Cyrus Omar and Jonathan Aldrich

Carnegie Mellon University
{comar, aldrich}@cs.cmu.edu

1. Background 3. Our Solution

Modular Syntax

The ML module system supports type abstraction, which localizes Typed syntax macros (TSMs) allow library providers to programmatically
reasoning about representation invariants: Introduce new syntactic expansions at a parameterized family of types:
Regular Expression Patterns Monadic Commands
signature PATTERN = sig signature MONAD = sig syntax $pattern[Q : PATTERN] at Q.t { syntax $do[M : MONAD, 'a] at 'a M.monad {
type t type 'a monad static fn(ps : ParseStream) : Exp => static fn(ps : ParseStream) : Exp =>
val Empty : t val ret : 'a -> 'a monad (* ... pattern parser here ... *) (* ... do notation parser here ... *)
val Str : string ->t val bnd : 'a monad -> (‘a ->'b monad) -> 'b monad } }
val Seg:t*t->t end
val Or : t*t->t _ o
va: Star : t(—>t When applying a TSM, the characters between the delimiters are sent to the
val CasSe - - .
t-> 2 -> (string -> 'a) -> (t* £ -> Q) -> static function that the TSM defines to determine the expansion (statically!):
(t*t->’a)->(t->'a) ->'a)
end (* assume P : PATTERN *) (* assume M : MONAD *)
let base = $pattern P /A|T|G|C/ let double _input = $do M int {
let renzyme = $pattern P /GC%{base}GC/ X < readint ()
2 * X
2. The Problem)
But programming against these interfaces has high syntactic cost: This solves our modularity problems!
(* assume P : PATTERN *) (* assume M : MONAD, The client specifies which module to use In the expansion
let base = P.Or(P.Str("A”), P.Or(P.Str(“T"), readint : unit — int M.monad *) as a macro parametertr.
P.Or(P.Str(“G”), P.Str(*C™)))) let double _input = M.bnd (readint ()) (fn x => M.ret
let renzyme = P.Seq(P.Str("G"), P.Seq((2*x)) This is a language feature. Our use of delimiters ensures

P.Str(“C”), P.Seq(base, P.Seq(P.Str(“G"),
P.Str(*C™)))))

that there cannot be syntactic conflicts.

To further lower syntactic cost, we can assoclate a TSM with an abstract type

Syntactic dialects (constructed using tools like Camlip4) can lower directly when it becomes abstract (a type-specific language (TSL))

syntactic cost:

_ structure P :> PATTERN = struct structure Option : MONAD = struct
let base = /A|T|G|C/ let double input = do typet=(*... * type 'a morl?ad = 'a option
let renzyme = /GC%{base}GC/ x < readint () N fun ret x = SOME x
2(’; X end with syntax $pattern fun bnd (SOME x) k = k x
en | bnd NONE k = NONE

end with syntax $do
But they are not modular: -

When we see a delimited form not prefixed by a TSM, we use local type
Inference to apply the TSL implicitly:

Which particular module does

the expansion of this derived syntax use?

let base : P.t = /A|T|G|C/ let double_input : int Option.monad = {
= - - " — 0 «—
If | try to combine such syntactic dialects, let renzyme : P.t = /GC%{basejGC/ X Xreadlnt 0

there might be conflicts! !

	Slide 1

