

 1. Background
The ML module system supports type abstraction, which localizes
reasoning about representation invariants:

Monadic Commands
signature PATTERN = sig
 type t
 val Empty : t
 val Str : string -> t
 val Seq : t * t -> t
 val Or : t * t -> t
 val Star : t -> t
 val case : (
 t -> ’a -> (string -> ’a) -> (t * t -> ’a) ->
 (t * t -> ’a) -> (t -> ’a) -> ’a)
end

signature MONAD = sig
 type 'a monad
 val ret : 'a -> 'a monad
 val bnd : 'a monad -> ('a -> 'b monad) -> 'b monad
end

Regular Expression Patterns

Modular Syntax Cyrus Omar and Jonathan Aldrich
Carnegie Mellon University
{comar, aldrich}@cs.cmu.edu

 2. The Problem
But programming against these interfaces has high syntactic cost:

(* assume P : PATTERN *)
let base = P.Or(P.Str(“A”), P.Or(P.Str(“T”),
 P.Or(P.Str(“G”), P.Str(“C”))))
let renzyme = P.Seq(P.Str(“G”), P.Seq(
 P.Str(“C”), P.Seq(base, P.Seq(P.Str(“G”),
 P.Str(“C”)))))

(* assume M : MONAD,
 readInt : unit → int M.monad *)
let double_input = M.bnd (readInt ()) (fn x => M.ret
 (2*x))

Syntactic dialects (constructed using tools like Camlp4) can lower
syntactic cost:

let base = /A|T|G|C/
let renzyme = /GC%{base}GC/

let double_input = do
 x ← readInt ()
 2 * x
end

Which particular module does
the expansion of this derived syntax use?

If I try to combine such syntactic dialects,
there might be conflicts!

But they are not modular:

 3. Our Solution
Typed syntax macros (TSMs) allow library providers to programmatically
introduce new syntactic expansions at a parameterized family of types:

syntax $pattern[Q : PATTERN] at Q.t {
 static fn(ps : ParseStream) : Exp =>
 (* … pattern parser here … *)
}

syntax $do[M : MONAD, 'a] at 'a M.monad {
 static fn(ps : ParseStream) : Exp =>
 (* … do notation parser here … *)
}

When applying a TSM, the characters between the delimiters are sent to the
static function that the TSM defines to determine the expansion (statically!):

(* assume P : PATTERN *)
let base = $pattern P /A|T|G|C/
let renzyme = $pattern P /GC%{base}GC/

(* assume M : MONAD *)
let double_input = $do M int {
 x ←readInt ()
 2 * x
}

This solves our modularity problems!

The client specifies which module to use in the expansion
as a macro parameter.

This is a language feature. Our use of delimiters ensures
that there cannot be syntactic conflicts.

To further lower syntactic cost, we can associate a TSM with an abstract type
directly when it becomes abstract (a type-specific language (TSL)):

structure P :> PATTERN = struct
 type t = (* … *)
 (* … *)
end with syntax $pattern

structure Option : MONAD = struct
 type 'a monad = 'a option
 fun ret x = SOME x
 fun bnd (SOME x) k = k x
 | bnd NONE k = NONE
end with syntax $do

When we see a delimited form not prefixed by a TSM, we use local type
inference to apply the TSL implicitly:

structure P :> PATTERN = struct
 type t = (* … *)
 (* … *)
end with syntax $pattern

structure Option : MONAD = struct
 type 'a monad = 'a option
 fun ret x = SOME x
 fun bnd (SOME x) k = k x
 | bnd NONE k = NONE
end with syntax $do

let base : P.t = /A|T|G|C/
let renzyme : P.t = /GC%{base}GC/

let double_input : int Option.monad = {
 x ←readInt ()
 2 * x
}

	Slide 1

