How do people naturally think
about computation?

=

Cyrus Omar

Computer Science Department
Carnegie Mellon University

056-899D: Human Aspects of Software
Development (HASD)

Spring 2011 — Lecture 11

Carnegie Mellon University, School of Computer Science%

Programming is difficult

Carnegie Mellon University, School of Computer Scienceg

Programming is difficult

e Difficult to learn
e 30% of students fail or withdraw from CS1

[Bennedsen and Caspersen 2007]

Carnegie Mellon University, School of Computer Scienceg

Programming is difficult

e Difficult to learn
e 30% of students fail or withdraw from CS1

[Bennedsen and Caspersen 2007]

e Difficult to do well

Carnegie Mellon University, School of Computer Scienceg

Programming is difficult

e Difficult to learn
e 30% of students fail or withdraw from CS1

[Bennedsen and Caspersen 2007]

e Difficult to do well

Write a [Pascal] program that repeatedly reads in positive integers, until it
reads the integer 99999. After seeing 99999, it should print out the average.

Rainfall Problem [Soloway et al, 1983]

Carnegie Mellon University, School of Computer Scienceg

Programming is difficult

e Difficult to learn
e 30% of students fail or withdraw from CS1

[Bennedsen and Caspersen 2007]

e Difficult to do well

Write a [Pascal] program that repeatedly reads in positive integers, until it
reads the integer 99999. After seeing 99999, it should print out the average.

Rainfall Problem [Soloway et al, 1983]

e 14% of CS1 students (3/4 through course)
e 36% of CS2 students (3/4 through course)
e 69% of students in Jr./Sr. Systems course .

Carnegie Mellon University, School of Computer Science%

Why?

Carnegie Mellon University, School of Computer Science%

What do people have trouble
with?

Carnegie Mellon University, School of Computer Science%

What do people have trouble
with?

e Conceiving of a solution?

Carnegie Mellon University, School of Computer Scienceg

What do people have trouble
with?

e Conceiving of a solution?

e Formalizing the solution?

10

Carnegie Mellon University, School of Computer Scienceg

What do people have trouble
with?

e Conceiving of a solution?

e Q: Can people develop natural language
solutions to programming problems?

e Formalizing the solution?

11

Carnegie Mellon University, School of Computer Scienceg

What do people have trouble
with?

e Conceiving of a solution?

e Q: Can people develop natural language
solutions to programming problems?

e Formalizing the solution?

e Languages and APIs are user interfaces
e Q: Are they intuitive / natural?
e Q: If not, how could we do better?

12

Carnegie Mellon University, School of Computer Scienceg

Q: Can people develop natural language
solutions to programming problems?

13

Carnegie Mellon University, School of Computer Scienceg

Q: Can people develop natural language
solutions to programming problems?

Write a [Pascal] program that repeatedly reads in positive integers, until it
reads the integer 99999. After seeing 99999, it should print out the average.

Rainfall Problem [Soloway et al, 1983]

repeat
Sum =0 + [
N =1
Sum := 1 + [
N (=2

until I = 99999

[Bonar & Soloway, 1983] 14

Carnegie Mellon University, School of Computer Science%

Q: Can people develop natural language
solutions to programming problems?

Write a [Pascal] program that repeatedly reads in positive integers, until it
reads the integer 99999. After seeing 99999, it should print out the average.

Rainfall Problem [Soloway et al, 1983]

repeat
Sum := 0 ¢ [Subject: Input to [pause| so that the computer will know
N =1 that, for each [pause| for each integer entered, you add 1,
Sum ‘=T + I you add the integer to the sum [points to “Sum = 0+ 1),
)) and that this is the first format of that, zero plus integer, N
N =2 equals 1, sum equals integer plus integer, number = 2, until

until I = 99999

[Bonar & Soloway, 1983] 15

Carnegie Mellon University, School of Computer Science%

Q: Can people develop natural language
solutions to programming problems?

Write a [Pascal] program that repeatedly reads in positive integers, until it
reads the integer 99999. After seeing 99999, it should print out the average.

Rainfall Problem [Soloway et al, 1983]

repﬂt Even though the subject seems fairly confused about how to
Sum =0 + [express the program in Pascal, he has a very clear idea about
N = 1 the actions needed for a correct solution. We have found that
Sum ‘=T + I this is typical -- novice programmers are not totally confused
N =92 about what needs to be done, just about how to express that
until I = 99999 need.

[Bonar & Soloway, 1983] 16

Carnegie Mellon University, School of Computer Scienceg

Q: Can people develop natural language
solutions to programming problems?

Goal: Create directions for somebody else.

Make one list of employees who meet either of the following criteria:

(1) They have a job title of technician and they make 6 dollars/hr. or more.
(2) They are unmarried and make less than 6 dollars/hr.

List should be organized by employee name.

[Miller, 1981]

17

Carnegie Mellon University, School of Computer Scienceg

Q: Can people develop natural language
solutions to programming problems?

Goal: Create directions for somebody else.

Make one list of employees who meet either of the following criteria:

(1) They have a job title of technician and they make 6 dollars/hr. or more.
(2) They are unmarried and make less than 6 dollars/hr.

List should be organized by employee name.

[Miller, 1981]

» Successful: other humans could accomplish tasks with their instructions
« Set operations, not loops: “For all the last names starting with G...”
» |If operations, but no else.

18

Carnegie Mellon University, School of Computer Science%

Q: Can people develop natural language
solutions to programming problems?

Suppose we sell concert tickets over the telephone in the following way —
when a customer calls in and asks for a number (n) of seats, the seller 1)
finds the n best seats that are available, 2) marks those n seats as
unavailable, and 3) deals with payment options for the customer (e.g. get-
ting credit or debit card number, or sending the tickets to the Will Call
window for pickup).

Suppose we have more than one seller working at the same time. What
problems might we see, and how might we avoid those problems?

[Lewandowski et al., 2007]

19

Carnegie Mellon University, School of Computer Scienceg

Q: Can people develop natural language
solutions to programming problems?

TABLE 7-2. Number of solutions and problems identified by students (n=66), from [Lewandowski et al. 2007]

Accomplishment Percent of students

Problems identified:

Sell ticket more than once 97%

Other 41%

Provided “reasonable” solutions to concurrency problems | 71%

« 66 CS1 students across 6 schools with no prior experience

(table from Making Software, 2011) 20

Carnegie Mellon University, School of Computer Scienceg

Q: Can people develop natural language
solutions to programming problems?

Reservation information from each of the com-
puters would have to cross-pollinate to each of
the other computers as soon as the seats changed
status at all, to either of the three states. This in-
troduces the problem of crossed signals. If seller
A and seller B both book seats 145 - 160 at
the exact same time, or within milliseconds of
one another, the instructions for reserving those
seats on each of the other computers would cross
mid-stream, introducing a problematic double-
booking, or even worse, no booking at all. [ID417]

[Lewandowski et al., 2007] 21

Carnegie Mellon University, School of Computer Science%

Q: Can people develop natural language
solutions to programming problems?

Children (aged 11 and 12) played a short 3D role-playing game and were
asked to describe the rules of the game.

Percentage

45.0
40.0

35.0 -
30.0 ~

o b -

25.0
20.0
15.0
10.0

5.0

W Triggers

Outcomes |

Correct Partially Missing Vague Erroneous Incomplete Partially
Missing Missing,
Error Categories Partially

Erroneous

Figure 2. Errors in triggers and outcomes

[Good et al., 2010] =22

Carnegie Mellon University, School of Computer Scienceg

Q: Can people develop natural language
solutions to programming problems?

e Yes, but...

e Lots of imprecision and underspecification

e Novices assume that instructee will interpret
instructions intuitively.

23

Carnegie Mellon University, School of Computer Scienceg

Intuitions about programming
lJanguage constructs

Usually Pacman moves like this.

Twelve fifth graders in a Pittsburgh
public elementary school

Now let’s say we add a wall. e Equally divided amongst boys and girls
e No prior experience programming

e “The participants received no reward
Pacman moves like this. other than the opportunity to leave their
normal classroom for half an hour and

the opportunity to play a computer
Not like this game for a few minutes.” ©

Do this: Write a statement that summarizes how [(as the computer) should
move Pacman in relation to the presence or absence of other things.

[Pane et al., 2001] 24

Carnegie Mellon University, School of Computer Scienceg

Intuitions about programming
lJanguage constructs

Programming Style
e 54% - production rules or event-based,
beginning with when, if or after.

When PacMan eats all the dots, he goes to
the next level.

e 18% - global constraints
PacMan cannot go through a wall
e 16% - declarations/other
There are 4 monsters.
Not like this e 12% - imperative
Play this sound. Display this string.

Usually Pacman moves like this.

Now let’s say we add a wall.

Pacman moves like this.

Do this: Write a statement that summarizes how [(as the computer) should
move Pacman in relation to the presence or absence of other things.

[Pane et al., 2001] 25

Carnegie Mellon University, School of Computer Scienceg

Intuitions about programming
lJanguage constructs

Usually Pacman moves like this.

Now let’s say we add a wall.

Pacman moves like this.

Not like this

Modifying State
e 61% - behaviors were built into the
entity, e.g. OO

Get the big dot and the ghost will turn
colors...

e 20% - direct modification of properties
After eating a large dot, change the ghosts
from original color to blue.

e 18% - other

Do this: Write a statement that summarizes how [(as the computer) should
move Pacman in relation to the presence or absence of other things.

[Pane et al., 2001] 2-

Carnegie Mellon University, School of Computer Scienceg

Intuitions about programming

lJanguage constructs

OR

e 63% - boolean disjunction

To make PacMan go up or down, you push
the up or down arrow key

e 20% - clarifying or restating the prior
item
When PacMan hits a ghost or a monster,
he loses his life.

e 18% - meaning otherwise
Not like this e 5% - other

Usually Pacman moves like this.

Now let’s say we add a wall.

Pacman moves like this.

Do this: Write a statement that summarizes how [(as the computer) should
move Pacman in relation to the presence or absence of other things.

[Pane et al., 2001] 27

Carnegie Mellon University, School of Computer Scienceg

Intuitions about programming
lJanguage constructs

Iteration or looping constructs
e 73% - implicit, where only a terminating
condition is specified
Make PacMan go left until a dead end
o 20% - explicit, with keywords such as
repeat, while, and so on, etc.

e 7% - other

Usually Pacman moves like this.

Now let’s say we add a wall.

Pacman moves like this.

» Loops are hotspots of errors for novice
programmers.

Not like this « Often expect terminating condition to be
checked continuously.

[du Boulay, 1989]

Do this: Write a statement that summarizes how [(as the computer) should
move Pacman in relation to the presence or absence of other things.

[Pane et al., 2001] 28

Carnegie Mellon University, School of Computer Scienceg

No. First name Last name Average score Performance
1 Sandra Bullock 3000
2 Bill Clinton 60000
3 Cindy Crawford 500
4 Tom Cruise 5000
5 Bill Gates 6000
6 Whitney Houston 4000
7 Michael Jordan 20000
8 Jay Leno 50000
9 David Lettermen 700
10 Will Smith 9000
Question 5A
e Describe in detail what the computer should do to obtain these results.
No. First name Last name Average score Performance
1 Sandra Bullock 3000 Fine
2 Bill Clinton 60000 Extraordinary
3 Cindy Crawford 500 Poor
4 Tom Cruise 5000 Fine
5 Bill Gates 6000 Fine
6 Whitney Houston 4000 Fine
7 Michael Jordan 20000 Extraordinary
8 Jay Leno 50000 Extraordinary
9 David Lettermen 700 Poor
10 Will Smith 9000 Poor

FIGURE 3. Depiction of a problem scenario in study two.

Population: Kids from same population + a few adults
from CMU who had no programming experience.

[Pane et al., 2001] 2o

Carnegie Mellon University, School of Computer Scienceg

Intuitions about programming
lJanguage constructs

No. First name Last name Average score Performance

1 Sandra Bullock 3000 (1] 1 1

2 Bill Clinton 60000 o 0o - OO ea n CO nJ u n C IO n

3 Cindy Crawford 500

4 T_om Cruise 5000 . .

| e i Erase Bill Clinton and Jay Leno

7 Michael Jordan 20000

8 Jay Leno 50000

Davi L H
o | e | e 76% - incorrect
?uDeeS;ic(:iI})eS/i\n detail what the computer should do to obtain these results. [] Eve’ybody Whose name Sta,‘ts With the /etter G

No. First name Last name Average score Performance and L P

1 Sandra Bullock 3000 Fine

|, amr, | A - Ifyou score 90 and above

4 Tom Crui 5000 Fine

5 Bill) Gates 6000 ane 4 3 ()/ .

g T\V/\;?cl}l\?lzly ‘11‘10;51011 gg%%o l];;‘::aordinary . 0 = Seq u e n CI n g

8 Jay Leno 50000 Extraordinary

9 David Lettermen 700 Poor .

o_| Crossed out the highest score and added

Fratne . Deiction of 8 prole st n studs o the lower scores
e 4% - specify a range
Fine is between 3000 and 20,000
e 5% - other

[Pane et al., 2001] 3o

Carnegie Mellon University, School of Computer Scienceg

Intuitions about programming
lJanguage constructs

N First nam Last Average score Performance
1 Sandra Bullock 3000
2 Bill Clinton 60000
3 Cindy Crawford 500
4 Tom Cruise 5000
5 Bill Gates 6000
6 Whitney Houston 4000
7 Michael Jordan 20000
8 Jay Leno 50000
9 David Lettermen 700

10 Wwill Smith 9000

Question 5A

¢ Describe in detail what the computer should do to obtain these results.

No. First name Last name Average score Performa
1 Sandra Bullock 3000 Fine
2 Bill Clinton 60000 Extraordinary
3 Cindy Crawford 500 Poor

4 Tom Crui 5000 Fine
5 Bill Gates 6000 Fine
6 Whitney Houston 4000 Fin
7 Michael Jordan 20000 Extraordinary
8 Jay Leno 50000 Extraordinary
9 David Lettermen 700 Poo

10 will Smith 9000 Poo

FIGURE 3. Depiction of a problem scenario in study two.

Adults were 100% successful
when using mathematical
notation.

Specifying open intervals
e 36% - words such as below, greater
than were intended to be exclusive

The performance of the person with the
average score below 1000 is considered as
poor (assigned good for 1000)

e 22% - ...inclusive

Poor would be below 999 (assigned poor
for 999)

e 22% - used powers of 10 for ranges

If your score is in the hundred’s your
performance is poor.

e 5% - mathematical notation
e 15% - other [Pane et al., 2001] s

Carnegie Mellon University, School of Computer Scienceg

Intuitions about programming
lJanguage constructs

z
o

Insertion into a data structure

SO XU U AW =

e ot | e 75% - no mention of making room for

Cindy Crawford 500

Tom Cruise 5000

new element
Whitney Houston 4000

Michael Jordan 20000

Jay Le: 50000

o il | 20 Put Elton John in the records in

. .
¢ Describe in detail what the computer should do to obtain these results. a/phabetlcal Order

z
°

SO U U W=

First name Last name Average score Performance 0/ k f I t b f

- , e 16% - make room for element before
andra Bullock 3000 Fine

Bill Clinton 60000 Extraordinary . . .

i “rawl P

o’ | o Fon Inserting it

Bill Gates 6000 Fine

Whitney Houston 4000 Fin

Michael Jord: 20000 E di H H
o Use the cursor and push it down a little and
David Lettermen 700 Poor

will Smith 9000 Poo

then type Elton John in the free space

FIGURE 3. Depiction of a problem scenario in study two.

e 6% - make room for element after
inserting it
o 4% - other

[Pane et al., 2001] 32

Carnegie Mellon University, School of Computer Scienceg

Natural Language Programming?

e Adifficult proposition — natural language is complex and
imprecise

Computer and programmer do not have a shared context [Nardi,
1993]; programmers cannot use rules of cooperative
conversation [Grice, 1975]

Not obvious where the computer’s limits are

e Novices can use formal languages if designed carefully
[Bruckman and Edwards, 1999]

Describing the instructee as a naive alien increases precision of
instructions [Galotti, 1985]

Anthropomorphizing computers is counterproductive [du Boulay,
1989]

33

Carnegie Mellon University, School of Computer Science%

L —

Fao6, 208

-

Wat=on

(Popular Science)

Carnegie Mellon University, School of Computer Scienceg

Principles

5-4. Closeness of mapping

“Programming is the process of transforming a mental plan
into one that is compatible with the computer.”
— Jean-Michel Hoc

e The translation process from a plan to a program should be
minimal. The expressiveness of a language.

Direct Manipulation [Shneiderman, 1983; Hutchins et al, 19806]

e Users have difficulty with low-level primitives [Hoc, 1990;
Nardi, 1993; Lewis, 1987]

e Domain-specific languages are behind many successful
end-user systems

[Pane and Myers, 1996] 35

Carnegie Mellon University, School of Computer Scienceg

Principles
Models and Metaphors

FILE CABINET SORTING BASKETS TABLE 9. PROPORTION OF CORRECT ANSWERS ON
| TRANSFER TEST FOR MODEL AND CONTROL

1«9 = GRroUPS—FILE MANAGEMENT LANGUAGE®
< ¢ &
FILE X ﬁ / ; £ Type of Test Problem
FILE Q “%@0 G
¥ . roup Com- Com-
FILE P Sort-1 Sort-2 Count pute-1 pute-2
\ Model 66 66 63 58 45
FILE Z Control 63 44 43 33 22
____] * Adapated from MaYE80a.

Note. 20 subjects per group; group X problem-type
interaction, p < .07.
MEMORY SCOREBOARD OQUTPUT PAD
COUNT TOTAL AVERAGE

55 212

COUNTI TOTALI AVERAGE!I

12 0

COUNTZ TOTAL2 AVERAGE 2
7 714 I

COUNT3 TOTAL3 AVERAGE3
33 33 |

COUNT4 TOTALS AVERAGE4
3 150 50 — /

FiGURE 3. A concrete model of the computer for a file management language.

[Mayer, 1981] 36

Carnegie Mellon University, School of Computer Science%

Principles

Contextualizing for Motivation

def chromakey2(source,bg):
for p in pixels(source):
if (getRed(p)+getGreen(p) < getBlue(p)):
setColor(p,getColor(getPixel(bg,x(p),y(p))))
return source

Drop Rate
Media Computation 2.5%
Traditional Intro to CS 10.1%

e Covered same material using media
(audio/visual) tasks

e Decrease in drop rate validated
for both CS0.5 and CS1 at several
institutions [Tew et al, 2005; Sloan
and Troy 2008; Simon et al, 2010]

e Learn different things but do skills

transfer later? [Tew et al, 2005]

e Initial positive result, cannot be replicated
37

Carnegie Mellon University, School of Computer Scienceg

Principles
7. Consistency and Standards

“Users should not have to wonder whether different words,
situations or actions mean the same thing.”
[Nielson, 1994]

e Notation should abide by suggestions that can be derived from
other places in the language, to facilitate transfer of
knowledge [Green, 1996].

e Users get confused when there are two different syntaxes to
accomplish the same effect [Eisenberg, 1987]

e The meaning of keywords should be context-independent.

Novices focus on surface features [McKeithen, 1981]

The keyword static in C++ has many meanings depending on

context.
[Pane and Myers, 1996] 38

Carnegie Mellon University, School of Computer Scienceg

Principles

4.4. Beware of Misleading Appearances
4.5. Avoid Subtle Distinctions in Syntax

e [Fitter, 1979] cites the principle of restriction: the syntax
prohibits the creation of code that could easily be confused
with other closely-related forms.

e Common typos and cognitive slips should be caught [Green,
1990]

e if (a = 0)vs.if (a == 0) inC

[Pane and Myers, 1996] 3¢

Carnegie Mellon University, School of Computer Scienceg

Principles
4.4. Principle of Conciseness

[Cordy, 1992] argues against redundant symbols,
preambles, punctuation, declarations and annotations

Also argues for intelligent defaults

Conciseness is not economy (a minimal set of primitives)

Early versions of Prolog did subtraction by inverse addition [Green,
1990]

APL takes conciseness to the extreme, leading to too many
cryptic primitives

[Pane and Myers, 1996] 4o

Goal: Gentle Slope Systems X
Java

Visual Basic

OO Programming

Difficulty
of
Use

Low Basic Goal
Threshol |
reshold | 5 High
Ceiling

Program Complexity and Sophistication

Copyright © 2009 — Brad A. Myers

Carnegie Mellon University, School of Comj

Historical Context

e Long History of study with other names
e Original HCI! —
1973 "Psychology of Programming” (PoP) SOFTWARE PSYCHOLOGY -

e “Software Psychology” |
Ben Shneiderman book, 1980

e "Empirical Studies of Programming” (ESP)
Workshops from 1986 through 1999

e "Psychology of Programming”

Psychology of Programming Interest Group (PPIG]
= from 1987 and PPIG’10 = 22t workshop =

e “Empirical Software Engineering”

e Much of the early CSCW research as well
e Computer-Supported Cooperative Work

Carnegie Mellon University, School of Computer Scienceg

References

Bennedsen, J., and M.E. Caspersen. 2007. Failure rates in introductory programming. SIGCSE Bull. 39(2): 32-36.

Bonar, J., and Soloway, E.. 1983. Uncovering principles of novice programming. In Proceedings of the 10th ACM
SIGACT-SIGPLAN symposium on Principles of programming languages (POPL '83). ACM, New York, NY, USA, 10-13.

Bruckman, A. and Edwards, E. 1999. Should We Leverage Natural-Language Knowledge? Proceedings of CHI 99.
New York: ACM Press, pp. 207-214.

Cordy, J.R. 1992. Hints on the Design of User Interface Language Features — Lessons from the Design of Turing.
Languages for Developing User Interfaces. B. A. Myers. Boston, Jones and Bartlett Publishers: 329-340.

du Boulay, B. 1989. Some difficulties of learning to program. In E. Soloway & J. C. Spohrer, Eds., Studying the Novice
Programmer, pp. 283-299. Hillsdale, NJ: Lawrence Erlbaum Associates.

Eisenberg, M., M. Resnick and F. Turbak. 1987. Understanding Proce- dures as Objects. Empirical Studies of
Programmers: Second Workshop. G. M. Olson, S. Shepard and E. Soloway. Norwood, NJ, Ablex: 14-32.

Fitter, M.J. and T.R.G. Green. 1979. “When Do Diagrams Make Good Computer Languages?” International Journal of
Man-Machine Studies 11: 235-261.

Galotti, K.M. and W.F. Ganong, Ill. 1985. What Non-Programmers Know About Programming: Natural Language
Procedure Specification. International Journal of Man-Machine Studies 22: 1-10.

Good, J., Howland, K., and Nicholson, K. 2010. Young People's Descriptions of Computational Rules in Role-Playing
Games: An Empirical Study. pp. 67-74, 2010 IEEE Symposium on Visual Languages and Human-Centric Computing,
2010.

Carnegie Mellon University, School of Computer Scienceg

References

Green, T.R.G. 1990. The Nature of Programming. Psychology of Programming. J.-M. Hoc, T. R. G. Green, R.
Samurgay and D. J. Gilmore. London, Academic Press: 21-44.

Green, T.R.G. and M. Petre. 1996. “Usability Analysis of Visual Programming Environments: A 'Cognitive Dimensions'
Framework.” Journal of Visual Languages and Computing 7(2): 131-174.

Grice, H.P. 1975. Logic and Conversation. Syntax and Semantics lll: Speech Acts. P. Cole and J. Morgan. New York,
Academic Press.

Guzdial, M. 2011. Why is it so hard to learn to program? In Making Software: What really works and why we believe it,
Andy Oram and Greg Wilson (eds), 111-121.

Hutchins, E. L., Hollan, J. D. and Norman, D. A. 1986. Direct Manipulation Interfaces. Hillsdale, NJ: Lawrence Erlbaum
Associates.

Hoc, J.-M. and A. Nguyen-Xuan. 1990. Language Semantics, Mental Models and Analogy. Psychology of
Programming. J.-M. Hoc, T. R. G. Green, R. Samurgay and D. J. Gilmore. London, Academic Press: 139-156.

Lewandowski, G., Bouvier, D. J., McCartney, R., Sanders, K. and Simon, B. 2007. Commonsense computing (episode

3): concurrency and concert tickets”. In Proceedings of the third international workshop on Computing education
research (ICER '07). ACM, New York, NY, USA, 133-144.

Lewis, C. and G.M. Olson. 1987. Can Principles of Cognition Lower the Barriers to Programming? Empirical Studies of
Programmers: Second Workshop. G. M. Olson, S. Sheppard and E. Soloway. Norwood, NJ, Ablex: 248-263.

Mayer, R. E. 1981. The Psychology of How Novices Learn Computer Programming. ACM Comput. Surv. 13, 1 (March
1981), 121-141.

Carnegie Mellon University, School of Computer Science%

References

McKeithen, K.B. 1981. “Knowledge Organization and Skill Differences in Computer Programmers.” Cognitive
Psychology 13: 307-325.

Miller, L. A. 1981. "Natural language programming: Styles, strategies, and contrasts." IBM Systems Journal 29(2): 184—
215.

Nardi, B.A. 1993. A Small Matter of Programming: Perspectives on End User Computing. Cambridge, MA, The MIT
Press.

Newell, A. and S. K. Card. 1985. "The Prospects for Psychological Science in Human-Computer Interaction." Human-
Computer Interaction. 1(3): 209-242.

Nielsen, J. 1994. Heuristic Evaluation. Usability Inspection Methods. J. Nielsen and R. L. Mack. New York, John Wiley
& Sons: 25-62.

Pane, J. and Myers, B. 1996. Usability Issues in the Design of Novice Programming Systems, Carnegie Mellon
University School of Computer Science Technical Report CMU-CS-96-132. and Human Computer Interaction
Institute Technical Report CMU-HCII-96-101, August, 1996.

Pane, J. F., Ratanamahatana, C. A., and Myers, B. A. 2001. "Studying the Language and Structure in Non-
Programmers' Solutions to Programming Problems", International Journal of Human-Computer Studies
(IJHCS). Special Issue on Empirical Studies of Programmers, vol. 54, no. 2, February 2001, pp. 237-264.

Shneiderman, B. (1983). Direct manipulation: a step beyond programming languages. IEEE Computer, 16, 57}69.

Simon, B., P. Kinnunen, et al. 2010. Experience Report: CS1 for Majors with Media Computation. Paper presented at
ACM Innovation and Technology in Computer Science Education Conference, June 26-30, in Ankara, Turkey.

Carnegie Mellon University, School of Computer Scienceg

References

Sloan, R.H., and P. Troy. 2008. CS 0.5: A better approach to introductory computer science for majors. Proceedings of
the 39th SIGCSE technical symposium on computer science education: 271-275.

Soloway, E., J. Bonar, et al. 1983. Cognitive strategies and looping constructs: An empirical study. Communications of
the ACM 26(11): 853-860.

Tew, A.E., W.M. McCracken, et al. 2005. Impact of alternative introductory courses on programming concept
understanding. Proceedings of the first international workshop on computing education research: 25-35.

Carnegie Mellon University, School of Computer Scienceg

“In an appropriate science of computer languages, one would
expect that half the effort would be on the computer side,
understanding how to translate the languages into executable
form, and half on the human side, understanding how to design
languages that are easy or productive to use.... The human

and computer parts of programming languages have developed
in radical asymmetry.”

Allen Newell and Stuart Card 1985

