed to the participants on paper and they wrote their solutions directly on the
problem pages.

5.3. PROCEDURE

The same procedure was used as in study one, except the sessions were not audiotaped.

5.4. CONTENT ANALYSIS

Once again a form was developed, similar to the one used in study one, so that
independent raters could analyse the data. This rating form had 18 questions. Because
the performance of the "ve analysts in the "rst study was satisfactory, there was general
agreement among them and the task was very tedious, the authors decided that three
analysts were su$cient for the second study. The analysts from the "rst study were
permitted to return for this study because there was no reason to expect their prior

250 J. F. PANE E¹ A¸.

Insertion into a data structure
l  75% - no mention of making room for

new element
l  Put Elton John in the records in

alphabetical order
l  16% - make room for element before

inserting it
l  Use the cursor and push it down a little and

then type Elton John in the free space

l  6% - make room for element after
inserting it

l  4% - other

Carnegie Mellon University, School of Computer Science

33

Natural Language Programming?
l  A difficult proposition – natural language is complex and

imprecise
l  Computer and programmer do not have a shared context [Nardi,

1993]; programmers cannot use rules of cooperative
conversation [Grice, 1975]

l  Not obvious where the computer’s limits are

l  Novices can use formal languages if designed carefully
[Bruckman and Edwards, 1999]
l  Describing the instructee as a naïve alien increases precision of

instructions [Galotti, 1985]
l  Anthropomorphizing computers is counterproductive [du Boulay,

1989]

Carnegie Mellon University, School of Computer Science

34

Natural Language Programming?
l  A difficult proposition – natural language is complex and

imprecise
l  Computer and programmer do not have a shared context [Nardi,

1993]; programmers cannot use rules of cooperative
conversation [Grice, 1975]

l  Not obvious where the computer’s limits are

l  Novices can use formal languages if designed carefully
[Bruckman and Edwards, 1999]
l  Describing the instructee as a naïve alien increases precision of

instructions [Galotti, 1985]
l  Anthropomorphizing computers is counterproductive [du Boulay,

1989]

(Popular Science)

Carnegie Mellon University, School of Computer Science

35

Principles

[Pane and Myers, 1996]

5-4. Closeness of mapping

l  The translation process from a plan to a program should be

minimal. The expressiveness of a language.
l  Direct Manipulation [Shneiderman, 1983; Hutchins et al, 1986]

l  Users have difficulty with low-level primitives [Hoc, 1990;
Nardi, 1993; Lewis, 1987]

l  Domain-specific languages are behind many successful
end-user systems

“Programming is the process of transforming a mental plan
into one that is compatible with the computer.”
— Jean-Michel Hoc

Carnegie Mellon University, School of Computer Science

36

Principles

[Mayer, 1981]

Models and Metaphors
FILE CABINET

r,
\

\

\

\

\

SORTING BASKETS
@

__........///-.//+~ ¢ / / o . / / / / . - / / / ,

V
MEMORY SCOREBOARD

FCOUNT 55 212 3 TOTAL AVERAGE

COUNTI TOTALI AVERAGEI
12 0 0

: COUNT2 7 i TOTAL2714 AVERAGE2102

COUNT3 TOTAL3 AVERAGE3
33 33 I

COVNT4 _ T O T A L 4 . _ _ AVERAGE4 3 TOTAL4150 50

OUTPUT PAD

FIGURE 3. A concrete model of the compu te r for a file m a n a g e m e n t language.

DESCRIPTION OF MODEL PROVIDED TO SUBJECTS
T h e compu te r is capable of three ma in functions: sort ing record cards into sor t ing
baskets, r emember ing n u m b e r s on its m e m o r y scoreboard, and ou tpu t t ing informat ion
to the world th rough its message pad.

To unde r s t and the sort ing funct ion of the computer , you could th ink of an office
worker si t t ing a t a desk wi th th ree sort ing baskets , a line poin ter arrow, and file cabine t
with m a n y drawers. Each drawer of the file cabinet conta ins a different se t of records;
the n a m e of the file is indicated on each drawer. If the worker needs all t he records in
a part icular file, all t he worker needs to do is open t ha t drawer and take ou t all t he
records. To avoid mixups, the clerk can take out all t he records of only one file a t a t ime;
if the clerk needs to bring records f rom a certain file drawer to his desk, first all t h e
records f rom all o ther files m u s t be pu t back in thei r proper drawers. T h u s a worker
m a y have all the records for only o n e file on his desk a t a t ime. T h e s e could be placed
in the " in-basket" which is on the left side of the clerk's d e s k - - i t t hu s conta ins all of t he
to-be-processed record cards, wait ing for the office clerk to look at them. In t h e middle
of the desk is a work area wi th a line pointer arrow; the clerk m a y place only one card
in the work area a t a t ime, and the pointer arrow points to j u s t one line a t a t ime. To the
r ight are two more b a s k e t s - - t h e "save baske t" and the "discard basket ." If a record
card passes the clerk's inspection, i t is placed on top of t he pile of cards in t h e " save
basket"; bu t if it fails, it is placed in t he top of the pile of cards in the "discard basket ."
T h e procedure the office worker uses is to take the top card f rom the " in-basket ," place
it in the work area with a pointer arrow a imed a t one line, and on t he basis of inspect ion
of this line move t ha t card to ei ther the "save" or "discard basket ." T h e worker cont inues
unti l all of the records in the " in-basket" have been processed so t ha t t he " in-baske t" is
emp t y and the "save" and "discard baske ts" conta in all t he records; t h e n the worker
m a y somet imes be asked to take the pile in ei ther the "save" or the "discard baske t"
and pu t it in the " in-basket" for fu r ther processing.

To unde r s t and the m e m o r y funct ion of the computer , t h ink of a m e m o r y scoreboard.
T h e scoreboard consis ts of 15 rec tangular spaces like a c lassroom blackboard, divided
into 15 spaces. Each space ha s a label, such as COUNT2, and each space h a s one n u m b e r
(of any length) in it. T h e office worker m a y count all t he records t ha t have been s tored
in the save basket , and this n u m b e r could be s tored in one of the spaces on t he
scoreboard. W h e n a new n u m b e r is s tored in a space on the scoreboard, the old n u m b e r
is erased. However, when the office worker copies a n u m b e r f rom one of the m e m o r y
spaces onto the ou t pu t pad, the n u m b e r is no t erased.

To unde r s t and the ou t pu t funct ion of the computer , t h ink of a t e lephone message
pad. To communica t e with the outside world, the compu te r can write one piece of
informat ion on each line of the pad. If it fills all the lines on one page , it will j u s t t u rn
to the nex t page and begin with the top line. T h e office worker m a y write down two
kinds of informat ion on the ou tpu t pad: a n u m b e r m a y be copied f rom one of the Spaces
on t h e scoreboard onto the pad (but this does not al ter the n u m b e r on t he scoreboard) ,
or informat ion tha t is on each card in the save basket can be copied on to the ou tpu t
pad.

H o w N o v i c e s L e a r n C o m p u t e r P r o g r a m m i n g °

TABLE 8. EXAMPLES OF TEST PROBLEMS FOR A FILE MANAGEMENT LANGUAGE a

133

Sort 1
List the owners' names for all cars

weighing 3000 pounds or more.

Sort 2
List the owners' names for all model

green Fords.

Count
How many cars are registered in Santa

Barbara County?

Compute 1
What is the average current value of all

ears?

Compute 2
What percentage of 1977 cars are Chev-

rolets?

FROM A UTOMOBILE
FOR WEIGHT IS CALLED 3000 OR MORE
LIST NAME

FROM A UTOMOBILE
FOR YEAR IS CALLED 1976 OR MORE
AND FOR COLOR IS CALLED GREEN
AND FOR MAKE IS CALLED FORD
LIST NAME

FROM A UTOMOBILE
FOR HOME COUNTY IS CALLED SANTA BARBARA
COUNT
LIST COUNT

FROM A UTOMOBILE
COUNT
TOTAL CURRENT VALUE
LET TOTAL + COUNT BE CALLED AVERAGE
LIST A VERA GE

FROM A UTOMOBILE
FOR YEAR IS CALLED 1977
COUNT
LET THIS BE CALLED COUNT 1
AND FOR MAKE IS CALLED CHEVROLET
COUNT
LET THIS BE CALLED COUNT 2
LET COUNT 2 + COUNT 1 BE CALLED AVERAGE
LIST AVERAGE

"From MAYES0a.

t he co n t ro l g r o u p (36 p e r c e n t v e r s u s 44
p e r c e n t cor rec t , r e spec t i ve ly) . A p p a r e n t l y
t h e m o d e l is m o r e usefu l w h e n m a t e r i a l is
p o o r l y s t r u c t u r e d b e c a u s e i t h e l p s t h e
r e a d e r to h o l d t h e i n f o r m a t i o n t oge the r .

2.11 Conclusion

T h e s e r e su l t s p r o v i d e c l ea r a n d c o n s i s t e n t
ev idence t h a t a c o n c r e t e m o d e l can h a v e a
s t r o n g effect on t h e e n c o d i n g a n d use of
new t e c h n i c a l i n f o r m a t i o n b y novices .
T h e s e r e su l t s p r o v i d e e m p i r i c a l s u p p o r t to
t h e c l a ims t h a t a l lowing nov ices to " see t h e
w o r k s " a l lows t h e m to e n c o d e i n f o r m a t i o n
in a m o r e c o h e r e n t a n d use fu l w a y
[D u B o 7 6 , DUB080] . W h e n a p p r o p r i a t e
m o d e l s a r e used , t h e l e a r n e r s e e m s to b e
ab le to a s s i m i l a t e each n e w s t a t e m e n t to
h is or h e r i m a g e o f t h e c o m p u t e r s y s t e m .
T h u s one s t r a i g h t f o r w a r d i m p l i c a t i o n is: I f
y o u r goal is to p r o d u c e l e a r n e r s who wil l
n o t n e e d to use t h e l a n g u a g e c r ea t i ve ly ,
t h e n no m o d e l is n e e d e d . I f y o u r goa l is to
p r o d u c e l e a r n e r s w h o will be ab l e to c o m e
up w i t h c r e a t i v e s o l u t i o n s to nove l (for

T A B L E 9. PROPORTION OF CORRECT ANSWERS ON
TRANSFER TEST FOR MODEL AND CONTROL
GROUPS--FILE MANAGEMENT LANGUAGE a

Type of Test Problem

Group Com. Com-
Sort-1 Sort-2 Count pute-1 pute-2

Model .66 .66 .63 .58 .45
Control .63 .44 .43 .33 .22
= Adapated from MAYE80a.
Note. 20 subjects per group; group x problem-type
interaction, p < .07.

t h e m) p r o b l e m s , t h e n a c o n c r e t e m o d e l
e a r l y in l e a r n i n g is q u i t e useful . M o r e re-
s e a r c h is n e e d e d in o r d e r to d e t e r m i n e t h e
specif ic ef fec ts o f c o n c r e t e m o d e l s on w h a t
is l e a r n e d , a n d to d e t e r m i n e t h e c h a r a c t e r -
i s t ics o f a usefu l mode l .

3. DOES STUDENT ELABORATION
ACTIVITY AID MEANINGFUL LEARNING?

3.1 Statement of the Problem

T h e p r e v i o u s s e c t i o n p r e s e n t e d e v i d e n c e
t h a t c o n c r e t e m o d e l s m a y in f luence l e a rn -

Computing Surveys, Vol. 13, No. I, March 1981

Carnegie Mellon University, School of Computer Science

37

Principles
Contextualizing for Motivation

 11

Figure 1: A program that replaces the background of one image with that of another,

using the ;chromakey= technique common in weather forecasts and special effects.

In the following weeks, these concepts are revisited and expanded on in the context

of sound and text. Students learn to increase and decrease pitch and volume, to search

text, to generate HTML, and to manipulate directories and networks. Finally, animation is

explored and students use what they learned about pictures to modify animations and

create elementary special effects.

During the final few weeks of the semester, after they have become proficient in the

computational manipulation of media, students are introduced to broader CS concepts:

Why is Photoshop faster than the code they write? What are interpreters and compilers?

What is object-oriented programming? What do other programming languages look like?

Students are expected to turn in six homework assignments over the course of the

semester, all of which involve programming and entail the creation of their own, original

media. Three in-class exams assess studentsO comprehension of conceptual material and

ability to read and create code. Two take-home exams assess programming proficiency.

A collaborative website (CoWeb) enables students to post questions, discuss problems,

and display their work if they choose to do so.

def chromakey2(source,bg):

 for p in pixels(source):

 if (getRed(p)+getGreen(p) < getBlue(p)):

 setColor(p,getColor(getPixel(bg,x(p),y(p))))

 return source

 15

Figure 2: Examples of student collages

Interviewer: What do you think about the homework galleries on the CoWeb?

Student A: I don>t ever look at it until after I>m done, I have a thing about not

wanting to copy someone else>s ideas. I just wish I had more time to play around

with that and make neat effects. But JES will be on my computer forever, soH that>s

the nice thing about this class is that you could go as deep into the homework as you

wanted. So, I>d turn it in and then me and my roommate would do more after to see

what we could do with it.

Interviewer: Have you ever written code outside of assignments?

 21

courses, most of these students apparently do not see a compelling reason to take more

than what is required. This indicates that media computation has captured the interest of

many female students who otherwise would not choose to pursue computer science

learning. A particularly striking example of confidence can be found in the remarks of

one interviewee at the end of the course:

Interviewer: Has this class changed your opinion of computer science?

Student: YES, IGm not intimidated by it anymore. My mom was SO surprised

when I told her I want to be a TA she almost fell on the floor, cuz sheGs heard me

complain for years about taking this class and now I want to go do it to myself

again!

Do students find media computation relevant and/or useful?

One indicator of studentsG attitudes toward a class is the rate at which they drop the

course. By drop day, only three students had dropped media computationM2.5% of 120

students. By the end of the semester, the overall WFD rate had only reached 11.5%. This

indicates that studentsG attitudes toward media computation were generally positive.

 Drop Rate WFD Rate
Media Computation 2.5% 11.5%
Traditional Intro to CS 10.1% 42.9%

Table 1: Spring 2003 drop and withdrawal, failure and D-grade (WFD) rates for
Introductory CS at Georgia Tech.

Many students reported that they found the content of the course useful. When asked

what they liked best about the course at midterm, approximately 20% of media

computation students indicated that they enjoyed the content, while about 12% named the

l  Covered same material using media
(audio/visual) tasks

l  Decrease in drop rate validated
for both CS0.5 and CS1 at several
institutions [Tew et al, 2005; Sloan
and Troy 2008; Simon et al, 2010]

l  Learn different things but do skills
transfer later? [Tew et al, 2005]
l  Initial positive result, cannot be replicated

Carnegie Mellon University, School of Computer Science

38

Principles

[Pane and Myers, 1996]

7. Consistency and Standards

l  Notation should abide by suggestions that can be derived from

other places in the language, to facilitate transfer of
knowledge [Green, 1996].

l  Users get confused when there are two different syntaxes to
accomplish the same effect [Eisenberg, 1987]

l  The meaning of keywords should be context-independent.
l  Novices focus on surface features [McKeithen, 1981]
l  The keyword static in C++ has many meanings depending on

context.

“Users should not have to wonder whether different words,
situations or actions mean the same thing.”
[Nielson, 1994]

Carnegie Mellon University, School of Computer Science

39

Principles

[Pane and Myers, 1996]

4.4. Beware of Misleading Appearances
4.5. Avoid Subtle Distinctions in Syntax
l  [Fitter, 1979] cites the principle of restriction: the syntax

prohibits the creation of code that could easily be confused
with other closely-related forms.

l  Common typos and cognitive slips should be caught [Green,
1996]

l  if (a = 0) vs. if (a == 0) in C

Carnegie Mellon University, School of Computer Science

40

Principles

[Pane and Myers, 1996]

4.4. Principle of Conciseness
l  [Cordy, 1992] argues against redundant symbols,

preambles, punctuation, declarations and annotations
l  Also argues for intelligent defaults
l  Conciseness is not economy (a minimal set of primitives)

l  Early versions of Prolog did subtraction by inverse addition [Green,
1990]

l  APL takes conciseness to the extreme, leading to too many
cryptic primitives

Carnegie Mellon University, School of Computer Science

Copyright © 2009 – Brad A. Myers

Goal: Gentle Slope Systems

Difficulty
of

Use

Goal

Flash

ActionScript

Backend
Programming

Visual Basic

Basic

OO Programming
Swing

Java

Program Complexity and Sophistication

Email
Filters

Low
Threshold

High
Ceiling

Carnegie Mellon University, School of Computer Science

Historical Context
l  Long History of study with other names

l  Original HCI!
l  1973 “Psychology of Programming” (PoP)

l  “Software Psychology”
l  Ben Shneiderman book, 1980

l  “Empirical Studies of Programming” (ESP)
l  Workshops from 1986 through 1999

l  “Psychology of Programming”
l  Psychology of Programming Interest Group (PPIG)

§  from 1987 and PPIG’10 = 22th workshop
l  “Empirical Software Engineering”

l  Much of the early CSCW research as well
l  Computer-Supported Cooperative Work

Carnegie Mellon University, School of Computer Science

References
Bennedsen, J., and M.E. Caspersen. 2007. Failure rates in introductory programming. SIGCSE Bull. 39(2): 32–36.

Bonar, J., and Soloway, E.. 1983. Uncovering principles of novice programming. In Proceedings of the 10th ACM
SIGACT-SIGPLAN symposium on Principles of programming languages (POPL '83). ACM, New York, NY, USA, 10-13.

Bruckman, A. and Edwards, E. 1999. Should We Leverage Natural-Language Knowledge? Proceedings of CHI 99.
New York: ACM Press, pp. 207-214.

Cordy, J.R. 1992. Hints on the Design of User Interface Language Features – Lessons from the Design of Turing.
Languages for Developing User Interfaces. B. A. Myers. Boston, Jones and Bartlett Publishers: 329-340.

du Boulay, B. 1989. Some difficulties of learning to program. In E. Soloway & J. C. Spohrer, Eds., Studying the Novice
Programmer, pp. 283-299. Hillsdale, NJ: Lawrence Erlbaum Associates.

Eisenberg, M., M. Resnick and F. Turbak. 1987. Understanding Proce- dures as Objects. Empirical Studies of
Programmers: Second Workshop. G. M. Olson, S. Shepard and E. Soloway. Norwood, NJ, Ablex: 14-32.

Fitter, M.J. and T.R.G. Green. 1979. “When Do Diagrams Make Good Computer Languages?” International Journal of
Man-Machine Studies 11: 235-261.

Galotti, K.M. and W.F. Ganong, III. 1985. What Non-Programmers Know About Programming: Natural Language
Procedure Specification. International Journal of Man-Machine Studies 22: 1-10.

Good, J., Howland, K., and Nicholson, K. 2010. Young People's Descriptions of Computational Rules in Role-Playing
Games: An Empirical Study. pp. 67-74, 2010 IEEE Symposium on Visual Languages and Human-Centric Computing,
2010.

Carnegie Mellon University, School of Computer Science

References
Green, T.R.G. 1990. The Nature of Programming. Psychology of Programming. J.-M. Hoc, T. R. G. Green, R.
Samurçay and D. J. Gilmore. London, Academic Press: 21-44.

Green, T.R.G. and M. Petre. 1996. “Usability Analysis of Visual Programming Environments: A 'Cognitive Dimensions'
Framework.” Journal of Visual Languages and Computing 7(2): 131-174.

Grice, H.P. 1975. Logic and Conversation. Syntax and Semantics III: Speech Acts. P. Cole and J. Morgan. New York,
Academic Press.

Guzdial, M. 2011. Why is it so hard to learn to program? In Making Software: What really works and why we believe it,
Andy Oram and Greg Wilson (eds), 111-121.

Hutchins, E. L., Hollan, J. D. and Norman, D. A. 1986. Direct Manipulation Interfaces. Hillsdale, NJ: Lawrence Erlbaum
Associates.

Hoc, J.-M. and A. Nguyen-Xuan. 1990. Language Semantics, Mental Models and Analogy. Psychology of
Programming. J.-M. Hoc, T. R. G. Green, R. Samurçay and D. J. Gilmore. London, Academic Press: 139-156.

Lewandowski, G., Bouvier, D. J., McCartney, R., Sanders, K. and Simon, B. 2007. Commonsense computing (episode
3): concurrency and concert tickets”. In Proceedings of the third international workshop on Computing education
research (ICER '07). ACM, New York, NY, USA, 133-144.

Lewis, C. and G.M. Olson. 1987. Can Principles of Cognition Lower the Barriers to Programming? Empirical Studies of
Programmers: Second Workshop. G. M. Olson, S. Sheppard and E. Soloway. Norwood, NJ, Ablex: 248-263.

Mayer, R. E. 1981. The Psychology of How Novices Learn Computer Programming. ACM Comput. Surv. 13, 1 (March
1981), 121-141.

Carnegie Mellon University, School of Computer Science

References
McKeithen, K.B. 1981. “Knowledge Organization and Skill Differences in Computer Programmers.” Cognitive
Psychology 13: 307-325.

Miller, L. A. 1981. "Natural language programming: Styles, strategies, and contrasts." IBM Systems Journal 29(2): 184–
215.

Nardi, B.A. 1993. A Small Matter of Programming: Perspectives on End User Computing. Cambridge, MA, The MIT
Press.

Newell, A. and S. K. Card. 1985. "The Prospects for Psychological Science in Human-Computer Interaction." Human-
Computer Interaction. 1(3): 209-242.

Nielsen, J. 1994. Heuristic Evaluation. Usability Inspection Methods. J. Nielsen and R. L. Mack. New York, John Wiley
& Sons: 25-62.

Pane, J. and Myers, B. 1996. Usability Issues in the Design of Novice Programming Systems, Carnegie Mellon
University School of Computer Science Technical Report CMU-CS-96-132. and Human Computer Interaction
Institute Technical Report CMU-HCII-96-101, August, 1996.

Pane, J. F., Ratanamahatana, C. A., and Myers, B. A. 2001. "Studying the Language and Structure in Non-
Programmers' Solutions to Programming Problems", International Journal of Human-Computer Studies
(IJHCS). Special Issue on Empirical Studies of Programmers, vol. 54, no. 2, February 2001, pp. 237-264.

Shneiderman, B. (1983). Direct manipulation: a step beyond programming languages. IEEE Computer, 16, 57}69.

Simon, B., P. Kinnunen, et al. 2010. Experience Report: CS1 for Majors with Media Computation. Paper presented at
ACM Innovation and Technology in Computer Science Education Conference, June 26–30, in Ankara, Turkey.

Carnegie Mellon University, School of Computer Science

References
Sloan, R.H., and P. Troy. 2008. CS 0.5: A better approach to introductory computer science for majors. Proceedings of
the 39th SIGCSE technical symposium on computer science education: 271–275.

Soloway, E., J. Bonar, et al. 1983. Cognitive strategies and looping constructs: An empirical study. Communications of
the ACM 26(11): 853–860.

Tew, A.E., W.M. McCracken, et al. 2005. Impact of alternative introductory courses on programming concept
understanding. Proceedings of the first international workshop on computing education research: 25–35.

Carnegie Mellon University, School of Computer Science

“In an appropriate science of computer languages, one would
expect that half the effort would be on the computer side,
understanding how to translate the languages into executable
form, and half on the human side, understanding how to design
languages that are easy or productive to use.... The human
and computer parts of programming languages have developed
in radical asymmetry.”

Allen Newell and Stuart Card 1985

