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Abstract

Many users of large distributed systems are plagued by high latency when accessing re-
mote data. Latency is particularly problematic for the critical application of search and

retrieval, which tends to access many objects and may su�er a long wait for each object
accessed. Existing techniques like caching, inferential prefetching, and explicit prefetch-

ing are not suited to search, are ine�ective at reducing latency for search applications, or
greatly increase the complexity of the programming model. This dissertation shows that
extending the �le system interface to support a new abstraction called dynamic sets can

address the problem of latency for search without incurring the penalties of the other
techniques.

A dynamic set is a lightweight and transitory collection of objects with well-de�ned

semantics. An application creates a dynamic set on-demand to hold the objects it wishes

to process. Adding dynamic sets to the system's interface results in two bene�ts. First,
creation of a set discloses the application's interest in the set's members to the system.
This allows the system to reduce the aggregate I/O latency of search through prefetching
and reordering of requests. Second, dynamic sets provide direct support for accessing and

manipulating sets of objects. Thus dynamic sets improve performance and functionality
without unduly increasing the complexity of the programming model.

This dissertation describes the design of the dynamic sets abstraction, an implementation
which adds dynamic sets to the 4.3BSD �le system interface, and an evaluation of the

implementation. The implementation allows several applications, including Unix search
tools and a WWW browser, to access sets of Coda, NFS, WWW, and local �le system
objects. With little e�ort one can modify other applications to use sets or extend the

implementation to allow access to other systems. The evaluation shows that dynamic
sets can substantially reduce I/O latency for search on wide and local area distributed

systems and on local �le systems. For example, replaying traces of real users searching
on the WWW shows that sets can reduce latency by over an order of magnitude across

a range of factors.
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Chapter 1

Introduction

A central problem facing distributed systems is the high latency of accessing remote data.
Latency is problematic because it reduces the bene�t typical applications can receive from

faster CPUs, and reduces the productivity of users who are forced to wait for data. Long
I/O delays can be frustrating as well, especially if the variance in the delay is high. This
dissertation demonstrates that a small, carefully designed extension to the system-call
interface of an operating system can result in a substantial reduction in the aggregate
latency of search applications, while maintaining the integrity of the interface.

The original insight of this dissertation is that the system-call interface of current oper-

ating systems is overly restrictive, and limits the system's ability to address this issue of
I/O latency. To reduce latency, the dissertation proposes a carefully designed extension

to the system called dynamic sets. Dynamic sets expose asynchrony to the application
through a controlled and well-de�ned interface. This exposure allows applications to
disclose information to the system about the application's future data needs, without

unduly increasing the complexity of the programming model. The system can employ
this information to reduce the latency seen by the application and user. The bene�ts
resulting from use of dynamic sets include lower aggregate latency to access a set of

objects, greater opportunity to adapt system behavior to changing resource availability,

and a more powerful interface for applications that process sets of objects.

The remainder of this chapter provides an overview of dynamic sets. Section 1.1 intro-
duces dynamic sets, and discusses their bene�ts and limitations. Section 1.2 presents the

thesis statement and describes three key questions about its validity which are addressed
by this dissertation. Section 1.3 sketches the approach I took in validating the thesis

statement, and presents a road-map for the remainder of this dissertation.

1
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1.1 Introducing Dynamic Sets

A dynamic set is a lightweight, transitory, and unordered collection of objects that is

created on-the-
y by an application to hold the objects it wishes to process. An object's
membership in a dynamic set is therefore an implicit hint to the system of the applica-

tion's interest in the object. With these hints, the system can safely allocate resources

to prefetch remote objects that are members of a set, reducing the latency seen by the
application when accessing set members.

An application creates a dynamic set by opening it, supplying a membership speci�cation
that is evaluated by the system to determine the names of the set members. Applications

can then process the set members by iterating on the set. Every call to the iterator returns

a handle to an object which has already been fetched. As a result, the application sees

either little or no latency to access the object's data. Applications can also choose to

manipulate set membership, for instance by merging two sets to form their union. For
example, one might create sets to hold the results of queries to two news services, and
then intersect the sets to �nd stories common to both services.

1.1.1 Advantages of Dynamic Sets

Dynamic sets o�er three chief advantages. First, use of dynamic sets can reduce the
aggregate latency seen by applications to access set members. By prefetching, the system
can exploit the available parallelism between servers or disks through concurrent I/O, can
overlap I/O and processing, and can improve resource utilization. In addition, dynamic

sets allow the application to indicate to the system that the members are no inherent
order. This in turn frees the system to determine an e�cient order in which to fetch

members, employing knowledge of system state which it alone possesses. This bene�t is
unique to dynamic sets, and can result in additional savings over prefetching alone.

Second, this solution is consistent with widely accepted software engineering principles

because it hides information between levels of the system. Dynamic sets o�er a well-
de�ned and controlled exposure of asynchrony to the application programmer, and do not

unduly burden the programmer with the complexities of multi-threaded applications and

asynchronous operations. In addition, applications can bene�t from prefetching without

requiring the programmer to possess knowledge of the system implementation or current

state. The system also bene�ts from preserving a clean application/system boundary:
dynamic sets disclose information that is independent of the particular application using

sets, but that can be exploited by the system to improve performance. An added bene�t is

that greater knowledge of the application's future data needs enables the system to adapt

its behavior dynamically to suit changing network performance or resource availability.
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A third bene�t to this solution is that it is well tuned to support search applications on

a broad range of systems. Search is a process of identifying and �ltering through a set

of objects in order to �nd objects with some desired property. Search applications can

use dynamic sets to hold the objects to be examined, iterating over the set to apply a

�lter to each object in turn. Although tuned for search, dynamic sets are useful to any
application that processes groups of objects, su�ers from substantial I/O latencies, can

bene�t from prefetching, and can tolerate reordering of requests. In addition, experiments
presented later in the dissertation show that a single implementation of dynamic sets

o�ers signi�cant reductions in I/O latency for searches on the WWW, NFS, and local

disk.

1.1.2 Limitations of Dynamic Sets

The primary limitation of this solution is that it requires modifying applications to use
dynamic sets in order to receive bene�t. This, in turn, requires access to an application's
source code. Further, it is unclear how the process of rewriting an existing application to

use dynamic sets could be automated. However, the extent of the modi�cations is often
limited to a small portion of the program, and thus only a modest e�ort is required. For
example, I have been able to modify several existing Unix tools like grep to use dynamic
sets within several hours.

A second limitation to this solution is that the bene�ts of dynamic sets are not universal.

Applications that do not process collections of objects, or searches that cannot easily

identify the names of the members they want to process will not be able to use iteration
over sets as the primary mode of access. As a result, these applications will not receive
the full bene�t of dynamic sets. In addition, applications which have strong ordering re-
quirements are not good candidates for this approach. However, the class of applications

that can use and bene�t from dynamic sets includes search and data mining.

1.2 The Thesis

The thesis of this dissertation is that

Dynamic sets reduce the aggregate I/O latency for search applications in a di-

verse set of domains, through prefetching and reordering of requests. In addition,

dynamic sets o�er enhanced functionality by supporting iterators, associative nam-

ing, and direct management of sets of objects.
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There are several questions about the validity of this statement whose answers are not

immediately obvious. The most important question is whether or not there is any op-

portunity in practice to improve performance through prefetching and reordering. If

there are bene�ts, are the potential gains worth the cost of modifying a well established

paradigm, the �le system interface? Can the bene�ts be quanti�ed and measured through
experimentation? Are the bene�ts available under a variety of conditions, or will dynamic

sets only help a small number of specialized applications?

A second collection of questions involves the design of the dynamic sets abstraction. Can

a simple interface be designed that provides su�ciently accurate hints yet is easy to

program and use? Can such an interface extension be integrated with the �le system in
a seamless manner? What properties or semantics should an abstraction like dynamic

sets possess? Can an implementation o�er consistency guarantees that meet application

requirements without signi�cant changes to the system?

A third collection of questions concerns the di�culty of implementing the dynamic sets
abstraction. How di�cult is it to add dynamic sets to an existing system? Will the

implementation of the abstraction be easily ported to new systems, or does it require
substantial modi�cations and dependencies to the system to which it is added? Can

di�erent types of systems be smoothly integrated under dynamic sets? Can the resulting
implementation achieve balance between fetching aggressively and avoiding oversubscrip-
tion of resources in a single mechanism that works well for a range of systems? A poorly

tuned prefetching engine or one that erroneously prefetches objects that will not be used
can result in loss of performance. In large distributed systems, a single misbehaving
client may inadvertently degrade the performance of the entire user community.

1.3 Thesis Validation and Road-map

The purpose of this document is to answer these questions by demonstrating the bene�ts

of dynamic sets for real search applications on existing systems. The validation of the

thesis is based on the design of the dynamic sets abstraction, its implementation as
an extension of the 4.3 BSD �le system interface, and experiments which examine the

performance bene�ts of dynamic sets. This implementation includes a prefetching engine

designed to work on a variety of �le systems, and is integrated with a number of di�erent
�le systems. The experimental results show impressive performance bene�ts on three

di�erent systems due to both prefetching and reordering. In addition, dynamic sets
e�ectively eliminated I/O stalls in some circumstances.

The remainder of this dissertation describes the design, implementation, and evaluation
of dynamic sets. Chapter 2 provides motivation for dynamic sets, as well as a brief

background on relevant distributed systems concepts. Chapter 3 discusses the design
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rationale and design of the dynamic sets abstraction, and closes with a short list of

application domains in addition to search for which dynamic sets should work well.

The implementation of dynamic sets as an extension to the 4.3 BSD �le system is de-
scribed in Chapters 4, 5, and 6. Chapter 4 describes the basic architecture of the dynamic

sets abstract data type, including a description of the interface between the dynamic sets

abstraction and underlying �le systems and a brief discussion of the prefetching engine.
Chapter 5 discusses how I modi�ed existing application to use dynamic sets, and the

implementation of various wardens which allow dynamic sets to interact with a number
of distributed systems. Chapter 6 describes the issues involved with prefetching, and

gives a detailed description of the prefetching engine.

Chapters 7, 8, 9, and 10 describe the experiments used to demonstrate the performance
bene�ts of dynamic sets. Chapter 7 presents a simple performance model to help under-

stand the factors a�ecting the performance of prefetching. Chapter 7 also describes the

experimental methodology of three experiments, each of which examines the performance
bene�ts of dynamic sets to search in a di�erent domain. The experiment described in

Chapter 8 uses trace replay to determine the bene�ts of dynamic sets on the WWW.
Chapter 9 presents measurements from a synthetic benchmark which show the perfor-

mance bene�ts of dynamics sets to Unix search tools on NFS. Chapter 10 presents the

results of a similar experiment on �les stored on the local disk.

The dissertation concludes with a discussion of related work in Chapter 11, and a dis-
cussion of future work in Chapter 12. The concluding chapter also summarizes the key
results, and presents the contributions of this dissertation.
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Chapter 2

Motivation for Dynamic Sets

The problem addressed by this thesis is the high latency of accessing remote objects in
a distributed system. This chapter discusses this problem in more detail. Section 2.1

starts by discussing the factors which contribute to I/O latency, and argues that existing

solutions are not always appropriate, and in particular do not work well for search.
Section 2.2 then describes search and retrieval, an important class of applications, and

presents several examples of search in distributed systems. Section 2.3 presents four
drawbacks to current systems that limit their ability to support search, which leads to the
solution proposed by this dissertation, discussed in Section 2.4. The chapter concludes

with a background discussion of naming and consistency, two aspects of distributed
systems that are related to the design of dynamic sets.

A distributed system is a collection of interconnected computers that facilitate sharing
of information between members of the group. Computers called servers export data
objects such as �les, pictures, or movies to other computers called clients. Usually the
server or client is a program running on the server or client machine. To di�erentiate

between the machine and the program, I refer to the former as the \client" and the
latter as the \client subsystem"; \server" and \server subsystem" are similarly de�ned.
Some systems do allow a machine to act both as a server and a client simultaneously,

but in practice the client and server are on di�erent computers. Special computers called

proxies act as intermediaries between clients and servers. For instance, some companies

that protect their internal network put a proxy on their �rewall1 to allow internal clients

to access data on external servers.

For purposes of this dissertation, the two interesting classes of distributed systems are

distributed �le systems (DFS) and global distributed information systems (GDIS).2 Both

1A �rewall is a special router which acts as a barrier between internal and external networks.
2To ease exposition, the dissertation will con�ne the term \distributed system" to refer to just these

two classes.

7
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classes provide access to persistent objects which are stored on servers, use client caching

to reduce latency, and use the basic open/read/write/close operations that are similar

to those contained in the interface of the local �le system. The chief di�erences between

them are the scale, mode of access, organization, and autonomy of the components typical

of systems in each class. Examples of DFS include Coda[82], NFS[77], and AFS[34]3.
Examples of GDIS include the World Wide Web (Web or WWW)[6], FTP[70], and

Gopher[52].

2.1 Latency of Remote Access

One frustrating aspect of using distributed systems is the interminable delays one some-
times see when accessing remote data. A major reason for slowness is latency, the time

between the request for data and the arrival of the reply. This section argues that high

latency is endemic to distributed systems in the sense that remote operations are always

slower than equivalent local operations, and that remote accesses are often much longer
due to latency. It then describes the existing techniques used to address latency, and why
these techniques are often not su�cient to reduce the impact of latency on performance.

2.1.1 Latency Is Endemic to Distributed Systems

To understand why latency is a fundamental aspect of remote access, �rst consider the

work that must be done to fetch remote data. An access begins when the application

demands some data object from the system. The client formulates and sends a request
packet for the data to the server. Request packets are typically small, and so do not
consume much network bandwidth. As the packet travels to the server, it may be routed

through di�erent physical networks, the number depending on the topology between the
client and the server. Local area networks may only have a couple of these hops to

traverse, whereas packets in a wide area network may traverse tens of hops. Congestion
on these intervening hops may further delay our packet.

When the packet arrives at the server, it is queued with other incoming packets. When

the server has processed other requests preceding the packet in the queue, it can begin
to service our request. Servicing the request consumes server CPU, and may require disk

accesses. Although it is rare, the server may also need to contact other servers at this

point introducing further delays. When the server has satis�ed the request, it bundles the

3The boundaries between DFS and GDIS are not �rm, and one could consider AFS to reside in either

class. Within a cell, AFS resembles other distributed �le systems. Accesses between cells, however, is

more like a GDIS.
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results and sends them back to the client, where they are passed up to the application.

When accessing a remote object, the results consist of the object's data.

One source of latency is propagation delay, the time it takes the request to travel to the
server and the response to travel back. Even ignoring congestion, the latency from prop-

agation can be substantial. In GDIS, packets may have to travel long distances, and so

su�er signi�cant propagation delays due to the speed of light limitation. For example, it
takes light roughly 15 milliseconds to travel from Pittsburgh to Berkeley, CA. A photon's

round trip between coasts is therefore as long as two local disk accesses. When overhead
for protocol processing and routing is �gured in, the time is much higher: sending a small

packet round trip between Pittsburgh and Berkeley can take 200 milliseconds and makes

17 hops4.

Another factor in high latency is network and server load. Multisecond response times are
common when accessing popular servers on the WWW, even when the communication

delay should be negligible. For instance, users at CMU often see long delays when ac-
cessing data o� the server www.cs.cmu.edu, even though it resides on the same physical

network. In addition, overloading servers and network components can cause temporary

failures, which delay clients of the system for the duration of the timeout period. Be-
cause of the large variance in response time due to slow links, congested routers, and

overloaded servers, these timeouts are necessarily much longer than the average response
time. Although one would expect these failures to be rare, on a system the size of the
WWW they are common enough to be a substantial source of latency over time.

An interesting aspect of latency is that the tremendous technological advances in CPU

speed, disk bandwidth, and network bandwidth will not substantially reduce it. First,
propagation delay is bounded below by the speed of light, which is a hard limit. Second,
technological advances are consumed by growth in usage. Although network bandwidth,
disk bandwidth and capacity, and server CPU speeds are doubling every year and a half,
usage of these resources is also growing as fast or faster. On the Internet, for instance,

the amount of tra�c has doubled within several months and has been climbing sharply
within the last few years5. This increase in load is due to both growth in users as well
as the larger �le sizes common in multimedia applications. Third, the decomposition

of the Internet into subnets introduces many hops between network segments, each of
which adds to the latency. The hops result from administrative artifacts and physical

limitations, and thus cannot be eliminated by technology, although faster router hardware
can decrease the cost of internetworking. Finally, as CPU speeds increase exponentially

while I/O latency does not, the relative contribution of latency to the performance of
many applications will rise. Thus the impact of latency may actually worsen due to

4Based on the results of the traceroute utility run on a computer at CMU in July, 1995.
5From statistics of NSFNET backbone usage collected through early 1995 by Merit Network, Inc.,

available as ftp://ftp.merit.edu/statistics/nsfnet.
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improvements in technology!

2.1.2 Reducing the Latency of Remote Access

Two techniques are commonly used to reduce the e�ect of high latency: caching and

prefetching. Prefetching can be further divided into 3 classes: inferred, explicit, and
informed prefetching. This section discusses caching, inferred prefetching, and explicit

prefetching, and describes why these solutions by themselves do not solve the issue of

latency in general, and are not appropriate for search applications in particular. The

dynamic sets abstraction is an example of informed prefetching, which is discussed in
Section 3.2.3.1. Figure 2.1 shows the hierarchy of these techniques, and the location of

dynamic sets in this hierarchy.

PrefetchingCaching

Inferred Explicit Informed

Techniques for reducing latency

Dynamic Sets

This �gure shows the hierarchy of techniques to reduce latency. The dynamic sets abstraction is

an example of informed prefetching. The other techniques are either not e�ective for search, or

complicate the programming model.

Figure 2.1: Hierarchy of Techniques to Reduce Latency

2.1.2.1 Caching

Caching involves keeping local copies of recently accessed objects, and using these cached

copies to satisfy future requests. Caching consumes local resources in the hopes that the
workload will exhibit temporal locality, the likelihood that the object currently being

accessed will soon be accessed again. If the user requests a cached object, the request
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can be satis�ed without a remote access, and is called a cache hit or just a hit. Conversely,

requests that are not satis�ed by cached data are called misses. Since local resources are

�nite, a cache's capacity is limited. If a cache does not have su�cient space to hold an

incoming object, some cached data must be evicted to make space. Most caches employ a

least recently used (LRU) policy, in which the object that has been accessed least recently
is chosen for eviction.

There are two limitations to caching. First, many important applications, such as search,

do not exhibit temporal locality. Caching cannot reduce latency on the �rst access to

an object, and does not help if the object is evicted before it can be used to satisfy a

request. Second, caches only bene�t applications whose working set �ts into the cache. If
the working set is larger than the cache, the system will evict one member of the working

set in order to cache some other member. When the evicted object is recached, it will
displace yet another object. In the worst case, every access becomes a cache miss, and

the cache is said to thrash.

In addition to these limitations, caching data that will not produce a cache hit can
degrade performance. Caching consumes local resources such as memory or disk space,
and may require computation and network bandwidth to assure the currency of the data

in the cache. In addition, caching an object in steady state requires the eviction of some
other object. For an application with poor locality, the evicted object may be referenced
sooner than the cached object, which will force an extra cache miss and synchronous I/O

operation to refetch that object. Applications like search that access many objects may
completely 
ush a cache of all but those objects used in the search, reducing the cache's

hit rate and increasing the average cost of I/O for all users of that cache.

2.1.2.2 Inferential Prefetching

Prefetching anticipates future accesses to an object and initiates the fetch operation on
it before the object's data is requested. If initiated far enough in advance, the fetch

may have completed before the object is requested and the application will not su�er

any latency. The di�culty in prefetching is accurately predicting the future. Inaccurate
predictions lead to fetching objects that are not going to be used. Since prefetched

objects are stored in the cache, these inaccurate predictions can evict valuable data

leading to future cache misses. Inaccurate predictions can also degrade performance
by overloading the disk, network, or server, which are commonly the bottleneck of I/O

intensive applications[44, 87].

The most common form of prefetching infers future activity based on observations of

past accesses. The idea is that people tend to access information in roughly the same
pattern as they have in the past. Of course, this presumes locality since the system must

have observed this pattern many times in the past in order to detect it now. Inferential
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prefetching is thus poorly suited to search, and is likely to produce inaccurate predictions.

In addition to harming other applications at this client, squandering network bandwidth

and server capacity on speculative predictions in this way can negatively impact the

other users of a distributed system. On a GDIS, not only is this behavior considered

inappropriate by the millions of other users sharing the Internet, but it may also prove
costly if Internet providers begin to base access charges on bandwidth usage.

2.1.2.3 Explicit Prefetching

Another form of prefetching exposes I/O operations to the application, and has the

application manage prefetching by explicitly invoking asynchronous I/O operations. The
advantage of this approach is that it avoids erroneously prefetching objects that are not
going to be used: the application knows which objects it will need in the future, and

can fetch them accordingly. In addition, a correctly tuned application can receive the
bene�ts of prefetching without requiring modi�cations to the system.

The drawbacks to this approach far outweigh these bene�ts, however. First, managing
asynchrony greatly complicates the task of the programmer. To gain the bene�ts of
asynchrony, the application must manage bu�ers, connections, and multiple threads of
control itself. Multi-threaded applications are often much harder to write and debug
than single-threaded applications, introducing race conditions, deadlock detection, and

many other issues. Second, having the application manage asynchrony is less e�cient.

For instance, if the application were prefetching Coda �les, it would have to maintain its

own cache of the data in addition to the Unix bu�er cache in the kernel and Coda's cache
container �le on disk. Third, applications are unaware of the state of the resources in the
system, and are not always able to order the requests e�ciently. For instance, the location
of �les is purposely hidden from applications in many DFS, and so an application would

not know to parallelize access to �les stored on independent servers. Fourth, the system
may be unable to di�erentiate between the application's synchronous and asynchronous
requests, and so cannot prioritize the operations appropriately.

2.2 Search and Retrieval in Distributed Systems

The problem of high latency is especially problematic for search applications on dis-

tributed systems. One aspect of distributed systems that make them interesting is that
they provide access to a large wealth of information. Unfortunately, �nding a particular

piece of information, or determining whether such information exists in the system, can be

nontrivial. This is especially true of GDIS, which have thousands of information sources,

from the status of the latest NASA Space Shuttle mission at http://shuttle.nasa.gov/
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(including images, a tracking display, and information about the crew), to an online

\electronic museum" at http://sunsite.unc.edu/expo/ticket office.html, contain-

ing information and images from the US Library of Congress. It is also true of typical

DFS installations, which have many servers storing thousands of objects. E�ective use

of these systems therefore hinges on one's ability to locate data objects of interest. This
process of locating and retrieving information is called search and retrieval, or simply

search.

Search in a distributed system is an iterative process of identifying a set of candidate

objects and examining the objects to determine which if any satisfy the search criteria.

Identi�cation is the process of determining the names of relevant objects, and may be

done by the user directly or with the aid of a search engine. The examination is done

by fetching the objects and applying a �lter to them. Objects satisfying the �lter may
then be passed on to the next stage of the search. The job of each stage is to reduce the
search's focus to a smaller set of candidate objects. As the set of likely objects grows
smaller, more expensive �lters can be applied to narrow the search further. Search ends
when the current set of objects satis�es the searcher's goals.

Although the behavior of individual searches can vary, all searches share some common

characteristics. First, because search accesses many objects, it is particularly subject
to the high latency of remote access. The e�ect of the aggregate latency to access all
the candidate objects is a signi�cant portion of the time to search, especially when the
amount of processing to �lter objects is small. Second, search is a read-only activity,
although the user may wish to modify the located object after terminating the search.

Third, search tends to exhibit poor locality. One reason for this is that searches for
unrelated objects are likely to access disjoint sets of candidate objects. Another is that

once an object is discarded from the search, it is unlikely to be reaccessed as part of the
same search.

An assumption made by this dissertation is that the duration of search tends to be much
shorter than the lifetime of the candidate objects. As a result, the membership of a

set created at the beginning of a search is likely to stay current for the duration of the

search. There are two reasons why this assumption is reasonable. First, searches tend to

focus on objects holding reference data, which have relatively long lifetimes. Reference
data includes things like magazine and newspaper articles, technical reports, versioned

source code, movies, photographs, and travel information. Once published, these objects

tend to change slowly if at all. For example, a newspaper article is never modi�ed once

published, although it may be taken o�-line after weeks or months. Second, the duration

of a search tends to be self-limiting. If the search takes too long to perform, early results
may be useless by the time the search completes. For instance, a search for movie listings

that takes more than a day to perform is likely to produce outdated results.

The following sections characterize some of the kinds of searches targeted by the disser-
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tation by providing three examples. Each example is used to illustrate particular aspects

of search, although many of the aspects are common to all the examples. These examples

and the characterization of search will be used again to describe the design of dynamic

sets in the next chapter.

2.2.1 Example 1: Simple Search

Suppose one wanted to �nd the de�nition of a global variable in the source code of a large

program. On a Unix-like system, the simplest way to perform this search would be to
run \grep varname *.c" in each of the program's source directories. Grep is a pattern

matching program that locates occurrences of strings matching a pattern (varname in

this example). It opens and sequentially reads each of the input �les (those whose names
end in \.c") serially. This example is a single-stage search which employs the user's

knowledge to identify the candidate �les, and uses grep as the �lter.

Although simple, this example is typical of many searches. The names of the �les to be
processed are known early in search, and the set of candidate objects does not change

while the search is running. None of the �les involved in the search are modi�ed, and

all are read sequentially in their entirety. And like most searches, this search is I/O
intensive: grep does very little processing per byte; most of the time to perform this

search is taken by I/O.

It may be noted that this search is potentially ine�cient. Often the �les in a group of
source directories correspond to several programs. In order to �nd the variables used
by a single program, it is only necessary to search through the source �les that compile
that particular program. However, it is easier for users to type \*.c" than to more
exactly specify the desired set, and this leads to ine�cient searches. One solution is to

automatically parse the source �les and build an index of locations of variable de�nitions,
as is done by etags

6. Another solution would be to determine dynamically which �les
are used to compile the program, and limit the search to those �les. Either solution
amounts to using tools to identify the candidate objects instead of relying on the user to

do so.

2.2.2 Example 2: Using Search Engines

Suppose one were interested in locating WWW objects that contained information on

cows. One would start by choosing a search engine and sending it a query asking for
objects that contain the word \cow". The search engine responds with a hypertext

6etags, available at URL ftp://prep.ai.mit.edu//pub/gnu/GNUinfo/ORDERS, is part of the Free

Software Foundation's gnu-emacs utilities.
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document containing the list of names of objects that it knows contain the word \cow".

One could then fetch and display some or all of the objects.

This example illustrates several important points. First, many searches on GDIS begin
by querying a search engine to determine the names of the objects that are likely to

satisfy the search. Second, the searcher in this example is human, and thus processing

happens at human speeds: on the order of seconds. This means that the system would
have substantial opportunity to prefetch the next object if it knew what the user was

going to select. Since the user is productive while reading the data, it also means that
the appropriate performance metric is the apparent delay between the request for and

return of an object, not the elapsed time for the search. Third, the search criteria are

fuzzily de�ned. The searcher has not speci�ed which objects are of interest, or even what

type of objects are desired. Further, the searcher is satis�ed even if the system does not
return all related documents as long as some interesting documents are found.

This example also raises two interesting points. First, the result set of a query may be
quite large, both in terms of cardinality and the aggregate size of the members. Since
the resources of any one client are limited, any mechanism which prefetches set members

must also manage resources to avoid overrunning the client or network. Second, search
engines often provide estimates of how closely the members of the result set match the
query. If the estimate is correct, a member with a higher rank is more likely to satisfy

the search. As a result, a prefetching strategy which takes these ranks into account may
produce the desired data more quickly than one that does not.

It should be noted that this kind of search is the most common on the WWW. Popular

clients like Mosaic and Netscape have only rudimentary support for using automated
�lters, and the WWW is too large for users to know a priori the locations of likely
candidates.

2.2.3 Example 3: Multi-Stage Search

The previous two examples consider single-stage searches in which a group of objects is

identi�ed and then processed. This example shows how a searcher may wish to re�ne

the membership of a set before examining the members. As an example, consider a
personalized daily electronic newspaper. Using the multitude of online news sources,

one could search for articles pertaining to, for example, cattle and the meat industry.

Currently, no one source indexes articles from multiple newspapers. Instead, each news
source, such as the San Jose Mercury News (http://www.sjmercury.com/) or the Wall

Street Journal (http://update.wsj.com) provides indexes to its articles7. To collate

7In locating these papers, I found references to over 500 online services from newspapers around the

world!



16 CHAPTER 2. MOTIVATION FOR DYNAMIC SETS

the articles from various sources, our user would run a search on each of the indexes, and

merge the results to obtain a single set of candidate objects.

A personalized newspaper is an example of a multi-staged search. Each query produces

a set of objects. Rather than examining the queries' results immediately, the sets are
merged to produce a new set. This new set may also be further re�ned before arriving

at the set of objects that will be read. For instance, the new set may be too large to
warrant the system fetching all the objects, such as would be the case if the aggregate

size of set's members was several hundred kilobytes and the client was connected over a

low bandwidth phone line. In this case, one may wish to fetch a subset containing only
small objects, or alternatively fetch only those articles concerning Holsteins.

This example also shows the dynamic nature of search. Each day one runs exactly the
same query, but gets back a completely di�erent set of objects. In addition, the set of

articles identi�ed by today's query is only valuable for a limited period of time; at most
the set is valuable until tomorrow's articles are published. Furthermore, the set has weak

currency requirements. One would be satis�ed if the articles were slightly out of date, say
on the order of hours, as long as they were not days old and completely out of date. For
instance, it would be quite reasonable to run the queries automatically every morning,

and preserve the set until one had read the articles later in the day.

2.3 Drawbacks of Existing Systems

So far this chapter has stated that latency is problem in distributed systems, and is a
particular problem for the critical application of search. This section lists four drawbacks

of existing systems that limit their ability to provide better performance and support for

search applications.

The �rst drawback of current systems is that there is no way to expose to the system

the relationship among a group of objects. Without this support, applications must
orchestrate access to the group themselves. Either they access the group members serially,

and su�er the resulting performance penalty, or they use explicit asynchrony and become
signi�cantly more complicated. Applications which use explicit asynchrony to prefetch
end up with multiple copies of data, keeping copies in their virtual memory in addition

to the copies in the Unix bu�er cache and/or disk. This also leads to poor paging

performance, since the paging subsystem is ill equipped to handle prefetching of this sort.
Modifying the pager to better manage prefetched data is a risky proposition, and previous

systems which have modi�ed the pager to support more advanced paging strategies have

su�ered serious performance penalties as a result[17].

A second drawback is that current systems do not support iteration over groups of ob-

jects. Iteration is a natural way of processing groups of objects, and is a key feature of
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many high-level programming languages such as Alphard[85], CLU[48] and Modula-3[32].

Providing system support for iteration not only provides a more powerful �le system in-

terface, it also provides the system an opportunity to improve performance. For instance,

a system could prefetch a member before yielding it, reducing the latency to access the

members. Further, it could ensure that a group member's data was in memory before
yielding it through the iterator to reduce the disk latency of reading the object's data.

A third drawback is that current systems force applications to process groups of objects

in an imposed order. Because the current distributed systems only support access to

individual �les, accesses to the group must follow some serial order. Often the ordering
is supplied by a third party, such as the Unix shell. Although the imposed order may

occasionally be useful, it is often the case that the application does not care in which
order the group members are processed. If the order could be left to the system, the
system could exploit information only it knows in order to reduce the aggregate latency

of access. For instance, the system could order objects such that cached members are
yielded before uncached members. Thus the latency to fetch the uncached members
could be overlapped with the processing of the cached data. Alternatively, fetches could

be ordered to take maximal advantage of parallelism between servers, providing further
reductions in latency.

A fourth drawback is that current systems only provide persistent collections. Systems
allow groups of objects to be co-located in directories, and some even provide the means

of clustering the �les within a directory to speed access. However, creating a directory
and storing it involves updating persistent storage, and so entails a signi�cant overhead.

In replicated systems, persistent updates may involve distributed transactions as well.

The cost of a persistent update makes directories inappropriate for holding the results
of short-lived collections like the results of queries. In addition, many query results have
little value when the search is �nished, so persistence o�ers no advantage to o�set its
costs.

2.4 The Solution: Dynamic Sets

To summarize, the problem addressed by this dissertation is the high latency of accessing

remote data and its impact on the performance of search applications. The problem of

latency for search is interesting because existing solutions to latency such as caching or
inferred prefetching either o�er no performance bene�ts or have a high cost associated

with them.

Fortunately, the very nature of search leads to a solution. Search is primarily a process

of identifying sets of candidate objects and processing them. If applications could inform
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the system of the membership of these sets, the system could prefetch the members to

reduce the aggregate latency seen by the application when accessing them.

This dissertation proposes extending the �le system interface with a simple and well-
de�ned abstraction called dynamic sets. Dynamic sets address the drawbacks listed

above, thus providing better support for search applications. In addition, they disclose

information to the system about the application's future data needs, allowing the system
to determine the order of prefetching.

2.5 Background: Naming and Consistency

Before discussing dynamic sets in more detail, this chapter presents two aspects of dis-
tributed systems relevant to their design: naming and consistency. Naming is relevant

because determining the membership of a dynamic sets involves naming (identifying)

groups of objects. The process of creating and populating a set is thus closely tied with
name resolution. Consistency is relevant because the dissertation must provide suitable
guarantees in order to support the needs of search applications. The following two sec-
tions describe naming and consistency in more detail, and present terminology that will
be used throughout the dissertation.

2.5.1 Naming

All objects in a distributed system have a name and contain data. In order to access

an object's data, an application must �rst open the object's name. In response to the
open, the system performs name resolution on the name to locate the object and returns
a handle which can then be used to access the object's data. The application can then
close the object to inform the system it no longer needs to access the object's data.

The structure of the space of names provided by a system is called its name scheme. There

are four types of name schemes: 
at, hierarchical, hypertext, and associative; systems
often provide more than one scheme for greater 
exibility or e�ciency. The �rst three

kinds of name schemes are structured as graphs, where each node is named by its path
from some distinguished object called the root. Associative name schemes are di�erent
in that objects are named by attribute and may not have a �xed name. Applications

supply a query which speci�es a list of desired attributes, and the system evaluates the
query to identify the names of objects that satisfy the query: those objects possessing

the desired attributes.

Search engines are special servers which provide fast query evaluation by identifying the

object names without having to access the objects themselves. Search engines do this
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by maintaining an index which maps attributes to object names. This index is built

by periodically crawling over the name space, extracting the attributes of every object

it visits, and inserting each object's name and attributes into the index. Because an

object's name is usually orders of magnitude smaller than the object's data, it is feasible

for a single search engine to catalog most or all of the objects in very large systems.

It is often the case in distributed systems that obtaining an object's name takes less
time than obtaining an object's data. Names may be cached at a client, embedded in

related objects, or stored on a search engine. It is this property that makes dynamic
sets practical; otherwise the process of creating a set which involves collecting names of

objects might be more time consuming than the potential savings from prefetching the

objects.

2.5.2 Consistency

Consistency is an umbrella term that encompasses the issues of coherence, currency of
data, isolation, and the legality of a sequence of operations. Coherence applies to systems

that replicate objects, and is the property that all replicas (either �rst class server replicas
or second class cache copies) re
ect the same history of updates at any point in time.

Currency refers to whether or not an object's latest state is visible to readers. A system

provides isolation if it ensures that the intermediate results of a computation are not
visible to others. Consistency is most commonly used to mean that the system only
allows sequences of operations that bring the system from one legal state to another,
where legality is de�ned by the application.

Although consistency is clearly desirable in theory, in practice it is often too di�cult or
expensive to provide. For instance, ensuring currency requires tracking all updates in the
system; coherency requires propagating or detecting updates when they occur; isolation
requires preventing concurrent access to objects that might re
ect intermediate results;
and legality requires either preventing certain sequences of operations from happening or

detecting them when they happen and rolling back the o�ending operations.

Because of this, DFS typically relax the one copy semantics of the non-distributed system
from which they are derived. For example, updates to an AFS �le are only re
ected

globally when the �le is closed, instead of being instantly visible as are writes to a local
�le in the Unix Fast File System[53]. Similarly, NFS allows cached data to be incoherent

with the server's copy for bounded periods of time.

Unfortunately, the techniques used to ensure even the relaxed consistency of DFS tend

not to scale as the cost of communication, the number of potential copies, and the amount
of data rises. For instance, in a local area network one can inexpensively track updates

to an object by multicasting (sending in parallel) the updates to all of the object's
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replicas. However, multicast is too expensive in the WWW where thousands of machines

scattered over the globe may have cached copies of an object. Since consistency is so

hard to provide, GDIS typically do not o�er consistency guarantees at all, or at best

provide bounded currency. For instance, the most common form of replication in GDIS

is called mirroring, where copies of popular data from some site are kept on another
independent server, often in another country or continent. The mirror site often makes

no promises about whether the copy re
ects the same state as the original object, or at
best it indicates when the mirroring was done and leaves the user to guess whether or not

the data is current. The WWW also uses caching, a form of replication in which a client

or its proxy keeps copies of recently accessed information[27, 15]. Coherence of WWW
caches is approximated by invalidating the cache copy after some period of time in which

an update is believed to have occurred. These systems typically use a heuristic based
on the age of the object to determine the length of this period of time. For instance,

one caching relay invalidates a cache copy after it has resided in the cache for a period

equal to the di�erence between the object's last time of modi�cation and the time it was

cached[27].

Fortunately, this lack of consistency does not appear to be a serious concern to users

of these systems. First, data in GDIS tends to change slowly if at all. The heuristic of
the caching relay just mentioned is surprisingly accurate: its administrators randomly
tested 5% of references to cached objects, and only 8% of the tests indicated that their
heuristic would have returned stale data. Second, publishers of information on GDIS

have developed policies to aid in the detection or avoidance of inconsistencies. Releases
of a system's source code, for instance, tend to be packaged into one object to ensure that
all of the objects in the release are internally consistent. This composite object is also
labeled with the version number of the release so the identity and version of the release is

self-evident. Third, most applications of GDIS apparently have little or no inherent need

for strong consistency, which is demonstrated by the explosive growth in the popularity
of these systems.

2.5.2.1 Correctness

Related to the concept of consistency is the concept of correctness, the ability of the
system to correctly identify which objects satisfy a search. In the world of information

retrieval, correctness of queries is described by the terms precision and recall. Precision
re
ects the degree to which the query's results satisfy the search criteria. A system

produces false positives if it returns objects which did not satisfy the query. A system

exhibits recall, also known as completeness, if all objects in the system that satisfy

the query are returned. A system without a completeness guarantee can return false
negatives, objects that should have been included in a query's result set but were not.



Chapter 3

De�ning Dynamic Sets

This chapter presents the design of dynamic sets. Dynamic sets are lightweight, transi-
tory, and unordered collections of objects that do not contain duplicates. An application

creates a dynamic set to hold a group of objects, such as the candidate objects in a search
or the objects named in a query's results. Membership in a set is determined at the time
of set creation. When the application no longer needs the group, it can terminate the set

to free up resources consumed by the set.

Section 3.1 presents this new abstraction, its properties, and the operations in its inter-
face. Section 3.2 describes how the addition of dynamic sets can improve the usability of
a system. Finally, Section 3.3 lists some application domains which would bene�t from

the addition of dynamic sets.

3.1 Design Rationale

This section discusses the design rationale of the dynamic sets abstraction. Section 3.1.1

lists the goals of dynamic sets. Section 3.1.2 describes the possible locations for the

abstraction within the layers of the system. Section 3.1.3 describes the properties of
dynamic sets, and Section 3.1.4 describes the operations in the programming interface.
Section 3.1.5 shows how one might use dynamic sets in the three example situations

described in Section 2.2.

3.1.1 Goals of Dynamic Sets

The chief motivation behind dynamic sets is to increase the usability of distributed sys-

tems by reducing I/O latency and increasing functionality. To achieve these ends, dy-

21
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namic sets need to be general, 
exible, lightweight, and must minimize dependence on

changes to the underlying system. This section motivates and clari�es these goals.

3.1.1.1 Generality

The �rst goal is to make dynamic sets general. Search describes a range of possible be-

haviors and systems. The strength of the dissertation is greatly increased if the dynamic
set abstraction covers much if not all of this range. The use of the mathematical concept

of sets1 as the underlying type for the dynamic sets abstraction achieves this goal. Any

type of object can be a member of a set, although implementations can restrict the types

of objects they support. The use of sets also produces a simple and elegant abstraction,
since sets are powerful yet intuitive[22], and should be familiar to any user of a distributed
system.

3.1.1.2 Flexibility

The second goal is to make dynamic sets 
exible in order to support many di�erent kinds

of searches. The primary issue is to allow search applications to indicate set membership
using a variety of sources. Set creators specify membership in the set when the set

is created using a speci�cation language. To achieve 
exibility, the design leaves the

de�nition of this speci�cation language to the implementation, but the language should at
least satisfy the following two properties. First, the speci�cation language should support
some form of an explicit list of the member names. This is the minimal functionality;
a set creator could evaluate a more complex speci�cation itself to determine the list of

names, and supply that list to the system. Second, the language should support access to
search engines by supporting some type of query. The information retrieval community
has made signi�cant e�ort to automate the process of identifying candidate objects for a
search. Supporting queries allows dynamic sets users to leverage their advances. Further,

letting the system control the execution of the query gives it one more degree of freedom

in controlling the aggressiveness of the search.

3.1.1.3 Lightweight

The third goal is to make dynamic sets lightweight. Although e�ciency is a goal of all

engineering systems, it is especially important for dynamic sets because the opportunity

to reduce latency may be limited in some contexts. For instance, a system may reduce
the I/O latency of an application through prefetching, but may increase the application's

1The mathematical concept of sets is the de�nition of sets used in set theory[22].
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runtime if it spends more time in additional computation to manage sets activity than is

saved by higher I/O utilization. Similar decreases in performance can occur if the design

requires excessive use of the disk, network, or server resources.

3.1.1.4 Only Require Modi�cations to Client

The fourth goal is to ensure that dynamic sets do not require modi�cations to underlying

system protocols or servers. It is extremely di�cult to modify the protocols of large

distributed systems. Protocols are determined by standards committees, and as such

tend to change slowly if at all. Requiring changes to servers is also problematic. In
GDIS, it is usually the case that the server belongs to a di�erent administrative domain

than the client, and the server's administrators may not be willing to make the change.

Alternatively, modifying the client is appropriate since the costs of upgrading to a newer

version of the client subsystem that supports dynamic sets is paid by the bene�ciary.
Each user can independently decide whether the bene�ts of dynamic sets warrant the

inconvenience of upgrading, and achieve that bene�t without imposing on other users of

the system.

One implication of this goal is that dynamic sets should not promise stronger semantics
than the underlying system can provide. Many target systems of this thesis such as the

WWW or NFS do not provide support for strong properties such as isolation. Dynamic
sets cannot strengthen these properties without resorting to enhancing the protocols or
servers used by the system. For instance, it is impossible to guarantee that set operations

preserve isolation unless the underlying system guards intermediate results.

3.1.2 Where Should Dynamic Sets Reside?

This section describes where and how support for dynamic sets should be added to a

distributed system. One can imagine integrating them at any layer from the application

down to the servers themselves. This question is really one of logical placement, since
the boundary between various layers di�ers between systems. For instance, the client
subsystem may be part of the operating system kernel in a Unix environment, but may

be implemented as a user-level library in a micro-kernel such as Mach 3.0[1], a nano-

kernel such as SPIN[9] or the Exokernel[23], or in a commercial operating system like

Windows.

The best choice, and consequently the one taken here, is to add support for dynamic sets

to the �le system application programming interface (API), leaving the implementation
of dynamic sets in the kernel of the client's operating system. This choice has three

bene�ts. First, it allows the system to gain maximal performance bene�t from the
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hints inherent in a set. Second, it increases the generality of dynamic sets by allowing

an application to include any data accessible through the �le system in a set. Third,

it strikes the right balance between software engineering concerns such as information

hiding and implementation concerns such as e�ciency. Unfortunately, it also makes

the job of porting the implementation of dynamic sets to a new operating system more
di�cult. However, this penalty is an acceptable tradeo� for better performance and a

simpler implementation for the purposes of this thesis. In addition, adding dynamic sets
to the system interface makes it easier to port applications of dynamic sets, since the

system-speci�c details are hidden beneath the interface.

Placing support for sets in the system API gives maximal value to hints implicit in a set

because it exposes them to the client subsystem, the part of the system that can most

bene�t. Although the design does not require it, these hints can be exposed by the client
to any portion of the system that may need access to them. Further, dynamic sets expose
the hints as early as possible, to give the system maximal opportunity to reduce latency.

The hints from dynamic sets can be used by the client to drive informed prefetching and

to schedule resource usage for improved utilization. Prefetching can be done because an
object's membership in a set is a hint that the application will soon need to access the

object. Prefetching a member reduces the latency seen by the application to access it, and
results in deeper request queues, which gives the system greater 
exibility to reschedule
or batch requests to further reduce latency. Exposure of membership also gives the
system knowledge which allows it to better adapt its behavior to suit changing resource
availability. For instance, while it may be meet to prefetch data aggressively over a high

bandwidth link, using the same strategy over a heavily loaded Ethernet or a slow phone
line can result in a loss of performance. Also, the system knows that objects are stored

on separate servers and can be fetched in parallel. Well designed systems deliberately
hide this knowledge from the application in order to achieve location transparency.

Placing dynamic sets higher, for instance as a user-level library linked in with the ap-
plication, would not disclose knowledge of a set's membership to the system. Although

the application could prefetch the objects itself, it could not use the system's state to
control the prefetching in systems which hide critical state information below their API.

Further, the application's prefetching may result in poor utilization. For example, when
an application is prefetching it must bu�er the data in its virtual memory until it is used.

Since multiple applications could be accessing the data, multiple copies of the same data

may be in memory at once. The copies are super
uous if the system caches these objects
as well, as most systems do. However, exposing the state of the cache or the client sub-

system's data structures to the application would not only increase the complexity faced

by the programmer, but would violate a principle of software engineering: always hide

implementation details behind a well-designed interface.

Placing dynamic sets below the client subsystem requires modifying protocols and servers,
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violating one of the design goals. Although doing so may open further opportunities to

reduce latency or improve e�ciency, it is left as a future enhancement of this work. Alter-

natively, one might consider distributing a set across machines to allow multiple clients

to share access to a set. However, doing so would also entail costly update procedures to

the data in a set which would require techniques such as two-phase commit in order to
keep the set state consistent[63]. As such, the added bene�t does not outweigh the cost

in performance or complexity of implementation.

3.1.3 Properties of Dynamic Sets

The dynamic sets abstraction is designed to possess properties that are needed to support
search on distributed systems while satisfying the goals listed in Section 3.1.1. The

properties were chosen keeping in mind both the needs of search applications and the

ability of the system to reduce latency. Each of the following subsections describes a
property, why the property was chosen, and how the choice of that property in
uences
the rest of the design. Many of the design choices described below are based on Saltzer
et al.'s end-to-end approach to system design[76]. Functionality is added to dynamic

sets when it bene�ts most or all potential applications of dynamic sets, has low-cost, or

increases the e�ciency of the system. Functionality that is not universally needed or is
expensive to provide in the system is left to the applications.

3.1.3.1 Dynamic Sets Are Created on Demand

A key feature of dynamic sets is that they are created and their membership is determined
on demand. Dynamic creation allows a set's membership to capture reasonably current

information and ensures that the state of the members is the latest available state at the
time the set is created. Both forms of currency are necessary since the results of many
searches depend on the state of the system in which they are run. Searches like those used

in the personalized newspaper example in Section 2.2.3 produce di�erent results when

run on di�erent days; the articles in today's paper will be di�erent from the articles in

tomorrow's, even though the query used to create each day's paper is the same (e.g.,
\articles on cows").

There are three reasons why sets should be dynamic. First, it ensures that applications

see current information by default. Applications can alternatively relax currency on a

case-by-case basis by opening a set before it is needed, and holding it open (and thus in
existence) until ready to process the members. For instance, a personalized newspaper

can be precomputed every morning before the user awakes without violating the need for
currency of this application. Additionally, a mobile user may wish to create a set and

fetch its members while connected to a network to avoid future disconnected cache misses
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when travelling. In these cases the potential loss of currency is acceptable because it is

explicit, and the cost of precomputing and maintaining the set is paid directly by the

user (or application) that chooses to do it. In addition, the application can achieve the

right balance between currency and performance without special support from dynamic

sets.

Second, the time to identify the members of a set is either shorter than, or can be

overlapped with the time to fetch all the members. In the WWW, for instance, the
cost of running a query on a search engine is comparable with the time to fetch a single

object. Similarly, the time to parse a directory to discover the names of objects in a DFS
is equal to or shorter than the time to fetch a �le. In addition, the work to determine

some members of the set can be performed while the client is fetching or processing other

known members if membership is evaluated lazily.

Third, precomputed sets, the alternative to dynamically created sets, introduce a host of

problems because they need to be stored and maintained. First, one must provide some
reasonable currency and consistency of the set with the state of the system. In the worst

case, every time an object is added, removed, or updated, the state of all sets must be
reevaluated. In addition, it may be as costly to access the set and its members from its

storage site as it is to calculate the membership dynamically.

The main disadvantage of creating a set dynamically is that the overhead of doing so

must be paid directly by the application. Fortunately, most of the cost of creating a
set is I/O latency. As stated above, this latency is often smaller than the latency of
fetching the members, and can be overlapped with other I/O or processing through lazy
evaluation. Further, indexes and search engines o�er most of the bene�t of precomputing

membership. And the cost of fetching the objects just in time can be greatly reduced by

prefetching, without signi�cantly sacri�cing currency.

3.1.3.2 Dynamic Sets Are Short Lived

Since sets need to be dynamic in order to satisfy the temporal nature of search, it is

unnecessary to preserve a set beyond the termination of the application that created it.
Sets can thus be maintained in volatile memory, making dynamic sets more lightweight.

This property also simpli�es the design, because it does not require solutions to the

problems of ownership, protection, and administration of persistent data.

Making sets persistent necessitates updating non-volatile storage as the set is expanded

and consumed. Doing this synchronously is expensive, since each disk access involves

CPU overhead to make the request to the disk driver, and latency for the disk write
to �nish. Doing it asynchronously reduces the impact of disk latencies, but increases

the complexity of the implementation without reducing the CPU overhead. For client
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subsystems that do not cache data on the disk, the overhead from persistent updates

may well exceed the potential savings from prefetching, eliminating the bene�t of sets

for these systems.

The bene�ts of persistence do not outweigh these costs. If the application that created

a set terminates, it certainly no longer needs the set. Similarly, if the application or

system crashes, the set will not be reused and so does not need to be preserved. Other
applications that run the same query in the future will get a new set, because the results

of the query may be di�erent, and the set membership should re
ect the new results.

Although sets are not necessarily persistent, applications can choose to make the set

persistent by using mechanisms orthogonal to dynamic sets. For instance, an application
could create a new directory on the local �le system, and copy the set members to
this directory. Thus particular applications can choose to create persistent sets without

forcing all applications to pay the overhead for persistence.

It should be noted that although the sets themselves are temporary, the objects are
persistent. This distinguishes the data structures that represent the set from the objects
that are members of the set. For instance, a set of source �les can be stored in memory

and be short-lived, although the �les themselves are stored on disk and are persistent.

In addition, if the client subsystem caches to the local disk, most of the e�ort to cache
objects before a crash is not wasted. Since the objects are likely to remain validly cached
after the restart, the recreated set should bene�t from the presence of these objects in
the cache and will not have to refetch them.

independent of dynamic sets.

3.1.3.3 Dynamic Sets Are Unordered

One property that dynamic sets share with mathematical sets is that all members have
equal weight or value. This frees applications from processing the members of a set

in some imposed ordering, such as alphabetically by name which is done in current

systems. In addition, dynamic sets give the system further opportunity to reduce latency

by allowing the system to determine the processing order. For instance, the system can
choose to fetch smaller objects before larger ones to minimize the time the application

must wait for the �rst object.

Removing the ordering restriction from the system is an example of applying end-to-

end considerations to systems design. Many applications either have no need of order

or need some other order than the one provided by the system. For example all items

may be equally likely to satisfy a search. Alternatively, the application may require a
chronological ordering but the system may order the objects alphabetically. While not

all applications require a particular order, enforcing order has a nontrivial cost. Ordering
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requires CPU overhead to sort the members, and possibly additional I/O overhead to

obtain attributes or meta information in order to perform the sorting. For instance, a

chronological sorting may require additional I/O operations to determine the members'

creation dates.

Enforcing a speci�c order also limits opportunities for the system to reschedule requests

to reduce latency or to use resources more e�ciently. Reordering avoids blocking the
application on a slow fetch when other data is immediately available. It also allows the

system to use cached data, or hold the data in the cache until it is needed. Without this

ability, the desired data may be 
ushed out of the cache before it can be used, resulting

in more I/O than would otherwise be needed. Reordering is particularly valuable in
distributed systems which are subject to communication failures. These failures result

in pausing for a timeout period, usually much longer than the expected time to fetch an
object. If the �rst object is unavailable, the application would block for the duration of

the timeout if the system was enforcing an ordering. By allowing the other objects to be
processed �rst, dynamic sets can overlap the timeout period with the processing of the
other objects, reducing the latency seen by the application.

The chief drawback of this decision is that dynamic sets may be inappropriate for applica-

tions with strong ordering requirements. However, many applications, particularly search
on DFS or GDIS, do not have such strong requirements. In addition, applications that
have partial-ordering requirements, or whose orderings can be expressed as equivalence

classes, can use dynamic sets by creating a set to hold groups of objects with equivalent
importance. Further, applications can add weights to members to indicate their relative

importance. The system treats these weights as hints, using them to control the behav-
ior of the prefetching engine. Alternatively, it is a simple extension to add some form of

ordering on sets for those applications that need it. Applications could sort the results
after processing the data in order to present them in the proper order.

3.1.3.4 Dynamic Sets Do Not Have Duplicate Members

Another property that dynamic sets share with mathematical sets is that an object can

be a member of a set at most once. No application needs to see the same member twice,

and having the system eliminate duplicate names prevents it from fetching the same

object more than once. This leads to more e�cient search because applications neither
have to maintain state in order to avoid processing an object twice nor expend the e�ort

of doing so. For simple applications like grep that print out the results of processing,
this also reduces the amount of redundant information shown to the user.

It is not immediately obvious which of the various means of determining equivalence is

appropriate. On one hand, detection of name equivalence is easy and has low overhead

but fails to eliminate duplicates in the presence of aliasing, and aliasing is common in
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DFS and GDIS. On the other hand, testing value equivalence would eliminate duplicates,

but the cost of doing so might be prohibitive especially for large objects. Since the thesis

focuses on performance, name equivalence is used as the test for equivalence in order to

keep dynamic sets lightweight.

3.1.3.5 Dynamic Sets Are Immutable

Dynamic sets cannot be mutated by the application once they have been created. Thus

there is no operation in the dynamic sets API by which an application can change a set's

membership. In addition, applications are not allowed to modify the set members while
the set is open. This simpli�cation does not have a signi�cant penalty. Search is read-only

by nature, so target applications are not hampered by being unable to write set members.
In addition, any operation that would modify a set's membership can be rede�ned as an

immutable operation which returns a new set with the modi�ed membership. The cost

of immutability is that more sets may be created, and more sets may be in existence, as
a result. Fortunately, this cost is negligible since sets are lightweight and the resources
consumed by an open set is small. In addition, an application can close a set to release
its resources if the number of sets becomes a problem.

3.1.3.6 Dynamic Sets O�er a Well-De�ned but Weak Consistency Model

A client enhancement like dynamic sets cannot ensure a strong consistency property

like one-copy serializability if the underlying system does not provide it. In addition,
strong consistency guarantees are costly to provide (as described in Section 2.5.2). Thus
dynamic sets can at best provide guarantees no stronger than the weakest consistency

model of the system accessible through dynamic sets. However, o�ering no guarantees
is also not acceptable. This section describes the consistency ensured by dynamic sets,
explains why this level of semantics is acceptable, and then argues that stronger semantics
are inappropriate for search.

Ideally, a dynamic set should capture a snapshot of the system: the query used to specify
the set's membership should be run atomically (as if there are no concurrent updates)
and the members should be fetched and locked to prevent them from being modi�ed

while the application is processing them. However, these semantics are costly to provide.

Distributed locking necessary to prevent concurrent updates adds additional message

exchanges to the work of fetching objects, and each exchange involves the high latency
of remote access. In addition, locking an object to prevent mutations to it delays other

applications that wish to update it. Queries may have non-trivial execution times, due
to a high per-object computation or as a result of accessing many objects. Providing

atomic queries would delay updates to objects locked by the query for the duration of
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the query. In addition, thousands of searches are likely to be running at any one time

in a large GDIS. Locking all the objects involved could e�ectively block writes to large

portions of the system inde�nitely.

Dynamic sets relax this ideal consistency by allowing updates which might a�ect the set's

membership to occur while the query is running and by allowing mutations to occur to the

set members. However, changes that occur after a set has been created and its members

fetched are not re
ected in the set. The semantics of dynamic sets require that the

implementation prevent set membership from changing once it is established, and keep
immutable cache copies of the members. The consistency model can be summarized by

saying that all dynamic sets satisfy these two properties:

� Every member must have satis�ed the query at some point during the lifetime of
the set.

� Once an object is known to be a member, it will remain a member of the set.

In the terminology of consistency described in Section 2.5.2, dynamic sets will not return

a false positive, but false negatives may arise.

These weak consistency semantics are acceptable for several reasons. One reason is that
most of the information for which people search is reference information, which changes
slowly. The likelihood that a search will see stale data is small because searches run
for a much shorter duration than the typical lifetime of objects. This is especially true

for immutable objects like movies, pictures, or published articles. A second reason is
that search is not an exact process. It is di�cult to express search criteria accurately,
and often queries do not capture exactly what the searcher had in mind. This fuzziness

means that queries can be satis�ed by a best e�ort approach: many users are more
interested in getting useful data in a timely fashion than in having strong guarantees and

potentially su�ering delays in getting data as a result. Third, communication failures

can be common on large scale GDIS like the WWW. One study found that the Internet
is in a permanent state of failure since there is always some host that is inaccessible[49].

Consistency is di�cult to maintain in this environment; one must either prevent access
to data while communication is down, or risk the chance of releasing stale data. As

discussed in Section 2.5.2, most GDIS avoid this issue by o�ering weak or no guarantees

on the currency or consistency of their data.

In short, most users are willing to trade consistency guarantees for improved perfor-

mance or availability. Anecdotal evidence bears this out: search engines like Lycos[51] or

the Webcrawler[69] have seen exponential growth in usage even though they o�er only
bounded currency guarantees. In fact, this tradeo� has been made in many previous

system designs: the use of asynchronous disk writes in the Unix Fast File System [53],
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the use of write-back caching in Sun's Network File System[77], or the relaxation of Unix

semantics to session semantics in AFS[81], to name a few.

Although the weak consistency semantics of dynamic sets is just one of a number of

valid design points which trade consistency for performance or availability[96], they are

the appropriate semantics for search on DFS or GDIS. Stronger completeness or cur-
rency guarantees cannot be ensured in the presence of failures without decreasing data

availability. If the client cannot communicate with the server, it cannot detect updates
and therefore cannot ensure the currency of the data it possesses. Weaker guarantees

are also not appropriate as they would introduce ine�ciency. If any object may become

a set member regardless of whether or not it satis�ed the search, the application must
revalidate every member before processing it.

3.1.4 The Application Programming Interface

The dynamic sets interface is designed to satisfy the goals listed in Section 3.1.1 and
to provide the properties listed in Section 3.1.3. Complexity arises due to the presence

of communication failures in distributed systems, as well as the problem raised by lazy

determination of set membership in the face of concurrent updates to objects from other

users of the system.

The interface provides set operations that are clearly useful to searchers and that are
su�ciently powerful to satisfy the needs of reasonable searches. It is more important that
the interface be useful than provably minimal, since the cost of adding a new operation
is small. This section describes how each of the dynamic set operations can be used by

di�erent kinds of search. The activities that the interface supports consist of creating
a set to hold candidate objects, merging these sets, restricting focus to a subset of the

objects of interest, and examining the objects in the set.

The operations in the dynamic set interface are presented in Figure 3.1. The table

uses the keywords proc and iter to indicate whether the operation is a procedure or an

iterator. An iterator retains state from invocation to invocation, such as the objects it
has previously yielded, while procedures do not. The table uses the keyword returns to

indicate the type of the value returned by the operator. The keyword none means that

the function in question does not return a value. An iterator yields a previously unyielded

object each time it is called until all objects have been yielded. The types bool, int, and

list are assumed to be the basic boolean, integer, and array types supported by most
computer languages. The meta-types elem, digest, digestSelector, and specification

denote respectively the basic object type, digest type, way of specifying which of the

supported digest types to use, and the type of an expression (written in a speci�cation

language) that identi�es the names of the set's members. The meta-type set is the type
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of handles to dynamic sets. For purposes of exposition, the operations are broken into

classes, and each class is described in one of the following sections.

Category Operation Arguments Results

Allocation setOpen proc ( q : speci�cation ) returns (t: set)

setClose proc (s: set) none

Management setUnion proc (r : set, s: set) returns (t: set)

setIntersect proc (r : set, s: set) returns (t: set)

setRestrict proc (s : set, q : speci�cation) returns (t: set)

Processing setIterate iter (s: set) yields (e: elem)

setDigest iter (s: set, t: digestSelector) yields (d: digest)

Miscellaneous setSize proc (s: set) returns (i: int)

setMember proc (s: set, e: elem) returns (b: bool)
setWeight proc (s: set, l: list[elem]) none

This table presents the operations in the dynamic sets interface. To aid the presentation, the

operations have been divided into four classes, listed in the table's �rst column. The keywords

proc and iter identify operations as being procedures or iterators, respectively, and the keyword

returns identi�es the type of object each operation returns. The keyword nonemeans the operator

does not return any value. An iterator yields a previously unyielded object each time it is called

until all objects have been yielded. The meta-types elem, digest, and specif ication are purposely

underspeci�ed to give leverage to the implementor. The types bool, int, and list are assumed to

be the basic types boolean, integer, and array. Handles for dynamic sets are of type set.

Figure 3.1: Dynamic Sets Application Programming Interface

To allow the implementor maximum 
exibility in customizing dynamic sets to each target

domain, the operations are purposely underspeci�ed where possible. For instance, the
exact composition of the set membership speci�cation used to create a set is left unde-
�ned, as is the object's type elem. Elem could consist solely of simple objects (source

�le, hypertext page, image), or could themselves be dynamic sets or other compound ob-

jects. The appropriate choice depends on the implementation and the richness of the type

system of the target system. Underspeci�cation also allows the implementor to exploit

asynchrony for improved performance and better system adaptability to heterogeneity.
For instance, the work of fetching members can be overlapped with the application's

processing of other members because the design does not insist that membership be fully
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determined when setOpen() returns. A third bene�t of underspeci�cation is that it al-

lows the implementor to choose types that �t with the existing interface. This results in

interface extensions that match the idiom of the original system, which makes dynamic

sets easier to program.

The key contribution of this interface is that it hides the complexity of asynchronous

I/O behind a simple yet powerful collection of operations. Although asynchrony is very

powerful, it adds tremendous complexity to the programming model. With dynamic sets,
applications like grep can bene�t from asynchronous prefetching without the extensive

modi�cations needed to add multiple threads, concurrent execution, mutual exclusion,

etc.

3.1.4.1 Allocation Operations

Dynamic sets are created with the setOpen() procedure. Callers supply a speci�cation
of membership that is used to identify which members belong to the set, and receive a

handle for the newly created set in return. All members in the set are guaranteed to
satisfy the speci�cation, but not all objects that satisfy the speci�cation are guaranteed

to be in the set. Although the design leaves the type specification unde�ned, example
speci�cation languages include regular expressions such as Unix's csh wildcard notation,
and query languages such as SQL's select statement.

An application can disallow further operations on the set and cause the set's resources

to be released by closing it when the set is no longer needed. The operation setClose()

provides this function. After setClose() returns, its argument is no longer accessible
to this process, and the resources consumed by the set may be released. Note that this

does not a�ect the accessibility of other sets that have been derived from this one. For
instance, a searcher may create a set, use setRestrict() to create a subset, and then
close the original set without losing his ability to process the subset.

3.1.4.2 Management Operations

In order to support multi-stage searches like those described in Section 2.2.3, the inter-
face includes the operations setUnion(), setIntersect(), and setRestrict() which
provide the union, intersection, and subset functions of standard set notation. These

operations allow searchers to create sets that combine or re�ne the membership func-

tions of existing sets. The parameters to setUnion() and setIntersect() are handles

to existing sets. The arguments to setRestrict are the handle of an existing set and a

membership speci�cation whose type is the same as the membership speci�cation passed
to setOpen(). The result is a new set whose members satisfy both the input set's mem-

bership speci�cation and the speci�cation passed to setRestrict(), and is guaranteed
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to be a subset of the input set. To preserve immutability, these operations return handles

for newly created sets, and leave the argument sets unmodi�ed.

Since a set's membership may not be fully determined when the set is created, it may be

possible for a new set to be derived from a set whose membership is partially evaluated.

How should the new set's membership be determined in this case? Fortunately, answering

this question is made easier by two facts. First, objects cannot be removed from the
base sets, so an object can be de�nitely said to be a member of a derived set once its

membership in the base sets is known. In the case of a set resulting from setIntersect(),

an object that is known to be a member of both base sets can be added to the derived set

before the base sets' memberships are fully determined, without violating the consistency
semantics of sets. Second, sets are not distributed and are stored in memory, which means

it is inexpensive to check whether a base set's membership has changed. It is thus a simple
matter to poll the base sets to �nd new members whenever the derived set is accessed.

3.1.4.3 Processing Operations

The ultimate goal of creating a dynamic set is to examine its members, and in par-
ticular the data of its members. This is performed with setIterate(). Each call to
setIterate() returns handles to one or more members of the set, and each member is

yielded (a handle to it returned) at most once. Calling the iterator a su�cient number
of times will cause all members to be yielded. Possession of a handle allows the applica-
tion to perform any non-mutating operation or method that the object supports, and in

particular allows the application to read the object's data. In order to return the handle,
the system must have obtained the object { either fetching it to the local client, locking
it, or in some other way having captured a snapshot of the object's state for the searcher
to use. All of these mechanisms have an associated cost. For instance, fetching an object

involves substantial latency. However, this cost must be paid if the application needs to

read the objects in the set.

If the size of a set is large, it may not be practical to pay this cost. Instead one may wish
to restrict one's focus to a smaller subset using meta-information about the members.
The second iterator, setDigest(), allows an application to access information about

a member, such as its name, attributes, or a summary of its data. This collection of

an object's meta-information is called its digest, and could be used by an application
to generate the parameters to the setRestrict() operation to produce a subset which
could more reasonably be processed via setIterate().

To be practical, the latency to access an object's digest must be substantially lower than

the latency to access the object itself. For instance, the digest of a journal article could
be its title and abstract. The time to fetch just this information is often much smaller

than the time to fetch the entire article. In addition, one might consider extending the
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notion of cost to include more than just time. The journal's publishers might give away

the title and abstract for free, but charge money for the article itself.

There are several important implications in the use of a digest. First, the digest must

contain some reference to the object itself so that the searcher can identify which objects
to contain in the subset based on their digests. Second, the systemmust be able to obtain

a digest (either a static representation or dynamic evaluation of the object such as the

method proposed by Fox et al.[25]) cheaply. As such, the types of digests supported
by the implementation, digestType, depend on the kind of information that is cheaply

available. Third, it may be useful for an implementation to provide several di�erent
kinds of digests, and allow the application to select which type of digest to return. Thus

one can think of a range of possible digests, each more expensive to obtain but providing

more information about the object.

One should also note that current systems can obtain useful information for a digest.

For instance, all systems can at least return the names of members { the system must
possess the name of a member in order to know it is part of a set. In addition, many

WWW search engines return some amount of summary information, such as the type,
date, title, or the �rst few lines of text.

3.1.4.4 Miscellaneous Operations

In addition to the operations listed above, there are several operations which may be
useful although they are not required. The setSize() operation returns the number of
members in the set, setMember() is a predicate which returns TRUE if the argument

e is a member of s, and setWeight() allows users to inform the system of the relative
importance of the members.

The semantics of the �rst two of the operations are complicated by the need to pre-
serve the illusion of immutability in the face of lazy determination of set membership.

The setSize() operator can only return a lower bound on the set's cardinality until
membership has been fully determined. SetMember() cannot safely return FALSE until

membership is fully determined, although it can return TRUE as soon as the object in
question is known to be a member. Although the behavior is not speci�ed here, imple-

mentors have two choices: they can have the operation block until a safe answer can be

given; or they can add a return value or exception which the system raises when mem-
bership has not been fully determined. If this is the case, the answer should be viewed
as tentative.

As mentioned previously, searches do not rely on processing elements in any speci�c

order. However, some applications may terminate more quickly if candidate objects are

presented in some order known to the searcher. For instance, one member may be much
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more likely to satisfy the search than the others, and should be considered �rst. The

setWeight() operation allows a searcher to inform the system of the relative importance

of the members. The system will endeavor to yield objects in order of their weight,

but pragmatic considerations such as communication failures or server load may lead

the system to violate the ordering to avoid blocking the searcher until the next ranking
member is available.

3.1.5 Examples Using the Dynamic Sets Interface

As an aid to understanding how dynamic sets can be used by searchers, I now revisit the
three examples from Section 2.2 and show how one can use dynamic sets in each of these
cases.

3.1.5.1 Example 1: Simple Search

The �rst example was a simple search for variable de�nitions in a large source tree using
grep. Two things must happen in order to have grep use dynamic sets. First, the

application must be rewritten to iterate over sets. Figure 3.2 shows how this might be
accomplished.

Second, the list of �le names that is passed to grep, *.c in the example, should be used
as the membership speci�cation when opening the set. The code in the example assumes

the speci�cation will be in the second argument, which means the csh should not expand
the wildcard notation but instead pass it to the application. However, one could imagine

more powerful ways of identifying the names of the members, such as �le system indexes

such as GLIMPSE[50] or programs such as etags which was mentioned in Section 2.2.1.

This example points out two advantages of dynamic sets. First, modifying search ap-
plications like grep to use dynamic sets is simple. These applications e�ectively iterate

over sets of objects, but since current interfaces do not directly support iteration must

step through a list instead. In particular, the code that implements grep's functionality
(contained in execute()) need not be rewritten to use dynamic sets. Second, it is possi-
ble to tune an implementation to match the idiom of the system that is being extended

to support sets. In Figure 3.2, for example, setIterate() returns an open �le descriptor

which can then be used by execute() without requiring further action.

3.1.5.2 Example 2: Using Search Engines

The second example involved search using WWW search engines to identify a set of

candidate objects, those objects containing some keywords supplied by the searcher (e.g.
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Main loop of grep

while (*argv) f

fd = open(argv++);

execute(fd);
close(fd);

g

Main loop using dynamic sets

s = setOpen(argv[2]);

while (fd = setIterate(s)) f

execute(fd);
close(fd);

g

setClose(s);

The two sections of code re
ect how grep can be modi�ed to use dynamic sets. The code on

the left is the main loop of grep. Grep takes a list of names as input, opens each �le in the list,

processes its data with the execute() procedure, and closes it. The code on the right shows the

main loop of grep using dynamic sets. Grep �rst opens the set, using the input as the speci�cation

of membership. It then processes every member yielded by the iterator. There are two key points

of this example. First, it shows the ease with which one can modify common search applications

to use dynamic sets. Second, the main functionality of grep, locating substrings in the set of

�les, does not need to be modi�ed to use dynamic sets.

Figure 3.2: Code Example Showing the Use of Dynamic Sets

\cow"). In many respects this example is similar to the previous one, the chief di�er-
ence being use of query evaluation to identify members rather than supplying an explicit
list of member names. For instance, one could imagine a system in which it was legal

and sensible to run grep varname /coda-db/nselect filename where defines like

"varname"n, where the pathname is an SQL query to a database (coda-db) of symbolic
links which identi�es those source �les that de�ne variables similar to the word \var-
name". With a suitably de�ned speci�cation language (the specification type), this
example is not only feasible but is legal in the implementation described later in the

document.

Use of a search engines raises other interesting questions. First, most search engine

results include object rankings which are the engine's estimation of how closely the object
matched the query. Since a set is unordered, how would one utilize or preserve this

information while iterating? There are two possible approaches than an implementor

can take. First, although the set has no inherent order, the system does have to fetch
the objects in some order and could take the rankings into account when determining
this order. Second, the application could use the rankings (possibly obtained from the

digests) to assign weight to the members via the setWeight() operation.

The second question is \What happens if the searcher does not examine all the members

of the result set?" Current WWW browsers present the result set as a list of objects, and

users choose which of the members to examine and in what order. One does not have
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this control when iterating over a set. It may be the case that this sort of control is not

necessary. If so, the system is free to prefetch as much of the set as it deems appropriate,

which is important if bandwidth is limited. If not, the system could fetch all of the set,

and allow the searcher to determine which of the objects have been fetched at any given

point. For instance, the browser could obtain this information through setDigest() or
setMember() and use a di�erent color to identify links to prefetched objects.

3.1.5.3 Example 3: Multi-Stage Search

The third example involves multi-stage search, in which a user creates a number of sets
and then merges them into a single set for perusal. The dynamic sets API provides three

mechanisms for manipulating the membership of a set, allowing applications to create
the union or the intersection of two sets as well as the subset of a set.

Union is useful for merging result sets from search engines that cover non-overlapping
portions of the system's name space. For instance, many large sites provide an engine
that only indexes that site's objects. Intersection is useful to merge sets from overlapping
search engines. For instance, the objects that are indexed by two di�erent search engines

may be more likely to satisfy a search than those that are only indexed by one. As

an example, Altavista allows one to search either posts to Usenet bulletin boards or
the WWW. One may wish to combine a search of both forums for a particular piece of

information.

One might also wish to create a subset, for instance if the current set is too large to fetch
or contains spurious members. One would �rst identify the names (and possibly other
information) of the members using setDigest(), and then use this information to create
a speci�cation of which members to add to the subset. As an example, one could select

all the members that are WWW pages with the speci�cation \*htfm,lg".

3.2 Bene�cial Properties of Dynamic Sets

The previous section outlined the design of the dynamic sets abstraction. This section

describes the bene�ts of dynamic sets for search, and how these bene�ts can be achieved.
These bene�ts fall into three categories: general properties, functionality enhancements,

and performance improvements. Each is discussed in the following subsections.
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3.2.1 Dynamic Sets Are General, Simple, and Easy to Pro-

gram.

One bene�t of dynamic sets is their generality. Dynamic sets, although tuned for search
applications, are applicable to a wide range of domains. Section 3.3 sketches how dynamic

sets can provide bene�t to several such domains. Further, dynamic sets can be used on

a variety of systems. This dissertation explores the use of sets in three di�erent systems:
the WWW, NFS, and the local �le system.

A second bene�t of dynamic sets is their simplicity, both for programmers and for users

of dynamic sets applications. The concept of a dynamic grouping abstraction such as

dynamic sets is a natural addition to the interface of a distributed system. Their ease of

use comes from the choice of sets as the underlying structure. Sets are a basic concept
in mathematics, commonly taught to elementary school children. Thus is it natural for

users to think of groups of objects as sets. For instance, the csh wildcard notation is
derived from regular expressions, a mathematical language used to describe membership

in sets.

The dynamic sets API is also easy to program. The basic operations are similar in concept

to either standard �le system operations such as open() and close(), or standard set
operations such as union(). Although existing applications must be rewritten to work

with dynamic sets, doing so for many common applications is a trivial exercise. Figure 3.2

gives an example of this by showing how the source code for grep is modi�ed to use
dynamic sets.

3.2.2 Dynamic Sets Improve Functionality

Dynamic sets improve the functionality of the system's API by supporting iteration over
groups of objects and execution of queries. It should be noted that the concepts under-

lying dynamic sets are not new to this dissertation; high level programming languages
provide support for sets and iterators, and database query languages such as SQL use

a similar construct called a cursor to hold the results of queries. However, the idea of
providing system support for them is new, as is leveraging their use to reduce latency.

Iteration is important for two reasons. First, it simpli�es the job of the programmer, since

the system maintains the state necessary to track what has and has not been processed.

A related bene�t of iterators is that they leave the order of processing the objects to
the system, which allows the system greater 
exibility in fetching and presenting the set

members to the application. A second bene�t of iteration is that it provides an easy
way to add support for breadth �rst search to the interface of WWW browsers. Current

browsers only allow search through depth �rst search with backtracking. For example,
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suppose a user has queried a search engine and is perusing the resulting HTML page. The

user starts by clicking on the �rst link in the page, examining it, and possibly moving on

to its children. When reaching a dead end (when there are no more interesting children to

explore), the user backtracks by moving back up the list of visited pages until he is back

at the query results page, and then explores a di�erent branch by clicking on another
link. Because cached information may be lost while searching, backtracking occasionally

su�ers I/O delays by causing objects to be reloaded. If one modi�ed the browser's user
interface to expose sets and iteration to the user, the user could use the iterator to keep

track of his progress in processing the set. When the dead end is reached, the user can

call the iterator to get the next branch instead of having to backtrack up the tree, saving
e�ort by the user and avoiding the delay of reloading the objects.

Dynamic sets also improve functionality by providing direct support for queries. This

means systems that support dynamic sets can be trivially extended to integrate asso-
ciative naming into environments in which it was not available before. For instance,
current Unix systems allow applications to specify sets of objects using syntactic pattern
matching. For example, the string \*.c" gets expanded to be the set of objects in the
current directory whose names end in \.c". By supporting queries, dynamic sets allow

a set's membership to be speci�ed by association. Thus an application could request
a set of objects containing the word \cow", or a set of objects created last week, etc.
Of course, the ability to create such sets depends on the power of the implementation's
query language in which these speci�cations are stated.

3.2.3 Dynamic Sets Improve Performance

Dynamic sets improve the performance of search applications by reducing the latency

of accessing remote objects. The bene�t comes from the disclosure of hints about an
application's future data needs to the system. These hints can be used in a number of
ways, four of which are discussed here.

Although all four are interesting, this dissertation focuses on only the �rst two, informed

prefetching and reordering of requests, because they o�er substantial improvements and
satisfy the goals of dynamic sets listed in Section 3.1.1. The latter two mechanisms,
batching and function shipping, require modi�cations to protocols and servers, and thus

violate one of the goals of the design.

3.2.3.1 Informed Prefetching

Membership in a dynamic set is a implicit hint of future access. When a set is created,

the system can use these hints to prefetch the set members assuming su�cient resources
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are available. Prefetching set members yields three bene�ts. First, it allows the system to

use available parallelism between independent components. For instance, fetching from

n independent servers can be done in parallel, reducing the aggregate latency by up to a

factor of n.

Second, the time to fetch a member can be overlapped with application processing of

other members. Although this overlap can only produce a factor of 2 increase in the

application's elapsed run time, it can substantially reduce the amount of time the appli-
cation waits for data. For interactive applications, reducing wait time is more important

than reducing overall elapsed time. For example, dynamic sets can eliminate almost all
of the latency of remote access in the WWW by fetching remote members while the user

is reading other members.

Third, informed prefetching can result in improved disk, network, and server utilization.

By prefetching aggressively, the system can keep request queues �lled so that the next

request can be processed as soon as a device or server is �nished with the current one. By
�lling these queues with prefetch activity, the dynamic sets abstraction also introduces

an opportunity to reorder the queues to provide lower aggregate response times. For
instance, one could sort the requests in a disk queue by proximity to the disk head to

reduce the average seek times seen by the requests. Current resource schedulers have

little chance to optimize utilization because request queues are usually empty or very
small[73].

3.2.3.2 Reordering Requests

A unique property of dynamic sets is that their members are unordered. Because of this,
the system is free to choose the order in which the iterator yields members. Although it

seems simple, this bene�t has far-reaching consequences for the system.

The �rst consequence is that it allows the system to take advantage of cache state to

reduce latency. Suppose some members of a set are cached and others are not. If the
system had to obey an external ordering, it might delay the application in order to

fetch a remote object. Dynamic sets, allow the iterator to yield the local objects to

the application immediately, giving itself time to prefetch the remote data so that the
application sees no I/O stalls. Dynamic sets can also yield the members that are in the

cache before they are evicted. Without this ability to reorder, cached members may be
evicted before they can be processed adding additional I/O stalls to refetch the evicted

objects.

Reordering can also be used to reduce the amount the aggregate latency even when none
of the members are cached. The chief bene�t of reordering can be seen in the access to

the �rst member. Since the application is likely to start iterating soon after opening the
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set, there is little or no opportunity to hide the �rst fetch behind application processing.

Thus most or all of the latency of the �rst fetch results in a stall of the application.

However, dynamic sets can reduce this stall by fetching objects with low response times.

For instance, the system could fetch small objects if the network bandwidth is limited,

or fetch objects from servers that are close to the client. This ability to determine the
order in which members are yielded based of response time is especially important in the

presence of communication failures, as discussed in Section 3.1.3.3.

Similarly, dynamic sets can reorder the requests to improve the amount of concurrency
in fetching the members. Consider the possibility that a set contains 10 members stored

on three servers, and that the �rst four members are on the �rst server, the next three on

the second, and the �nal three on the third server. Fetching them in order eliminates the
chance for concurrent execution of the fetches. By reordering the fetches, however, the

members can be fetched from the three servers in parallel, greatly reducing the aggregate
time to access the objects. Determining the location of an object in order to reorder
requests adds little overhead since the client already needs to know an object's server in

order to fetch it.

A key question is how di�cult it will be for the system to determine an order. Fortunately,
there is a range of possible solutions. A simple strategy is to start N fetches and yield the
one that returns �rst to the application. More complicated strategies may provide more
optimal schedules, but require more computation or I/O. In some cases, a more optimal

schedule may be too expensive to compute if the cost of gathering the data needed to

schedule the fetches is nearly as expensive as the fetch itself. For instance, a client
determines an object's size in the WWW's HTTP protocol by examining the header of the

response to a fetch request. For small to medium sized objects, this is just as expensive
as fetching the object. Although the brute force technique may perform poorly in the
worst case, in practice it should prove reasonable and does have the advantage of a low

overhead.

In general it is di�cult to know the probability that a particular member will be accessed.
But since a system that supports dynamic sets controls the order in which objects are
returned, the system can assign the likelihood of access to objects instead of estimating

it. The highest probability that can be assigned is the probability that the application

will call the iterator at least one more time. Similarly the second highest probability

is that the application will call the iterator at least twice. Rather than recalculate this
probability at every step, this logic can be used to limit the number of wasted fetches.

For instance, the client can fetch any 10 members knowing that they will be the �rst 10
members accessed. At worst, those 10 members will be wasted only if the application

does not call the iterator again.
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3.2.3.3 Batching Requests

Although not explored in this dissertation, one could use hints and the ability to reorder

to batch requests to the same server. Batching sends a single packet which contains many
requests, and receives many objects in return. For instance, one could ask for �ve objects

stored on a server with a single request. The advantage to batching is that it amortizes
the latency of remote access over several operations.

Batching has three bene�ts in addition to the reduction of propagation delay. First,
batching reduces the overhead of packet setup and request processing. Since server

CPU is a precious resource in distributed systems[34], batching can increase the system's

scalability.

Second, networks are designed with a maximum packet size, and so the cost of transmit-

ting data is a step function over the amount of data, with steps located at multiples of
the packet size. If a current response is 1000 bytes and the packet size is 4KB, 4 responses
could be packaged together with only a small overhead for transmitting the extra bytes.

Third, transfers of large data can be improved by streaming protocols, such as those
used by TCP[35] or SFTP[79]. Streaming protocols work by allowing a single response

to acknowledge multiple packets, lowering the cost of reliable delivery of data. Batching

can utilize streaming protocols because it ships more data in a single exchange.

3.2.3.4 Function Shipping

The best way to reduce the latency of communication is to eliminate or reduce the

amount of communication required by an application. One way to reduce bandwidth
requirements is to employ function shipping: shipping (a portion of) the application to

the data instead of the data to the application. Function shipping is naturally suited to
multi-stage search. For instance, imagine searching for videos of cattle from a library
of thousands of videos. In a data shipping model, the client fetches the videos and

examines them to determine which if any contained pictures of cows. Potentially all of

these large objects need to be transferred to the client to be examined. In a function
shipping model, the client �rst ships an image recognition program to the server (or a

proxy located near the server) which identi�es those images or videos of interest to this
search. If this program is su�ciently powerful, it can perform complex analysis of the

data to reduce it to a much smaller subset of the available videos. The client can then

fetch a substantially smaller amount of data, reducing the elapsed time of the search as

well as the consumption of network bandwidth.

In some sense, function shipping is a dynamic and more general form of querying a search

engine to determine a set of candidate objects. Thus dynamic sets are an ideal abstraction
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to support function shipping. A set can be created to hold the objects returned by a

remote function. The members can either be immediately fetched, or the set could be

merged with sets from other remote functions. A client could ship a function to all the

servers storing members in the set by using an operator similar to apply in Lisp[90].

Although the dynamic set API does not have such an operation currently, it would not
be di�cult to add it.

One of the di�culties of function shipping is that executing the function remotely poses

security and administrative problems. Security issues arise if the function is powerful
enough to a�ect state on the remote server, such as removing �les or communicating over

the network. Recent developments in Internet software such as the Java2 or ActiveX3

programming languages partially address these technical problems, but other problems
remain. For instance, the remotely executing function can consume resources such as

server CPU cycles, but the infrastructure needed to ensure suitable recompense to the
server's owners does not currently exist.

3.3 Other Application Domains for Sets

Although dynamic sets have been designed and tuned to support search applications,
their bene�t is not limited to search applications alone. This section discusses how

dynamic sets could be used in a variety of application domains. However, exploration of
the bene�ts of dynamic sets in these domains is left as a future exercise.

In general, dynamic sets should bene�t any application that processes a group of ob-
jects, whose performance is dominated by I/O latency, and is satis�ed with the weak
consistency model provided by dynamic sets. In addition, prefetching will only o�er per-
formance improvements if it can increase the utilization of some I/O device such as by

overlapping I/O and computation.

3.3.1 Data Mining

Data mining is the process of examining data frommultiple information sources to extract

or infer trends. Data mining consists of running queries on information systems, such as
databases, and then applying various heuristic �lters on the resulting sets. These �lters

often combine elements from di�erent sets to �nd relationships between data that may
not be expressible in the query languages of the information sources.

2Java is a trademark of Sun Microsystems, Inc.
3ActiveX is a trademark of Microsoft Corporation.
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Data mining provides an ideal application domain for sets. Dynamic sets could be used

to hold the results of queries or as the intermediate representation for collections of

candidate objects. Filters could be written to iterate over these sets. The lack of an

explicit order in dynamic sets is also appropriate for this domain, as data miners could

create sets to hold objects of equal importance since the overhead of creating sets is low.

3.3.2 Multimedia Object Repositories

Digital libraries and multimedia object repositories are another potential domain in which

to use dynamic sets. These systems consist of servers which store and index a vast
amount of information, such as documents, images, videos, audio recordings, etc. This

multimedia data is stored as objects and is accessed through the object's name, much
like �les in a �le system. Unlike a typical �le system, however, associative naming is

built into the system. It is thus a conceptually simple extension to add dynamic sets to
the interface of one of these systems.

An example of this type of repository is the QBIC image database[61]. QBIC allows

images to be indexed by their content, such as color, texture, shape, the kinds of pictures
they contain, etc. as opposed to textual descriptions of the pictures. QBIC stores the
images as �le system objects. Thus a query returns the names of the �les containing the

desired images, and the system then returns the �les themselves to the client for process-
ing on demand. One can imagine modifying QBIC to use SETS: forming a dynamic set

using the names returned from the query, and having SETS prefetch the �les on behalf

of the application.

3.3.3 Searching Archival Information

Many sites archive information on removable media, such as tape libraries or CD juke-
boxes. These media provide high bandwidth access to data but extremely high latencies,
particularly when the tape is o�ine when the request is made. However, if the system

had knowledge of multiple requests, it could reorder them to take advantage of batching,
amortizing the cost of mounting a tape or CD over access to multiple objects on that
volume. In addition, some archives have multiple drives, and so can satisfy some number

of concurrent requests to increase throughput. Thus there is opportunity to increase the
utilization of these drives in order to reduce the latency seen by an application.

Dynamic sets provide a convenient interface to applications using these libraries. Search

applications could use sets directly, or requests for o�-line data could be spooled, then

expressed in terms of sets where each set contained objects with equivalent priorities.

With more knowledge of future requests that dynamic sets provide, the system could
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schedule requests to amortize the time to mount a tape over multiple requests for that

tape's data, and could access tapes in parallel using the library's multiple drives.

3.4 Summary

This chapter de�ned the dynamic sets abstract data type. Dynamic sets are lightweight,

temporary, and unordered collections of objects whose membership is determined on

demand. In addition to motivating and describing these properties, this chapter also
presented the rationale for the design, and the operations used to manipulate and pro-

cess dynamic sets. This chapter also listed the bene�ts of dynamic sets and potential
application domains in which dynamic sets could be employed.



Chapter 4

SETS: An Implementation of Dynamic

Sets

This chapter describes SETS, an implementation of the dynamic sets abstraction de-
scribed in the previous chapter. SETS extends the environment used by the Odyssey
project[80] at Carnegie Mellon University by adding support for dynamic sets to the �le

system interface. Section 4.1 describes the context in which SETS is intended to run. Sec-
tion 4.2 describes how the interface for dynamic sets is instantiated in SETS. Section 4.3

discusses the architecture and detailed implementation of SETS. It also describes how

the structure of SETS is designed to increase the autonomy of the various components
of SETS, in order to allow maximal asynchrony in processing a set of objects.

4.1 Context and Background for SETS

Because the dissertation is concerned with improving the performance of typical users of

a distributed system, the platform of interest is that of a typical client computer. Clients
are usually personal computers or workstations, possibly mobile, connected via a range

of communication media. For instance a GDIS client may be a home personal computer
dialed into an online service, or a workstation connected via Ethernet. Low end machines

have limited memory and processing power, for instance a common con�guration today
is a 66MHz Intel 486PC with 8 or 16MB of memory. More powerful workstations have

64MB or more of memory and hundreds of MIPS of processing power.

Although these computers run a range of operating systems, this dissertation will use a

variant of BSD 4.3 Unix[47]. The reason for this decision is that BSD provides a com-
mon set of functionality such as virtual memory, multitasking, and support for multiple

�le systems. In addition, the source code to BSD is publically available. Commercial

47
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personal operating systems such as OS/2, Windows, or MacOS support more applica-

tions and are more widely used, but do not have source code in the public domain. The

variant of BSD used at CMU is Mach 2.6[1]. Mach extends the core functionality of BSD

with advanced operating system features like kernel threads, external pager control, and

modern interprocess communication.

For the purposes of this thesis, however, Mach 2.6 can be considered as equivalent to BSD
4.3. Throughout the implementation and design of SETS, I have studiously avoided any

Mach functionality that is not provided by other implementations of BSD Unix. As

a result, the basic SETS functionality should be portable between unix-like operating

systems. Due to limited manpower resources, however, veri�cation of these claims of

portability must be left as future enhancements.

SETS is one component of Odyssey: a distributed data repository to explore the issues

of application aware adaptation in the context of mobile computing and distributed

systems[80]. Odyssey extends the notion of DFS to include support for multiple types
of objects. The Odyssey client subsystem is decomposed into generic and type-speci�c
components. The type-speci�c functionality for a particular type of object, such as a �le
or a video stream, is encapsulated in a component called a warden.

4.1.1 Background: BSD

This section provides some background for readers that are unfamiliar with the details
of BSD. BSD is a kernel which runs in protected mode and provides services to user-level
processes through operations called system calls. System calls are similar to procedures in

functionality, but have a substantially higher cost since they cross the protection domain
between the user level process and the kernel.

The component of BSD of most interest to this dissertation is the �le system. The �le
system provides access to persistent objects called �les. A �le is an untyped object of

varying size, which is accessed through a subset of the system calls. These �le system

calls take the name of or a reference to a �le on which to perform the operation, and
resolve the name to obtain a low-level �le handle called a vnode. File names in BSD are

hierarchical; �les are the leaves of the hierarchy's tree.

For SETS, the most important of the �le system operations are open(), close(), and

read(). Open() takes the name of a �le and returns an open �le descriptor which is used
as a handle for the open �le. Read() copies data from the �le into a bu�er supplied by

the caller. A side e�ect of read() is that the �le pointer associated with the open �le
is incremented by the amount of data that was read, so that successive reads will see

successive portions of the �le. When the process is �nished with the �le, it can close()
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it to release the descriptor and tell the system it has �nished processing the �le. A

process's open �les are closed automatically when the process exits.

Two other system calls of interest to SETS are the fork() and dup() operations. Fork()

creates a new process based on the calling process. In particular, the new process inherits
(and can share) the �le descriptors of the old process. Dup() creates a new descriptor for

the same �le. The new descriptor shares the �le pointer with the old descriptor, so that

a �le could be read sequentially by alternating reads to the old and new descriptors.

In BSD, a �le system's name space can be segmented into di�erent (sub-)�le systems1.

A new �le system is added to the name space by mounting it at some point in the
existing hierarchy. BSD supports multiple �le system types through the VFS switch[42].

Under VFS, each �le has a type which identi�es the VFS driver responsible for that �le.
Examples of �le system types are distributed �le systems such as NFS[77] and Coda[82,

41], and local �le systems such as the Fast File System[53] and the Log-Structured File
System (LFS)[72].

The VFS driver acts as the interface between the �le system API and the DFS client
subsystem. In some cases, the DFS client subsystem and its VFS driver are closely
intertwined. This is usually true when the client subsystem is part of the operating
system kernel, as is NFS and AFS. For others, the driver and client subsystem are

distinct and communicate through a well de�ned interface, possibly over a protection
boundary. Coda's client cache manager, Venus, is an example of this approach, and
makes extensive use of name and attribute caching in the driver to reduce the cost of

communicating between the driver in the kernel and Venus in a user-level process.

The actions taken by the driver in response to an open() or read() operation on a �le

depend on the semantics of the �le system responsible for the �le. To handle an open()

in Coda, Venus �rst resolves the �lename, fetching uncached directories on the path from
the root to the �le. It then fetches the entire �le if it is uncached, writing it to a local

disk �le called the container �le for that object. Reads to the open �le are directed to the
container �le without contacting Venus, and so essentially have the same cost as reads
to a local �le. In NFS, open() performs name resolution, but does not fetch the �le's

data. Instead, the data is fetched in blocks as a result of the read() operation and is
cached in the client's memory. Thus in Coda, an open can be an expensive operation
since it incurs most of the I/O latency that will be seen by the application, namely that

to fetch the whole �le from the server if the �le is not in the cache. In NFS, however,

reads typically take longer than opens, since they often involve contacting the server and
fetching a block of data.

1Unfortunately the same term is used to denote both the entire name space seen at a computer and

components of it.
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4.2 Adding Dynamic Sets to the BSD API

The previous chapter described dynamic sets in an abstract context. This section de-

scribes the detailed design of adding dynamic sets to BSD. Section 4.2.1 discusses the

instantiation of the types used in the design, and argues that the type decisions are

appropriate for BSD. Section 4.2.2 revisits the operations in the dynamic sets API to de-

scribe changes to the operations made for SETS. The man pages in Appendix A contain

detailed descriptions of the operations and the use of the parameters.

4.2.1 Instantiating Dynamic Sets in BSD

Category Operation

Allocation int setOpen( char *name, int flag );

int setClose( int s );

Management int setUnion( int r, int s, int flag );

int setIntersect( int r, int s, int flag );

int setRestrict( int s, char *rname, int flag );

Processing int setIterate( int s, int f, char *b, int size );

int setDigest( int s, char *buffer, int size );

Miscellaneous int setSize( int s );

int setMember( int s, char *elem );

int setWeight( int s, int *weights );

This table presents the type signatures of the operations in the SETS API. The operations are

those listed in Figure 3.1, modi�ed to use types more appropriate to BSD, the environment in

which SETS is implemented. Other changes include adding parameters to some of the operations

to allow applications to tune the behavior of an operation to suit their needs. Man pages describing

these operations are presented in Appendix A.

Figure 4.1: SETS Application Programming Interface

Figure 4.1 lists the SETS instantiation of the type signatures of the dynamic set opera-
tions listed in Figure 3.1, replacing the abstract data types with the types chosen for the

BSD environment. The previous chapter used, but did not de�ne the type signatures of
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the elem, speci�cation, summary, and set types. This is in fact a strength of the design,

for it allows this implementation to employ BSD's idiom. As a result, the SETS API �ts

naturally with existing BSD operations, and can use existing types such as �le descriptors

more easily.

The de�nition of these types for BSD is necessarily vague because BSD does not support

a strong type interface. Thus, for example, all strings are char *, regardless of how they

are used. Since providing a richer type system is beyond the scope of this thesis, the
descriptions that follow describe how a type is used rather than supplying a more formal

type de�nition. Another limitation of BSD's type system is that type errors cannot be

detected statically; SETS must check that the arguments are valid on use, and produce
errors in response to illegal values. The de�nition of errors and the manner in which they

are reported is described in Section 4.2.2.1.

4.2.1.1 The Basic Object Type: elem

The members of a set are the basic data objects in the information system. In BSD, data
objects are �les. Files can be referenced in one of two ways in BSD. The object itself

is identi�ed by its �le name, a string which identi�es the path from the root to the �le
in the name hierarchy. An object's data can only be accessed by opening the �le, the
open �le is represented by an open �le descriptor. In BSD, the open �le descriptor is an
integer which is a reference to the open �le.

Dynamic set operations have 2 di�erent kinds of references to �les. First, operations
that access the �le's data use the open �le descriptor to refer to the �le. For instance,
setIterate() operation returns the �le descriptor of the member it is yielding. With the

descriptor, the application can access the �le's data using the read() operation. Second,
operations can refer to the �le itself by its name. For example, the argument to the
operation setMember() is a �le name. However, since Unix does not support a �lename
type, the type signature used in Figure 4.1 is simply that of a character string (char *).

In addition to these 2 kinds of references to �les, the implementation of SETS stores the

�le's vnode in its internal data structures. This allows fast access to the �le's meta-data.
However, vnodes are not exposed to applications through the SETS API.

4.2.1.2 Membership Speci�cation: speci�cation

When a set is created, the creator supplies a speci�cation which is evaluated by SETS
to determine which objects should be members of the set. The result of evaluating the

speci�cation is a list of �le names. This approach has two advantages. First, the use
of �le names to identify members means that SETS can be added to a system without

requiring the modi�cation or addition of a new name scheme. Second, name resolution
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Explicit: /projects/*src*/*.c

Interpreted: /staff/nselect home where name like "%david%"n

Executable: /sources/pkgs/contrib/%myMakeDepend foo.c%

This �gure gives examples of the three di�erent kinds of membership speci�cations supported

by SETS. Explicit speci�cations list the names using csh's regular expressions. Interpreted spec-

i�cations allow applications to use strings which are interpreted by search engines as queries,

returning the names of the objects that satisfy the query. Executable speci�cations name bina-

ries whose execution results in a list of names. With these types of speci�cations, SETS can

easily be extended to support a variety of query languages and modes of search.

Figure 4.2: Examples of the Three Types of Names Supported by SETS

of the members can be done asynchronously, allowing the cost of fetching the directories
involved in resolving the name to be overlapped with application computation or fetching
other members of the set.

The speci�cation type consists of strings from a speci�cation language. The language

must have the following three properties. First, it must be intuitive in order to be useful
for interactive searches, since interactive search applications might expose set creation,

and thus the need to specify membership, to users. If specifying membership is too
di�cult, the user is likely to access the objects directly instead of creating a set. Second,
the language should be concise, because long speci�cation strings are unwieldy. Further,

BSD has limits on the length of valid �le names and path names, which limits the length
of a membership speci�cation. Third, there are many di�erent sources or tools with
which a user can identify interesting objects. In order to support new or di�erent types
of queries, SETS speci�cation language must be easily extensible to add support for new

types of search engines, query languages, etc.

Because many BSD users are familiar with csh's wildcard set notation[38], SETS extends

this notation and uses it for its speci�cation language. In BSD, a �le name consists of a

sequence of components, each of which identi�es one node on the path from the root of

the �le system to the �le being named. The csh notation extends �le names by allowing
a component to contain regular expressions which identify several nodes at each stage in
the path. For instance, fsrc1,src2g/*.[ch] would be the set of all �les ending in \.c"

or \.h" in the subdirectories src1 or src2.

SETS extends the csh's set notation to allow a component to contain three kinds of
set speci�cations; examples of each are given in Figure 4.2. Explicit speci�cations use

standard csh wildcard notation to indicate the names of the members of the set. This

type of speci�cation is syntactically equivalent to the csh notation and should be easy

for Unix users to employ. One di�erence is that explicit speci�cations are expanded
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by SETS and not by the shell. Although explicit speci�cations may be quite long, these

speci�cations are much smaller than the limit on name length imposed by BSD in practice.

If necessary, one can shorten these speci�cations by more aggressive use of wildcards.

The second kind of speci�cation is the interpreted speci�cation. Interpreted speci�cations
contain strings in some query language, such as SQL, delimited by \n". The portion of

the speci�cation to the left of the query identi�es an object with which the query is

evaluated. Query evaluation is performed by the warden responsible for the object.
In SETS, wardens are VFS drivers extended to support queries and prefetching. For

instance, SETS provides an SQL warden which mounts relational databases as �les in the
�le system name space. A valid interpreted speci�cation would contain the name of such

an object such as \/staff" in Figure 4.2 and an SQL query like \select home where

name like "%david%"". Assuming the home �eld contains the names of directories, the
result of evaluating this SQL query is a list of home directories of people whose name
contains the string \david". The names that result from query evaluation are assumed
to contain no further set speci�cations. Illegal query strings or the invocation of a query
on an object whose warden does not support queries result in the empty set.

The third kind of speci�cation is the executable speci�cation. Executable speci�cations

are programs that act as predicates over a portion of the system's name space. The

program and its arguments are delimited by \%", the pre�x of the speci�cation before
the �rst \%" is the directory in which to execute the program. SETS executes the
program in a separate, dynamically created process. The program returns to SETS
the names of the objects that satis�ed its predicate. One interesting application for

executable speci�cations is the evaluation of dynamically generated code. A search tool
could generate specialized code for a particular search, and supply the name of the �le
containing the newly generated code in the executable speci�cation. The result would
be a search �lter which was tuned for the current application's needs.

As with csh wildcard notation, any component of a name can contain a set speci�cation.
As an example, consider the speci�cation /project/*/src/%myMakeDepend *.c%. SETS

begins by parsing a speci�cation from left to right, although the order of the members is

unde�ned in keeping with the no-order property of dynamic sets. Components with no
speci�cation characters uniquely identify the next �le or directory on which to continue

expansion. Components containing set speci�cations cause SETS to evaluate the speci�-
cation to produce a list of names. Each name either identi�es a �le (if there are no more

components to evaluate) or a directory which is selected as the current directory for the

evaluation of the next component. An error at any point (such as the set creator does not
have access rights on the directory or the next component does not exist in the current

directory) means that this portion of the name is invalid. If all paths terminate in error,
the result of expansion will be the empty set. From the example above, SETS would run

the program myMakeDepend *.c for each directory that matches /project/*/src/.
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4.2.1.3 The Digest Type: summary

One mode of processing a set's members is to examine a digest, or summary of each

member, instead of examining the members directly. For instance, if there are too many

members to fetch, or if there is a signi�cant cost associated with fetching them, an

application may wish to view the attributes of the members instead. The summary type

is used in the design to denote the kinds of digests that are supported.

Ideally, applications could supply dynamic �lters which would create summaries from the

members, and SETS would ship these �lters to the server to avoid the cost of fetching the

members. In addition, dynamic sets could support a rich selection of summary types;
calls to setDigest() would indicate which kind of summary to use. However, these

features are expensive to provide and unnecessary to evaluate the thesis. User supplied
�lters are expensive because of the complexity involved in supporting a function shipping
framework. In addition, many summary types require nearly as much work as fetching
the object. For instance, if the summary is the date of an object, SETS must send a
request to the server which can involve most of the latency of fetching the object; thus

little is saved by using setDigest().

Instead, SETS currently provides only one form of summary: the object's name. The

name can be provided with no overhead, since SETS needs the name to fetch members,

and stores the members' names as part of the set. In addition, the name is often useful
in discerning between members. For instance, the location of an object, and thus an
estimate of the time to fetch it, can be inferred from the names of WWW objects.
Similarly, the pathname of a source �le can indicate the program or library to which that

�le belongs. Extending the interface to support a richer collection of summary types is
left as future work.

4.2.1.4 The Open Set Type: set

The �nal type binding is that of set, which is the handle or reference to an open set.

Open set handles are similar in nature to open �le descriptors in BSD. Both are created
by opening an object, deallocated by closing the open object, and used to manipulate
the open object. In addition, an open set is a temporary object created exclusively for

a single application. Like open �les, an open set can be inherited by the children of a

process through the fork() system call, and processing of a set can be done by threads

within a process or by a process and its children. An open set handle, like an open
�le descriptor, is an integer whose value is an o�set into a per-process table containing

pointers to open sets. Although they are similar in nature, open �les and open sets are
di�erent objects, and the set of operations that manipulate open �les do not overlap with

the operations that manipulate sets.
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4.2.2 Revisiting the Dynamic Sets API

Implementing SETS in the context of BSD required modifying the dynamic sets API. One

reason for the change is to make the operations look more like typical Unix operations,

such as to overload return codes to indicate error conditions. Another reason is to allow

applications to tune the behavior of certain operations to better suit their needs. For
instance, setOpen()accepts 
ags with which an application can tell SETS that it plans on

using setIterate() to process the set. This knowledge allows SETS to more aggressively
initiate prefetches. The following sections describe the changes in more detail.

4.2.2.1 Returning Error Codes

In BSD, operations indicate error conditions by returning a special value (usually �1),
and setting the global variable errno to contain a numeric code indicating the error.

SETS conforms to this practice by having all operations return integers, and by mapping

SETS errors into standard error codes. For instance, if setSize() is called with illegal

value for the set parameter, it returns �1 and sets errno to EBADF.2

4.2.2.2 Tuning the Behavior of SETS Operations

In the detailed design of SETS, there are several points at which a decision concerning
the appropriate semantics needs to be made. Sometimes choosing a single behavior is
overly restrictive yet providing multiple behaviors is not di�cult. In these cases, it is

meet to leave the decision to the application by letting it specify the behavior it chooses.

In order to work within BSD's idiom, SETS operations provide a 
ags parameter which

allows this tuning of behaviors. A caller can set certain bits in this 
ag to request alternate

behaviors. One example of the need for this 
ag is the setOpen() operation. For instance,

the application can specify how a set should be shared with children processes, in a similar
manner to the way an application can specify how to share an open �le. In addition, the
application can inform SETS that it should begin prefetching the set's members as soon

as possible, rather than using the default policy of not prefetching until the application

begins to iterate.

4.2.2.3 Partial Evaluation

As described in Section 3.1.4.4, set membership may be lazily evaluated. This raises

a problem for the setSize() and setMember() operations. Rather than blocking these

2Other versions of Unix use di�erent but equivalent mechanisms. For instance, a negative return

value in Linux indicates an error, and the absolute value of the number is the error code.
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operations until membership has been fully determined, SETS returns a special error code

along with a valid result. For instance, if a set has 9 members currently, but membership

is not fully expanded, setSize will return 9, but set errno to contain the special error

code PARTIAL RESULT.

4.2.2.4 Batching Summaries

Although setDigest() is an iterator, it is ine�cient and unnecessary to return only one

summary per invocation. On one hand, the cost of getting a summary is largely the

cost of making the invocation. Summaries are relatively small and very inexpensive to
get since a summary is just the name of a member. On the other hand, the value of a

digest is that it gives su�cient information to guide the search with minimal overhead.
Thus, the operation setDigest() in SETS allows multiple summaries to be returned by
a single invocation.

Callers to setDigest() supply a bu�er and its size. SETS treats the bu�er as an array
of variably sized structures. Each structure has two �elds: an integer containing the
o�set of the next structure in the bu�er, and a string holding the member's name. The
last structure in the bu�er has zero for an o�set value since there is no next structure.

The value returned by setDigest() is the number of bytes that have been written into
the bu�er. SETS remembers which names have been yielded by setDigest(), and so a
name cannot be yielded more than once. SetDigest() returns a zero value to indicate

that all names have been yielded.

If the set's membership has not yet been fully determined, the last entry setDigest puts
in the bu�er is the special string \. . . ". If there are no unyielded names and the set's
membership has not yet been fully expanded, setDigest() puts one structure in the

bu�er whose o�set �eld value is zero and whose name �eld value is the string \. . . ".

4.2.2.5 Identifying Yielded Members

One problem I discovered when modifying interactive search tools to use dynamic sets is
that there is no way in BSD to determine the name of an object given a �le descriptor for
it. One alternative is to have setIterate() return the name of the member instead of

an open descriptor. However, this would require applications to open the �le themselves

in addition to calling the iterator. Since not all applications need the member's name, it
is more e�cient to have setIterate() return the �le descriptor, and those applications

that want the name can ask for it.

The arguments b and size serve this purpose for setIterate(). If b is nonzero, it must

point to a bu�er whose size is contained in the size parameter. When setIterate()
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is called with a nonzero value for b, it copies the name of the member it is yielding into

b. The application can then display the name to the user along with the contents of the

�le.

4.2.2.6 Adding Weights to Members

The setWeight() operation allows applications to inform SETS of the relative impor-
tance of the members. The weights parameter is an array of integers, one integer for

each member of the set. The order of the array should match the order in which the

member names were yielded by setDigest().

In order to specify weights, an application �rst calls setSize() to determine the num-

ber of members, and allocates an integer array of the appropriate size. It then calls
setDigest() to get the names of the members. Because the number of names returned
depends on the amount of space in the bu�er and SETS's progress in expanding the
speci�cation, the application may need to call setDigest() a number of times in order

to get all the names. For each member, the application assigns a weight by �lling in the
associated entry in the integer array. When ready, the application informs SETS of the
weights using the setWeight() operation.

4.3 SETS Internals

SETS is divided into three components: the API support, the prefetching engine, and the
wardens. Each component communicates asynchronously through well de�ned interfaces

to the other components. Decomposing the functionality in this way allows di�erent por-

tions of the expansion and processing of a set to be interleaved. Figure 4.3 illustrates the
three components, and the following subsections discuss the components and interfaces

in more detail.

To minimize the cost of interactions between SETS and the �le system, SETS is imple-

mented as an extension to the VFS mechanism. In BSD, this means that the operations
in the SETS API are system calls, and that SETS is implemented in the kernel. The

drawback of this decision is that kernel code is more di�cult to implement, and is less

portable than user level code. Trading implementation complexity and loss of portability

for tight integration with the �le system is reasonable for the SETS API layer and the

prefetching engine, because these components manipulate �le system objects (vnodes and

bu�ers) and so bene�t from the integration. However, the behavior of a warden depends
on the distributed system to which it provides access, and may not need close interaction

with the local �le system.
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Application

SETS Prefetching

Engine

SETS API

Coda File
System

Informix
Database

Kernel API

NFSNFS Warden

Coda Warden

SQL Warden

The main components of SETS, the API layer, the prefetching engine, and the wardens, are

depicted in this �gure. Dashed lines separate di�erent threads of control. The bold dashed

line indicates the kernel boundary. The API layer extends the kernel interface with the SETS

operations, the prefetching engine sits within the kernel. The wardens may either be in the kernel

or not, depending on their implementation. The three wardens listed are implemented in SETS;

other wardens (AFS, FTP, WAIS, etc) are possible but are beyond the scope of this dissertation.

Figure 4.3: The Architecture of SETS

Each of the components in SETS is implemented in a separate thread of control to
allow maximal concurrency. The API layer runs in the thread of the caller3, and asyn-
chronously invokes operations in the prefetching engine to avoid blocking the application.
The prefetching engine has a dynamically con�gurable number of worker threads, which

communicate synchronously with wardens. Wardens may also be multi-threaded, and
may interact with servers. Although this communication may be synchronous or asyn-
chronous, most clients use synchronous communication in the form of remote procedure

calls[10]. The boundaries between the thread domains in SETS is illustrated in Figure 4.3
using dashed lines.

4.3.1 SETS API Support

The SETS API support layer has three functions. The �rst is to supply the operations

in the SETS API, listed in Figure 4.1. The second is to maintain the data structures

3In BSD, there is a one-to-one mapping between threads and processes, whereas Mach allows multiple

threads per process. SETS is designed to work in the multi-threaded case, and will therefore work in

the trivial (and common) case of one thread per process.
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which hold the state of an open set. The third is to invoke asynchronous operations to

expand and populate the set.

4.3.1.1 The Data Structures

Member Array
setObj

SetTable

(u area)

Process Structure

Open Set Table

openObj

. . . 

memberObj

This �gure illustrates the relationship between the three main SETS data structures. Each

process keeps a table of openObjs as part of its process state (u area), each openObj contains

the per-process state of a set and includes a reference to the setObj for the set. One or more

processes, and thus multiple openObjs, can hold references to a single setObj. The setObjs

reside in a system wide array called the SetTable. The members of a set are stored in an array

of per-member structures called memberObj.

Figure 4.4: The SETS Data Structures

A dynamic set is represented by three data structures: a per-process open set structure,

a structure for the set itself, and an array of per-member structures. Figure 4.4 depicts

the relationship between these three data structures. Since overhead is a prime concern,

the structures are designed to minimize both maintenance and storage costs. The data
structures are maintained in volatile storage for lower overhead, which is reasonable since

sets are temporary and thus a set's state need not be recoverable. Storing the SETS data
structures in virtual memory allows quick access to the data when SETS is in use, and
also allows the data to be paged out when no application is using SETS and the memory

is needed for other purposes.

Per-Process Open Set Structure
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Open Set

Table

Bitmap of File Descriptors

Pointer to setObj

openObj

The openObj structure contains the per-process state of a set. This consists of a reference to the

setObj and an indication of which of this process's open �les belong to (are members of) this

set.

Figure 4.5: The openObj Data Structure.

Although a set can be shared between processes, certain portions of the set's state are
process speci�c. For this reason, a set is represented by the combination of its setObj
and the collection of per-process openObjs, one for each process that has a reference to

the open set. The openObj contains a reference to the setObj, and a bitmap to indicate
which of the process's �le descriptors have been allocated for this set's members. The
openObj structure is illustrated in Figure 4.5.

Since a process may open more than one set at a time, SETS allocates an array of openObj

for a process as a side-e�ect of the �rst set operation it calls. This array is similar to

the open �le descriptor table. It has a �xed size; SETS returns the error code ENFILE

when all open set descriptors are taken. The open set handle returned by operations like

setOpen() is an index into this table. The array is automatically deallocated when the
process terminates.

Set Structure

The set structure, setObj is the central data structure used by SETS. Each open set has
exactly one of these structures associated with it. The structure consists of four groups

of components, each described in the following paragraphs. Figure 4.6 illustrates the

layout of setObj.

The �rst part of setObj contains the array of members. The array consists of a pointer to

a block of dynamically allocated memory holding the per-member structures. When the

block is full, SETS allocates a new block which is twice as big as the old one, copies the
members from the old block to the new one, and releases the old block. This technique

allows a set to be arbitrarily big, while minimizing overhead and wasted space. Associated
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SetTable

SetObj Structure

References, Opens

State, Unique, Expands

CWD, Root

Size of Array

Pointer to Block

Iterator State

Locks, etc.

Member Array:

Counters:

Context:

Miscellaneous:

Identity, Specification

The setObj structure is the basic data structure for a set. It contains an array of per-member

data, counters, some of the state of the creating process, iterator state, and a lock to provide

mutually exclusive access to the set.

Figure 4.6: The setObj Data Structure.

with the array are a counter holding the size of the block of memory, and a count of the
number of members.

Although this member array could be quite large, SETS places a sliding limit on the

set's cardinality by holding members open until they have been yielded to, processed
by, and closed by the application. Thus at most there can be as many prefetched but
unyielded members on the client as the number of slots in the system-wide �le table.4

The reason for this limit is that SETS needs to be able to keep objects in the cache and

unmodi�ed until it yields them. The easiest way of doing this short of modifying the
cache management in the DFS client subsystem is to keep the �le open.

The second part of setObj consists of a number of counters. One counts the references

on this set to determine when the set can be released. Another counter is a uniqui�er
to di�erentiate this use of the setObj from past uses. A third counter holds the number
of prefetches that have been started for this set, which in turn is used to control how

aggressively SETS prefetches this set's members. A fourth counter holds the number of

requests to expand this set's membership speci�cation. SETS knows that the set's mem-

4Although tunable, the limit is 370 on the Mach 2.6 systems used here at CMU.
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bership has been fully expanded when this counter drops to zero. Another counter is used

to track the state of the set; SETS sets bits in this counter to identify state changes. For

instance, SETS indicates that a set is fully expanded by setting the DONEEXPANDING

bit in this counter.

The third part contains the context in which the set was created. This context is necessary

to allow the prefetching engine's worker threads to resolve names and access members

on behalf of the process that created the set. Three pieces of data are needed; all
are available from the creating process's per-process structure in the kernel. First, the

process's current working directory is necessary to resolve relative pathnames. Second,
the process's �le system root is necessary to resolve absolute pathnames.5 Third, the

process's access rights are necessary to ensure that the objects accessible through SETS

are exactly those accessible to the process through normal �le system operations. The
context also contains a fourth piece, the string containing the membership speci�cation
used to create the set.

Finally, there are �ve pieces of miscellaneous information needed by di�erent operations

that are stored as part of the set. First, the setObj contains a pointer to a copy of
the speci�cation string, if one was used to create the set. Second, the iterators use two

counters and a linked list, whose head is stored in the set. Third, the operations that

derive a set's membership from other sets keep references to these sets in the setObj.
Fourth, the set contains the head of a linked list of �le system bu�ers holding member's
data. The �fth piece is a lock data structure so that SETS can ensure the mutual
exclusion of concurrent access to the set.

Member Structure

Each member of a set is represented by the memberObj structure. This structure contains

the name of the member, a data �eld whose value depends on the state of the member, and

two counters. The �rst counter, nincore, holds the amount of the member's data that is
in memory. The use of this counter is described in Chapter 6. The second counter, state,
holds a 
ag indicating the state of this structure with respect to expansion, fetching, and

iteration. Figure 4.7 depicts the basic structure of the memberObj structure.

A member can be in one of six states: FREE, TAKEN, FETCHING, OPENED,

FAILED, and SEEN. Initially, all elements of the member array are FREE, and the

data in those structures is uninitialized. The memberObj structures are allocated as
needed in order of increasing index in the member array. Thus the state of structures
whose indices are greater than the size of the set must be FREE. When a member

5Unix administrators can deny a process access to portions of the name space by setting that process's

root via the chroot() system call.
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is added to the set, SETS allocates the �rst FREE structure by changing its state to

TAKEN, �lling in the name, and incrementing the counter containing the set's cardi-

nality. The pointer to the member's data is left uninitialized.

When SETS decides to prefetch a member, it changes the set's state from TAKEN to
FETCHING, and zeros the pointer to the member's data. When the fetch completes,

the worker thread performing the fetch will change this pointer to point to the vnode

holding the member's data, and set the state of the memberObj to OPENED. At this
point, the member must now be local (it has been fetched) and may not be evicted from

the local disk cache until the set is closed. If the prefetch ended in failure, the thread
stores the error code in the data �eld and sets the state of the member to FAILED.

When an opened member is yielded, SETS changes its state from OPENED to SEEN.

SETS also changes the data pointer to point to the open �le structure, rather than the
vnode. This change allows SETS to keep track of the �les that have been opened by

setIterate(). Since the open �le contains a pointer to the vnode, SETS can still access
the vnodes of yielded members.

. . .

Member Array

State

Data

Nincore

Error Code

Name

SetTable

Vnode or File

Dynamically Allocated Block

memberObj

The memberObj structure holds information on one member of a set. This information includes

the member's name, a pointer to its data, an error code, and two counters.

Figure 4.7: The memberObj Data Structure.
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4.3.1.2 Managing the SETS Data Structures

One of the main purposes of the SETS API layer is to manage the SETS data structures

in response to invocations of SETS operations. This section describes at a high level
how the API layer performs this task. Each of the following subsections describes one

of the hard problems facing SETS, and how it solves the problem. Aside from the

solution of these problems, the remainder of the functionality in the SETS API layer is

straightforward and is not described further.

Set Allocation

When an application creates a new set, such as by setOpen(), SETS allocates new data
structures to hold the set and its data. Allocation consists of �nding an empty openObj

in the process's open set table and an empty set structure in the system wide SetTable.
An error code is returned if no empty slot exists in either table. SETS initializes the
empty openObj to point to the empty setObj and sets the �le descriptor bitmap to zero

since no member has yet been yielded. The setObj structure is initialized by allocating
a small array to hold the members, setting the counters to zero, initializing the locks,
and initializing the iterators to indicate that expansion has not yet been started.

If the operation that creates the set is invoked with SETS ANTICIPATE DIGEST, a message
to start membership expansion is passed to the prefetching engine. Thus the work to
expand the set can be interleaved with application processing before any call is made
on the open set. The expansion is I/O dominated, and so may be e�ectively interleaved

with the application with little negative impact.

Similarly, applications can cause SETS to aggressively start prefetch operations on mem-

bers as soon as their membership has been determined. This behavior, as well as ag-
gressively determining membership, is selected by setting the SETS ANTICIPATE ITERATE


ag. Setting this 
ag informs SETS that the application plans to use setIterate() to

process the set. This hint declares to SETS that it is safe to initiate prefetching, since
the application has declared that it will process at least some of the members. This 
ag

is useful to those applications that can create a set some time before it is needed, and
which are sure to iterate on the set.

Set Deallocation

Although the point at which to create a set is clearly de�ned, the point at which it is

safe to deallocate the set is more ambiguous. In particular, it may not be appropriate to
deallocate the set as a side e�ect of setClose(), since other outstanding references to

the set might still exist. These references can come from di�erent sources. For instance,
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each process that has a handle on a set, such as would result from fork(), contains a

reference to it; a set that is derived from another set, e.g. the union of two other sets,

contains references to the sets from which it is derived; and every outstanding prefetch

or expansion operation on this set contains references to the set.

In order to avoid reclaiming a set while one of these references is active, SETS maintains

a count of active references in the setObj. When this reference count drops to zero, SETS

can reclaim the set and the resources it consumes. SETS �rst releases any �le system

resources it may hold, such as bu�ers in the bu�er cache, see Section 6.4.2. SETS then

closes or releases any members in the set, depending on whether they have been opened.
Finally, the member array, member name strings, and the set name are deallocated.

Iteration over Sets

The key operations in the SETS API are iterators, of which SETS provides two:
setDigest() and setIterate(). SetDigest() yields the names of members, and al-
lows searchers to scan the membership of a set without requiring SETS to fetch the

members' data. With the names of members, searchers can decide to manipulate set

membership through the set management operations. SetIterate() yields an open �le,
and requires that the entire �le's data be fetched before it is yielded. SetIterate() is
thus the primary call for applications wishing to process a set of objects.

The simpler of the two iterators is setDigest(). On the �rst call to setDigest(), SETS
initiates the expansion of the membership speci�cation into the list of names, if expansion
has not already been initiated. SETS then copies the names of members into the input

bu�er until either the names of all known members have been copied or the bu�er is full.

As described in Section 4.2.2.4, the last entry in the bu�er will contain the name \. . . "
if the membership is not fully determined. Names are copied in the order in which they

appear in the member array, a counter stored in the setObj stores the highest member

index that has been yielded by setDigest(). Subsequent calls to setDigest() can then
start at the next index, and thus do not have to rescan the entire array on each call.

SetIterate() is complicated by the need to fetch members before they can be yielded.

Fetching is expensive, and the strategy used by SETS is su�ciently important and com-
plicated to warrant an entire chapter (see Chapter 6). However, for purposes of this

discussion it su�ces to state that SETS initiates the prefetch of an object using a strat-

egy designed to reduce latency while minimizing wasted resources. In addition, SETS
ensures that all of an object's data is local when the prefetch operation terminates. Chap-
ter 6 also describes the manner in which the prefetcher determines the order in which to

yield prefetched members.

The job of setIterate() is to determine which objects are ready to yield and to pick one

and yield it. To aid in the identi�cation of unyielded objects, SETS keeps a counter in
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the setObj to track the progress of the iterator. When setIterate() yields a member,

it stores the index of the member in the counter if all members of lower index have

been yielded. Thus the counter's value is a good place to start looking for unyielded

members on the next iteration. As a further optimization, SETS also keeps a linked list

of members which are ready to be processed. If more than one member is ready to be
yielded, setIterate() can pull the �rst member o� the list without having to search

through the member array.

Sharing Sets Between Processes

Sharing open sets between processes introduces two issues. First, it raises the question

of whether or not a set should be inherited by children of a process. Second, it raises the
question of whether use of sets alters the �le system's security model.

A process creates children processes with the fork() system call. To allow the child to

share in the processing of set members, a set and its iterators can be shared between the
child and its creator if the set is inherited across the fork(). An application can choose
one of three inheritance behaviors for a set by setting bits in the flag argument when
the set is created. The default behavior is to prevent sharing by not giving the child a

reference to the set. By setting the SETS DUP ON FORK, the application causes the child
to get a new set that is identical to the parent's set, but future accesses to this set's
iterator will not be re
ected among the copies. To allow a child and parent to share

the iterator, the application should create the set with the SETS SHARE SET 
ag. This
causes a process and its children to share access to a set and its iterators. SETS manages
concurrent access to the iterator to ensure that each member is processed at most once,

allowing access to the members to be interleaved between parent and children.

Because set members are fetched using the access rights of the creating process, but can

be accessed by children of the creating process, there is a potential breach in the �le

system's security mechanism. Fortunately, this impact of this breach is weakened by
several factors. First, the access rights of the parent are inherited by their children, thus
SETS provides no additional and unwarranted accesses. However, a process that changes

its access rights will still access set members with the access rights of the set's creator.

Second the children processes are running the same executable as the parent. Thus the

introduction of a hole, for instance by changing the owner (uid) of the child process,
can only happen if the application was intended to function in this manner. Third, the

default behavior is to prevent the duplication of a set in a process's children, thus the
security hole is only manifest if the application explicitly chooses to pass on the set to

its children.
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Managing Open File Descriptors of Members

In order to maintain the appearance that members belong to a set, SETS only allows a

process to access the �le descriptors of open members while the set is open. To prevent

access after a set has been closed, SETS closes all �les opened by setIterate() as a
side e�ect of setClose(). Future references to these descriptors will fail and return the

error code EBADF.

Unfortunately, keeping a list of the �le descriptors is not su�cient to identify the descrip-

tors that need to be closed. The process may have closed the �le, and the descriptor may
have been reallocated for another open �le. Alternatively, the iterator may have yielded

open members to more than one process if the set is shared. SETS addresses these

problems by maintaining a list of open descriptors in the per-process openObj structure.
When setClose() is called, SETS examines this list, and for every entry it looks at the
member's list to determine if the open �le descriptor corresponds to a member of this

set. Note that simply marking the descriptor as belonging to a set and closing every
descriptor so marked is insu�cient, as a descriptor may belong to a di�erent set than the
one being closed. For reasons of e�ciency this list of opened descriptors is maintained

as a bitmap in the openObj. Other alternatives, such as keeping open descriptors on a
linked list, have higher overhead and require changes to the kernel's generic �le system

data structures.

File descriptor management is further complicated by the fork() and dup() system calls.
First, fork() can cause a set to be inherited by a child process. To ensure consistency

between the child's open �les and open sets, the per-process, per-set list of open �les is

duplicated in the new process. Second, dup() causes new descriptors to refer to existing
open �les. If a process called dup() on a �le opened by setIterate(), SETS would not
know that the new descriptor also corresponds to a set member, and would not close

that descriptor when the set was closed. Rather than forcing these �les to be closed,

SETS retains this behavior to allow applications to retain access to members after a set
has been closed. For instance, a search application could use dup() to retain access to

the �les that satis�ed the search and close the set to free the resources consumed by the
many other members of the set that did not satisfy the search.

Weights

The setWeight() operation allows an application to inform SETS of the relative impor-

tance of the set members. SETS treats these weights as hints and not as directives, which

means it does not guarantee that objects will be fetched or yielded in order of largest

weight to lowest weight. However, SETS does initiate prefetch operations on objects in
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order of weight. In addition, the iterator will yield the object with highest weight out of

the objects that are ready to be yielded when the iterator is invoked.

SETS implements this behavior by reordering the member array so that members with

greater weight have a lower index than members of lesser weight. Since SETS uses the

array to decide which object to prefetch next and which object to yield, the order of the

member array a�ects the order in which objects are prefetched and yielded. However, this
does not ensure that members will be yielded in order of greatest weight. For instance, the

member with greatest weight may require the highest latency to fetch. If the application

calls setIterate() before this member's fetch has completed, SETS will yield another
member rather than force the application to block. Although the implementation does

not do so presently, it would be possible to allow applications to request strict adherence

to the weights via an option when the set is created.

4.3.2 SETS Prefetching Engine

Operation Parameters Description

expand pathname, suffix Expand a set speci�cation.

query pathname, suffix, Read names from a cursor,
cursor a handle on a running query.

execute pathname, suffix, Read names from a pipe

pipe to an executing predicate.

subset bitmap Expand the membership of a subset.

union bitmaps Expand the union of two sets.

intersect bitmaps Expand the intersection of two sets.

prefetch memberObj Prefetch a (remote) set member.

preread memberObj Read a prefetched member into memory.

This table lists the messages and operation-speci�c parameters used by the SETS API to invoke

asynchronous operations on a set. The �rst six message types correspond to operations which

determine a set's membership, either from its speci�cation or from the membership of other

sets. For expand, query, and execute, pathname holds the portion of the speci�cation that

has already been examined and suffix holds the portion of the speci�cation that needs to be

expanded. The bitmaps in the subset, union and intersect messages are used to identify

which members of the base sets have already been added to the membership of the derived set.

The prefetch message requests the prefetch of a member, and the preread message tells SETS

to read the data of a previously prefetched or local member from the disk into the Unix bu�er

cache.

Figure 4.8: Operations in the Interface to the SETS Prefetching Engine



4.3. SETS INTERNALS 69

The SETS prefetching engine performs the work of determining a set's membership and

fetching its members. The operations it performs are invoked asynchronously by the

SETS API layer in the form of messages. SETS API operations create a message contain-

ing the necessary information to accomplish the task at hand. The message is received

by a worker thread, which performs the task. Since the messages are asynchronous,
the worker thread has no direct way of informing the API layer that the operation has

completed. Instead, it updates the SETS data structures to re
ect the results of the op-
eration. For instance, the worker changes the state of a memberObj from FETCHING

to OPENED when an asynchronous prefetch completes.

The asynchronous messages are illustrated in Figure 4.8. Because the messages deliver
the arguments to the worker threads, the type signature of the message is e�ectively

the interface between the SETS API layer and the prefetching engine. There are eight
operations in the interface: expand, query, execute, subset, union, intersect,

prefetch, and preread. The semantics and syntax of these operations are discussed

in the following sections, except the preread operation which is discussed in Chapter 6.
Each message contains some general arguments (not listed in Figure 4.8) such as a ref-
erence to the set on which to perform the operation and a tag identifying the operation
being invoked. This tag provides su�cient context to allow the worker thread to decipher
the rest of the message.

The worker threads are implemented as daemon processes, a common technique for get-
ting independent threads of control in the kernel. Although Mach supports kernel threads,
support for independent threads is not universal and is therefore not assumed by SETS.

The daemon makes one system call, setDaemon(), which never returns. Instead, it acts
as a de-multiplexer, taking messages o� a queue and directing them to the appropriate

service routines. When it gets a message, the worker thread �rst assumes the identity of

the process that created the set using the context stored in the set. It then decodes the
message using the tag to identify the types of arguments in the message, and calls the
service routine. When the service routine completes, the worker blocks until the next
message arrives. Although it would be a simple matter for SETS to dynamically control

the number of worker threads, the current implementation does not do so. The bootstrap

scripts6 start a default number (currently 4) of daemons at boot time, and the user can
kill or start other threads as need arises.

Expanding the Set Membership Speci�cation

Expansion of a speci�cation into the names of a set's members starts with the expand

message. When the API requests an expansion, it puts the set's speci�cation (or name)

6The bootstrap scripts on BSD are /etc/rc or /etc/rc.local.
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in the suffix �eld, and allocates another string of the same length in the pathname �eld.

The expansion routine steps through the suffix string looking for special notation which

indicates the need for expansion. When one of these special characters (such as \*", \n",

or \%") is found, the portion of the suffix to the left of the character is appended to

the pathname, as it has been fully expanded.

If the character indicates simple syntactic expansion, such as \ffoo,barg" or \[abc]",
the expansion can be done directly. SETS �rst �nds the delimiter, and determines the set

of values which this token represents, for instance \foo" and \bar" in the �rst example.

For each value, it creates a new message containing a copy of the pathname and a new

suffix string. The new suffix has the old su�x appended to one of the expanded
values. Because the expanded value is placed in the suffix, or unprocessed portion of

the name, SETS will validate that the string is a valid �le name when it processes the
new message. To save the cost of allocation, the current message and its strings can be

reused for one of the expanded values.

Wildcard expansion is similar, but instead of expanding the speci�cation into possible
names SETS must pattern match against the names of existing objects since the set of
possible values is in�nite. To do this, SETS �rst isolates the component that contains

the wildcard character, and performs name resolution on the components in the pre�x to
get the vnode of the directory in which expansion will be performed. For instance, if the
speci�cation is the string \/dog/cat/h*rse", SETS would resolve the name \/dog/cat" to

get the vnode of that directory. It then lists the names in that directory to �nd those that
match the wildcard speci�cation. In the example, SETS would examine the names of

the children of \/dog/cat" to �nd those that begin with \h" and end with \rse". For all
such names, for instance \horse" and \hearse", SETS creates a new expansion message.

Unlike the syntactic case, names that match the wildcard speci�cation are known to be
valid, and so can be appended to the new pathname string instead of suffix.

The process of expanding interpreted or executable speci�cations is more complicated, but

the basic process is similar to that for wildcards. SETS �rst identi�es the component
containing the query, which is simpli�ed because this component can contain no other

characters but those in the query. SETS resolves the pre�x (leading up to the query's
component) to obtain a vnode, and uses this vnode to execute the query. The su�x is

used after the query executes to continue expansion. The details of query execution are

discussed in the following two sections.

Evaluating a Query

When a set is opened using a interpreted membership speci�cation, SETS runs the query
delimited by the \n" character on the vnode named by the pre�x of the speci�cation.

For example, given the second speci�cation in Figure 4.2, SETS would run the query
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\select home where name like "%david%"" on the vnode named by \/staff". The

query is a string which expands into a list of �le names when interpreted by the warden

responsible for the \/staff" vnode.

SETS invokes a query expansion by passing the string containing the query to the warden
using the ody lookup operation7. The warden immediately returns a special vnode called

a cursor, which acts as a handle for the query. This allows the query to be executed

asynchronously without forcing the worker thread to block. Instead, the worker thread
queues a query message which will cause the results of the query execution to be read

from the warden. The query message contains a reference to the cursor, as well as the
pathname and suffix �elds of the expandmessage which triggered this query expansion.

When the query message is received by some worker thread, it invokes the ody expand

operation on the cursor contained in the message. For each name returned by ody expand,

SETS creates a new expandmessage. If the name is an absolute pathname, the pathname

string contains only the new name, otherwise the name is appended to the pathname from
the query message. The suffix �eld of the new message is a copy of the suffix �eld
of the query. Because the names returned by the query are put in the pathname �eld,
they are assumed to be simple �le names and not to contain set speci�cation characters.
Because existing search engines do not currently support dynamic sets, it is reasonable

to assume that the names they return will not contain set speci�cations. However, one
could modify SETS to allow a query to return the name of a set of objects in addition to
the name of a single object by putting the name in the suffix �eld of the new messages

instead of the pathname �eld.

The motivation behind providing two messages for query execution is to allow the query
to run asynchronously. The evaluation of the query may take some time because the

warden may need to communicate with servers or fetch objects to resolve the query. By
queueing a message to retrieve the results at a later time, the worker thread can perform

useful work while the warden is blocked on I/O. If there is no other work to perform, the
query message will be dequeued and the worker will block until the query expansion has

produced some results. After the worker has processed any available query results, the
query message can be requeued to stimulate future expansion.

Reading the Results of an Executable Predicate

The processing of an execute message is similar in nature to the processing of a query

message. As stated above, SETS runs executable predicates in a newly created process.
The predicate communicates the identity of �les which satisfy the predicate by writing

their names to standard output. Before invoking the predicate, SETS redirects the new

7The \ody" pre�x and the name \warden" are inherited from the Odyssey project.
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process's standard output to a pipe. Thus SETS can read the results of the predicate by

reading the names from the pipe. Because the execution of the predicate may take time,

SETS queues an execute message, similar in nature to a query message, and allows the

predicate to execute asynchronously. As with names returned by a query, SETS creates

an expand message for each name the predicate returns. The new name either replaces
or is added to a copy of the pathname string, and so must not contain set speci�cations.

The implementation of the support for executable queries has been delayed by the need
for a means of sandboxing[94] these queries. When the dissertation was started, the sand-

boxing mechanism was supposed to have been ported to Mach 2.6, but has unfortunately
been delayed inde�nitely. As a result, the mechanism to support executable queries is

the only portion of this implementation that has not been completed.

Fetching Members

When SETS has completed the expansion of an expand message, the suffix �eld is null
and the pathname �eld contains a complete pathname of one member of the set. The
worker thread which �nished the expansion adds this member to the member array by
allocating an unused entry (growing the array if necessary) and setting the entry's state

to TAKEN. It then moves the pathname from the message to the entry, and deallocates
the message.

When SETS chooses to prefetch this member, it creates a prefetch message which
contains the index of this entry. When this message is dequeued, the worker thread
invokes the ody prefetch operation on the object. This operation is performed by the
warden supporting the object; the actual work depends on the implementation of the
warden. See Chapter 6 for more details.

Deriving Membership from Other Sets

The set operations setUnion(), setIntersect(), and setRestrict() create a new
set whose membership is based on the argument sets. When one of these operations

is invoked, SETS creates a new set, adds references to the arguments (base sets) and
creates a union, intersect, or subset message. Each message contains a bitmap for

each base set. The bitmap is used to identify which members of the base set have already
been included in the derived set. The basic algorithms are straightforward, the bitmaps

are used to reduce the cost of comparing members from that of a name comparison to
that of testing a bit.

When a worker thread receives a union, intersect, or subset message, it �rst checks

that the bitmap accurately re
ects the state of the base sets. The bitmapmay be incorrect
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if the member array of a base set was grown after the message was queued, or because

a setWeight() operation reordered a base set's member array. In the former case, the

bitmap needs to be grown to re
ect the new size of the member array. In the latter, the

bitmap state is suspect and needs to be rebuilt.

Although not at �rst apparent, zeroing out the bitmap and restarting the derivation of

membership will not introduce membership errors and is the simplest way to regenerate
the bitmap. The argument for correctness of membership must consider three cases. The

�rst case consists of objects that were members of the derived set, but will be re-inserted

since the bitmap information is lost. However, SETS prevents duplicate members so
the re-insertion will not a�ect the derived set's membership. The second case consists

of objects that were a part of the derived set, but for some reason no longer satisfy its

membership criteria. These objects will remain members, even though recalculation of
membership would exclude them. This is acceptable given the semantics of dynamic sets

described in Section 3.1.3.6, which state that a member need only satisfy the membership
criteria at some point between setOpen() and setClose(). The third case to consider
consists of objects that were not part of the derived set, but will be added as a result of

zeroing the bitmaps. As with the second case, adding these objects is appropriate given
the semantics of dynamic sets.

The use of the bitmaps depends on the operation being performed. For a union operation,

the bitmaps indicate which members of the source sets have been added to the derived
set. For intersect, the bitmap is used to detect which elements of one of the source sets
have been added. Since a member can be added only if it belongs to both source sets,
maintaining one bitmap is su�cient to detect which objects have been added. Finally,

subset sets a bit when a member of the source set has been examined. Once it has failed
the predicate used to restrict membership, it can be safely discarded from consideration
since the member may not change while the source set is opened.

4.3.3 Wardens

As in Odyssey, SETS relies on wardens to provide type-speci�c functionality. For SETS,

type-speci�c means system speci�c: each warden contains the client subsystem for some

DFS, GDIS, or other distributed system. Since the client subsystems for DFS already
use the VFS interface, SETS uses the VFS interface augmented with four SETS-speci�c

operations listed in Figure 4.9 as the interface between it and the wardens. The VFS
interface consists of basic �le system operations. The SETS extensions allow wardens to

register themselves with SETS, execute interpreted (e.g. speci�c to this warden) queries,

report the results of these queries, and prefetch objects.

There are several advantages of this approach. First, existing DFS must already provide

a VFS driver. Extending this driver to support the SETS operations is straightforward.
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Second, Coda's VFS driver is written to allow the Coda client subsystem to run as a user

level process[91]. It is also a simple extension to add support for the SETS operations to

this driver, allowing wardens to run as user level processes as well. This in turn greatly

simpli�es the implementation and distribution of new wardens, and allows new wardens

to be dynamically added and removed from a running system. Third, wardens need only
implement a subset of the warden interface: those operations that make sense for the

type of data the warden supports. For instance, the SQL warden only supports query
execution and does not support any basic �le system operations.8

Operation Input Output Description

ody mount Mount data Vnode Mount warden in name space.
ody lookup Vnode, Filename Cursor Invoke a interpreted query.
ody expand Cursor List of Get the names of objects

names returned by the query.
ody prefetch FileID, Flags Vnode of Prefetch an object.

Cache File

This table lists the operations that have been added to the VFS driver interface[42] and to Coda's

VFS driver[91], called the Minicache. The operations allow a warden to be dynamically added,

for the warden to execute queries and report their results, and for the warden to prefetch objects

as directed by the SETS prefetching engine. The Minicache allows other VFS drivers (and thus

wardens) to run in user-level processes.

Figure 4.9: Operations in the SETS Warden Interface

A disadvantage of this approach, providing a well-de�ned interface between SETS and
wardens, is that it limits the sharing of information between these levels. For the purposes

of the thesis, this limitation has not proven to be a signi�cant impediment. However, one

may wish to add more operations to share information or to more tightly integrate war-
dens with the SETS prefetching engine if one were implementing SETS as a commercial
system.

4.3.3.1 Interacting with Wardens

In order to service requests, a warden �rst registers itself with the Coda VFS driver,
or Minicache, by supplying a name for the type of service it provides. The Minicache

8Providing a mapping between �le system and database operations would be a very interesting re-

search topic, but is unfortunately outside the scope of the thesis.
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keeps a table of these names for currently active wardens. Mount points are symbolic

links, whose link value matches the pattern \%*.*". The string between the \%" and the

\." should be the type name of a warden, the string following the \." is data that is

interpreted by the warden to identify the portion of the name space it represents that

should be mounted at this name. For instance, the mount point \%sql.gershwin@10000"
causes the SQL warden to mount the Informix database whose server is located on the

machine \gershwin" and is listening at port 10000.

When one of these symbolic links is discovered during name resolution, the Minicache

looks in its table to �nd if the warden supporting this service is currently active. If it is

not, the operation that invoked name resolution will fail because the mount point looks

like a dangling symbolic link. If the warden is found, the Minicache sends the data string

to the warden using the ody mount operation, and the warden returns a vnode which
serves as the root of this �le system. The Minicache then creates a VFS, virtual �le
system, for this mount point, and links it into the name space. Future references to the
mount point will discover the VFS, and can proceed without remounting. All children of
this mount point belong to this warden (unless one of the descendants is another mount

point), operations on them are automatically sent to the warden by the Minicache.

The advantage of this mounting mechanism is twofold. First, wardens can be dynamically
added or removed from a system simply by starting the warden program. Because mount
points are symbolic links, they can be added by users, administrators, or the warden
itself using existing Unix tools. It should be noted that this mount mechanism is only
needed for wardens using the extended Minicache to interact with the kernel. Wardens

for existing �le systems (such as NFS) can utilize their own mount mechanism. These
systems are tightly integrated with the �le system, and SETS can easily determine the

system that owns an object by examining the object's vnode.

The ody lookup and ody expand operations are used to invoke and determine the results

of a query. Ody lookup returns immediately with a handle on the active query called
a cursor. A cursor is a temporary vnode with no name in the name space, and is only

known to SETS and the warden. SETS uses the ody expand operation to obtain the query

results: the names of the objects that satis�ed the query. To reduce the potentially high

cost of contacting the warden, ody expand batches the results, returning as many names
as will �t in the bu�er or are currently available. If no names area available, ody expand

will block until the executing query produces another result.

The ody prefetch command fetches the object identi�ed by fileID. The fileID is a

low-level identi�er or name used by the distributed system client subsystem to uniquely
identify the object. The fileID is discovered during name resolution on the object's

name, and is stored in the object's vnode. The ody prefetch operation should block until
the object has been fetched. Because the precise meaning of fetching an object depends

on the semantics of the �le system, SETS de�nes the following minimal condition: A
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prefetched object must be able to be opened and read by an application without su�ering

any network delays. The subject of prefetching and the reason for this condition is

described in Chapter 6.

4.4 Summary

This chapter has described the detailed design of SETS, which extends the �le system

API of the BSD operating system to support dynamic sets. The next two chapters discuss
to related but orthogonal pieces of work. Chapter 5 describes several applications and

wardens that respectively use dynamic sets and support them. Chapter 6 describes the
SETS prefetching engine in more detail.



Chapter 5

Examples of Applications and Wardens

This chapter describes how I modi�ed several applications and distributed system client
subsystems to use and support dynamic sets. The goal of these modi�cations was to gain
experience in the use of SETS and feedback on the design of the interface, as well as
to provide a vehicle for the experiments described later in this dissertation. Section 5.1
describes wardens, client subsystem extensions which allow SETS to prefetch �le system

objects and to submit interpreted queries for evaluation. Section 5.2 describes several
Unix applications which I modi�ed to use dynamic sets.

5.1 Wardens: File System Support for SETS

In order to create a realistic environment in which to explore the bene�ts of SETS, I have
implemented several wardens which give SETS applications access to objects in several

di�erent kinds of distributed systems. The Coda and NFS wardens are small extensions
to existing local-area distributed �le systems, and do not support queries. The HTTP
warden allows SETS to prefetch objects using the WWW's HTTP protocol[7], and to

run queries to WWW search engines. The SQL warden allows SETS to run SQL select

statements as queries, but does not support normal �le system operations.

The following sections describe each of these wardens in more detail. The selection of

these four wardens is based on the need to provide a realistic environment in which to
evaluate the usefulness of dynamic sets. The list should not be considered exhaustive nor

exclusive. Adding new services, such as wardens which provide access to AFS objects,

or use of WAIS or GLIMPSE search engines, should be straightforward for programmers

with knowledge of the client subsystem code and of SETS.

77



78 CHAPTER 5. EXAMPLES OF APPLICATIONS AND WARDENS

5.1.1 The Coda Warden

The Coda warden consists of a few simple extensions to the Coda client cache manager,

Venus, which allow SETS to prefetch Coda objects. Coda is a highly available �le

system which approximates Unix semantics in a distributed �le system context[82]. High

availability is achieved by replicating objects at multiple servers[46] and by exploiting
local cache state through disconnected operation[41]. Venus is a user-level daemon which

caches whole-�les on the local disk in response to a reference to an uncached �le. Caching

a �le is a heavy weight two-phase operation. The �rst phase involves fetching attributes

of the �le from the servers storing the �le's replica and comparing the state to determine

if the replicas have diverged (which can happen in the presence of network partitions

between the servers, for instance). In the normal case, the replicas are identical and the
second phase involves picking one of the servers and fetching the �le's data from it. If
the replicas have diverged, Venus initiates a resolution operation to bring the replicas

into a consistent state.

Since Coda caches whole �les to a cache container �le on the local disk, the ody prefetch

operation is similar to opening a Coda �le for reading. If the �le is cached, there is no

di�erence between prefetch and open. If the �le is not cached, a prefetch causes Venus
to open the cache container �le with a special 
ag which indicates the �le is being
prefetched. This 
ag causes the SETS bu�er cache management to manage the �le's
data, as described in Chapter 6. In addition, Venus prevents mutations to the cached

object by marking it read-only for the duration of the set.1 The Coda Warden does not
support interpreted queries, and so returns an error if ody lookup is invoked on a Coda
�le.

The current Coda warden does leave a potential semantic violation of the dynamic sets
consistency guarantees because a �le may already be cached and opened by some other

process when the set is opened. If the �le is opened for writing, its state may change
while the set is being processed. A solution would be to create a separate read-only

cache �le (possibly recaching the object). However, since this case is unlikely to occur

frequently in practice, the solution to this hole is left as a future enhancement.

5.1.2 The NFS Warden

The Network File System[77] is another local-area network �le system. Unlike Coda, NFS
was designed to work with diskless workstations and therefore does not cache information

1Although set open and close calls are not passed through to the warden, Venus can still satisfy the

semantics of dynamic sets by preventing mutations to the �le after the ody prefetch operation returns.

When the �le is closed, Venus can once again allow mutations because this �le can no longer be accessed

as part of this set.
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to the local disk. Instead, it caches blocks of a �le in the kernel's bu�er cache just as the

local �le system caches disk blocks. When a block is evicted, NFS refetches the block

from the servers. NFS Servers are designed for maximal simplicity and speed, and in the

best case a block fetch will hit in the server's bu�er cache. For fetches that do hit in the

server's bu�er cache, a remote NFS read can take less time than a read of data o� the
local disk would take. Further, the NFS client subsystem has low overhead because it

does not need to manipulate local disk cache container �les when it fetches data.

Extending this client subsystem to support dynamic sets thus posed a problem. Caching

prefetching data in the bu�er cache could result in wasted I/O if the prefetched block was

evicted before it was read. Since bu�er caches can be small, this either greatly reduces
the amount of data that can be prefetched or forces the application to block on network

stalls, violating the conditions required of the prefetch operation.

Two solutions to this problem exist. First, since network reads may be faster than disk

reads, it may be faster to refetch evicted blocks from the server (in the best case for
NFS performance). Thus the prefetch operation should read as much of the �le as it
can, limiting reading to the amount of bu�er cache space available. Any blocks that are
evicted will be refetched using the normal NFS read operation. The second solution is

to maintain a local disk cache for evicted blocks. This second alternative should perform
better than the �rst when local disk reads are faster than remote server accesses, such
as when the server or network is under load, or when it is likely that the block has been


ushed from the servers cache. Blocks can either be stored in cache container �les as in
Coda, or as raw blocks on the disk. The former approach is cleaner and simpler, but has

higher overhead due to maintenance of the �le system meta-data for these container �les.

In SETS, the NFS warden implements both of these solutions. The solution that is used
is selected by the system administrator by setting a parameter in the warden's memory.
A more elegant solution would dynamically select whether to evict a block or store it on

disk, basing the decision on the client's observations of disk and server/network speeds.
However, dynamic adaptability is left as future work.

Like Coda, the NFS warden prefetches whole �les. Worker threads submit synchronous

reads to the server using the standard NFS client/server interface. If no bu�er is available

to hold incoming data, the worker thread blocks until a bu�er becomes available. The

drawback of whole �le caching is that SETS must wait until the entire �le is cached before
yielding it to the application. This places a limitation on the performance improvement
SETS can o�er: the application must wait until one �le has been fetched at the least.

This limitation could be relaxed by allowing SETS to yield a �le before all its data has

been fetched, but these changes are left as a future enhancement.

This aggressive strategy works well in practice, but can be ine�cient if the �le is larger

than the bu�er cache, since later blocks in a �le will evict earlier ones. When the
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application reads the �le, it will miss on the evicted blocks and su�er a delay to reload

the blocks into the cache. If this problematic behavior proves to be commonplace, the

NFS warden can instead terminate the fetch of a large �le when it runs out of bu�ers,

and let SETS preread the rest of the bu�ers into the cache when it yields the object to

the application.

5.1.3 The HTTP Warden

The HTTP warden serves three purposes. First, it allows WWW objects to be ac-
cessed through the �le system, allowing them to be members of dynamic sets. Second,

it supports the SETS prefetch operation, allowing WWW objects to be prefetched and

cached locally. Third, it supports WWW queries, allowing applications to query WWW
search engines using interpreted speci�cations. The following subsections describe these
functions in more detail.

Out of the variety of WWW protocols, this warden only supports HTTP, the hypertext

transport protocol. Although HTTP is only one of the protocols used in the WWW, it
does provide access to most of the objects in the WWW. Support for other protocols,
such as FTP or Gopher, could be added for more complete coverage of the WWW, but
would not signi�cantly strengthen the dissertation.2

The HTTP warden is structured as a single multiplexor thread which executes the oper-
ations in the warden interface, and a dynamically con�gurable number of worker threads.

The multiplexor answers any requests that can be immediately satis�ed, such as fetch
requests that hit in the cache. The multiplexor passes operations that require network
access o� to a worker thread. For most operations, the caller is blocked until the worker

thread has completed the work. Queries, however, are run asynchronously from the caller
using a cursor to represent the running query as described in Section 4.3.2. The HTTP
warden only supports non-mutating �le system operations and the four SETS extensions,

other requests are rejected by the multiplexor.

5.1.3.1 Accessing WWW Objects

The HTTP warden allows WWW objects to be accessed through the local �le system
name space. The root of this subtree is a pseudo-directory on which the only valid

operation is name lookup. The HTTP warden presents the WWW as a 
at name space

2The HTTP warden also supports the trivial \file://localhost" protocol, by which �les on the

local machine can be accessed. This allows users to access data through the HTTP warden which they

could also access directly from the �le system, and is thus an ine�cient if trivial extension to the HTTP

warden.
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below this root, thus URLs are treated as a single component in a Unix pathname. For

instance the WWW page with URL \http://www.cs.cmu.edu/" looks like a child of the

HTTP warden's mount point. In response to a name lookup of a URL, the HTTP warden

�rst determines if the object has been cached. If it has, it returns the identi�cation of

the cache �le. If not, it creates a local vnode to hold the object, but does not fetch the
object until the object's data is requested.

The HTTP warden fetches an object in response to a request for the object's state or data,

such as a prefetch or open operation. Fetching consists of opening a TCP connection
to the server, sending a request for the object, and reading the response. The response

consists of header information such as the size and type of the object followed by the

object itself. The HTTP warden writes the entire response (header and body) to a cache
�le because some applications use the header information, e.g. to determine the object's

type. As with Coda �les, reads and writes to the object will be directed to the cache
container �le by the Minicache without contacting the warden.

Caching WWW objects introduces the possibility that the cache copy will become stale
if the server's copy is updated. Since true consistency requires revalidation on use of

the cached copy, and since this validation can be nearly as expensive as fetching the
object if the object is small, the HTTP warden evicts objects from its cache when the
last reference to it is closed. This approach simpli�es the implementation by avoiding

the need for cache coherence mechanisms, but is also likely to lower cache hit rates in
practice. For purposes of the dissertation this is an acceptable penalty. The experiments

which use the HTTP warden do not make extensive use of the cache, and the simpli�ed

warden demonstrates the generality of SETS as well as a more thorough implementation
would do.

Many objects in the WWW are HTML documents. An HTML document is a hypertext
page, a node in the hypertext graph. HTML pages contain a mixture of text and tags.
The tags either dictate the layout of the document, or contain links to other objects.

Many HTML pages also contain inlined image tags that contain the URL of a picture

which is displayed as part of the document, and so must be fetched along with the WWW
page. The latency of fetching these images can be a signi�cant component of viewing
HTML documents.

To prevent SETS applications from stalling on inlined images contained in prefetched

HTML documents, the warden prefetches these objects as well. It does so by parsing

incoming HTML documents looking for inlined images. When an image tag is found,

the HTTP warden initiates a fetch on the URL contained in the tag. This behavior can

be disabled to avoid wasting bandwidth if the images are not desired by the application
fetching the document. In the current implementation, this behavior can only be selected

at warden start-up time, although it would be interesting to explore interface extensions
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to allow the application to select automatically fetching inlined images at set creation

time, or when a fetch is initiated.

5.1.3.2 Running Queries on the WWW

The chief purpose of running queries on the WWW is to allow set membership speci�-
cations to utilize WWW search engines. In response to a query, WWW search engines

return an HTML document which contains links to the documents that satis�ed the

query, along with other information such as advertisements, links to other services pro-

vided by the search engine, etc. The query is a URL which contains the name of the
search engine and the arguments to the query function. Although it does not at �rst

appear elegant, formatting query results as an HTML document allows search engines to
be utilized without any direct support by the browser.

To allow a set membership speci�cation to utilize search engines, the HTTP warden ser-
vices http-speci�c queries. An http-speci�c query is simply the URL of an HTML docu-
ment. The objects identi�ed by such a query are the objects which are referenced or linked

by the HTML document. Treating the URL of HTML pages as queries thus achieves the
goal of allowing SETS applications to query search engines. However, it can also be useful

to think of other HTML documents as sets of objects. Many HTML pages are in essence

collections of objects. For instance, the URL \http://www.brandonu.ca=~ennsnr/Cows/
pictures.html" is the name of an HTML document which is almost entirely composed
of hypertext links to pictures of cows. It is natural to think of this URL as referencing a
set of cow pictures instead of just the document.3

The HTTP warden handles queries by fetching the object to which they refer. If the
object is an HTML object, it parses the object to �nd anchor tags which reference other
WWW objects. An anchor tag contains the URL (name) of the linked document; the
warden extracts this name and returns it to SETS through the ody expand operation.

The warden does not include inlined images in the result set, since they are actually part

of the HTML document itself, and not part of the set of objects this document references.

Because some search engines return more links than just those that satis�ed the query,
the HTTP warden has a few search-engine speci�c routines that understand the format

used by the search engine and �lter out extraneous links. For instance, the Lycos search

engine[51]4 includes an advertisement and links for related queries. This extraneous

material is �ltered from membership by a routine in the warden that is hand-written to

parse the results of Lycos queries. Similar routines parse the results from other popular

3The reader should note that allowing HTML documents to be treated as queries does not require

all HTML pages to be treated as such, the user chooses which HTML pages to treat as sets and which

to parse and display.
4Lycos is available as \http://www.lycos.com".
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WWW search engines. When parsing the HTML �le, the warden �rst examines the URL

to see if this object came from one of the known servers.

Although this mechanism may be error prone, it works well enough in practice. First,
eliminating extraneous links in this manner is only an optimization, failure to recognize a

search engine only results in seeing the extra material returned by the engine in the set's

membership. Second, there are only a small number of general purpose search engines, so
tuning the warden to these engines is not di�cult. Third, the likelihood that an HTML

page would have a similar name and format to a search engine's response is extremely
small.

5.1.4 The SQL Warden

One of the early motivations for wardens was to provide navigational databases which

index the contents of a �le system allowing users to associatively name objects. SETS
provides this functionality through the SQL warden. Queries to the SQL warden are
SQL select statements which select a �eld (or column) of the database which contains

a pathname. For instance, a query to an employee database could select the �eld which
contains the pathname of the employee's home directory. The SQL warden only services

ody mount, ody lookup, and ody expand operations, it does not perform prefetches or

any of the VFS operations.

The SQL warden consists of client and server subsystems which interact using the
RPC2 remote procedure call package[79]. The server interacts with an Informix SQL
database[71] using \embedded SQL", a library of functions supplied by Informix to allow

programs written in C to invoke SQL operations. The server exports three operations:
OpenCursor, ExpandCursor, and CloseCursor. OpenCursor takes an SQL select

statement and submits it to the database to create an SQL cursor. ExpandCursor reads
information out of the cursor and writes it into a bu�er for transport back to the client.

The bu�er is passed as an RPC argument, and so is limited in size by the maximum

transfer unit of the network. When the results of the select statement have been read,
the client deallocates the cursor using the CloseCursor operation. The database is stored
on the local disk of the machine on which the SQL server is running.

The client satis�es query requests from a SETS worker thread by invoking operations

on the SQL server. When it receives an ody lookup, it transmits the query to the SQL

server using the OpenCursor operation. Similarly, for each ody expand operation the
warden invokes a ExpandCursor and sends the results to the kernel. When ExpandCursor

indicates that all data has been read from a cursor, the warden calls CloseCursor and
returns an error code to the kernel to inform it that the query is exhausted.

Each SQL server can access only one database, but a single SQL warden can submit
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queries to any number of di�erent SQL servers. SQL mount points are used to identify

which server, and thus which database, to submit a request. SQL mount points include

the name of the machine on which the database resides and a port to which to connect.

When the warden receives an ody mount operation, it establishes a connection with the

server using the machine name and port number contained in the mount point.

The reader should note that the SQL warden does not provide consistency between the

database and the �le system which it catalogs; consistency must be ensured by the
database administrator. For instance, SETS will not automatically update a database

that indexes a user's mail �les when a new mail message arrives.

5.2 SETS Applications

To validate that dynamic sets can be used by writers of search applications, I modi�ed

several existing tools to use dynamic sets. As with wardens, the applications are not
the focus of the dissertation but a means with which to explore the bene�ts of dynamic
sets. I have chosen to modify existing applications to use dynamic sets rather than

write new ones for three reasons. First, using existing applications saves me the e�ort of
reimplementing existing functionality that is orthogonal to the use of sets. For instance, a

signi�cant portion of the Mosaic browser consists of the code to parse and display HTML

documents, and does not need to be modi�ed for Mosaic to use SETS. Second, use of
existing applications provides a better means of determining the bene�ts of sets. For
instance, many Unix users have direct experience with grep. Comparing the performance
of grepmodi�ed to use sets to that of an unmodi�ed version of grep isolates the bene�ts

of using SETS. Third, this exercise is a qualitative evaluation of the design of dynamic
sets, and will o�er support for the claim that dynamic sets are simple to program.

The following two subsections describe the two classes of applications that I have mod-
i�ed. First, Section 5.2.1 describes the modi�cations made to several standard Unix

utilities. The key observation is that making these modi�cations is a trivial process.

Then Section 5.2.2 discusses extensions I made to an interactive WWW browser to ex-
pose dynamic sets to the graphical user interface.

5.2.1 Extending Unix Utilities to Use Dynamic Sets

Many Unix utilities such as grep and more are written to allow users to utilize their

ability to specify groups of �les using the csh wildcard notation. For instance, given a
list of �les, more prints out the contents of each �le in turn. Currently, the shell expands

the wildcard notation into a list of �le names. Many applications iterate over this list
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processing each member serially, and consequently share a similar top level structure. In

this structure, applications �rst process any command line switches, then loop over the

remainder of the arguments, processing each one in turn. The details of the processing

are hidden in lower level procedures.

Modifying these applications to use sets is a trivial exercise. Rather than letting the csh

expand the wildcard notation5 and looping over the result, the SETS version of these
applications uses the notation to open a dynamic set and iterates over the set using

setIterate(). The details of the application remain unchanged. Figure 3.2 presents
the structure of the main loop of grep both with and without the use of SETS.

The bene�t of using these modi�ed Unix utilities extends beyond those of prefetching. For
instance, it is now possible to examine a set of WWW objects using more using the com-

mand line \sets more '/tmp/www/nhttp://altavista.digital.com/cgi-bin/query?-

pg=q&what=web&fmt=.&q=cown'", which will print out a set of WWW objects containing

the word \cow". Similarly, one can use grep and an SQL query to locate the .cshrc �les
of Coda members and search for occurrence of a substring. As an example, one can deter-
mine the approved values of csh PATH variables with the command line \sets grep PATH

'/tmp/sql/nselect home from users where given like "%d%"n/.cshrc'", which will
print out occurrences of the string \PATH" in the .cshrc �les of users with a \d" in their
given name. Note that both this and the previous example work as shown on SETS.

5.2.2 Mosaic: User Interface Support for Sets

The basic function of a browser is to load and display information from the WWW, and
browsers like Mosaic are among the most commonly used search tools on the WWW. To

explore the use of dynamic sets in a WWW application, I have modi�ed NCSA Mosaic
version 2.6 to use SETS. Mosaic was among the �rst of the WWW browsers to display
information graphically, and at the time the dissertation was initiated Mosaic was the
most popular graphical browser whose source code was in the public domain. At the

time of this writing, Mosaic is less popular than it was, but is still the most popular of

the freely available browsers.

Mosaic displays the contents of a �le based on its type. The type is either inferred from
the �le name, or speci�ed by the server that supplies the �le. When accessing the WWW,

users can instruct Mosaic to load and display a �le by clicking the left mouse button on
an anchor in the displayed document, by selecting a dialog box and typing in the �le's

URL, or by �lling out a form. Forms allow WWW users to enter information (such as

a query) to be sent to a search engine. On receipt of such a query, the search engine

5This can be disabled either by setting the noglob variable in the shell or by enclosing the wildcard

notation in quotation marks.
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creates and returns an HTML document that contains hypertext links to the WWW

objects that satis�ed the query. Mosaic then parses and displays the result as it would

any other HTML page.

The extensions to Mosaic expose the dynamic sets abstraction to the user, allowing
him to create and manipulate sets using widgets in the graphical user interface (GUI).

References to WWW objects as members of sets are directed through the �le system to

the HTTP warden. References to WWW objects independent of SETS use the default
mechanism which loads the pages directly into Mosaic's memory.

The majority of the modi�cations to Mosaic involve extensions to the GUI. The changes
amount to 2000 new lines of code (out of the 100000 lines in Mosaic 2.6) and took me one

month to implement. Although this is signi�cantly more than the changes required for
Unix applications, the changes were mostly mechanical. For instance, the code for the

widget with which a user opens a set is almost an exact copy of the code for the widget

to load a WWW object.

5.2.2.1 Extending Mosaic's GUI to Support Dynamic Sets

The GUI extensions consist of hooks by which SETS functionality can be invoked, and
the GUI representations or widgets which are used to manipulate an open set. The �rst
noticeable di�erence to a user of the modi�ed Mosaic is the addition of a pull-down

menu in the menu-bar under the heading of Sets. The pull down menu allows the
user to toggle the use of SETS for form processing and inlined image retrieval. Using
SETS for form processing means that the URL resulting from submitting a form should

be used as an http-speci�c membership speci�cation to open a set. Using SETS for
inlined image retrieval means that inlined images should be accessed through the warden

(to take advantage of the HTTP warden's prefetching of these images as discussed in

Section 5.1.3).

A set is created in one of three ways. First, the user can create a set holding the objects
referenced by an HTML document by clicking on the anchor to that document with the

right mouse button. Second, the user can request a pop-up window either by clicking on
a button on the bottom of the Mosaic frame, typing \g" (\s" and \S" were already used

in the interface) in the Mosaic display window, or by selecting \Open a dynamic set"

from the Sets pull-down menu. This pop-up window allows a user to manually enter a
URL, which is used as an http-speci�c membership speci�cation. Third, if the user has
enabled the use of SETS for form processing, submitting a form will result in an open

set.

Open sets are represented in two ways. First, when the set is created, a pop-up window

(shown in Figure 5.1) appears which contains a number of buttons. Clicking on these
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This window appears when a user opens a set. Clicking on the \Iterate" button causes Mosaic

to get the next set element via setIterate() and to display it. Clicking on the \Digest" button

pops up a window containing the list of the names of objects currently known to be members of

the set, obtained via setDigest(). \Rewind" reinitializes the digest iterator to allow the member

listing to be refreshed, \Size" displays the number of objects known to be members, \Close" closes

the set (removing the window from view). \Dismiss" causes the window to disappear without

closing the set, and clicking on \Help..." displays a window containing a brief introduction to

the use of dynamic sets.

Figure 5.1: Mosaic Window for Managing Open Sets

buttons invokes various set operations. For instance, clicking on the \Iterate" button

causes Mosaic to request and display the next element in the set. The caption of Fig-

ure 5.1 contains a description of the other buttons in this window frame. Second, the
user can display the membership speci�cations of open sets by expanding the \Select
an open set" option of the Sets pull-down menu. Clicking on one of these speci�cations
causes the open set pop-up window to appear.

In addition to iterating on a set, a user can load members directly through use of the
digest window, shown in Figure 5.2. The digest window displays a list of the names of

the set members. The title of the window indicates whether this digest is complete or
partial (SETS returned \...") by including the words \Full Digest" or \Partial Digest"
respectively. If a partial digest is indicated, the user can update the digest window by

reclicking on the \re-digest" button in the frame below the digest window.

An individual member can be loaded by double-clicking on its name in the digest window.
Since loading members in this fashion does not employ the iterator, the user may su�er
the latency of fetching the object. One enhancement would be to use a di�erent color

for names of objects that have been prefetched, which would inform users of which loads
would be quickly satis�ed and which would not.

Once a set member has been requested, either through the iterator or selected from the
digest, SETS uses Mosaic's internal routines to read in and display it. This means that

users can iterate over any type of object that Mosaic can handle, such as HTML, text,
postscript, video, audio, and images (although the HTTP warden only will fetch objects

accessible via HTTP).



88 CHAPTER 5. EXAMPLES OF APPLICATIONS AND WARDENS

This window appears when a user opens a set's digest. Note that the upper left corner reads

\Full Digest", indicating this is a complete list of set members. If the digest were incomplete,

this would read \Partial Digest". Double-clicking on one of the names, or clicking on one of the

names and then the \Open Member" button will cause Mosaic to fetch and display that object.

Clicking on the \Rewind" button resets the iterator to allow Mosaic to read in the membership

from the beginning again, for instance to show the current weights on the objects. Clicking on

the \Re-Digest" button will further expand a partial digest by calling the setDigest() iterator

again.

Figure 5.2: Mosaic Window for Managing Set Digests

5.3 Conclusion

Dynamic sets sit at the �le system interface between applications and the client subsys-

tems of DFS. This chapter describes extensions that I made to these components in order
to test the SETS interfaces described in Chapter 4. The experience, although subjective,

does indicate that the dynamic sets programming model is indeed suitable to support
search applications and is simple to program. The modi�cations to the Unix applica-

tions were straightforward, and it took only a few hours to modify several applications

to use SETS. Modifying the Mosaic browser was more time consuming, primarily due
to the complexity of the code and the di�culty of modifying a graphical user interface.

The NFS and Coda wardens were each written in a few days. The NFS warden adds

or modi�es 379 lines of the 6887 lines in the NFS kernel code. Changes to the Coda
Venus, although di�cult to quantify exactly, represent less than one percent of the code

in Venus.



Chapter 6

Prefetching and Resource Management

Up to this point, this dissertation has focused on the design and implementation of dy-
namic sets, whose value lies in the disclosure of hints of future access to the system.
This document now addresses to the problem of how the SETS prefetching engine should

exploit these hints. The solution to this problem is both critical to the demonstration
of this thesis and su�ciently complicated to warrant further discussion. The complexity
stems from trying to balance between aggressiveness and resource conservation. Aggres-
sively prefetching drives up utilization and thus reduces the aggregate time to fetch a

set of objects. However, increasing utilization too much can lead to overload, thrashing,

and signi�cant degradation of performance. Striking the right balance can be di�cult.
As an example, a study of prefetching in a parallel �le system[44] found a wide range of

possible outcomes from prefetching, from near optimal improvements to a reduction in
performance equivalent to 20 times the optimal improvement.

The chapter begins with a brief overview of the engine. Then Section 6.2 provides
background on the Unix FFS (Fast File System) bu�er cache, which �gures heavily in

the design of the prefetching engine. There follows a discussion of the design rationale

for the prefetching engine in Section 6.3, and a detailed description of the engine in
Section 6.4. Section 6.5 concludes with a discussion of potential enhancements.

6.1 Overview of the SETS Prefetching Engine

The basic idea behind prefetching is to isolate from the application the work to fetch data
in order to decrease the aggregate latency seen by the application to access a set of objects.

Performance improvements come from fetching the data in a shorter amount of time,
which thus increases the utilization of I/O channels. The dangers of prefetching are that

increased utilization may lead to performance degradation, even if all prefetched data is

89
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used by the application (none is wasted). Degradation can come from overloading certain

media, such as Ethernet, which shows much lower bandwidth and higher latency as load

approaches full utilization. Degradation may also result from increased contention, which

can reduce performance by increasing the work that some unit must perform, such as the

client CPU, or by delaying synchronous demand operations such as a page-out to disk
behind asynchronous prefetch operations.

The most commonway to avoid these pitfalls is to schedule prefetch operations carefully[67,

12] . As an example, at every point in time the prefetching engine used in TIP[67] es-
timates the savings that result from initiating a prefetch operation now, and compares

them with the value of the resources that would be consumed by the prefetch operation.

If the savings from prefetching exceed the value that is lost from consumption of these
resources, the operation is initiated. These solutions rely on the ability to determine two

pieces of information. First, they must be able to gauge the cost of I/O operations in
order to know the savings, or the reduction in latency from a prefetch operation. Sec-
ond, they must be able to predict the value that resources such as �le cache space or

bandwidth will have in the future. Since these prefetching engines have been proven to
perform well under a variety of applications on the local disk, they demonstrate that it

is possible to obtain these two pieces of information in the local �le system.

Unfortunately, these solutions are unlikely to scale well to large distributed systems. As

the system grows in size, the variance in the latency grows as well, making it di�cult to
predict the cost of an operation. Thus it is di�cult to know accurately the savings that

may result from a prefetch operation. It is also the case that a client in a distributed

system has no knowledge of the load on the network or the servers, so it is unable to
predict accurately the value of shared resources such as network bandwidth. Although
it is conceivable to monitor the network for small LAN-based systems, the cost of doing
so increases the overhead of prefetching. Even then, such a mechanism will not scale to

GDIS.

In order to avoid these drawbacks of current prefetching engines, and to provide a mech-

anism that works well on this dissertation's range of target systems, I designed a new
prefetching engine for SETS. This design avoids the pitfalls mentioned above by exploit-
ing the semantics of dynamic sets and the I/O properties of search applications.

There are three forms of contention that can a�ect the application's performance: con-

tention for the client CPU, network (including servers), and the client disk. SETS uses

a di�erent strategy to limit the impact that each of these forms of contention has on the
application. To avoid increasing the load on the client CPU, SETS uses strategies with

low computational overhead, trading optimality for lower complexity. To avoid stalling
the application on the network, SETS ensures all of an object's data has been fetched be-

fore yielding the object to the application. To avoid stalling demand accesses to the local
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disk, SETS carefully manages its use of the Unix FFS bu�er cache to avoid unnecessary

I/O wherever possible.

In addition, the SETS prefetching engine is designed to be dynamically tuned to adjust its
behavior to suit a wide range of circumstances. The engine has a number of parameters

which control how aggressively it uses resources. These parameters control the number of

outstanding prefetches, the amount of local resources that can be spent on prefetching,
and the rate of prefetching, and are described further in Section 6.4.

6.2 Review of Unix File I/O

Since prefetching involves the execution of I/O operations, one must �rst understand
several details of the Unix �le system before discussing the SETS prefetching mechanism.

Although the Unix �le system was discussed earlier in Section 4.1.1, several aspects that

pertain to prefetching warrant more detailed discussion. The Unix bu�er cache is the
most relevant component, and is discussed in Section 6.2.1. Section 6.2.2 presents some
other relevant details of the �le system.

Files are sequences of logical blocks; logical block 0 contains the �rst n bytes, block 1 the
next n bytes, etc, where n is the �le system's block size. Each logical block corresponds

to a range of sectors on the disk called a physical block; the physical block's number
is the address of the �rst sector in the range. Readers desiring a complete discussion
can read Chapter 7 of \The Design and Implementation of the 4.3BSD Unix Operating
System"[47].

6.2.1 The Unix Bu�er Cache

The Unix bu�er cache, added as part of the 4.3 BSD FFS[53], exists to increase �le
system performance in three ways. First, it caches �le data in physical memory to

exploit locality in I/O requests. Second, it allows the use of delayed or asynchronous
disk writes by holding written data in physical memory until the write completes. This
results in two savings: eliminating synchronous operations from the critical path and
enabling overwrites of cached data to eliminate writes of dead data. Third, it bu�ers

access to �les which allows many small I/Os from the application to be satis�ed by fewer

large block I/Os to the disk or network. This amortizes the high overhead of a disk access

across multiple small I/Os. The basic operations in the bu�er cache are described below
and summarized in Figure 6.1.

The bu�er cache consists of bu�ers, a hash table, and several free lists, the number of

which depends on the implementation. Each bu�er consists of a bu�er header and a
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Routine Arguments Description

rwip()
�le o�set,

size
Performs �le I/O by allocating bu�ers and read-
ing/writing data from physical blocks.

getblk()
physical
block
number

Return a bu�er to hold this block. If the block is
cached, mark it busy and return it. If not, grab an un-
used block or evict the LRU block and use its bu�er.
Will pause if the bu�er is busy or no bu�ers are avail-
able.

bread()
physical
block
number

Gets a bu�er, reads the physical block into the bu�er
and waits for the read to complete.

breada()

two
physical
block

numbers

Gets two bu�ers, reads the �rst physical block into
one, starts asynchronous read of other block. Used to
speed sequential reads to a �le.

bwrite() bu�er Starts a block write, waits for it to complete.

bawrite() bu�er
Starts a block write, but does not wait for it to com-
plete. Bu�er will be released by disk driver when the
write completes.

bdwrite() bu�er
Mark bu�er as dirty. This data will be written when
this bu�er is evicted or 
ushed.

brelse() bu�er
Called whenever an operation completes. Marks bu�er
as not busy and adds it to a free list.

Figure 6.1: Unix Bu�er Cache Routines Relevant to Prefetching.

number of virtual memory pages; usually zero, one or two. Initially, all bu�ers have one

page, but pages can be moved between bu�ers as needed. The bu�ers allow application
�le system I/O to be decoupled from disk or network access: applications read from or

write to bu�ers, and the bu�er cache routines move data to and from persistent storage

to satisfy the application's I/O. The amount of data that is moved by each operation is
called the �le system's block size, which usually is set to 8KB.1 Data is cached by holding

1The Unix �le system also allows smaller blocks called fragments to be read and written, but fragments
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valid data in bu�ers so that future accesses to the data can be satis�ed without requiring

a disk operation. To facilitate the location of a �le's data in the cache, all bu�ers with

valid data are placed in the hash table. The free lists hold bu�ers on which no I/O is

currently pending. A busy bu�er is one that is in use and does not reside on any of the

cache's free lists, although it might be present in the hash table.

The number of bu�ers in the standard cache is �xed at boot time. Thus in steady state an
incoming I/O operation must evict some cached data to free a bu�er. The bu�er cache

evicts the least recently used (LRU) bu�er if no unused bu�er is available. The LRU

bu�er is the one at the head of the AGE list, or the head of the LRU list if the AGE list is
empty. If no bu�er is available (all have I/O pending on them), the incoming operation

will block until a bu�er becomes available. More advanced strategies such as those

found in Sprite[58] or OSF/1[62] allow the bu�er cache to grow or shrink dynamically

by taking physical pages from the virtual memory subsystem when I/O activity is high,

and releasing them when demand drops.

6.2.1.1 Bu�er Cache Operations

When an application invokes a �le system operation on a local disk �le, the operation
calls a low-level routine called rwip() to perform the I/O. I/O to �les in distributed

systems such as Coda use rwip() on the local cache container �le, while other systems
such as NFS[77] provide their own specialized version of rwip(). Rwip() translates the
�le o�set and request size into a sequence of I/Os on the physical local (or remote in
the case of NFS) disk blocks holding the �le's data. For each block in the sequence,

rwip() performs the I/O as described below. When the I/O completes, rwip() releases

the block by calling brelse(), and moves onto the next block in the sequence.

The getblk() routine allocates a bu�er to hold a physical block. The identity of a
physical block consists of the device on which it resides and the reference of the block

on that device, I refer to this tuple as the physical block number. Getblk() does a hash

lookup of the desired block's number to determine if it is already in cache. If not, it
gets an unused bu�er, possibly evicting the bu�er's data in the process. If it is cached,
but the bu�er holding the block is busy, getblk() blocks until the bu�er becomes free.

When getblk() has found a bu�er, it removes the bu�er from the free list on which the

bu�er resides, marks the bu�er busy, and returns it to the caller.

To read data, rwip() calls bread() or breada(). Bread() �rst calls getblk() to get

a bu�er. If the data is cached, the bu�er will contain the desired data and bread() is

done. If not, bread() starts a read of the physical block(s) into the bu�er, and then
pauses for it to complete. After bread() returns, rwip() copies the data from the bu�er

can be ignored for purposes of this discussion.
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into the application's address space and releases the bu�er. Since many applications read

�les sequentially, rwip() performs one block read-ahead using breada() when it detects

sequential access to a �le. Breada() initiates an asynchronous read of the next block

in the �le in addition to performing the synchronous read of bread(). Read-ahead is

a form of prefetching, reducing latency to sequentially read a �le from disk. However,
rwip() cannot detect that a �le is being read sequentially until the �rst two blocks have

been consecutively read, thus read-ahead is only bene�cial for �les larger than 16KB (2
blocks).

When writing, rwip() �rst gets a bu�er to hold the block. If only a portion of the block

is being overwritten, rwip() must �rst read in the block's contents using bread(). If
the entire block is being overwritten, rwip() can use any free bu�er because all of the

bu�er will be overwritten by the operation.

After the application's data has been moved into the bu�er, rwip() uses either bwrite(),

bawrite(), or bdwrite() to copy the data to disk. Bwrite() performs a synchronous
write: it starts a low-level write operation, and then blocks until the write has completed.
When the I/O is completed, bwrite() releases the bu�er. Synchronous writes are re-
quired of any application with strong consistency requirements, such as paging tra�c,

eviction of dirty bu�ers, and writes triggered by the sync() system call.

If the operation writes an entire block and the block's data has weak consistency require-
ments, rwip() uses bawrite() to perform an asynchronous write of the data. Bawrite()
marks the bu�er as asynchronous, starts the low-level write, but does not wait for it to

complete. Since the bu�er is still busy when bawrite() returns, rwip() does not release
the bu�er. Instead, when the I/O completes the disk driver detects that the bu�er was
marked asynchronous, and calls brelse() as a side e�ect.

When overwriting only a portion of the block, rwip() delays the write in the hopes that
a future write operation will overwrite the remainder of the block. Applications that
do not write whole blocks but do write sequentially will bene�t from this batching of

requests by reducing the number of disk I/Os that are performed. Delayed writes are

performed by bdwrite(), which marks the bu�er as dirty without invoking I/O on it.

If the bu�er is evicted before this block is written, the data will be forced to disk by a

synchronous write and the bu�er will be released. Every 30 seconds, or whenever the
sync() operation is called, all the dirty bu�ers in the cache are written out to reduce

the likelihood of data loss from system failure. Similarly, the fsync() operation writes

out all dirty bu�ers associated with a particular �le.

Whenever an operation is �nished with a bu�er, it calls brelse() to release the bu�er.

Brelse() marks the bu�er to indicate it is no longer busy, and places it on a free list.
The free list on which it is placed depends on the bu�er's state. Most bu�ers are added

to the tail of the LRU list. Bu�ers which contain garbage data are placed at the head of
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the AGE list, and are thus the �rst to be reused when a new bu�er is needed. Garbage

data results from erroneous or aborted I/O operations. Bu�er which have valid data that

is unlikely to be reused are placed at the tail of the AGE list, and will be reused before any

LRU bu�ers but after invalid ones. Examples of this occur when bu�ers that are used to

satisfy a page fault are released. After the data has been copied, the data in the bu�er
is no longer needed since it resides elsewhere in memory.

6.2.2 Prefetching and the Unix File System

In addition to knowing the details of the bu�er cache, it is also useful to make three

observations about the BSD 4.3 FFS before discussing the SETS prefetching engine.

The �rst observation is that mapping between logical and physical blocks is expensive.
Translation from logical to physical block numbers is done on every I/O by the bmap()

operation. Bmap() performs this translation using a table stored in the �le's metadata

(inode). This table has the physical block number corresponding to the �rst NDADDR
2

blocks of the �le, called direct blocks, and the numbers of disk blocks containing the
mapping for the rest of the blocks, or indirect blocks. If the inode is cached, bmap() can
translate direct blocks without needing to perform a disk read. If not, it must read in
the inode, possibly evicting data from the bu�er cache. If the block is an indirect block,

additional I/Os to read in the indirect map might be required.

A second observation is that all �le system data passes through the bu�er cache as it
is read or written. Local I/O uses the bu�er cache as described above. Distributed �le

systems place data in the bu�er cache as it is fetched, either storing it there directly as
does NFS[77] or as a side e�ect of writing the data to the cache container �le on the

local disk as does Coda[82]. This makes the bu�er cache the ideal location at which to

add support for prefetching. First, no additional copies of data are needed, simplifying
movement of data between the prefetching storage area and the bu�er cache. Second,

the task of locating prefetched data in response to a demand read can use the mechanism
already in place to locate cached data. Third, prefetching can be implemented using

normal demand operations invoked by the prefetching engine. The drawback of caching
prefetched data in the bu�er cache is that bu�er caches tend to be small, limiting the

amount of data that can be prefetched. Further, using the bu�er cache to store prefetched
data evicts other data, potentially slowing down other applications running concurrently
on the same computer.

A third observation is the application's use of the �le system API to access data makes
it possible to e�ciently track an application's progress in consuming data. Knowing an

2NDADDR is usually 12, which means the �rst 96KB of a �le are stored in direct blocks for a �le system

with a block size of 8KB.
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application's consumption of data allows the system to infer when a �le's data should

be prefetched, and when it is safe to release bu�ers holding prefetched data. E�cient

tracking is possible because the �le systemAPI limitswhen and how data can be accessed.

A �le's data can only be accessed after a �le has been opened and before it is closed.

Additionally, if the �le is read sequentially, progress within an open �le can be determined
by examining the open �le's �le pointer. This ability to track accesses is lost if the

application were to use memory mapped �les, since there is nothing equivalent to the �le
pointer to which the prefetcher has access.

6.3 Design Rationale

This section presents the design rationale for the SETS prefetching engine. Section 6.3.1

describes the goals of the engine design. Section 6.3.2 lists the assumptions made by the

design. The design itself is presented in Section 6.4.

6.3.1 Design Goals

There are three basic goals of the SETS prefetching engine. The �rst is to o�er good

performance improvements. The second is to be as general as possible. The third is to
minimize the di�culty of implementation.

The primary goal of prefetching in SETS is to decrease the I/O latency seen by applica-
tions that use iteration. SETS prefetches the data by loading it from its remote location

to the local �le system. I/O to the remote data is thereby converted to local �le I/O,
which should lower the latency seen by the application. It is also important that the
engine minimize the performance degradation of applications that do not use SETS but
run on a SETS-enhanced operating system.

To defend the claims of the generality of dynamic sets that were made earlier in the

dissertation, the engine must also o�er these bene�ts to a wide range of systems. Re-

call that SETS' target environment spans everything from palm-top to desktop com-
puters, low bandwidth modem to high speed T3 connectivity, and local to world-wide
distributed information systems. To perform well over this range of operating conditions,

the prefetching engine must be both conservative and 
exible.

The third goal is to minimize the implementation complexity. E�ciency calls for tight
integration with the �le system, but the di�culty of porting rises with the number of

modi�cations to the �le system code. Although portability is not a direct goal, tying the

bene�ts of dynamic sets to Mach 2.6 is a strategically poor decision. As a result, the

design avoids placing hooks in Mach unless the resulting bene�ts are overwhelming.
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6.3.2 Design Assumptions

The design of the SETS prefetching engine is based on four simplifying assumptions.

These assumptions allow a single mechanism to service a wide range of domains, providing

these domains satisfy the four assumptions listed below. This section describes these

assumptions, and argues why the assumptions are reasonable in the target systems of

the dissertation: DFS and GDIS. In addition, it discusses the in
uence of the assumptions
on the design, and where appropriate mentions how these assumptions can be relaxed.

6.3.2.1 Sets Fit on the Local Disk

The �rst assumption is that the collective size of a set and its members may be bigger
than the amount of available physical memory, but will not be bigger than available space
on the local disk. This assumption is reasonable for two reasons. First, most personal
computers have limited amounts of mainmemory (RAM) due to its cost. Typical personal

computers have 8MB to 16MB of memory, and modern operating systems require all of
it to achieve reasonable performance. As a result, it is unreasonable to assume that a
typical set will �t into RAM. Further, sets can be large: sets containing several megabytes
of data are not uncommon. For instance, a set of 10 to 20 high quality images can

easily take a megabyte. Second, single user computers have much more disk space than
memory, sometimes several orders of magnitude more. This is due to the huge di�erence

in dollars per megabyte of each medium. Given current trends, this di�erence is unlikely

to disappear in the next decade. Although the example set's megabyte may not �t in
memory, it is sure to �t on even a reasonably small disk (500MB by today's standards).

The chief implication of this assumption is that SETS should not rely exclusively on
the local client's main memory to store prefetched set data. Using the local disk for this
purpose will allow SETS to prefetch more information, which will result in lower latencies

for SETS applications.

Although it is possible that a set may exceed the local disk, it is likely that the probability

is small in practice. The time to fetch enough information to overwhelm the local disk is
prohibitive given current network bandwidths.3 For interactive search, users will probably

be unwilling to wait for the data to arrive, and would probably re�ne the set to some

smaller subset before processing the data. In addition, sets that are too large for the
local disk can be broken into su�ciently small subsets and processed separately.

3Filling up one tenth of a 500MB disk takes 40 seconds on an Ethernet, around 15 minutes at typical

Internet speeds (60KB/sec), and around 8 hours on a 14400bps modem.
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6.3.2.2 High Variance in Response Time

The second assumption is that the factors a�ecting prefetching performance are subject
to a high variance. This assumption is reasonable given SETS's goal of supporting search

in a range of operating conditions. One factor is processing time. Di�erent applications

have substantially di�erent processing requirements, and even within an application the

time required to process an object varies depending on the object's type or construction.

For instance, the time to process an HTML object is proportional to the number of HTML
tags it contains, and depends less on the object's size. Another factor is object size.

There is a large range of common object sizes, although the average object is relatively

small[3, 27]. The range can be substantial even within object types. Other factors such
as propagation delays due to the distance the data must travel, congestion on intervening

networks, or server load can also greatly a�ect the time it takes to fetch data. These

factors can change over time (sometimes quite rapidly), and may di�er from search to
search or from platform to platform.

This assumption is a primary reason why the existing informed prefetch methods such

as the one used by Patterson et al.[67] are not used by SETS. These systems make
prefetching decisions based on observations of current state. To keep overhead low these
observations are maintained as averages. Unfortunately, high variances reduce the accu-
racy of the arithmetic mean as a predictor of the expected value of a distribution, such as

the distribution of fetch times. As such, these observation-based estimates may lead to
poor performance. SETS's approach is to use a tunable system that may be dynamically
controlled, which provides acceptable performance although it may not be optimal.

6.3.2.3 Local Disks Are Faster Than Remote Servers

The third assumption is that it is faster to access data on a local disk than to access it

from a remote server. Although this assumption is not true in many test environments

where the server and network are lightly loaded, it is usually true in practice. First,

propagation and protocol processing delays can exceed the delay of a typical disk access
if the data is physically or logically distant. For instance, it takes light the same amount

of time to cross the United States as it does to perform a disk access; adding protocol
overhead and the return trip means accessing data from the other coast takes as long as

10 disk accesses on average4. Second, the request will often miss in a busy �le server's

bu�er cache, causing a remote disk operation anyway. If the server is loaded, further

delays may be added as the request waits in various free lists. Third, network collisions
due to congestion can add latency, particularly when a link or hop on the path is loaded.

4Experiments show a disk access takes 15 milliseconds on average, while round trip time between

CMU and the University of California at Berkeley takes 200 milliseconds
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Fourth, all of these factors weigh more heavily as the load on the system grows. For

these four reasons, this assumption is valid for many distributed systems, although it is

not as reasonable for tightly coupled environments like parallel computers or clusters of

workstations.

Given this assumption, it behooves SETS to continue prefetching from the network even

when the amount of prefetched data exceeds the memory allocated for it. The over
ow
can be written to disk, and reread at a future point when all members of the set have

been prefetched. For example, assume a set contains members stored at various WWW

servers, and access to these members takes several seconds apiece due to propagation

delays. After waiting several seconds, the �rst members start to arrive. Since the delay

is due to propagation and not bandwidth, several of the members can arrive at once and
�ll the memory allocated to prefetching. When this memory �lls, rather than discarding
the incoming data and incurring another several seconds of delay to refetch it, SETS

should write the incoming data to disk. In addition to lowering the latency, the variance
seen by the application to access set members will also decrease.

What is the penalty of this assumption? In the worst case, performance is equivalent

to reading information o� the local disk, which is not signi�cantly worse than the per-
formance of a DFS in most cases. One can avoid the worst case by carefully managing
how the �le system handles prefetched data, for instance by reading prefetched data that
has been evicted from the bu�er cache back into memory before yielding an object to

the application. In addition, applications whose processing rate is close to that of the
rate of prefetching are likely to have high hit rates in the bu�er cache, since prefetched
data will be used before it can be evicted. If the performance is still unacceptable, one

could modify the warden to refetch data from the server in those cases where server speed
exceeds that of the local disk. This is in fact the approach taken by the NFS warden,

described in Section 5.1.2.

6.3.2.4 Search Applications Sequentially Access Whole Files

The last assumption is that applications read set members sequential ly. This means that

when an application reads a set member's data it does so from the beginning of a �le to
its end without explicitly changing the �le's �le pointer. This assumption is true of most
Unix applications[64, 3], and is also true of popular search tools such as WWW browsers

like NCSA Mosaic[57]. In fact, the most popular WWW protocols5 only have operations

to read whole �les, and so all WWW applications e�ectively read sequentially.

5HTTP and FTP consume the most bandwidth, based on studies of the NSFNET backbone

from April, 1995, the last month such statistics were gathered. The statistics are available at

http://www.merit.edu/nsfnet/statistics/1995/nsf-9504.ports.
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Given this assumption, SETS can track an application's progress through a set member

by observing the member's �le pointer. SETS therefore knows exactly when a prefetched

block can be released to free space for other prefetched data. It also means that SETS

knows the beginning of a �le will be requested �rst. SETS can prevent the last few

blocks of a �le from evicting the �rst few blocks from memory, since the �rst blocks will
be needed before the last blocks are requested.

Fortunately, the cost of this assumption is small for those applications which do not read
sequentially, provided that SETS does not aggressively consume bu�ers to hold objects'

pre�xes. The number of blocks SETS holds in memory is a tunable parameter, but should

never be very large. Although these blocks could be used to better purpose if SETS knew

the application's processing order, they cost little and will satisfy demand access if the

whole �le is read. SETS could alternately release an object's blocks into the LRU list when
the object is opened to allow its bu�ers to be reused more quickly. However, this opens
the possibility that a prefetched block is evicted before the application gets a chance to

read it.

6.4 SETS' Prefetching Engine

The discussion of the design of the prefetching engine has four parts. The �rst part

is an overview of the design, and was presented in Section 6.1. The second part, in
Section 6.4.1, presents the key points of the design by answering �ve important questions.
The third part is in Section 6.4.2, which describes a key aspect of the implementation of
the prefetching engine: management of Unix's bu�er cache for prefetching. The fourth

part discusses additional considerations speci�c to the Mach 2.6 operating system, and
is contained in Section 6.4.3.

6.4.1 Engine Design

Although dynamic sets disclose hints of future access to the system, the proper way of
using these hints to reduce latency is not immediately obvious. For example, the number

of members may be large, and prefetching them at once can overwhelm the system. In

addition, the application may not process all the members, and therefore prefetching them

all may be wasteful. Perhaps the application �nds the object for which it is searching

before it has examined all members. Or perhaps it never opens a member, and instead
creates a smaller subset on which to iterate.

The way in which SETS uses these hints is presented as answers to �ve critical ques-

tions. First, what are the semantics of the prefetch operation ody prefetch, introduced
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earlier in Section 4.3.3.1? Second, when should SETS start to prefetch a set's members?

Third, how much should sets prefetch at once? Fourth, in what order should mem-

bers be prefetched? Fifth, which member should be yielded when the application calls

setIterate()? These questions are answered in the following �ve subsections.

6.4.1.1 What Does ody prefetch Do?

Application 

Local File
System

Warden

4

Read

3

Write

2

Fetch

1

ody_prefetch

Kernel

SETS

Servers

This �gure shows the local actions involved in prefetching. The process starts when SETS

initiates a ody prefetch operation. Next, the warden fetches the object from the server, writing

the data into a cache container �le on the local �le system. Applications read the data out of

this cache container �le using the �le system's read() operation. Arrow direction indicates the

direction of requests. For instance, SETS sends an ody prefetch request to the Warden, and

the Warden performs a Write to the local �le system.

Figure 6.2: Depiction of Local Actions Involved in Prefetching

A prefetch begins when the SETS prefetching engine invokes the ody prefetch operation

in the SETS/warden interface. Although the exact functionality of this operation depends

on the warden's implementation, it must satisfy two properties. First, it must ensure that
the entire object has been fetched before returning. Second, it must tag all local I/O

it performs on behalf of the prefetch operation to enable SETS to manage these I/Os

separately.

The �rst property has three bene�ts. First, it ensures that application accesses to

prefetched data will not block on network I/O. Second, it forces remote accesses to be

whole-�le sequential. This enables the transfer to take advantage of streaming protocols
such as those used by TCP[35] or SFTP[79] to reduce the overhead of communication,
and is acceptable given the assumptions listed in Section 6.3.2. Third, it simpli�es the

management of an object's data.

Figure 6.2 shows the basic operations involved in prefetching. SETS �rst invokes an
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ody prefetch operation on an object. The request results in a fetch if the object is not

cached. As the warden reads information o� the network, it writes the data out to the

cache container �le for this object. These writes pass through the bu�er cache, but are

marked as prefetch operations to allow SETS to handle them separately from demand

operations. After SETS yields the object to the application, the application can read the
prefetched data using the �le system's read operation.

6.4.1.2 When to Start Prefetching?

This question arises because some applications may not process a set's members. A search
may create a set as an intermediate collection, to be merged or otherwise manipulated

before the application processes the set's members. As such, it is not wise to aggressively
start prefetching the members of a set as soon as the set is opened, since the prefetched
objects may never be used.

By default, SETS conservatively waits to start prefetching until the application has in-
dicated it is interested in processing the set's members. SETS infers the application's
interest when the application �rst calls setIterate(). At this point, SETS queues
prefetch operations for any �les it knows to be members as a result of (partially com-

pleted) membership evaluation. If the set has no known members yet, SETS mark the
set to indicate that aggressive prefetch is desired, and queues prefetch operations for
new members as they are added. Applications like grep that begin to iterate on a set

immediately after opening it will lose little opportunity to prefetch as a result of this
decision.

For applications that open a set sometime before iterating on it, SETS provides an
alternative behavior. An application can indicate to SETS that it will be processing the

members eventually by setting SETS ANTICIPATE ITERATE 
ag in the mode argument of
setOpen(). When SETS sees this 
ag, it marks the set so that the prefetching engine
will begin to prefetch members as soon as members are added to the set.

6.4.1.3 How Much to Prefetch?

There are two reasons why this question needs to be answered. First, SETS needs to

limit the bandwidth consumption of a client in order to avoid overloading networks and
servers. Second, SETS needs to limit the likelihood of wasting a prefetch by fetching an

object that will not be used by the application. Prefetching unused objects incurs costs
by consuming resources, but does not o�er any o�setting advantages.

SETS limits the bandwidth a client can consume as a side e�ect of storing prefetched

data in the local �le system: a client's rate of consumption of network bandwidth cannot
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exceed the rate at which it writes the incoming data into the local �le system. In steady-

state, this rate is bounded by the disk speed. The peak rate is determined by the speed

at which a warden can write data into the bu�er cache. SETS limits the size of the bursts

which can be written at this peak rate by limiting the number of bu�ers which can be

used to hold prefetched data. This limit, how it is implemented, and the implications of
it are discussed in Section 6.4.2.2.

SETS limits the number of wasted fetches by limiting the number of outstanding prefetch

operations per set, where an outstanding operation is one that has started but whose

object has not yet been yielded. This limit is a tunable parameter called limitOpens.
When SETS starts prefetching, it will initiate up to limitOpens prefetch operations, and

will then initiate another prefetch every time the application calls setIterate(). Since
SETS only starts prefetching when it is sure the application will iterate on the set, the

only way these outstanding objects will not be processed is if the application does not

call setIterate() a su�cient number of times.

Limiting prefetching in this way strikes the right balance between aggressiveness and
conservatism. By aggressively prefetching initially, SETS gets a number of objects that

are ready to be processed, reaping the bene�ts of parallelism in the I/O subsystem and
increasing the tolerance of bursts in the application's processing rate. At the same time,
the number of wasted prefetches is bounded. A higher value produces a larger bu�er with

which to insulate the application from network delays, whereas a lower value reduces the
number of objects that might be prefetched unnecessarily. In addition, this allows SETS
to tune its prefetching to the rate of the application. If the application runs quickly, it will
call setIterate() more often, and thus more prefetches will be running concurrently.

If the application runs slowly, SETS need not be as aggressive and in fact will prefetch

lazily to match the application's rate of member consumption.

Although limiting outstanding prefetches limits the number of wasted operations, it does

not limit the amount of prefetched data that is wasted, since objects can vary in size. In

practice, this should not be a problem since most objects tend to be small. Object size
is self-limiting in many systems since the time to fetch an object is related to the size;

people tend to avoid using objects that are too costly to obtain.

6.4.1.4 Which Member to Prefetch?

A chief advantage of using sets as the underlying abstraction is that they have no inherent

order. Thus SETS can determine the order in which to prefetch the objects. To minimize
the latency seen by the application, SETS should prefetch in order of increasing service

time.

Unfortunately, it is di�cult to know a priori how long a fetch operation will take, partic-

ularly if SETS does not know the attributes of a �le other than its name. Obtaining these
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attributes, such as the �le size, is often nearly as expensive as fetching the �le. Once the

size is known, it may still be di�cult to predict fetch times accurately since network and

server performance can change over time. In addition, SETS must also take the weight

of objects into account if the application has speci�ed weights using the setWeight()

operation.

SETS's solution is to prefetch objects in the order that they appear in the set member

array, shown in Figure 4.7. Since this array is ordered by weight, the e�ect of SETS'
approach is reasonably close to presenting the objects in the correct order. Objects

which take a long time to fetch may be presented out of order, however this is exactly
the behavior that setWeight() is supposed to exhibit.

Although one can conceive of many algorithms that are more clever than this one, they
all have higher computational complexity or require network I/O. As stated earlier, this

design favors simplicity in order to reduce competition for local resources. In addition,

delaying the decision of what to fetch in order to gather additional attributes reduces
the potential bene�ts of prefetching. Further, this simple approach seems to work well

in practice, as born out by the experiments presented later in this dissertation.

6.4.1.5 Which Member to Yield?

A related issue is the order in which members should be yielded by setIterate().

Obviously, only local, cached, or prefetched objects should be yielded, since SETS cannot
know which of the outstanding prefetches will return �rst. In addition, objects of greater
weight should be yielded before those of lesser weight. But which should be yielded if

there are several unyielded prefetched members of equal weight when setIterate() is
called?

The key is to consider the delays involved in reading an object's data in addition to the
delay to yield it. To minimize the read delays, SETS yields the object with the most

data in the bu�er cache. A secondary bene�t of this strategy is that the processing of

the selected object causes the most number of bu�ers to be released from the prefetch

pool, creating space to hold other prefetched data. One could alternatively yield the
object with the largest percentage of cached data, but doing so would negate this second
bene�t.

SETS tracks the amount of an object's data that is cached by keeping a per-object

counter. When a bu�er is allocated to hold the object's data, the count is incremented
by the bu�er's size. The count is decremented whenever the bu�er is evicted. When

setIterate() is looking for an object, it �rst locates the objects with the highest weight
of any unyielded member, then yields the object of this weight with the most data in

memory. This strategy satis�es SETS semantics since order within a weight equivalence
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class is unde�ned, so ties can be broken arbitrarily. If the user has not speci�ed weights,

all objects are weighted equally and SETS will yield the member with the most data in

memory.

6.4.2 Managing the Bu�er Cache

Although SETS assumes that local disk access is faster than remote, forcing all reads

of prefetched data to be disk reads would result in mediocre performance at best. Al-

ternatively, putting unrestricted amounts of prefetched data into the bu�er cache will
force other data out, increasing the cache miss rate and decreasing the performance of

all applications on the system.

SETS avoids both of these problems by using data in the bu�er cache where possible,
and by restricting how much of the bu�er cache can be used to hold prefetched data.

It does this by maintaining a logical pool of prefetch bu�ers: bu�ers holding prefetched
data. This pool is kept separate from the main bu�er cache to prevent prefetched data
from being evicted due to demand activity, but is integrated to allow demand reads of set

members to �nd the prefetched data without requiring special hooks. SETS pins some
of the bu�ers to prevent them from being evicted by other prefetches, so as to avoid disk
I/O when these pages are accessed. To increase the hit rates seen by applications, SETS

prereads evicted prefetched data from the disk as pin space becomes available. Figure 6.3
illustrates these actions along with the components involved with prefetching.

The following sections describe how SETS performs these actions in more detail. First
I describe how SETS manipulates bu�ers used to hold prefetched data. Then I describe

how SETS restricts the amount of space that can be used for this purpose. Finally, I de-
scribe how SETS increases the application's hit rate by exploiting the cache's state. The
following sections also discuss the parameters that are used to control SETS' prefetching

behavior.

6.4.2.1 Storing Prefetched Data in Bu�ers

Since prefetched data is stored in the �le system until it is needed by the application, the

information must pass through the bu�er cache at some point. In order to better utilize

the bu�er cache, prefetched data is written into a logically separate pool of bu�ers. This

allows SETS to keep track of how much memory is being used for prefetching, and to
restrict the rate of prefetching by limiting the size of this bu�er pool.

In fact, this pool is not separate from the bu�er cache itself. Bu�ers are moved into this
pool when they are used to hold prefetched data, and moved back into the main bu�er

cache when the data is used to service a demand read. Prefetch bu�ers are stored on a
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This picture illustrates how data moves through the bu�er cache. SETS prefetches information

o� the network and writes it into bu�ers in the prefetch pool. After an object has been completely

prefetched, its pages are pinned into the cache to guarantee their presence when requested by the

application. If there is not su�cient space in the pin-space, the bu�ers may be evicted by writing

their contents to the local disk. If pin-space becomes available, SETS can preread information

into the pin-space to avoid a cache miss on that data. When the application demands data, it

may hit in the bu�er cache, pin-space, or prefetch pool and avoid a disk read. If the data is not

present in the cache, it must be read from disk forcing the application to pause until the disk

read completes.

Figure 6.3: Movement of Data in the Bu�er Cache.

new free list called PREFETCH when not in use, although they remain on the bu�er cache's

hash table so that demand operations can easily locate them. Keeping the prefetch pool

part of the bu�er cache in this way allows auxiliary bu�er cache operations like sync()

to function on prefetch bu�ers without requiring the modi�cation or duplication of their
functionality. Figure 6.4 shows the relationship between this prefetch pool and the bu�er

cache.

When a warden services an ody prefetch operation (described in Section 4.3.3), it opens

the cache container �le with a 
ag specifying this �le will be used to hold prefetched data.
This 
ag causes open() to mark the descriptor with the IPREFETCH 
ag. When an I/O

operation on this �le needs a bu�er, it calls sets getblk(). Sets getblk() allocates
a bu�er using getblk(), but marks the bu�er as a prefetch bu�er by setting the 
ag

B PREFETCH, and indicates the operation is a prefetch by setting the 
ag B PREIO.
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This �gure depicts the meaning of sets max and pin max. SETS limits the amount of the bu�er

cache that be used to hold prefetched data to the value in sets max. In addition, SETS may

chose to hold prefetched data in the cache (prevent eviction), but only up to pin max data may

be pinned in this manner. Note that this �gure is not drawn to scale, sets max should typically

be set to roughly 10% of the bu�er cache size to avoid unnecessarily evicting data from the cache.

Figure 6.4: Meaning of sets max and pin max.

Prefetch operations can result in either disk reads or writes. Writes come from wardens

storing information fetched o� the network to a cache container �le on the local disk.

When the warden writes to a �le opened with IPREFETCH, rwip() sees this 
ag and
calls sets getblk() instead of getblk() so that the I/O will use a prefetch bu�er.
Reading this open �le's data would also use prefetch bu�ers, although wardens do not read
cache container �les in practice. Instead, reads happen as a result of SETS prereading

evicted data back into the cache. Since SETS initiates these directly, it knows to use
sets getblk().

When the bu�er is released at the end of the I/O operation, brelse() notices that the
B PREFETCH and B PREIO 
ags are set. To prevent prefetch bu�ers from being evicted,

brelse() puts prefetch bu�ers on the PREFETCH free list, which only holds prefetch
bu�ers. Using a separate list prevents prefetch bu�ers from being evicted until both the
LRU and AGE lists are empty, while allowing these bu�ers to be accessed by auxiliary

bu�er cache routines like sync().

When the application reads the data in the bu�er, i.e. a demand read, getblk() �nds

the prefetch bu�er, and uses it to satisfy the read. Getblk() is able to �nd the prefetch
bu�er since it is still in the bu�er cache's hash table. Getblk() clears the B PREIO 
ag,
since the current operation is not the result of a prefetch. When the I/O completes,

brelse() discovers that B PREIO is not set, and clears the B PREFETCH 
ag. The bu�er

is now no longer a prefetch bu�er, and brelse() places it on the appropriate free list as
described in Section 6.2.1. Alternatively, SETS could force the bu�er to be evicted more

quickly by placing it at the head of the LRU list.

6.4.2.2 Limiting Bu�er Usage for Prefetching
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# of workers
The number of worker threads. Controls the rate
at which membership is evaluated and objects are
fetched.

limitOpens
This is the number of unyielded objects on which
prefetch operations can have been started.

sets max
This is the size (in bytes) of the SETS prefetch bu�er
pool. sets max� size of the bu�er cache.

sets restart
This is the threshold at which to restart threads that
are waiting for free prefetch bu�ers.
sets restart< sets max

pin max
This is the maximum number of bytes that can be
pinned in the SETS bu�er pool. pin max < sets max.

sets count
This is the count of how many bytes are currently
stored in prefetch bu�ers. sets count � sets max

pin count
This is the count of how many bytes are currently
pinned. pin count � sets count.

Figure 6.5: Parameters and Counters Controlling SETS Prefetching Behavior.

To prevent prefetching operations from using bu�ers that are needed by the application

or by other concurrently running applications, SETS keeps an upper bound on how much

memory can be held by prefetch bu�ers. This limit is enforced by keeping a count of
how much space is being used by prefetch bu�ers, adjusting the count as bu�ers are

moved to the prefetch pool by sets getblk() and are moved back by brelse(). This
counter is called sets count, and it and the other counters used by SETS are described

in Figure 6.5.

When sets getblk() moves a bu�er into the prefetch pool, it �rst ensures that there

is enough room in the pool by comparing sets count to sets max, which contains the
maximum amount of space that can be used for prefetching. If the sum of sets count

and the new bu�er's size is greater than sets max, the operation blocks until su�cient
space is available. If not, sets count is increased by the new bu�er's size.

When brelse() moves a prefetch bu�er back into the main bu�er cache, it decrements
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sets count by the size of the bu�er. If sets count is lower than the threshold stored in

sets restart, brelse() will awaken any sleeping threads since space is now available.

SETS uses this threshold to keep from waking these sleepers unnecessarily.

Both sets max and sets restart can be adjusted dynamically, although algorithms for
doing so are left as a future enhancement. The value of sets max should be a fraction

of the total bu�er cache size to avoid lowering the cache's hit rate too drastically. The

optimal value depends on the application mix that is running. Sets restart should

be at least 2 pages (8192 bytes) smaller than sets max to guarantee a sleeping thread

will continue. However, it is usually wise to have a larger di�erence to avoid possible
stop-and-go behavior from adversely a�ecting performance.

6.4.2.3 Pinning Bu�ers for Faster Reads

SETS pins pages in the bu�er cache to have greater control over what is evicted as newly
prefetched data arrives. To understand the need, consider what happens when SETS
is prefetching a set whose members are collectively larger than the prefetch bu�er pool.
After the pool has �lled, incoming data will evict cached data. References to evicted

data will then miss in the bu�er cache, forcing the data to be read from disk. In the

worst case, all application reads of prefetched data will miss, rendering the bu�er cache
ine�ective.

To overcome this problem, SETS pins a portion of the prefetch bu�ers, preventing them

from being evicted. These pinned bu�ers remain in the cache until they are required

by the application. SETS uses two counters to restrict the amount of data that can be
pinned. The counter pin count keeps track of how much data has been pinned into the
cache, while pin max holds the maximum amount of data that can be pinned. Since only
prefetch bu�ers may be pinned, and since some prefetch bu�ers should be reserved for

prefetching, the relationships between the counters must obey these invariants:

pin count � sets count

pin max < sets max

Pinning of pages is done by the SETS worker thread just after the prefetch operation has
completed. The worker �rst checks to see if there is su�cient room to hold the object. If

there is not su�cient pin space available, the object's bu�ers remain in the prefetch pool

and may be evicted. If there is space, the worker thread updates pin count, grabs the
object's bu�ers, marks them as pinned by setting the B PIN 
ag, and then puts them on a

per-set list. This per-set list holds all pages that have been pinned for that set. Demand

access to a pinned bu�er will remove the bu�er from the per-set list. When the I/O

completes, brelse() decrements pin count and releases the bu�er. To release pinned



110 CHAPTER 6. PREFETCHING AND RESOURCE MANAGEMENT

pages that are not referenced by the application, SETS releases any pages remaining on a

set's list when all references to the set are closed. Since pinned pages are prefetch pages,

the release of a pinned page is also the release of a prefetch page, and so sets count is

decremented as described above.

Pinning in this manner has two advantages. The �rst advantage is that SETS pins the

pages in the order they appear in the object. Since SETS assumes set members will be

read sequentially, it is important that the �rst pages of a �le be in-cache. Once these
pages have been read, any out-of-cache pages will be brought into the cache automatically

by Unix's read-ahead mechanism (described in Section 6.2.1) as the application reads the
�le. If other pages than the �rst were cached, the application would still su�er a cache

miss and disk read in order to load the missing �rst page. A second advantage is that the

unpinned portion of the prefetch pool can still be used to prefetch data o� the network.
One can view the remainder of the prefetch bu�ers as a pool to be used in steady-state

to bu�er incoming prefetch data as it is being written to disk. These bu�ers allow the
warden to write small bursts of data without blocking on disk I/O.

To maximize the application's hit rate, the value of pin max should be as large as possible.
However, to ensure that network fetches do not stall on lack of available bu�ers, the
di�erence between sets max and pin max should be large enough to hold a burst of data
(TCP window size for instance). On typical machines in our environment, the rate at
which data can arrive is not signi�cantly higher than the rate at which it can be written

to disk6 Thus in common circumstances, the unpinned portion of the prefetch pool can

be safely set at less than ten pages, to allow for bursts in the rate of incoming data.

6.4.2.4 Increasing the Hit Rate through Prereading

So far I have described how SETS handles data as it is prefetched o� the network. But

what happens if the data is local when the set is created? Alternatively, what happens
to the prefetched data that was evicted from the unpinned portion of the bu�er cache?

Rather than forcing the application to read this data from disk, SETS prereads this data
into the bu�er cache.

As with any form of prefetching, SETS must take care that this prereading does not

impede other I/O, most notably I/O due to network prefetches. Prereading can a�ect
network prefetches in two ways. First, prereads consume disk bandwidth and move

the disk head, both of which could slow disk writes of incoming prefetch data. Since

dirty unpinned prefetch bu�ers must be written before they can be reused, this may

6Our Ethernet achieves an e�ective bandwidth which does not usually exceed 400KBps, based on

experiments conducted between 2 DECstation 5000/200 connected by 10Base2 Ethernet. Disks can

easily achieve similar bandwidths.
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block network prefetches until bu�ers become available. Second, preread data consumes

prefetch bu�er space that could otherwise be used to hold data that has been prefetched

over the network. Since SETS assumes local disk access to be faster than remote access,

the network prefetches should take precedence over prereads.

On the other hand, it is important that SETS aggressively preread local objects if there is

no incoming prefetching data. Consider a set that has one object which must be fetched
over a 14.4Kbaud modem connection, and a number of objects that are on the local disk.

The preceding paragraph argues that no local data should be preread until the remote

object has been fetched, to avoid interfering with the remote fetch. However, letting the
application read the local objects would allow the time to fetch the remote object to be

overlapped with the application's processing.

SETS handles these con
icting demands by only prereading data into pinned bu�ers.

This simple heuristic automatically balances these demands. Network prefetches are
not slowed because there are more than the minimum (sets max� pin max) number of
bu�ers to hold prefetch data, insulating the prefetcher from disk stalls. Aggressive reads
of local data will occur early in the processing of the set because no data is yet in the

cache. In addition, this avoids wasting disk reads by ensuring that preread bu�ers stay

in the cache. If they were evicted, the data would have to be preread again which would
waste the �rst read.

To preread data that has been 
ushed, setIterate() invokes the preread of an uncached
member if pin space is available. Hopefully the preread will have completed when the
application next calls setIterate(), and the object's data will be waiting in the cache.
Although SETS could be more aggressive in prereading, I feel this is unnecessary in

practice because either the application processing rate is high enough to consume data

as it arrives o� the network or is low enough that more aggressive prefetching is not
warranted.

6.4.3 Design Considerations Speci�c to Mach 2.6

Although the design just presented should work in any version of BSD, several features

needed to be re�ned for the Mach implementation. In particular, Mach's bu�er cache
hash table uses a hash function based on physical block number, and provides no direct
way of identifying to which �le a bu�er belongs. Mapping from a block to its �le is

di�cult, and mapping from this �le to the set of which it is a member is expensive.

Essentially the former can only be done by calling bmap() for every logical block of every

member of every open set to determine which belongs to the bu�er in question. Further,

�nding the blocks of a set member involves calling bmap() and performing a hash lookup
for every block in the �le. Both of these problems would be alleviated by a �le-indexed

hash table, such as the one used in NetBSD[59].
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The Mach implementation of SETS addresses this problem by only pinning an object's

pre�x, the �rst nprefix blocks of a �le, where nprefix is a tunable limit. If the �le is

smaller than nprefix blocks, the pre�x is equivalent to the whole �le. In addition, SETS

on Mach decides which object to yield using the number of the object's bu�ers that are

pinned instead of the total amount of its data that is cached.

The main bene�t of this approach is that the cost of mapping between members and

bu�ers is substantially reduced by either avoiding the need for mapping or by doing it
when it is least expensive. First, SETS only needs to map the blocks in an object's

pre�x, reducing the number of times bmap() is called per object. Second, these bu�ers
are pinned and since pinned bu�ers remain in the cache, SETS must do this mapping

at most once. If there is not su�cient pin-space when a member is prefetched, the

mapping is deferred until the member's data is preread. Third, the per-member count of
pinned bu�ers need never be decremented. Pinned pages are never 
ushed unless they
are used, and they are never used unless the object has already been yielded. Once an
object has been yielded, the count is no longer needed. Fourth, SETS usually pins the
pre�x immediately after the member has been opened by the prefetch operation, so the

�le's inode and direct block map should be in memory. Further, if the pre�x blocks are
all direct blocks (nprefix � NDADDR), the mapping can be satis�ed by the data in the
inode. Thus the mapping can usually be performed without any disk I/O. (Recall from
Section 6.2.2 that NDADDR is the number of direct blocks in a �le.) If mapping is delayed
until preread, the member's inode will be read in at most once (when the �rst bu�er is

mapped).

These savings come at a cost of a potentially lower hit rate for application reads. One
reason for lower hit rates is the risk of a less than optimal iteration order. For example,
SETS may overlook an object with many cached bytes but few pinned bytes in favor of
another object with more pinned bytes, but with fewer total bytes in the cache. A second

reason is that only an object's pre�x is guaranteed to be cached, the other pages may

have been evicted. Fortunately, there are also several ameliorating factors. First, the

mean object size in �le systems and in the WWW is less than two �le system blocks[3,
27, 64, 78], so these problems do not exist for many objects if nprefix is bigger than two.

Second, after the application begins to read the object, Unix's read-ahead mechanism

(described in Section 6.2.1) prereads bu�ers automatically. Third, since there is a limit
on how many bu�ers that can be pinned, pinning the pre�x allows more �les' data to

be pinned. Thus even though the hit rate for a single �le may be lower, the hit rate
overall should remain high. Fourth, misses from suboptimal iteration can only occur if

the bu�ers are evicted between the point the object would have been yielded and the

point it is actually yielded. For reasonably large bu�er caches, this is unlikely to be a

common event.

However, it should be noted that pinning the pre�x is not optimal. It could be the case
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that competition for the disk head between the application reading disk blocks beyond the

pre�x and the prereading of other data can increase the average I/O latency per request.

The increase comes if the blocks for the two �les are stored on di�erent cylinders, because

the disk head is forced to seek on every request. If the reads for one �le were performed

at once, disk seeks would be avoided and the reads could take advantage of the layout
used by the FFS to speed sequential reads.

6.4.3.1 Other Issues

In addition to the introduction of pre�xes, the Mach implementation makes two other
deviations from the design. The �rst deviation is that SETS forces all bu�ers out of

the prefetch pool when all sets are deallocated. Flushing the prefetch pool is necessary

because SETS cannot easily locate all bu�ers belonging to a set when it deallocates the
set. This aggressive behavior is acceptable because there is no open set to which these
bu�ers belong. This behavior is useful because it allows these useless bu�ers to be reused
before the bu�ers in the LRU and AGE lists, allowing the data in those bu�ers to live

longer. Since SETS does know about the pinned bu�ers belonging to a set, it forces the
release of these bu�ers when the set is deallocated.

The second deviation is that SETS delays the writing of some dirty prefetch bu�ers until
they are released. As described above, dirty prefetch bu�ers are the result of the warden

writing data o� the network into a cache container �le. Normally, this data would be
written asynchronously when the bu�er is �lled. However, all other accesses to this bu�er

block until the write completes. In particular, SETS's attempts to pin the bu�er as soon

as the prefetch has completed tended to block until the write is done. For this reason,
SETS on Mach pins a bu�er as soon as the write has completed, rather than waiting
for the (whole �le) prefetch to complete. In addition, SETS delays the writes of pinned
bu�ers to avoid delaying the application should this member be yielded.

The chief disadvantage of delaying the writes is that doing so opens an opportunity for

prefetched data to be lost if the system crashes. However, the window of opportunity

exists already in Unix �le systems, and is bounded by the update daemon's period,
usually 30 seconds. The update daemon wakes once every time period and calls sync(),
which writes all dirty pages in the bu�er cache (prefetch pages included) to the disk.

One implication of delaying these writes, is that they will be batched together by the

update daemon. The advantage of batching is that the writes can be optimized by

scheduling them more e�ciently. The disadvantage is that just after sync() the disk

queues can be quite long if the pin space is large. A synchronous write that is started
just after sync() completes may be forced to wait some time for service. However, one

may be able to lessen this delay though more advanced scheduling techniques, such as
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by scheduling synchronous operations in the disk queue before asynchronous operations.

Such improvements are left as future work.

6.5 Future Enhancements

There are a number of ways in which the SETS prefetching engine could be improved, but

that are left as future enhancements. For instance, one could design feedback mechanisms

which dynamically tuned the prefetch engine's behavior to suit di�erent levels of resource
availability. The engine has been designed to be tunable by setting the parameters listed

in Figure 6.5. Dynamic system adaptability seems like a fruitful area of research, and
this prefetching engine is a promising place to start.

One potential drawback of this design is that SETS interleaves reads from concurrent

prefetches to the same disk. This interleaving can destroy the bene�t of clustering a
�le's data on the same cylinder, because it may move the disk head on every read. One
could solve this problem by rewriting the SETS prefetching engine to reserve bu�ers and

start I/O for a �le or a portion of a �le en masse. Thus a group of requests can be read
without su�ering a seek, and may also bene�t from track bu�ering or other preformance
enhancing mechanisms supplied by the disk hardware.

A related problem is that SETS does not prevent multiple prefetch operations from

accessing the same disk. Although multiple accesses to the same server may be reasonable
since they can overlap work on the network, server CPU, and server disk, multiple accesses
to the same disk (client or server) can add contention and increase the cost of performing
I/O. SETS could instead limit the number of outstanding requests per disk, although
this may require additional interaction with the warden to determine where a particular

object resides.



Chapter 7

Evaluation: Overview

The key assertion made by the thesis statement is that dynamic sets can reduce the I/O
latency for a wide class of applications in a diverse set of domains. This and the three
subsequent chapters defend the assertion by presenting experimental results that verify

that substantial reductions in latency can be achieved in practice on real systems from
using SETS. The chapter begins with a simple model of prefetching, to help the reader
better understand the theoretical lower bound on I/O latency. It then describes the
experimental methodology used to evaluate the performance bene�ts of dynamic sets in

practice. The following three chapters present the results of experiments in three di�erent

domains: GDIS, DFS, and local �le systems.

7.1 A Model of Prefetching

This section presents a linear performance model to aid the reader's understanding of

the experiments that follow. The model is simple, which both increases its utility as an
educational tool and also allows it to be easily modi�ed to describe a range of systems.

The model consists of a set of equations over non-negative integers that describe the

performance of an application that serially opens a set of �les, reads each �le sequentially,
and spends some amount of time processing each block of data it reads. Another set of
equations describes the same application written to use dynamic sets. The equations,

taken together, are a means of determining the expected amount of savings that dynamic

sets o�ers to search applications.

The model is based on two sets of parameters: one set describes the system itself while the

other describes the application. Figure 7.1 lists the system parameters. Null is the time
to remotely invoke a null routine (a routine that performs no action), and is a measure of

the overhead of making a remote procedure call. Band is the e�ective bandwidth of the

115



116 CHAPTER 7. EVALUATION: OVERVIEW

Null

Latency of sending a zero-length RPC. Includes CPU

overhead on both client and server.

Band

The network throughput (bps). All routes to servers have

the same bandwidth.

Open Server component of latency to open a remote �le.

Read Server component of latency to read one bu�er.

BufSize File system bu�er size.

Figure 7.1: System Performance Parameters

network connecting the client and servers. Open and Read are the times for the server

to open a �le and read a bu�er respectively in response to an RPC. This time includes
the computational overhead after the RPC processing has been done and any disk I/O
latency that is involved. BufSize is the block size of the �le system, which is the unit
of transfer for systems like NFS.

The second set of parameters, listed in Figure 7.2, describes the application and the set
of objects it consumes. N is the cardinality of the set. Size is the average �le size. S
is the number of servers storing members of the set, and is an indication of the number

of �les that can be fetched in parallel. Interactive applications have pauses in which the

user reads an object's data, Think is a per-�le average of this time. For non-interactive
applications like grep, Think = 0. Comp is the amount of processing per byte performed

by the application. Values for Comp are typically small, but are likely to grow in the

future due to computationally intensive applications such as image processing. The
model assumes that there is no overlap between thinking and computing; computation

is performed on a bu�er while a �le is being read and think time occurs on a �le before

the next �le is requested. For instance, a WWW browser parses the data in an object
before displaying it, but sits idle while the user is examining the data.

Equation 7.1 describes the latency of a remote open; Equation 7.2, that of a remote

read. These equations describe a system in which an open does not return any �le data
and each read call returns one bu�er's worth of data. One can easily construct similar

equations for systems which return a small �le's data when the �le is opened, or that

fetch the entire �le as a side e�ect of the open, as is done in the WWW for example.

Equation 7.3 computes the time to process one bu�er, CPUCost.
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N The number of objects in the set.

Size The size of the �les in the set (number of bu�ers).

S

The number of independent servers storing members of

the set.

Think Time spent by user reading each �le's data.

Comp Time spent processing the data (per byte).

Figure 7.2: Parameters Describing Factors Which A�ect Application Performance

OpenCost = Null+Open (7.1)

ReadCost = Null+Read+
BufSize

band

(7.2)

CPUCost = Comp�BufSize (7.3)

The time to process a set of objects without dynamic sets is denoted by NoSets, and
the equation to derive its value is fairly simple. At the �le level, there is no overlap
since all �le accesses are serialized. Equation 7.4 re
ects this by summing the various

costs in processing a �le: opening the �le, reading its contents, and processing the data.
Determining the time to read a �le (Reading) is more complicated because many systems
allow asynchronous reads of a �le's data to overlap intra-�le I/O and processing. An

example of an asynchronous reading mechanism is Unix's fast �le system (FFS) sequential
block read-ahead facility. Read-ahead speeds applications that read �les sequentially by
asynchronously prefetching block i + 1 as a side e�ect of reading block i. Equation 7.5

shows that the �rst read is synchronous, but that the system overlaps successive reads
with client processing1. The max() in Equation 7.5 captures this overlap behavior by
only including the longer of the times to read and process data in the sum. Processing

the last bu�er cannot be overlapped with I/O since all of the �le's data has been read,

hence the last term (CPUCost).

1In fact, most Unix implementations require two blocks to be read in sequence before starting to

read-ahead (only read-ahead when i > 2). To re
ect this in Equation 7.5, the model should have 2

ReadCosts in the sum, rather than just one as shown.
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NoSets = N � (OpenCost+Reading + Think) (7.4)

Reading =

ReadCost+ (Size� 1)�max(CPUCost;ReadCost) + CPUCost (7.5)

SETS extends this concept of read-ahead to more general prefetching of �les. As with
sequential block read-ahead, SETS prefetching must synchronously fetch the �rst object,

but can overlap successive fetches with application processing and user think time. This
o�ers two advantages: the ability to read a �le while another is being processed and the

ability to read multiple blocks at once. In addition, SETS can fetch from S servers in
parallel, further reducing the amount of I/O latency that is seen by the application. The
reason for the S-fold speedup is that almost all of the time to fetch data is spent on the
server; fetches to independent servers e�ectively happen concurrently. As a result, SETS

can run S fetches in the time to fetch one �le, eliminating the elapsed time for S � 1

fetches. However, this assumes that the network has su�cient bandwidth to sustain S

fetches at once. For common networks such as Ethernet, this is a reasonable assumption

if S is small. The experiments limit the number of concurrent fetches to �ve, except
where noted.

The time to process a set of objects with dynamic sets is denoted by Sets, and is derived

in Equation 7.6. Because SETS extends the concept of read-ahead, Equation 7.6 is similar

in form to Equation 7.5, the equation for non-sets read-ahead. The �rst term is the cost

to load the pipeline, the next term is the cost of executing the pipeline to completion,
and the last term is the time to drain the pipe. The middle term of Equation 7.6 shows

the result of parallel fetches, an S-fold reduction in latency.2 Equation 7.7 shows the

time to process the �le, including user think time and client computation. Equation 7.8

shows the time to fetch the �le. Note that SETS can overlap the time to open a �le as
well as the time to read it.

2In reality, SETS cannot perform concurrent I/O with no cost, since each operation does consume

some small amount of the client's CPU which cannot be overlapped. However, modeling this e�ect would

complicate the model without a corresponding increase in accuracy. Please remember that both division

and subtraction are limited to non-negative integers.
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Sets =

Fetching +max((N � 1)� Thinking;

N � S

S

� Fetching) + Thinking (7.6)

Thinking = Think + (Size� CPUCost) (7.7)

Fetching = OpenCost+ (Size�ReadCost) (7.8)

There are three e�ects that the equations do not take into account. First, the variance in

some distributed systems is so high that representing some value such as Band or Null as
an average introduces considerable error. However, the model is reasonably accurate, and

has been validated by comparing it against measurements of a prototype implementation
of SETS[92]. Second, SETS does consume some CPU, which increases the amount of
computation that must be done while the application is running. However, SETS was

designed to minimize this overhead, and fortunately does so: the experiments described
below show the client CPU overhead to be small.

The third omission of the model is that it does not account for the fact that overlapping
I/O requests can change the average cost of an I/O. On one hand, concurrent requests

from di�erent �les to the same disk may destroy spatial locality in the request stream.

Since the data is laid out on the server's disk for rapid sequential access to a �le's data,
SETS may see higher I/O latencies due to increased seek times. On the other hand,

multiple outstanding requests can result in lower latencies by using server and network
resources more e�ciently. For instance, keeping the server's input queue full raises the
server's utilization which reduces the aggregate latency of a stream of requests. Of course

keeping the server fully utilized for long periods might adversely a�ect other users of the

system whose requests are forced to wait in longer queues. One of the motivations for
SETS prefetch parameters is to avoid this kind of overutilization of resources.

7.1.1 Implications of the Model

The chief bene�t of this performance model is that it illustrates the basic advantages of
prefetching. For instance, one can clearly see the bene�t of parallel fetches: reducing the

cost of latency by a factor of S. In addition, the bene�t of overlapping computation and

I/O is succinctly stated.

The equations also point out three limitations of SETS. First, the best possible perfor-

mance SETS can achieve is to eliminate I/O stalls. If Thinking � Fetching in Equa-
tion 7.6, there is little opportunity to bene�t from prefetching; eliminating I/O stalls will

have little impact on overall performance. Second, if all the members are remote when
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the set is opened, SETS can at best eliminate all latency except the latency to fetch the

�rst item. The optimal speedup occurs when the next �le is ready to process as soon

as Thinking on the previous one has completed. If the next �le is not ready, SETS will

stall up to an additional Fetching

S
� Thinking.

The third limitation is that applications can already achieve some of the bene�ts of

prefetching through read-ahead. Thus SETS must do better than read-ahead in order

to o�er any bene�t. In circumstances where ReadCost is the most signi�cant factor
a�ecting performance, SETS may only be able to o�er minimal improvements. However,

the equations tell us when SETS can o�er the most additional bene�t over read-ahead:
when N > 2, and when S > 1 or Think > 0. SETS also can o�er bene�ts in situations

where read-ahead is ine�ective, such as systems that use whole-�le caching. In these

systems, all of the cost of fetching is contained in OpenCost, and the value of ReadCost
is close to zero. By comparing Equation 7.5 and Equation 7.8, one can see that SETS

obtains bene�t from pre-opening �les, whereas read-ahead cannot.

7.2 Experimental Methodology

The proof of the performance bene�ts of dynamic sets is based on the results of three
experiments run on real systems. Each experiment consists of repeatedly running a
particular search application workload on an existing and interesting information system,

both with and without the use of SETS. The results of the runs are then averaged to
determine the expected time to perform a search, and the number of runs depends on the

experiment at hand. Comparing the elapsed time to run equivalent searches with and

without dynamic sets gives a metric with which to determine if dynamic sets reduce the
impact of latency on applications in practice. For the purposes of this dissertation, two
searches are equivalent if they access the same objects and perform the same amount of
(application or user) computation. Equivalent searches can, however, di�er in the I/O

latency they observe, or the order in which the objects are processed.

The following three chapters each describe an experiment which determines the bene�t of
dynamic sets in a di�erent system domain. Chapter 8 describes an experiment that used
trace-driven analysis to show the bene�t of using dynamic sets to search applications on

GDIS. The experiment described in Chapter 9 used a synthetic benchmark to examine

the bene�ts of dynamic sets to search on a local-area distributed �le system (DFS).

Chapter 10 examines the impact of dynamic sets on search over data stored in a parallel
disk array. By examining the bene�ts of dynamic sets in these di�erent domains, the

dissertation demonstrates the generality of dynamic sets in addition to their potential
for improving the performance of search applications. Taken together, the three domains

cover an important range of the kinds of systems on which search is done today.
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Although they describe di�erent experiments, all three chapters have the same basic

structure. The chapter begins by identifying the domain, why the domain is of interest,

and why it is di�erent from the other domains. The chapter then describes the factors

that a�ect search in that domain; the in
uence of factors may di�er in di�erent domains.

Each chapter then describes and motivates the speci�c experimental methodology used
by the experiment, and then presents the experimental results.

Each of the three experiments use the same basic experiment design, although the

speci�cs may be di�erent. Each experiment consists of a number of tests. The �rst
test runs the application workload using the base factor levels to establish if SETS of-

fers any bene�ts. The base levels comprise the common case for search in that domain.

Successive tests then vary the levels for one of the factors. Collectively, the tests which

comprise an experiment demonstrate the bene�ts of dynamic sets as well as the robust-
ness of these bene�ts across the factor levels. Except where noted, the experiments 
ush

set members from the cache to ensure independence of runs before running the tests.

7.2.1 SETS Cache Parameter Settings

Figure 7.3 contains the SETS cache parameter settings used by the experiments. In a
few cases the experiment used di�erent settings; the text accompanying the test results
discusses the rationale and nature of the change for that test. The values were obtained

by repeating the experiments for di�erent parameter settings, and then choosing settings
which seemed to work well across all three experiments. For parameters such as nprefix
and limitOpens, performance dropped when the parameter was set too high or too low.
For sets max, however, the performance of SETS would increase for higher values, but
the performance of other applications might drop. Although the experiments did not

look at the impact of SETS on other applications in the system, the value of sets max

was arbitrarily set to be a small fraction of bu�er cache size. The values of sets restart

and pin max were chosen based on the value of sets max and experimentation.

limitOpens sets max sets restart pin max nprefix # of Workers

5 2MB 1.93MB 1.75MB 8 5

These are the parameter values used in the experiments. Sets max was 1

8
of the bu�er cache

size for the WWW tests, and 1

4
for the other tests (corresponding to bu�er caches of 16MB and

8MB respectively). The values for pin max and sets restart were chosen to be slightly less

than sets max. Nprefix, limitOpens, and the number of workers were chosen to allow SETS

to obtain some bene�t from prefetching without overwhelming the system.

Figure 7.3: SETS Prefetch Cache Parameters
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7.2.2 Metrics Used in the Evaluation

Each of the experiments uses �ve basic metrics to describe the performance of an appli-

cation: user think time, client computation time, I/O latency, total elapsed time, and

savings due to SETS. For all the tests, total elapsed time (Total) is measured by the ap-

plication and does not include the time to create the application's process or to load the
binary, since these activities are independent of the use of SETS. The manner in which

the other metrics are measured depends on whether the experiment uses non-interactive

or interactive search as its workload.

Experiments which use non-interactive search can accurately measure the amount of I/O

latency by recording the amount of time spent in the idle loop on the client. The idle

loop only executes when no other jobs are pending. For the experiments, most of the
load on the client is from the application and SETS, so the idle loop runs whenever

the application and all SETS worker threads are blocked. These experiments present 3

metrics in addition to Total: CPU, Stall, and Savings in Total.3 CPU is the amount

of time the client CPU was busy during the run, and is equal to the di�erence between
Total and Stall. Stall is the amount of time spent in the idle thread. Savings in Total
re
ects the savings in runtime due to SETS; Equation 7.9 contains the formula used to
calculate this metric.

Savings in Total =
TotalW=O SETS � TotalWith SETS

TotalW=O SETS

(7.9)

The experiments which use interactive search, however, cannot use idle time as a measure

since the mechanism which simulates user think time causes the idle loop to run. Thus
the Stall metric no longer re
ects the amount of time spent waiting for data. Instead of
having the system measure idle time, these tests have the application measure the time
spent thinking or fetching.

Interactive search tests report four metrics in addition to Total: User, App, Fetch, and

Savings in Fetch. User is the amount of time spent simulating user think time. App is
the amount of computation performed by the application. Fetch is the amount of time to

perform the I/O operations as seen by the application. Fetch thus includes some client

CPU processing to setup and send outgoing messages and to handle incoming messages.

As such, the theoretical minimum for Fetch for these tests also includes some amount of

client processing, and thus will be higher than the potential minimum for non-interactive
search. Savings in Fetch shows the percentage reduction in latency due to SETS, and is

calculated using Equation 7.10.

3
Think = 0 for non-interactive searches, and so user think time is not reported.
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This �gure contains two example time lines which show the work to fetch and process three

objects with and without the use of SETS. Each time line is broken into three lines, one for

the client CPU, one for the network, and one for the server. Thick lines show when the unit is

busy, thin lines show when it is idle. Some of the busy periods are labeled 1, 2 or 3, to indicate

that they constitute work performed to fetch one of the three objects. The solid vertical lines

at either end of the time lines demark the time included in the \Total" metric recorded by the

experiments, the dashed vertical lines demark the time included in the \Work" metric. This

�gure also demonstrates one bene�t of SETS, the ability to overlap work on independent units

in a distributed system.

Figure 7.4: Time Line of Events to Process 3 Objects With and Without SETS.

Savings in Fetch =
FetchW=O SETS � FetchWith SETS

FetchW=O SETS

(7.10)

There are two reasons why interactive search experiments present the amount of I/O

savings due to SETS rather than the savings in total elapsed time. One reason is that
Fetch time is a measure of how long the user must wait for information. Reducing fetch

time reduces the duration of pauses that users see, thus increasing user productivity and
potentially decreasing their annoyance in using the system. A second reason is that user

think time is a large fraction of the total elapsed time for interactive search, and cannot be
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controlled by SETS. As a result, including User in the I/O savings would underestimate

the bene�ts of SETS.

In addition to these metrics, some DFS and local �le system experiments report the
time spent performing I/O, to demonstrate the e�ect (both positive and negative) that

prefetching can have on the cost of I/O. Sources of this e�ect include higher device load

and contention for shared resources like the server's disk. When S = 1, the Work metric
is used for this purpose. Work records the amount of time that the I/O device (NFS

server connection or local disk) is busy. Figure 7.4 illustrates the di�erence between
Work, Total, CPU, and Idle. Total and Work are shown directly, CPU is the sum of the

times that the client CPU is busy, while Idle is the sum of times it is not. Fetch measures

the apparent latency (as seen by the application), Work measures the actual amount of

time spent performing I/O.

When S > 1, a di�erent calculation must be used to determine the amount of work time.

Summing the busy times for all S devices overestimates the actual busy time since some
of the I/Os run concurrently. Alternatively one could use the largest of the individual

device busy times, but doing so would underestimate the actual busy time because not all
I/Os are concurrent. Instead, the dissertation presents the measurement of work made

by SETS when S > 1 (measurement of the time it took SETS to fetch a �le). This

measurement is less accurate for S = 1 because it includes additional computation, and
is only valid for runs with SETS.

7.3 Preview of Performance Results

The following three chapters describe the experiments and performance results in detail.

The key point of these results is that dynamic sets can reduce the latency seen by search
over a range of factors on three very di�erent systems. The GDIS experiment shows a

95% reduction in latency for interactive search is achievable when a set's membership

is accurate. Experiments on DFS and local �le systems show reductions in runtime for
non-interactive search of 50% and 30% respectively, and in some cases, SETS is able to

eliminate latency altogether.

In general, the bene�t varies with the opportunity to prefetch and reorder. For example,

larger values of S in the model allow a higher degree of parallelism, and higher values of
Think allow more latency to be hidden by user think time. Alternatively, a set of one

member gives almost no opportunity to prefetch, and as a result SETS can provide no

bene�t. As stated previously, other uses of prefetching such as read-ahead can also limit
the bene�t one may obtain from SETS.



Chapter 8

Evaluation: Search on GDIS

There are two good reasons for exploring the bene�ts of dynamic sets to search on Global
Distributed Information Systems (GDIS). First, GDIS are widely used and will continue
to be important as they provide access to more data and as their user community grows.
The most popular GDIS, the WWW, has seen an exponential growth in usage and tra�c
over the past several years1, and is currently used by millions of people world-wide.
Second, GDIS typically see much higher latencies than other distributed systems. In

addition, the variance in latency tends to be high due to external load, di�erences in
sub-network and server capacities, and large propagation delays.

This chapter describes an experiment which examines the bene�ts of dynamic sets to a
particular GDIS, the World Wide Web. WWW searches are usually interactive, using
a browser such as NCSA Mosaic to fetch and display candidate objects. One aspect of
interactive search is that data consumption is done by humans, so the pause between

requests (i.e. the time to process an object) can often last many seconds. Another
aspect is the fact that browsers read an object's data sequentially, and process at most
one object at a time.

The primary goal of this experiment is to demonstrate that the system can obtain sig-

ni�cant reductions in aggregate latency by using dynamic sets. The experiment contains

a base test to determine the bene�t from sets in a common case, and a separate test to

ascertain the sensitivity of these bene�ts to the primary factors listed in Figure 8.1. The
time of day or day of week that a search is run can in
uence the amount of external load

on the system, and thus the magnitude and variance in response time. Automatically

loading inlined-images causes the browser to load much more data, and thus e�ects the

aggregate latency seen by a search. Link bandwidth a�ects the response time of fetching
large objects and reduces the opportunity to aggressively prefetch objects in parallel.

1From statistics of NSFNET backbone usage collected through early 1995 by Merit Network, Inc.,

available as ftp://ftp.merit.edu/statistics/nsfnet.
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Factors Name Description

Primary Time of search
External load on network and servers depends on when
the search is performed.

Image Loading Fetch behavior of browser with respect to inlined im-
ages.

Link Bandwidth Bandwidth of client's link to Internet.

Secondary Network Costs Propagation delay, protocol overhead.
Computation Amount of computation taken by application.

Prefetch parameters Control prefetching and cache management, see Chap-
ter 6.

This table lists the primary and secondary factors a�ecting the performance of interactive search

on the WWW. The impact of the primary factors is examined through experiments, whose results

are presented in this chapter. Primary factors have signi�cant impact on search performance and

can a�ect the bene�t that dynamic sets o�er. Secondary factors have a smaller e�ect on the

elapsed time of the search or are independent of dynamic sets, and so are not directly examined

by this experiment.

Figure 8.1: Factors A�ecting Search Performance on the WWW

The choice to examine these factors, although arbitrary, is based on the performance
model presented in Section 7.1 and an analysis of search on the WWW.

One question not addressed by the experiment is how widely users could employ dynamic

sets during search on the WWW. This question arises because current WWW user in-
terfaces only support one mode of interaction: point and click. Thus the WWW has
no direct analogy to the use of wildcards in distributed �le systems. Fortunately, there
are many situations in which one could use sets if the browser were extended to support

iteration. Essentially, any page in a hypertext like the WWW can be thought of as a set

whose members are the objects referenced by the page. Section 5.2.2 o�ers an extension
to Mosaic that is useful for iterating over most or all the objects a page references (such as
a search engine's result page). One could also extend browsers to allow the user to select

portions of a page, or use more complicated membership speci�cations such as executable
functions which traverse some portion of the graph rooted at the page in question.

Although these extensions show ways in which dynamic sets could be used, demonstrat-

ing that users would employ sets in practice is much more di�cult. As a result, this

experiment is designed to show what bene�ts users would receive if they did use dynamic

sets. Demonstrating that these bene�ts can be achieved in practice is left as future work.
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8.1 Test Methodology

In designing this experiment, I balanced between the con
icting goals of reproducibility

and realism. Reproducibility is necessary for scienti�c rigor, but realism is equally impor-
tant to demonstrate the bene�t of SETS in practice. On the WWW, factors that add to

latency such as load and non-uniform network topologies also add variance in latency. As

a result, equivalent searches that access di�erent objects or servers may see dramatically
di�erent performance, even two fetches of the same object may di�er substantially in

latency. Eliminating these factors to lower the variance reduces the latency and thus the
realism of the results. To achieve a balance, this experiment uses traces of real searchers
as a workload for reproducibility and replays these traces on the live WWW for realism.

To capture a range of reasonable behaviors and to avoid biasing the results of the tests by

my own search pattern, the tests reported below are driven by traces collected from �ve

volunteers. The traces capture roughly 30 minutes of search activity comprising three
separate tasks. The volunteers are graduate students at Carnegie Mellon University, and
are expert computer users. In addition, each of the volunteers has substantial experience
searching for and retrieving information on the WWW, and is familiar with the Mosaic

browser.

I informed the volunteers that the purpose of the exercise was to capture traces to be
used as a workload to determine the bene�t of dynamic sets. I told them that their
activity would be logged, but assured them that their identities would remain private.

Each volunteer started a modi�ed version of Mosaic 2.6 which displayed the WWW
page shown in Figure 8.2, which contained instructions on the three search tasks. The

instructions also contained starting points for each task, although the users were free

to use other information if they desired. Each user reloaded the instructions only when
starting the next task, so a load of a page that contained instructions serves as a boundary

between tasks in the traces.

The traces record the names of the objects that were fetched (including inlined images)

and the times at which the fetches were requested by the user. By determining the time

between the return of one fetch and the start of the next, one can obtain the amount of
time the user spent examining the object before moving on. The 5 traces can be viewed as

independent samples from the population of directed search activity performed by expert
WWW users. Figure 8.3 summarizes the traces to give a better idea of the workload they

represent.
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This �gure shows the HTML page that was displayed to users at the beginning of the tracing

period. It describes three tasks to be performed by the user, and contains links to relevant pages

to help the user get started. The starting points are, respectively, the home page of a Colorado

ski index managed by AES Consulting, Inc., a list of 16 
orist home pages that I compiled, and

a list of links to 12 WWW search engines.

Figure 8.2: Trace Test Instructions

8.1.1 Replaying Traces

The experiments used a version of Mosaic that I modi�ed to both capture and replay the

traces. Bill Camargo at Transarc, Inc. designed and implemented the trace capturing
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Trace 1 Trace 2 Trace 3 Trace 4 Trace 5

Think Time (sec) 829.47 794.14 1203.92 997.25 902.64

Fetch Time (sec) 1053.06 1109.94 721.82 758.91 625.89

Total Time (sec) 1882.53 1904.08 1925.74 1756.16 1528.53

Events 351 413 391 1959 496

Fetches 51 39 44 69 52

Errors 1 1 2 1 0

Images 68 83 50 96 73

Object (bytes) 225015 126552 185677 367290 295125

Image (bytes) 414484 302387 254251 546751 300729

Total (bytes) 639499 428939 439928 914041 595854

Servers 19 12 11 24 19

This table characterizes the 5 traces used by the WWW experiment for non-sets workload. Fetch

time is the total amount of time spent fetching and displaying objects, think time is the amount

of time between requests for objects. An event is the fetch of an object or an inlined-image, or

the use of a cached image. The much higher number of events in Trace 4 is due to a few pages

which include the same 3 images over 1300 times. Fetches is the number of objects that the user

attempted to access, errors indicate the number that resulted in errors such as HTTP error 404,

object not found. Byte counts only include successfully fetched objects. The last line indicates

the number of di�erent servers that were accessed by the user.

Figure 8.3: Characterization of Traces Used by the Experiment

mechanism, and I extended it to capture additional information and improve its timer
granularity. This version of Mosaic also contains extensions to support dynamic sets, as
described in Section 5.2.2, and a mechanism to replay the traces.

To replay a trace, Mosaic reads in a trace, fetches the objects listed, and writes a record
of each event to a log �le. To lower the overhead of replay, these log events are bu�ered in

memory, and the perturbation of the results by logging is minimal. The record includes

the type of event, the identities of WWW objects accessed, the elapsed time, and the
amount of time Mosaic was forced to block on I/O. Events include fetching WWW

objects and inlined images, Mosaic window history operations (e.g. moving forward and

backward), and think events. A think event is a pause whose duration approximates the

user think time recorded in the trace. Mosaic approximates these pauses by repeatedly

sleeping for 100 milliseconds using the Unix select() facility until su�cient time has
elapsed. Experimentally, this sleep mechanism is accurate to within 1% over the length

of the trace. The pauses to sleep during replay do consume some CPU, unlike the pauses

for user think time in the original search. This leads the replay to slightly underestimate

the bene�t of dynamic sets by adding contention for the CPU, but this e�ect should be
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small.

The advantage of this trace replay mechanism is that it induces a repeatable and realistic

workload on the system. In addition, the latency seen to fetch the objects named in the

trace depends on the state of the system in which the trace is replayed. As a result,

I can replay traces on di�erent system con�gurations to determine the e�ect of these

con�gurations on the performance of search.

8.1.2 SETS Traces

Because the goal of the experiment is to understand the performance bene�ts of dynamic
sets, the workload for SETS must be equivalent to the workload imposed by the user

traces. To achieve this, I created copies of these traces replacing demand load operations
with calls to setIterate(). Both the original and copy traces induce the same workload
{ the copies preserve the user think time and fetch the same objects as the original traces.

As a result, comparing the results of replaying the modi�ed and unmodi�ed copies of a
trace directly show the bene�ts of using dynamic sets.

In order to induce the same workload, the modi�ed traces access exactly those objects

accessed by the original traces. To achieve this e�ect, I created 15 HTML pages corre-
sponding to the 15 traced tasks (3 per user). Each page contains a link to each object
loaded by the trace for that task. The modi�ed traces open one set per task, using the
corresponding HTML page to de�ne set membership. The traces then iterate once for

every member of the set and close the set before moving on to the next task. Non-task
loads of instructional pages such as the one in Figure 8.2 are left as demand loads to
represent activity that might occur between searches in real life. The trace events that

invoke setOpen() are placed immediately before the �rst call to setIterate() and in-
volve no extra user think time so SETS gets no opportunity to reduce the latency of the

�rst fetch through prefetching. Figure 8.4 shows the number and size of the objects for

each set used in the experiments.

It is important to realize that since the creation of these SETS traces employed an oracle
to determine set membership, this experiment provides an upper bound on the bene�t

one would expect from using dynamic sets. If one can exactly capture one's near-term

future data needs, such as by iterating over the results of a query to a search engine,
then one should see performance improvements comparable to the results shown below.

However, the bene�ts from dynamic sets do depend on the user iterating over a set of
objects whose membership they de�ne. The bene�ts shown by the experiments below

are only achievable in practice to the degree one sticks to this mode of operation.
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Trace 1 Trace 2 Trace 3 Trace 4 Trace 5

Set No. Bytes No. Bytes No. Bytes No. Bytes No. Bytes

1 Obj 21 127583 17 46502 20 121427 10 93930 16 121352

Img 12 104057 15 36117 9 16648 18 64712 6 18167

2 Obj 13 31086 3 37028 12 28133 39 67379 20 73726

Img 30 229460 12 233084 22 127575 48 402729 46 107287

3 Obj 12 54702 15 31378 9 24473 16 201178 12 87396

Img 26 80967 56 33186 19 110028 30 79310 21 175275

- Obj 5 11644 4 11644 3 11644 4 4803 4 11644

This table shows the cardinality and size of the sets used by the experiment for the SETS

workload. Objects accessed by a task were assigned to one set, objects accessed outside of tasks

(e.g. the instructional pages such as the one in Figure 8.2) were left as demand loads and are

shown in the last row. The sums of the bytes for each trace are equal to the amounts listed in

Figure 8.3. Some discrepancies in use of instructional pages between traces are due to a bug in

Mach 2.6 that caused the �rst load from www.cs.cmu.edu to fail. This in turn caused the user

to retry the request, which is why the number of loads is sometimes greater than 3. The user in

Trace 4 did not load all of the instructions I provided, which is why the demand load byte count

is lower than the other traces.

Figure 8.4: Characterization of Traces Modi�ed to Use SETS

8.2 Results of WWW Experiments

The following sections present the results of replaying the 10 traces on the live WWW.
The traces were replayed on a DECStation 5000/200 with a 25Mhz R3000A processor
and 64MB of RAM. The client software is version 2.6 of NCSA Mosaic modi�ed to replay

traces and use dynamic sets, and the client operating system is Mach 2.6. The SETS
cache parameters used for these tests are listed in Figure 7.3. All experiments are run
on cold caches.

The following sections present the results of the tests that comprise this experiment.
The �rst test examines the bene�t of dynamic sets in the base case, successive exper-

iments vary one of the factors while holding the others at their base levels. Di�erent
search behaviors are captured in the 5 traces, all of which are used by each of the tests.

The base level for load is obtained by running the experiments during weekday after-

noons, typically the time of peak load (see Section 8.2.2). The base browser behavior
is to automatically fetch and display inlined images. The base network bandwidth is

LAN connectivity to the Internet. The client machine was directly connected to CMU's
10Mbps Ethernet, and connected to the Internet via a 45Mbps T3 line which was shared

with other machines at Carnegie Mellon University, University of Pittsburgh, and the
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Pittsburgh Supercomputing Center. This level of connectivity is typical for universities

or medium to large corporations.

The tables in the following sections present the results of replaying the original and

modi�ed traces. The tables contain the average elapsed times in seconds (Total) to

replay the traces for �ve runs of each trace, with standard deviations in parenthesis.

They also present the portions of time Mosaic waited for data (Fetch), computed to

display information (App), and emulated user think time (User). The fetch and think

times are directly recorded in the logs, the App time is inferred by subtracting the fetch
time for an object from the total time to fetch and display that object. The \W/O

SETS" are the times to replay the unmodi�ed traces, the \With SETS" numbers are the

times to replay the traces modi�ed to use dynamic sets. Figures 8.6 and 8.13 contain bar

graphs which show the results of the four experiments.

8.2.1 Determining the Bene�ts of Dynamic Sets on WWW

Trace SETS User App Fetch Total Savings
seconds seconds seconds seconds in Fetch

1 W/O 826.00 (0.9) 63.40 (4.4) 775.20 (116.9) 1664.60 (121.3)

With 826.10 (0.4) 62.40 (11.4) 40.10 (12.2) 928.80 (23.2) 94.83%

2 W/O 787.50 (0.1) 42.30 (4.3) 381.70 (139.5) 1211.50 (141.9)

With 787.60 (0.1) 41.80 (1.8) 41.90 (11.4) 871.50 (10.1) 89.02%

3 W/O 1203.30 (0.3) 46.60 (4.3) 509.50 (74.5) 1759.50 (70.9)

With 1203.20 (0.4) 48.70 (3.8) 75.80 (19.0) 1327.70 (20.5) 85.12%

4 W/O 957.20 (0.2) 84.30 (1.9) 641.30 (113.3) 1683.00 (112.9)

With 952.80 (0.2) 90.00 (3.4) 8.20 (4.2) 1051.10 (4.4) 98.72%

5 W/O 900.20 (0.3) 69.20 (7.6) 681.40 (120.9) 1651.00 (119.3)

With 893.10 (0.5) 67.20 (4.6) 29.30 (7.5) 989.70 (5.9) 95.70%

This table shows the tremendous savings potential of using dynamic sets in the base case, and

that the savings are entirely due to savings in latency. The table presents the average aggregate

elapsed time in seconds to replay the traces on the live WWW. The numbers for each trace

are the averages of �ve runs, the standard deviation is presented in parentheses. Section 7.2.2

describes the metrics User, App, Fetch, Total, and Savings in Fetch, Section 8.3 describes the

traces and replay mechanism. The 5 and 7 seconds di�erence in user time for Traces 4 and 5

are due to a transcription error in the modi�ed traces. Since this error biases against SETS (less

time to overlap) and is less than 1% of the overall think time, I chose not to �x the bug and

repeat the experiments. Figure 8.6.(a) contains a graph of these results.

Figure 8.5: Results of Replaying Traces on the WWW
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The goal of the �rst test is to establish the bene�t of dynamic sets in the WWW. Fig-

ure 8.5 presents the results of this test, which are graphed in Figure 8.6.(a). Several

observations are apparent from examining the numbers. Foremost is the di�erence be-

tween the elapsed times with and without the use of dynamic sets. Even in the closest

case, Trace 2, the di�erence is greater than 2 times the variance. The bene�t from dy-
namic sets is therefore statistically signi�cant and there is a clear advantage to using

dynamic sets, although the bene�ts depend on the contents of the set and where the
objects are stored.

Further examination of the numbers in Figure 8.5 show that almost all of the di�erence in

total elapsed time is due to savings in fetch time from using dynamic sets, the di�erence

for the App and User times are negligible. The di�erence in App times is due to the
competition between the prefetching engine and Mosaic, variance is due to background

activity on the client. The di�erence in think times for Traces 4 and 5 is due to minor
transcription errors introduced to the SETS copy of the traces by the author, as explained
in the �gure caption.

The di�erence in fetch times is dramatic: the user (in this case emulated by Mosaic) is

forced to wait an order of magnitude more time for data to arrive when SETS are not
used. The di�erence is due to prefetching and reordering. Prefetching allows fetching
from independent servers in parallel and overlapping I/O with the considerable pauses

for user think time; reordering allows SETS to hide longer fetches with the processing
and user think time of other objects.

Another observation is that the aggregate fetch times exhibit a high variance. Most

traces show a coe�cient of variation (�
x
) in the neighborhood of 30%, although one case

is as high as 51%. The high variance comes from Trace 3 with SETS, where x = 8:2,

� = 4:2. This higher than normal variance is due to a trial in which a single fetch of
an instructional page from CMU's WWW server contributed 12.4 of 15.77 seconds of
aggregate load time. Without this trial the mean aggregate load becomes 6.4 and the

standard deviation 2.2. Although the variance due to the CMU server is an artifact of

the methodology, it is interesting because it demonstrates the variation in fetch time due
exclusively to server load (other network factors are negligible in this case), as well as
demonstrating the possible range in latency from fetching the same page.

This kind of variance in response time is quite common on the WWW. When one exam-

ines the trace replay results in detail, one can see a wide distribution of response times

for fetching a single page. The source of this variance is likely to be due to network

load in addition to server load. However, there may be other sources for latency as well.

One possibility is the presence of bugs in the server which cause connection durations
many times normal. Traces with very long aggregate fetch times tended to exhibit a few

individual fetches which took hundreds of seconds to complete. Unfortunately, it is very
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di�cult to locate the source of this abnormality, since it occurs non-deterministically and

since I do not have administrative access to the servers used by the test.

8.2.1.1 E�ect of Aborting Long-Running Fetches

One potential source of variance in the results in Figure 8.5 is the presence of fetches which

take several hundred seconds to complete. In actual usage, the user is likely to abort

these fetches after some period of time. To examine the impact that such aborts might
have, I postprocessing the trace replay logs to recalculate the Fetch times in Figure 8.5.

Figure 8.7 shows the results of these recalculations, which truncate the time to fetch an
object and its images to some maximal value before adding this time to the sum.

For the unmodi�ed traces, the result of post-processing is equivalent to the user aborting

the fetch after so many seconds had elapsed. However, this method underestimates the
bene�t from SETS, since the logs only record the pauses seen by Mosaic. The HTTP
warden may have spent more than the maximum number of seconds fetching an object,
consuming valuable resources all the while. If the warden had truncated the fetches itself,
it could have used these resources to prefetch other data, further lowering the aggregate

latency seen by Mosaic.

Figure 8.7 shows how the fetch times in Figure 8.5 would look if fetches had been aborted
at 30, 60, 90, and 120 seconds. One e�ect is a lower average aggregate fetch time,
particularly for the non-SETS cases. However, it is important to realize that there is still a

signi�cant bene�t from using SETS, above an order of magnitude in some cases. A second

e�ect is the substantial reduction in variance which results from aborting excessively long
fetches.

The aggregate latencies are lower because the long fetches have been eliminated. However,

aborting these fetches does result in loss of data which could a�ect the outcome of the
user's search. Figure 8.8 shows the extent of data loss by indicating the average number of

fetches that exceeded the limit and were aborted. One observation is that the number of

aborted fetches for SETS is much lower, since prefetching is able to hide the long fetches
most of the time. This implies an additional bene�t of using SETS: the magnitude of

the variance is much lower with SETS, although the coe�cient of variation may still be

high. Thus the fetch times are much more predictable, and the system less annoying, as

a result of prefetching. A second observation, made by comparing the number of aborts

in Figure 8.8 with the number of fetches in Figure 8.3, is that the likelihood of seeing
a longer than normal fetch on the WWW without SETS is small, but not insigni�cant.

The highest ratio of aborts to fetches is 14% (for Trace 1), the lowest is Trace 2 with

5%. However small the percentage, the value of these missing pages can only be known

to the searcher at run time.
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(a) Base case WWW experiment
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(c) Trace Replay W/O Images
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(b) Trace Replay on Weekends
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These graphs show the results of the �rst three WWW experiments, and demonstrate that the

potential bene�t of SETS is robust across a range of factors. Graph (a) shows the base case,

described in Section 8.2.1 and shown in Figure 8.5. Graph (b) shows the results of replaying

the traces during the weekend, and is discussed in Section 8.2.2 and shown in Figure 8.10. The

high load time for Trace 4 is due to timeouts on one of the servers. Graph (c) shows the e�ect

of disabling automatic loading of inlined images by the browser, as described in Section 8.2.3

and shown in Figure 8.11. The App and User components for each trace are equivalent between

graphs to within experimental error. Each graph also contains error bars which show the 95%

con�dence intervals of the Total values.

Figure 8.6: Graphical Depiction of the Bene�ts of Dynamic Sets to WWW Search
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Limit SETS Trace 1 Trace 2 Trace 3 Trace 4 Trace 5

seconds seconds seconds seconds seconds seconds

30 W/O 442.0 (62.0) 219.4 (27.0) 260.2 (19.1) 484.0 (50.5) 410.1 (45.2)

With 39.8 (12.0) 38.4 (9.3) 72.2 (17.6) 17.7 (20.2) 29.3 (7.5)

60 W/O 608.3 (92.3) 258.2 (37.8) 348.6 (27.9) 570.5 (92.3) 551.9 (44.8)

With 40.1 (12.2) 41.9 (11.4) 75.8 (19.0) 17.8 (20.4) 29.3 (7.5)

90 W/O 693.4 (113.1) 284.6 (50.7) 406.8 (27.5) 603.5 (103.4) 613.3 (63.5)

With 40.1 (12.2) 41.9 (11.4) 75.8 (19.0) 17.8 (20.4) 29.3 (7.5)

120 W/O 738.4 (119.7) 302.6 (59.9) 437.7 (32.0) 621.5 (103.6) 630.2 (74.3)

With 40.1 (12.2) 41.9 (11.4) 75.8 (19.0) 17.8 (20.4) 29.3 (7.5)

The aggregate fetch times in Figure 8.5 contain some fetches which take signi�cantly longer than

normal and probably would have been aborted by users in practice. This table shows that there

is still a noticeable bene�t from dynamic sets even if these fetches are aborted after some period

of time. The table presents the result of post-processing the trace replay output, truncating

fetches (including the time to fetch inlined images) to limit of 30, 60, 90, or 120 seconds. Since

these numbers are the result of post-processing, they may overestimate the time for runs with

SETS. In the actual execution a long fetch that tied up SETS' resources, preventing other data

from being prefetched, may not have appeared as a long delay to the application. The number

of truncated fetches is shown in Figure 8.8.

Figure 8.7: Fetch Times When Limiting Latency Using Post-Processed Replay Results

Limit SETS Trace 1 Trace 2 Trace 3 Trace 4 Trace 5
seconds

30 W/O 7.0 (1.6) 2.0 (0.8) 3.4 (0.4) 4.2 (2.0) 6.2 (1.3)

With 0.2 (0.4) 0.4 (0.4) 0.4 (0.4) 0.2 (0.4) 0.0 (0.0)

60 W/O 3.8 (1.3) 1.0 (0.6) 2.6 (0.4) 2.0 (1.6) 3.6 (1.8)

With 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0)

90 W/O 2.0 (1.0) 0.6 (0.4) 1.4 (0.4) 0.6 (0.4) 0.6 (0.4)

With 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0)

120 W/O 1.4 (0.4) 0.6 (0.4) 0.8 (0.4) 0.6 (0.4) 0.4 (0.4)

With 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0)

This table shows the number of fetches whose fetch times were truncated to the limit of 30,

60, 90, or 120 seconds. The number is much lower with the use of SETS than without, since

prefetching hides most of the latency from the application. The e�ect of these truncations on

average aggregate fetch time is shown in Figure 8.7.

Figure 8.8: Average Number of Aborted Fetches in Post-Processed Replay Results

8.2.2 E�ect of the Time of Search

This test examines the in
uence of the �rst primary factor, the time a search is run, on

the performance improvements o�ered by SETS. This factor is relevant because the time
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of search indicates the amount of external load generated by other users of the system

that the search is likely to encounter. Load is interesting because it tends to increase fetch

latencies and increases the variance in response time, and is commonplace on the WWW.

Although one might be tempted to eliminate load from the experiments, for instance by

using a simulator, doing so would take away a signi�cant component of latency on the
WWW.
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Requests by Hour

These graphs show the average number of requests by day and by hour seen by the Library of

Congress WWW server (http://lcweb.loc.gov/stats) during the �rst half of 1996. The average

number of requests on Saturday or Sunday (94,057) is much lower than the weekday average

(156,898). The graph on the right shows the number of requests by hour, averaged across the 183

days included in the results. Requests seem to peak during the afternoon (US Eastern). Statistics

from other WWW servers hold similar results, but do not record statistics as thoroughly as does

the Library of Congress. For American servers, load seems to be dominated by American clients

which means peak loads during the afternoon hours in North America. Although it is unclear

whether this relationship also holds in other parts of the world, the servers accessed by the traces

are all within North America and the Caribbean.

Figure 8.9: Usage Statistics for the Library of Congress WWW Server

Fortunately, the load on the network and servers is reasonably predictable at a large

granularity. Figure 8.9 shows that loads tend to be higher during the day than at night,

and higher during the week than on weekends. This experiment exploits this fact by
replaying the traces at a time with di�erent load characteristics than the base test to see

how load a�ects the bene�ts of using SETS.
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Figure 8.10 shows the results of replaying the �ve traces during the weekend, when

loads are typically much lower. These results are also graphed in Figure 8.6.(b). The

�rst observation to make is the signi�cant reduction in average fetch time for the non-

SETS case as compared with the results of the mid-week test shown in Figure 8.5. The

reduction is most likely due to the lower load on the networks and servers. A second
observation is that SETS can bene�t from the lower load as well, and still manage to

o�er signi�cant reductions in latency. For most of the traces, the fetch time with SETS
is hardly noticeable, and is only a fraction of the CPU time taken to display the WWW

objects.

Trace SETS User App Fetch Total Savings
seconds seconds seconds seconds in Fetch

1 W/O 825.90 (0.2) 56.50 (1.3) 143.10 (47.5) 1025.50 (46.2)

With 826.00 (0.3) 57.30 (1.0) 4.80 (1.0) 888.10 (0.5) 96.65%

2 W/O 787.40 (0.1) 46.80 (1.8) 148.00 (45.3) 982.30 (45.0)

With 787.70 (0.3) 43.60 (1.6) 11.00 (3.8) 842.40 (4.3) 92.57%

3 W/O 1203.10 (0.1) 45.40 (2.0) 169.80 (33.7) 1418.40 (34.9)

With 1203.10 (0.4) 44.90 (3.1) 6.50 (2.4) 1254.60 (1.6) 96.17%

4 W/O 957.83 (0.7) 92.63 (4.9) 1140.52 (9.0) 2190.99 (13.7)

With 954.02 (0.6) 110.16 (6.5) 17.80 (16.4) 1081.98 (20.3) 98.44%

5 W/O 901.32 (0.7) 77.24 (6.3) 257.50 (28.6) 1236.07 (22.0)

With 893.97 (0.9) 77.41 (16.1) 4.43 (0.6) 975.82 (17.1) 98.28%

This table shows that the bene�ts from SETS are also achievable during times of low load by

presenting the results of replaying the traces on the WWW during the weekend. The table

presents the average aggregate elapsed time in seconds to replay the traces on the live WWW.

The numbers for each trace are the averages of 5 runs, the standard deviation is presented in

parentheses. Section 7.2.2 describes the metrics User, App, Fetch, Total, and Savings in Fetch,

Section 8.3 describes the traces and replay mechanism. Comparing the results in this table with

those in Figure 8.5, one can see the e�ect of external load on the performance of search in the

WWW. Figure 8.6.(b) contains a graph of these results.

Figure 8.10: Results of Weekend Replays of WWW Traces

One anomaly does exist: the high Fetch time for Trace 4 both with and without SETS.
During the weekend in which this trace was replayed, a particular server deterministically

timed out on images, but would serve HTML pages without a problem. Documents that
contained many images stored on that server thus su�ered timeouts of 75 seconds for

each image. Although repeating this experiment on a di�erent day would likely produce
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results more in line with the other traces, it does demonstrate an advantage of SETS:

the ability to reorder the members allows SETS to hide such long delays behind the

processing of other objects.

8.2.3 E�ect of Inlined Images

Another factor a�ecting the time to fetch and display data is whether or not the browser

automatically loads inlined images. Inlined images are pictures that are displayed as

part of the document, but that are stored as separate objects. Before Mosaic displays a

document, it must �rst fetch all of the images the document contains. Thus the amount
of time a user must wait for the information to be displayed is equal to the sum of the time

it takes Mosaic to fetch the document and the images it contains, plus the time to process

the document to �nd the images and the time to display them. To reduce latency, Mosaic
caches images in its memory. Because some documents contain the same image many
times, the image cache can be very e�ective at eliminating fetches. However, documents
from di�erent authors or servers tend not to share images, limiting the e�ectiveness of

the image cache in general.

Because inlined images add to the latency of fetching and displaying information, the

Netscape Navigator displays the text in the document as soon as it can, and fetches and
displays the images asynchronously. Unlike Mosaic, a user of Netscape does not have
to wait for the complete document to arrive before examining its contents. Another
approach to reducing image-induced latency is taken by users who disable the automatic
fetching of inlined images. A study of a commercial WWW site found that 20% of

accesses to their server were from people who were using a text-based browser or who
had disabled the automatic loading feature[24]. In cases where bandwidth is limited, such
as a personal computer connected via a 14.4 Kbaud modem, disabling inlined images can
substantially improve the response time of search on the WWW.

These approaches to avoiding delays due to inlined images raise the question of whether

dynamic sets will o�er reduced latency to users of Netscape or to those who do not fetch
the inlined images by default. To answer this question, this test replayed the traces, but
disabled loading of inlined images in Mosaic and the prefetching of the images by the

HTTP warden. Runs without SETS precisely capture the behavior of users of Mosaic

who disable automatic loading of inlined images. They also exhibit fetch times at least

as long as those Netscape would exhibit because loading the image adds some delay to

the display of text, and also delays the user if the images are necessary to understand
the text.

The only di�erence between this test and the base test described in Section 8.2.1 is the

treatment of images. Figure 8.11 presents the results of this test. The �rst observation to
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Trace SETS User App Fetch Total Savings

seconds seconds seconds seconds in Fetch

1 W/O 825.80 (0.4) 20.60 (2.9) 100.90 (21.5) 947.50 (22.3)

With 825.80 (0.2) 21.90 (0.8) 7.40 (1.8) 855.10 (1.8) 92.67%

2 W/O 787.50 (0.2) 14.50 (1.4) 96.40 (10.9) 898.40 (11.7)

With 787.80 (0.5) 16.30 (1.3) 6.20 (2.5) 810.40 (2.3) 93.57%

3 W/O 1202.60 (0.2) 17.80 (1.2) 188.90 (51.9) 1409.40 (51.8)

With 1202.70 (0.2) 20.10 (1.4) 9.70 (2.2) 1232.60 (2.8) 94.87%

4 W/O 957.50 (0.4) 30.80 (3.1) 98.90 (13.0) 1087.30 (15.2)

With 952.80 (0.1) 38.70 (2.0) 7.30 (6.3) 998.90 (5.2) 92.62%

5 W/O 899.90 (0.3) 21.20 (0.9) 190.80 (43.9) 1112.00 (43.5)

With 892.80 (0.1) 24.60 (2.8) 4.00 (0.8) 921.50 (2.7) 97.90%

This table shows the bene�t of SETS when inlined-images are not automatically loaded as would

be seen by, for example, users of text-based browsers or who disable image loading by default. The

numbers are the average of 5 replays of the same traces (with standard deviations in parenthesis),

but with automatic loading of inlined-images disabled in the browser. Section 7.2.2 describes the

metrics User, App, Fetch, Total, and Savings in Fetch, Section 8.3 describes the traces and replay

mechanism. The high variance in Fetch time for Trace 4 with SETS is due to problems with the

SCS CMU WWW server. The variance in latency for runs without SETS results from running

on the live WWW. Figure 8.6.(c) contains a graph of these results.

Figure 8.11: Results for Trace Replay Without Fetching Inlined Images

make is that disabling the loading of images reduces the fetch times for the unmodi�ed
(W/O SETS) traces, compared with the results in Figure 8.5. An implication of this

observation is that Mosaic's image cache is not su�cient to eliminate image-induced
latency. The second observation is that SETS still o�ers substantial savings, indicating
that they would also be useful to users of Netscape or other more sophisticated browsers.
A third observation is that the amount of computation (App) has dropped signi�cantly,

indicating that a large portion of the computation to display a page is spent processing

images.

The high variance for Fetch time for Trace 4 (x = 7:3, � = 6:3) with SETS is due to a
single demand load of an instructional page from CMU's WWW server in a single trial.

13.4 of the 19.2 seconds in the 4th replay of the trace resulted from a single load. If

the load had taken the .6 seconds average instead of 13.4 seconds, the average load for
this trace would be 4.4 with a variance of 2.5. As mentioned previously, these demand

loads often added substantial overheads to the SETS replay. This points out both the

high variance of response from WWW servers (there is virtually no network delay to

access CMU's WWW server from the client used in the experiment), and the bene�t of
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prefetching to reducing the impact of that variance.

8.2.4 E�ect of Low Bandwidth Network Connections

The �nal primary factor to consider is the bandwidth of the connection that the client
machine has to the Internet. Many Internet end-users are connected via very low band-

width links such as phone lines. For example, consider the thousands of America Online

users, or users of other \Internet service providers" who access the Internet from home

PCs via 14400 or 28800 baud modems. In such cases, the low bandwidth can be a
signi�cant contributor to the latency seen by these users.

To asses the bene�t of dynamic sets in such a setup, this test replayed the traces on a

laptop computer connected to the Internet via Serial Line IP (SLIP) over a 14400 baud
modem. The laptop was dialed into a shared terminal server; the network connection
from the terminal server to the Internet is the same as that used by the client in the
other tests. Thus the only di�erence in network topology is the use of the SLIP line.
The laptop is a 25Mhz 486 with 32MB of memory. Typical disk-to-disk transmissions
over SLIP achieve anywhere from 1300B/s to 2500B/s, depending on the modem's rate

of compression. I chose to use the laptop for this experiment because it ran the necessary
software (Mach 2.6 with SETS modi�cations) and had a modem. Since users frequently
have di�erent hardware at home than on their desk, I felt this test did not need to

share the same environment as the others. In addition, I felt that the alternative of
using a laptop to route between the DECStation and the Internet added unnecessary

complexity to the experiment. Further, the performance of the two client machines is

roughly comparable.

Figure 8.12 shows the results of this experiment. Because the client machine for this test

is di�erent from the client used in the other tests, these results should not be directly
compared with those of the other experiments. In addition, the laptop's timer is only

accurate to 15 milliseconds. Although this does not a�ect the accuracy of the averages,

it explains the zero variances in User think time.

The table shows that SETS o�ers substantial performance improvements even over very
slow networks. Since the network bandwidth is extremely limited, the HTTP warden was
limited to fetch up to 2 objects concurrently, as opposed to the limit of 6 in the other

tests.2 Setting this lower limit bene�ted SETS by reducing the likelihood of overloading

the SLIP connection from too many incoming bytes streams vying for service. However,

2From SETS perspective, a document and its images count as 1 object. Thus limitOpens = 5 will

restrict SETS to prefetching 5 objects, but the number of open connections is limited by the number of

HTTP worker threads, which is 6 for the other tests and 2 for this test.
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Trace SETS User App Fetch Total Savings

seconds seconds seconds seconds in Fetch

1 W/O 826.00 (0.0) 82.40 (1.2) 1038.84 (34.2) 1947.24 (35.1)

With 826.00 (0.0) 75.20 (2.5) 299.85 (24.6) 1201.06 (25.8) 71.14%

2 W/O 781.00 (0.0) 66.13 (1.7) 912.28 (70.1) 1759.42 (69.3)

With 781.00 (0.0) 66.69 (1.4) 204.13 (32.5) 1051.83 (32.1) 77.62%

3 W/O 1198.00 (0.0) 48.41 (1.5) 733.85 (59.4) 1980.26 (60.4)

With 1198.00 (0.0) 54.25 (2.8) 250.06 (21.8) 1502.31 (19.4) 65.92%

4 W/O 945.00 (0.0) 67.32 (9.6) 1394.69 (33.5) 2407.01 (36.3)

With 941.00 (0.0) 50.98 (2.6) 424.84 (40.3) 1416.83 (42.5) 69.54%

5 W/O 898.00 (0.0) 64.03 (2.0) 1378.63 (60.6) 2340.67 (60.7)

With 892.00 (0.0) 63.01 (2.4) 398.95 (76.9) 1353.96 (74.9) 71.06%

This table shows the potential for performance improvements from SETS even when bandwidth

is limited, although the bene�t is smaller than for the other tests. The table presents the average

aggregate elapsed time in seconds to replay the traces on the live WWW over a 14400baud SLIP

connection, from a DEC 425SL laptop. The numbers for each trace are the averages of 5 runs,

the standard deviation is presented in parentheses. Section 7.2.2 describes the metrics User, App,

Fetch, Total, and Savings in Fetch, Section 8.3 describes the traces and replay mechanism. The

experiment restricted prefetching to at most 2 objects at a time in order to prevent thrashing on

the SLIP connection. Figure 8.13 contains a graph of these results.

Figure 8.12: Results for Trace Replay over SLIP from a Laptop Computer

this lower limit also penalizes SETS by limiting its ability to fetch objects in parallel in

order to overlap long latencies to remote servers.

The extent of this penalty can be seen by comparing the time it actually took SETS

to fetch the objects to the time it (theoretically) would take to transfer the data over
the SLIP line. If the transfer time is close to the actual time, the performance is fun-

damentally bandwidth limited by the SLIP link. However, the transfer time is much

lower than the total time to fetch the objects. As an example, in one run of Trace 3, the
HTTP warden fetched 428284 bytes of sets data3 in 821 seconds, but it would have only

taken 329.4 seconds at 1300B/s (these times are not shown in the tables). Most of the
di�erence is likely to be due to the limit on parallel fetches.

This penalty results from the tension between bandwidth and latency, reducing parallel

fetches reduces bandwidth but increases the aggregate latency. I conjecture that one

could solve this problem by adding a WWW proxy on the far side of the SLIP link.

3This does not include instructional pages, and is the result of summing the �rst 6 rows for Trace 3

in Figure 8.4.
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These graphs show the results of the fourth WWW experiment. The bar graph shows the results

of replaying the traces over a phone line, described in Section 8.2.4 and shown in Figure 8.12.

Each graph also contains error bars which show the 95% con�dence intervals of the Total values.

This graph is displayed separately from the ones in Figure 8.6 because it shows test results from

a di�erent client machine than the one used in the other tests.

Figure 8.13: Graph of Search Performance on WWW over SLIP.
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The laptop would disclose the set's membership to the proxy when the set was opened.

The proxy would aggressively prefetch the objects to its local disk in parallel, in the

same manner as that employed by SETS. The laptop would then fetch the objects from

the proxy over the SLIP line. As a result, the laptop could drive the SLIP line to full

utilization to lower the latency seen by the client, without sacri�cing the bene�ts of
parallel fetches.

8.3 Conclusion

In summary, SETS o�ers tremendous bene�ts to WWW searchers who iterate over sets
of objects they specify at the beginning of the search. By examining the Fetch numbers

for runs with SETS, one can see that SETS was able to greatly reduce the I/O latency

seen by the application and user, and was able to virtually eliminate I/O from the
performance of the search in some cases. For these traces, it was never the case that

runs with SETS ran slower than those without, and it was always the case that the
bene�t from SETS was statistically signi�cant. Another bene�t of dynamic sets is that

they reduce the magnitude of variance that would be seen by the user. Both of these

bene�ts would result in raising the usability of the WWW and lowering the frustration
of the user if dynamic sets were widely employed. Although the WWW is egregious in
the magnitude and variance of latencies it exhibits, it is an important case to consider
due to its popularity and scale.

The bene�ts result from overlapping I/O and computation, in particular the pauses for
user think time that are captured in the traces. SETS also bene�ts by fetching from inde-

pendent servers in parallel. I did not directly examine the impact of these parallel fetches
on the WWW, but anecdotally the impact was small since neither server administrators
nor other users of the local network were su�ciently disturbed to report a problem. In

addition, I occasionally monitored network response times from another client on the

same local area network to gauge the impact of prefetching on other users, and found

no serious performance degradation. This anecdotal evidence indicates that one can in-
deed achieve substantial performance improvements without signi�cantly overloading the

network.

As stated above, these tests do have one caveat. The modi�ed traces do not necessarily
demonstrate that one can use dynamic sets in such a way as to achieve these performance

bene�ts. The question of whether users of browsers can perform searches using sets
remains to be answered, as does the question of whether or not users can precisely

specify the objects they wish to examine in terms of sets. However, given the dramatic
bene�ts demonstrated by these experiments, it is worth investing the e�ort to deploy

dynamic sets and build a user community.



Chapter 9

Evaluation: Search on local-area DFS

The second experiment examines search on local-area distributed �le systems (DFS).

Distributed �le systems are a common paradigm for read/write access to persistent data,
and are in widespread use in government, industry, and university settings. DFS also

provide a domain that is distinct from the domain of GDIS in several ways. First, DFS are
typically owned and managed by a single organization such as a school or department,
whereas GDIS often span many organizations, companies, and even countries. As a

result, DFS tend to be much smaller in scope than a GDIS, but can still store thousands
of objects and be accessed by hundreds of users. Second, fetch times in DFS tend to be

much lower than those in GDIS. One reason is that DFS span a much smaller geographic

area (often within a single building), so propagation latencies are smaller. Another
reason is that load on DFS servers tends to be manageable. The user community of
a particular DFS is typically known, so it is easier to purchase equipment su�ciently
powerful to support them most of the time. Third, the variance in response time is also

much lower, although it is still not trivial: use of caches and specialized hardware can
make some accesses much faster than others. Because of these di�erences and because
they serve a di�erent goal, supporting the persistent data needs of a small to medium

sized organization[83], DFS will continue to be interesting systems for the foreseeable
future.

The domain representative examined by this experiment is Sun's Network File System
(NFS)[77]. NFS is a widely used distributed �le system, and is often employed as a point

of comparison when describing the performance of new distributed �le systems. An NFS

server exports a portion of its name space (subtree) to NFS clients. A client mounts a

subtree into its name space, allowing applications on that client to access data from the
server. Application reads and writes of NFS �le data are redirected by the client to the

server storing the data. Reads and writes are in block-sized chunks, where a typical block

size is 8KB. The data is cached in the client's in-memory bu�er cache for fast access to

recently referenced pages.

145
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Factors Name Description

Primary Cardinality Number of objects in a set
File size Average size of candidate objects

Servers Number of servers exporting candidate objects

Think User or CPU processing time

Cache E�ects of incidental cache hits
Bandwidth Bandwidth of network

Secondary Server speed OpenCost, ReadCost, disk speed
File system Block size, number of bu�ers

Prefetch parameters Described in Chapter 6
Cache Size Number of in-memory bu�ers and inodes

This table lists the primary and secondary factors a�ecting the performance of search on NFS.

The impact of the primary factors is examined through experiments, whose results are presented

below. The secondary factors have a smaller e�ect on the elapsed time of the search, or are

independent of dynamic sets, and are not directly examined by this experiment.

Figure 9.1: Factors A�ecting Search Performance on NFS

The goal of this experiment is twofold. The �rst goal is to determine if SETS o�ers

performance improvements in this domain. The related question of whether users can

e�ectively employ sets on NFS is more easily answered than it was for WWW users.

Unix users are familiar with and frequently use set notation in their daily work: csh

wildcard notation. Wildcard notation lets a user simply and easily de�ne a set of objects
to process. Adding dynamic sets to this scenario is trivial: instead of the shell expanding
the notation into a list of names, the application passes the notation to setOpen() as

the speci�cation of set membership. The program must be rewritten to iterate over the
set instead of stepping through the list, but these changes are straightforward and were
shown in Figure 3.2.

The second goal of the experiment is to gain a better understanding of the low-level

factors a�ecting the performance of SETS applications. Because the variance in latency
is much less egregious in a DFS like NFS than on the WWW, one can capture reasonably
realistic results even when running experiments on an isolated network. This lowers the

likelihood of some other user in
uencing the results of the experiment, which in turn
lowers the variance. A lower variance allows one to see the in
uence of low-level factors

more clearly, because smaller di�erences can be recognized as statistically signi�cant.

The primary factors examined by this experiment are listed in Figure 9.1. Cardinality
(N in the model, Figure 7.2) is the number of objects in the set, �le size (Size) is the

size of the objects. Servers (S) is the number of servers storing members of the set, and
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therefore is an indication of the parallelism that can be achieved. Bandwidth (Band)

indicates the peak available network bandwidth, although the achievable bandwidth may

be limited by other factors such as disk or server bus bottlenecks. Cache e�ects explore

the performance of a search when some of the candidate objects are already cached.

Think time includes both user think time (Think) for interactive searches as well as
processing time (Comp) for non-interactive applications.

9.1 Test Methodology

Search in a DFS like NFS can be either interactive like search in GDIS, or non-interactive.
Examples of non-interactive search applications are Unix utilities like grep and find,

examples of interactive search tools are browsers, �le managers, and the Unix utility
more. Interactive searches involve both processing and think time, while non-interactive
searches only involve processing time, since the application requests the next object as

soon as the current one has been fully read and processed.

In order to capture both behaviors, the tests in this experiment use a synthetic benchmark
as an application workload. The benchmark program is derived from the Unix grep

utility, preserving the I/O pattern of grep (whole �le sequential, process a block before

reading the next), but providing two parameters to control the amount of think time.
The �rst parameter, Comp, is the amount of processing to be done, expressed in terms
of microseconds/byte. It controls the number of instructions executed by the benchmark

program between �le system reads. The second parameter, Think is the amount of user
think time, expressed in terms of seconds/object. This parameter controls the duration of

the pause after all the data in an object has been processed and before the next object is

requested. The benchmark program performs these pauses by calling the Unix select()
facility, which causes the program to sleep for approximately the desired period of time.

The basic test consists of running the synthetic benchmark program on a set of uncached
NFS �les using the basic �le system operations and again using dynamic sets. The test
script 
ushes both the client's and the servers' bu�er caches to eliminate co-dependencies

between runs before running the benchmark. It runs the benchmark using a list of

NFS �le names expressed in wildcard semantics, for instance \/mnt/nfs/16Kfa,b,c,dg".

Using kernel modi�cations, the benchmark program can accurately capture the number of

hits and misses in the bu�er cache, the number of NFS operations that were performed,
the aggregate amount of time spent performing NFS operations, the amount of client

CPU idle time, and the length and amount of disk activity on the servers.
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9.2 Results of NFS Experiments

The client and server machines for these experiments are DECStation 5000/200s with 32

MB of RAM running the Mach 2.6 operating system, which includes an in-kernel NFS
version 2 client and server. The machines have a hardware cycle counter with which the

kernel can accurately time events to within a few microseconds. The tests were run on

an isolated Ethernet. The machines were lightly loaded: only the user running tests was
logged in during the tests, although the machines were not booted single user. Since

the machines are normally shared among several users, they were rebooted before each
series of tests to ensure a clean test environment. In addition, four unessential daemons

(at, afsd, zhm, and ticketd) were killed before running the experiments to reduce

contention for the network.

Each experiment consists of varying one of the primary factors and repeating the basic

test 15 times. The numbers presented in the tables and graphs below are the averages
of the �rst 10 runs. On occasion, the NFS fetches for a run would take 50% to 100%
longer than the average of the other runs. This happened both with and without SETS.

Since this behavior seemed to be due to a bug in the implementation of NFS unrelated
to SETS or this dissertation, these runs were eliminated from the results and replaced by

the 11th run. There was never a case in which two runs within a test showed this higher
than normal latency.

The factor levels chosen for the base test were picked to re
ect common usage where
possible. The base test consists of runs on sets with cardinality of 12 16KB �les stored

on 1 server, 10base2 Ethernet (10Mbps), Think = 0 seconds of think time per �le (non-
interactive search), Comp = 1 microsecond of processing/byte, and a cold cache (no
objects cached). The tests used the same SETS cache parameters as the WWW tests,
shown in Figure 7.3, except where noted. The test of the base levels is actually repeated
in each of the tests below, for example the data point for N = 12 in the cardinality test
shown below in Figure 9.2.

9.2.1 Cardinality

Figure 9.2 shows the results of running the benchmark on di�erent sized sets of uncached

16KB �les. As expected, the results show that dynamic sets reduce the running time of

the application for N > 1, and the amount of reduction grows with the size of the set.
For N = 1 there is no statistical di�erence in the run times. The reduction in run time

is a result of lower idle times: the application spends less time waiting for data and more

time working. The tradeo� is that more computation has to be done in order to prefetch

the �les.
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N SETS CPU Stall Total Savings

milliseconds milliseconds milliseconds in Total

1 W/O 27.46 (0.4) 37.91 (1.2) 65.38 (1.5)

With 29.66 (0.5) 37.51 (1.1) 67.17 (1.1) -2.74%

2 W/O 50.26 (0.3) 123.88 (8.7) 174.14 (8.8)

With 54.87 (1.4) 55.26 (11.0) 110.13 (10.6) 36.76%

4 W/O 95.17 (0.7) 244.82 (10.3) 339.99 (10.5)

With 105.45 (3.5) 109.96 (6.3) 215.41 (4.7) 36.64%

8 W/O 185.02 (1.1) 481.73 (7.3) 666.75 (7.9)

With 215.70 (5.6) 153.64 (11.2) 369.34 (8.7) 44.61%

12 W/O 274.33 (1.4) 725.71 (15.4) 1000.03 (15.4)

With 326.28 (9.1) 215.33 (19.7) 541.61 (13.3) 45.84%

16 W/O 364.59 (2.1) 944.55 (16.5) 1309.14 (16.0)

With 434.59 (6.7) 282.38 (15.7) 716.97 (12.7) 45.23%

This table shows the e�ect of set cardinality on the bene�t from dynamic sets. The left column

(the N parameter of the model in Section 7.1) shows the number of 16KB �les that were processed

by the synthetic benchmark, holding the other factors at their base levels. The metrics in the

other columns are described in Section 7.2.2. The numbers are the mean of 10 runs, standard

deviations are presented in parenthesis.

Figure 9.2: E�ect of Set Cardinality on Bene�t from SETS

This increase in computation can be plainly seen in Figure 9.3, which plots the average

CPU and Total times from Figure 9.2. The dashed lines show that the amount of CPU
is greater for SETS, and that the di�erence in computation grows with the size of the
set. Fortunately, this increase in computation is small, and in particular is smaller than
the decrease in latency that SETS o�ers. As a result, SETS provides a net savings in

elapsed time to run the benchmark, which can be seen by comparing the solid lines in
the graph.

From where is SETS getting the reduction in latency? One source is clearly the ability
to overlap computation and I/O. As shown in Figure 7.4, one can consume some of the

idle time with computation to send and receive other messages, reducing the amount of
idle time with legitimate work. The second source of reduction stems from an additional

bene�t of prefetching: a higher I/O e�ciency. This e�ciency can be seen in Figure 9.4,

which shows the amount of time the system spent performing I/O. SETS gains an advan-

tage here by overlapping multiple requests. Since queues are full more often, the server
and network sit idle for smaller periods of time resulting in higher utilization.

These tests also show a third bene�t of sets. Because SETS knows all members will be

read sequentially, it can start pre-reading a member's data immediately, as opposed to
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This graph shows the cost and bene�t of SETS vs the set cardinality. The points are the

experimental results from Figure 9.2, with lines �tted via regression with a correlation coe�cient

of greater than .9995 in all cases. The dots show the results without SETS, the pluses those

with SETS. The solid lines show the total elapsed time and the dashed lines show the amount

of CPU, the di�erence between the solid and dashed lines is the stall time. From the graph, one

can see the increase in CPU usage due to SETS, but also the larger reduction from overlapping

computation and I/O. The result is that SETS can reduce the run time for every �le in the set,

and thus get more bene�t for larger sets.

Figure 9.3: Bene�t of SETS vs Cardinality

N

SETS 1 2 4 8 12 16

W/O 43.18 (1.46) 133.79 (8.64) 264.03 (10.32) 518.80 (7.71) 781.17 (15.84) 1018.75 (15.82)

With 42.86 (1.02) 86.72 (10.80) 191.36 (4.77) 344.35 (8.55) 515.99 (13.37) 689.22 (14.14)

Savings 0.74% 35.18% 27.52% 33.63% 33.95% 32.35%

This table shows the Work metric for the cardinality test. Work measures the actual amount

of time spent by the system fetching �les, as opposed to the apparent fetch times seen by the

application. When the Work times with SETS are less than those without SETS, the I/O for

SETS is more e�cient.

Figure 9.4: Amount of Work Done by System to Fetch Objects for Cardinality Test

waiting until a sequential access pattern has been established. The Unix FFS on the
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server's disk, for instance, does not read-ahead until after the �rst two blocks have been

read. The �les in this test are only 2 blocks long, so the runs without SETS do not

bene�t from read-ahead.

9.2.2 File Size

Size SETS CPU Stall Total Savings
KB milliseconds milliseconds milliseconds in Total

1 W/O 45.05 (0.5) 136.64 (13.5) 181.69 (13.6)

With 58.63 (0.3) 37.04 (3.5) 95.68 (3.6) 47.34%

4 W/O 89.20 (1.3) 247.24 (16.1) 336.44 (15.7)

With 110.04 (1.9) 62.27 (11.1) 172.31 (10.6) 48.78%

16 W/O 275.44 (1.0) 720.00 (17.3) 995.44 (17.6)

With 323.12 (4.7) 227.23 (14.7) 550.35 (12.6) 44.71%

64 W/O 1058.55 (27.5) 1734.84 (22.8) 2793.39 (43.1)

With 1337.57 (10.1) 294.67 (45.0) 1632.24 (35.9) 41.57%

256 W/O 4249.74 (102.8) 6541.34 (78.1) 10791.08 (78.5)

With 4850.37 (118.0) 4924.11 (167.4) 9774.47 (150.8) 9.42%

1024 W/O 16754.25 (146.4) 23138.94 (836.6) 39893.18 (849.0)

With 20743.26 (284.9) 15647.30 (776.2) 36390.56 (800.4) 8.78%

This table shows the e�ect of member size on the bene�t from dynamic sets. The left column

shows the member size in KB for each test (Size in the model in Section 7.1), the other factors

were set to their base levels. The numbers are the mean of 10 runs, standard deviations are

presented in parenthesis. The metrics in the other columns are described in Section 7.2.2. The

chief result is that SETS performs very well for typical NFS �les, but the performance drops o�

as �les get large.

Figure 9.5: E�ect of Member Size on Bene�t from SETS

Figure 9.5 shows the bene�ts of dynamic sets relative to �le size. The experiment runs

the benchmark on sets of identically sized �les, increasing the �le size on repeated tests

from 1KB to 1MB in multiples of 4. The interesting result of this benchmark is that the
bene�t from SETS decreases as the �le size increases. However, dynamic sets do o�er

some bene�t for these larger �les and still o�er substantial bene�t for �les smaller than
64KB. Fortunately, the range of sizes under which dynamic sets o�er greatest performance

improvements covers most �les in a typical Unix environment. Studies have shown median
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�le sizes between 10KB and 16KB, and 80% to 90% of �les are less than 50KB in size[3,

64, 78].

Why do SETS fare worse as the �le size grows? As predicted by the model in Section 7.1.1,

SETS may o�er little bene�t in situations in which performance is dominated by the

cost of reading data, because read-ahead will obtain most of the bene�t of prefetching.

Reading large NFS �les from a single server with no user think time is such a situation.

Essentially, the relative bene�t SETS gets by prefetching decreases as the performance

improvement from read-ahead increases. Fortunately, SETS can still overlap processing

and I/O to retain some bene�t.
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This �gure graphs the results in Figure 9.5, normalizing the values for each �le size to the average

total execution time without SETS. Striped bars show the benchmark times with SETS, solid

bars show the results without the use of SETS. Light colors show the idle stall time, dark colors

the amount of CPU. Of interest is the bene�t from SETS for smaller �les and the relative drop in

bene�t from SETS for larger �les. Fortunately, 80% of �les on typical Unix systems are smaller

than 64KB.

Figure 9.6: Normalized Execution Times vs Member Size

Figure 9.6 contains a bar graph with the experimental results, normalized to the average
total execution time without SETS for each �le size. Normalization allows for comparison

between di�erent �le sizes. Comparing the di�erence between the SETS and non-SETS
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cases for both small and large �les, one can see how the relative bene�t from SETS drops

for bigger �les as the percentage of time spent in the idle thread increases. This drop

o� in performance for large �les is sensitive to the primary factors. With larger values

of Comp or Think, SETS can overlap more of the I/O costs with processing, reducing

the latency that is apparent to the user. In addition, if the �les were stored on multiple
servers, SETS could perform the fetches in parallel. As shown in Equation 7.8, parallel

fetches reduce the latency seen by the application by up to a factor of S.

One change could be made to improve the performance of SETS for large �les. SETS
destroys the sequentiality of access at the disk head by reading from multiple �les con-

currently. This can increase the average seek time, as the head must move back and

forth between the locations of the di�erent �les on disk1. This increase can been seen in
the work times for larger �les in Figure 9.7, and can also be seen in the measurements

of server disk work time which are not shown here. These numbers show that the I/O
e�ciency demonstrated by SETS on small �les is reversed, and SETS sees less e�cient

I/O when reading large �les.

To avoid destroying sequentiality, the SETS prefetching engine could be rewritten to
submit requests to read some or all blocks of a �le at once. Currently, SETS reads each
block synchronously, so concurrent reads from multiple worker threads get interleaved.

If the data �les accessed in the experiment were stored on di�erent servers, SETS could
overlap requests to �les on di�erent devices without incurring this overhead.

Size in KB

SETS 1 4 16 64 256 1024

W/O 154.97 (13.5) 272.23 (15.9) 775.79 (17.2) 1935.80 (40.7) 7349.71 (73.7) 26220.31 (879.7)

With 86.44 (3.6) 160.01 (10.5) 524.75 (12.6) 1500.21 (53.6) 9293.73 (139.3) 35027.05 (817.5)

Savings 44.22% 41.22% 32.36% 22.50% -26.45% -33.59%

This table shows the Work metric for the size test. Work measures the actual amount of time

spent by the system fetching �les, as opposed to the apparent fetch times seen by the application.

Where the Work times with SETS are less than those without SETS, the I/O for SETS is more

e�cient. This table is further evidence that SETS performs well for small �les but not as well

for large �les. Fortunately, the increase in work time for large �les is hidden by prefetching and

thus SETS can still o�er bene�t to sets of large �les.

Figure 9.7: Amount of Work Done by System to Fetch Objects for Size Test

1The Unix FFS clusters �les on disk to avoid seeks when sequentially reading from a �le.
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9.2.3 Number of Servers

S SETS CPU Stall Total Savings
milliseconds milliseconds milliseconds in Total

1 W/O 271.82 (3.5) 719.13 (17.0) 990.95 (16.6)

With 320.45 (7.8) 221.82 (21.4) 542.27 (14.1) 45.28%

2 W/O 276.95 (6.5) 657.41 (14.4) 934.35 (12.6)

With 349.17 (6.1) 68.80 (13.1) 417.96 (11.2) 55.27%

3 W/O 274.89 (2.2) 672.26 (14.1) 947.15 (14.4)

With 352.80 (4.2) 55.56 (10.9) 408.36 (8.0) 56.89%

This table shows the e�ects of parallel fetches by presenting the results for runs of the benchmark

program on sets of 16KB �les stored on multiple servers. The left column (S in the model in

Section 7.1) contains the number of servers on which members of the set were stored, the other

factors were set to their base levels. The metrics in the other columns in the table are described

in Section 7.2.2. For S = 1, all twelve members were stored on one server, for S = 2, 6 members

were stored on each server, etc. Fetching in parallel has two bene�ts. First, S blocks can be read

in the time it takes to read one. Second, o�oading the 1 server disk reduces the extra seek time

introduced by SETS. An anomaly can be seen which results from a small di�erence in the speed

of the server disks: the slight reduction in stall times for runs W/O SETS for larger values of S.

Figure 9.8: Bene�ts of SETS vs S for 16KB NFS �les

Figure 9.8 shows the results of running the base case on multiple servers. As one would

expect, the amount of idle time for SETS drops as more servers are involved. SETS

can fetch multiple �les in parallel from independent servers with little overhead, allowing
S �les to be fetched simultaneously. There is also a second bene�t: competition for
the disk head is reduced since the load is spread over three disks. This can be seen by

comparing the amount of time SETS spent prefetching objects. Figure 9.9 shows the

average elapsed time (in milliseconds) to prefetch one �le, with standard deviations in
parenthesis. As the load is spread across more servers and disks, the cost of I/O drops.
This in turn reduces the penalty for using dynamic sets on large �les as seen in Figure 9.6.

Figure 9.10 contains the results of the same test run on 1MB �les, and shows the bene�ts
from parallel fetches to be even more dramatic for large �les.

There are two limits to the reduction in latency that can be achieved by exploiting paral-
lelism. First, fetching �les in parallel requires more bandwidth. At some point, increasing

S will drive the network to thrash, resulting in substantial performance degradation. For-
tunately, most of the bene�t from parallel fetches can be obtained for small values of S

reducing the dependence of SETS on the availability of high bandwidth. In the future,
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Size S

KB 1 2 3

16 182.08 (7.08) 100.33 (2.42) 98.64 (3.42)

64 502.24 (26.59) 281.65 (12.93) 274.33 (30.53)

256 3606.57 (56.21) 1194.03 (107.38) 1000.04 (29.02)

1024 12610.76 (200.43) 6834.87 (131.87) 6711.92 (67.70)

This table shows the average time in milliseconds for SETS to prefetch a �le. Section 7.2.2

explains why this metric is appropriate for S > 1 while Work is not. By comparing the times for

di�erent values of S, one can see how distributing the load over multiple servers reduces the I/O

penalty SETS incurs by increasing the average seek time per I/O.

Figure 9.9: SETS Prefetch Time vs Degree of Parallelism

restricting prefetching to reduce bandwidth consumption may be less of a concern since
network bandwidth is increasing: 100Mbps local area networks are commonplace and
gigabit networks are on the horizon.

The second limitation is that a �le must be wholly fetched before the iterator will yield it.
As a result, none of the time to fetch the �rst �le can be overlapped with computation.

Unfortunately this cost is slightly more than one might otherwise expect, because the
time to fetch a �le is increased because of contention introduced by prefetching. Whereas
the latency to fetch a �le with no contention (Figure 9.2, N = 1) is 37.51, the lowest idle
time here was 55.56 (Figure 9.8, S = 3). Some of the 18 milliseconds di�erence may be

due to contention for the network (or contention for servers since SETS can fetch 5 �les
at once, but from at most 3 servers). However, not all of the di�erence is necessarily due
to contention. Additional latency may also result from each �le processed since the time
to process S �les is shorter than the time to fetch the next S �les. Figure 9.15 shows

that the cost to fetch a �le when S = 3 is equivalent to the processing when Comp = 3.

Figure 9.11 shows the results of this test run on 16KB, 64KB, 256KB, and 1MB �les.
Each test is presented as a cluster, with numbers in the cluster expressed as a percentage

of the non-sets run time. This graph is interesting as it illustrates several points. First,

SETS has cut the idle time substantially when S > 1. Second, the relative decrease in

bene�t from SETS for large �les when S = 1 is apparent. Third, this relative decrease for

large �les is not apparent when S > 1 because SETS can obtain bene�t over read-ahead

by exploiting parallelism. This e�ect was in fact predicted by the model as discussed in
Section 7.1.1. Fourth, one can see that parallel fetches introduce some additional CPU

overhead, but that this overhead is less than 10% of overall run time.
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S SETS CPU Stall Total Savings

milliseconds milliseconds milliseconds in Total

1 W/O 16693.06 (164.5) 23214.82 (727.1) 39907.89 (740.4)

With 20735.93 (273.7) 15546.30 (518.0) 36282.23 (457.5) 9.09%

2 W/O 16737.57 (132.2) 22439.24 (370.9) 39176.81 (415.6)

With 21026.54 (121.4) 2858.06 (47.9) 23884.61 (112.6) 39.03%

3 W/O 16813.24 (118.5) 22222.25 (641.9) 39035.50 (633.7)

With 21048.67 (115.1) 2531.37 (102.2) 23580.04 (129.6) 39.59%

This table shows the results of performing the multiple server test on 1MB �les, leaving the

other factors at their base level. The left column shows the number of servers, other metrics

are explained in Section 7.2.2. Since the I/O cost of fetching large �les is high, the bene�ts of

parallel fetches are more apparent than for smaller �les. When S = 3, the idle time with SETS

is very close to its theoretical minimum, and so the bene�t from additional servers is likely to be

small.

Figure 9.10: Bene�ts of SETS vs S for 1MB Files

9.2.4 Processing Time

The next experiment considers the e�ect of processing time on the bene�t from SETS.

As one would expect from the model in Chapter 7.1, larger processing times o�er greater

opportunity to overlap computation and I/O which allows SETS to further reduce the
idle time. The trade o� is that I/O contributes a smaller percentage to overall run time

as the processing increases. Thus the potential bene�t of dynamic sets to overall run
time is diminished.

Figure 9.12 shows the results of an experiment in which the benchmark's processing
per byte was increased to emulate more computationally intensive applications. One

interesting result is that SETS gets no additional bene�t for Comp > 6, and most of the

bene�t when Comp > 3. One can see this result by comparing the stall times for runs

with SETS in Figure 9.12. When Comp = 3, the cost of processing a �le is as great as the
cost to fetch the next one, so the only stall time SETS sees is the time to fetch the �rst
�le. I conjecture that the small bene�t SETS gets between Comp = 3 and Comp = 6
is due to processing being greater than the average I/O plus the variance. Figure 9.13

graphs the results of the same experiment run on 1MB �les, in which one can see the
same result by comparing the size of the stall component for runs with SETS.

In addition, Figure 9.13 shows a case in which SETS increases the benchmark's run time:

1MB �les when Comp = 0. With the reduction in application processing, there is less of
an opportunity to overlap processing and I/O. In addition, SETS gets little additional

bene�t from prefetching than from FFS read-ahead, and increases the seek time by
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This graph shows the results of the multi-server test for 16KB, 64KB, 256KB, and 1MB �les.

Each cluster shows the results for the non-sets case with 3 servers and the sets case for 1, 2, and 3

servers, with one cluster for each �le size. The values in the cluster are expressed as a percentage

of the non-sets run time to allow comparisons between �le sizes. Notice that idle times for 2

or 3 servers is approaching the theoretical limit; idle time is close to that of fetching the �rst

time. More servers would not signi�cantly improve the performance. The di�erence between the

times for 1, 2, and 3 servers in the runs without SETS are not statistically signi�cant, so only

the results for runs on 3 servers are shown.

Figure 9.11: Bene�t of SETS vs S for 16KB, 64KB, 256KB, and 1MB Files

introducing contention for the disk head from prefetching multiple �les concurrently. As
stated in Section 9.2.2, SETS could reduce the seek time by queueing all blocks from one

�le before starting to fetch another �le from the same server or disk.

9.2.5 User Think Time

Figure 9.14 shows the bene�t of SETS for interactive search tools running on NFS �les.

To emulate interactive tools, SETS uses the select system call to pause for Think seconds

between each �le. Since these long pause times contribute to idle time, this experiment

uses an elapsed time pro�ler to measure the amount of work and I/O performed by
the benchmark, as discussed in Section 7.2.2. Note that tests of interactive search use

di�erent metrics than tests of non-interactive search. Except for the Total values, the
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Comp SETS CPU Stall Total Savings

�sec=byte milliseconds milliseconds milliseconds in Total

0 W/O 81.34 (4.2) 707.80 (11.1) 789.14 (11.0)

With 95.12 (1.6) 432.84 (12.3) 527.96 (11.9) 33.10%

1 W/O 280.69 (3.2) 722.76 (8.7) 1003.45 (8.4)

With 327.41 (6.5) 226.46 (9.6) 553.87 (7.2) 44.80%

2 W/O 474.54 (3.4) 736.82 (11.7) 1211.36 (12.7)

With 552.72 (8.1) 90.19 (9.5) 642.91 (8.7) 46.93%

3 W/O 666.19 (1.7) 718.14 (11.9) 1384.32 (12.2)

With 746.07 (0.9) 86.06 (2.8) 832.14 (3.2) 39.89%

4 W/O 861.36 (4.9) 726.88 (7.7) 1588.24 (7.6)

With 939.13 (1.3) 83.07 (5.1) 1022.20 (4.7) 35.64%

6 W/O 1268.57 (84.8) 711.90 (13.5) 1980.47 (81.7)

With 1325.93 (0.8) 80.55 (4.6) 1406.48 (4.1) 28.98%

8 W/O 1626.12 (3.3) 691.20 (12.1) 2317.32 (11.4)

With 1707.23 (4.0) 80.68 (2.2) 1787.91 (4.0) 22.85%

10 W/O 2019.33 (29.3) 680.06 (11.8) 2699.38 (26.6)

With 2093.01 (3.3) 86.93 (5.2) 2179.94 (5.4) 19.24%

This table presents the results of running the benchmark for di�erent values of application pro-

cessing per byte, Comp in the model in Section 7.1, leaving the other factors at their base level.

The metrics in the other columns are described in Section 7.2.2. With additional processing,

SETS is able to overlap more of the I/O, reducing the amount of I/O stall time (Stall). When

the time to process a �le exceeds the time to fetch it, SETS can overlap all I/O except for the

time to fetch the �rst �le.

Figure 9.12: Bene�ts of SETS vs Comp for 16KB Files

metrics should not be directly compared with the results of the other NFS tests.

The chief observation is that SETS can exploit user think time by overlapping it with
I/O. Thus runs with SETS can make progress while the user is thinking. Runs without

SETS cannot, since the system does not know a �le will be processed until the �le is
opened. SETS does not get additional bene�t from larger Think once the pause covers
the fetch of the next �le. The time to fetch one 16KB, 64KB, or 256KB �le is less than 1

second, 1MB �les take less than 2 seconds to fetch. As such, the results for longer values

of Think are not shown. SETS faces the same limit here as it does with the other tests:

it can eliminate all but the time to fetch the �rst �le.

9.2.6 Cache E�ects



9.2. RESULTS OF NFS EXPERIMENTS 159

0 1 2 3 6

CPU (  sec/byte)

0

20000

40000

60000

80000

100000

120000

E
la

ps
ed

 T
im

e 
(m

se
c)

1MB Files

µ

CPU

Stall

SETS SETS
W/O With

This graph shows the results of an experiment to test the e�ect of application processing on the

bene�t from SETS on 1MB �les, with the other factors at their base level. The application was

run with di�erent values of computation (Comp in the model in Section 7.1, the amount of time

(expressed in �sec/byte) to process data. For values of Comp > 3, SETS gets no additional

bene�t since it is already overlapping as much I/O as it can. This can be seen in the graph since

the size of the light shadowed portion corresponding to Stall does not decrease for higher values

of Comp. When Comp = 0, SETS is worse since Unix read-ahead achieves most of the bene�t

of prefetching and SETS introduces additional seek time by introducing contention for the disk

head from prefetching multiple �les concurrently.

Figure 9.13: Bene�t of SETS vs Comp for 1MB Files

So far the NFS experiments have not demonstrated one bene�t of dynamic sets: the

ability to reorder processing of set members. This ability is advantageous when some

members are less expensive to obtain than others. As an example, consider a set in
which some of the members are cached and others are not. Because it determines the
order in which members are yielded to the application and knows the state of the cache,

SETS can yield the cached members immediately. One advantage is that the cost of

processing these cached objects can be used to hide the I/O of fetching other members,

allowing SETS to potentially eliminate all I/O stalls. In earlier experiments, the best

SETS could do was to eliminate all stalls but those to fetch the �rst member's data. A
second advantage is that by yielding the cached member immediately, SETS avoids a

situation in which the cached data is evicted before it can be used by the application.
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Size T SETS User App Fetch Total Saving
KB sec seconds milliseconds milliseconds milliseconds in Fetch

16 0 W/O 0.00 (0.0) 195.48 (1.3) 810.69 (29.8) 1006.54 (28.7)

With 0.00 (0.0) 240.61 (3.6) 305.60 (14.5) 553.61 (12.3) 62.30%

1 W/O 12.41 (0.0) 196.60 (1.6) 819.22 (42.2) 13324.74 (66.5)

With 12.42 (0.0) 200.43 (0.6) 133.19 (11.8) 12678.10 (11.0) 83.74%

64 0 W/O 0.00 (0.0) 777.93 (3.0) 1995.67 (24.9) 2769.79 (21.2)

With 0.00 (0.0) 1181.76 (77.0) 467.47 (32.8) 1650.89 (99.1) 76.58%

1 W/O 12.37 (0.0) 792.45 (33.7) 2030.94 (34.6) 15094.44 (67.5)

With 12.34 (0.0) 819.31 (3.4) 350.59 (5.9) 13443.64 (7.5) 82.74%

256 0 W/O 0.00 (0.0) 3147.70 (46.3) 7809.95 (244.2) 10924.49 (255.3)

With 0.00 (0.0) 3968.43 (100.4) 5724.63 (153.0) 9683.92 (109.8) 26.70%

1 W/O 12.29 (0.0) 3136.72 (45.5) 7775.77 (283.6) 23194.20 (332.9)

With 12.39 (0.0) 3625.50 (93.1) 2760.45 (254.5) 18684.45 (288.2) 64.50%

1024 0 W/O 0.00 (0.0) 12498.27 (73.8) 27460.45 (984.0) 39910.29 (950.4)

With 0.00 (0.0) 17004.33 (445.0) 19289.79 (271.9) 36173.30 (353.1) 29.75%

1 W/O 12.37 (0.0) 12598.86 (108.2) 27379.74 (754.0) 52079.85 (792.5)

With 12.36 (0.0) 16076.83 (231.9) 11657.49 (841.9) 39945.81 (704.8) 57.42%

2 W/O 24.91 (0.0) 12528.87 (124.7) 27129.60 (455.5) 64457.43 (420.1)

With 24.91 (0.2) 15359.40 (188.1) 9757.72 (270.6) 49970.51 (276.1) 64.03%

This table shows the results of running the benchmark with di�erent values of user think time

(Think in the model) on NFS �les, with the other factors at their base levels. The left column

shows the size of the set members, the next column shows the desired duration of the user pause

times in seconds (T is an abbreviation for Think). The metrics in the other columns are explained

in Section 7.2.2. The result of this test is that interactive searches give greater opportunity for

SETS to hide latency, which one would expect from the model in Section 7.1.

Figure 9.14: E�ect of User Think Time on Bene�t from SETS for NFS

In order to demonstrate the bene�ts of reordering to greatest e�ect, the experiment uses

S = 3 and Comp = 3 in order to ensure that the cost of processing a �le completely

overlaps the cost to fetch the next �le. As a result, the only stalls in runs with SETS

result from fetching the �rst �le. In addition, the experiment caches (the data of) one of
the members of the set after 
ushing the bu�er caches but before running the application.

Because SETS can reorder the accesses to set members, it can use this cached �le instead
of forcing the application to wait for a fetch, regardless of the �le's position in the order

of expansion.

Figure 9.15 shows the experimental results. The table shows results for 16KB, 64KB,
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Size # in SETS CPU Stall Total Savings

KB Cache milliseconds milliseconds milliseconds in Total

16 0 W/O 664.05 (3.8) 656.64 (9.3) 1320.69 (10.9)

With 742.22 (2.4) 40.37 (5.1) 782.59 (4.0) 40.74%

1 W/O 681.16 (55.1) 610.41 (9.8) 1291.57 (52.3)

With 745.94 (1.2) 0.27 (0.4) 746.21 (1.1) 42.22%

64 0 W/O 2616.87 (49.9) 1578.78 (13.5) 4195.64 (38.8)

With 2904.36 (69.0) 138.88 (14.2) 3043.24 (67.7) 27.47%

1 W/O 2592.66 (23.3) 1446.98 (20.7) 4039.64 (41.0)

With 2907.42 (54.3) 0.56 (0.7) 2907.98 (54.4) 28.01%

256 0 W/O 10463.93 (90.9) 6201.83 (207.2) 16665.76 (236.5)

With 11426.54 (102.8) 616.77 (47.8) 12043.31 (105.0) 27.74%

1 W/O 10357.23 (87.4) 5663.04 (119.1) 16020.27 (135.9)

With 11480.31 (88.5) 0.36 (0.4) 11480.68 (88.5) 28.34%

1024 0 W/O 41477.78 (125.9) 21788.86 (448.0) 63266.63 (513.1)

With 45727.53 (106.9) 2303.37 (57.4) 48030.90 (124.6) 24.08%

1 W/O 41454.71 (142.5) 22086.78 (652.0) 63541.49 (719.9)

With 46041.39 (94.7) 0.18 (0.3) 46041.57 (94.7) 27.54%

These results show that SETS can exploit the presence of a set member in the cache to eliminate

I/O stalls. The test ran with Comp = 3 and S = 3 and with the other factors at their base levels.

The leftmost column shows the size of the set members, the next column indicates whether or

not a member was cached. The metrics in the other columns are explained in Section 7.2.2. Note

that with no �le cached, the SETS idle time is equivalent to the time to fetch one �le. If a �le

is cached SETS can use this �le without stalling on I/O, and hide the cost of fetching the other

�les with application processing. For the runs without SETS, the presence of a cached member

reduces the number of fetches and thus the idle time. With 1MB �les, however, the cached object

is 
ushed to make room for other set members before the �le's data can be used. As a result,

the stall time for runs on 1MB �les without SETS are not lower when a member is cached.

Figure 9.15: Exploiting Cached Files to Reduce I/O Stalls

256KB, and 1MB �les, with and without a pre-cached �le. As predicted, the presence

of just one member in the cache allows SETS to e�ectively eliminate I/O stalls. It is
not important which �le is pre-cached, as long as SETS tests for its presence in the
cache before allocating all worker threads to fetching uncached members. The algorithm

SETS currently uses fetches the �rst limitOpen members in the order determined by the

expansion of the membership speci�cation. As long as the cached member is one of these
limitOpen members, SETS can use it to avoid the I/O stall.

The 1MB results show the second advantage of reordering: increasing the likelihood of
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using cached data before it is evicted. SETS is able to determine the member is cached

and yield the object while its data is still in the cache. Without SETS the system does

not know the data will be needed and inadvertently 
ushes the blocks from the cache,

since the members are collectively larger than the bu�er cache. The system must then

re-fetch the evicted data blocks, and as a result does not bene�t from the presence of a
member in the cache at the start of the test. This problem does not arise for the smaller

�les, since the entire set �ts into the bu�er cache. One can see this e�ect in Figure 9.15
since the stall time for 1MB �les without SETS does not decrease by the amount of time

to fetch one �le as it does for smaller �les.

Figure 9.16 shows the results of this experiment run for a di�erent set of factor levels,

which allow a more direct comparison with the other experimental results. These tests

used 1 server, Comp = 3, and sets of 12 1MB �les. Because all accesses are going to
the same server disk, prefetching several �les increases the average cost of an I/O. As a

result, the cost of fetching a �le is larger than the multi-server case, and in particular is
longer than the processing of a �le when Comp = 3. Caching one �le does not eliminate

idle time, since the application still blocks on the fetch of the second �le. Caching both
the �rst and second �les, however, does allow SETS to e�ectively eliminates idle time,
as shown in Figure 9.162 Alternatively, runs of the experiment on a single disk, with one
object cached, and with values of Comp > 6 also allow SETS to eliminate I/O stalls by
overlapping the fetch of the second �le with the processing of the �rst. However, the

results of such tests are not shown here.

9.2.7 Bandwidth

This section describes the results of experiments to see how the bene�ts of SETS are

a�ected by lower bandwidth connections. There are two reasons for exploring the bene�ts
of SETS on low bandwidth networks. First, one of the principle bene�ts of prefetching,

use of parallel fetches, assumes that there is su�cient bandwidth to support concurrent

reads. As one's bandwidth consumption approaches the network's peak rate, performance
will drop o� rapidly due to collisions and overruns. Second, many users access data in

their DFS remotely; either from home or from a mobile client. It is not immediately
obvious how dynamic sets will perform for these types of situations.

This experiment consists of tests on 2 slow networks, Wavelan and SLIP. The topology
for these tests is shown in Figure 9.17. The client and servers were connected by two

routers which communicated via a low bandwidth link. The link for the Wavelan tests

was a 2Mbps wireless network and the routers were NCR WavePoint access points set

2In this second experiment, I selected which members to pre-cache in order to ensure that the runs

without SETS would utilize the data before it was evicted.
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# in SETS CPU Stall Total Savings

Cache milliseconds milliseconds milliseconds in Total

0 W/O 41488.74 (149.6) 22152.17 (644.8) 63640.91 (607.7)

With 46028.64 (110.6) 7344.31 (233.4) 53372.95 (253.9) 16.13%

1 W/O 41227.96 (140.5) 20484.02 (896.7) 61711.97 (904.6)

With 45915.63 (143.0) 3963.64 (209.9) 49879.28 (211.8) 19.17%

2 W/O 40977.32 (90.6) 18472.38 (381.1) 59449.70 (373.8)

With 45384.06 (112.1) 1.52 (1.0) 45385.57 (112.5) 23.66%

3 W/O 40707.46 (70.7) 16795.09 (494.9) 57502.55 (485.9)

With 44704.84 (81.8) 1.64 (0.6) 44706.48 (81.9) 22.25%

This table shows how SETS can take advantage of cached set members to e�ectively eliminate

I/O stalls. The left column shows the number of members that were cached prior to starting

the application (Size = 1MB, Comp = 3, and the other factors are set to their base level). The

metrics in other columns are described in Section 7.2.2. Although the overall savings are not

impressive, the idle times drop to zero within experimental error. The actual values are less than

one hundredth of a percent of the idle times for the runs without SETS.

Figure 9.16: Bene�ts of SETS When Some Members Are Cached

Client

Router Router

Server Server Server

This �gure shows the network topology used for the low bandwidth test. The solid lines are

10Mbps 10Base2 Ethernet links. The client and servers are on di�erent Ethernet segments.

Connecting the two segments are two routers which forward packets from the Ethernet over

some slower medium (the dashed line) to the other Ethernet segment. For Wavelan, the routers

are NCR WavePoint Wavelan routers. For SLIP, the routers are 2 laptops running Mach 2.6

connected via 14400baud modems.

Figure 9.17: Network Topology for Bandwidth Experiments

up to minimize outside interference. The routers for the SLIP test were two laptop

computers connected via 14400bps modems and a phone line. Although the laptops may

have higher overhead than specialized router hardware, they are able to route packets
faster than the SLIP connection can carry them, and the added overhead should not

disturb the test results. Although the modem does compress data, it still takes over 8
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seconds to transmit 16KB �les.

Band S SETS CPU Stall Total Savings

milliseconds milliseconds milliseconds in Total

10Mbps 1 W/O 271.82 (3.5) 719.13 (17.0) 990.95 (16.6)

1 With 320.45 (7.8) 221.82 (21.4) 542.27 (14.1) 45.28%

2 With 349.17 (6.1) 68.80 (13.1) 417.96 (11.2) 55.27%

3 With 352.80 (4.2) 55.56 (10.9) 408.36 (8.0) 56.89%

2Mbps 1 W/O 285.42 (18.8) 1682.38 (36.7) 1967.79 (52.8)

1 With 301.32 (3.3) 965.65 (103.1) 1266.97 (100.8) 35.61%

2 With 306.59 (5.7) 931.55 (117.4) 1238.14 (117.6) 37.08%

3 With 311.59 (19.5) 895.58 (56.2) 1207.17 (56.4) 38.65%

14Kbaud 1 W/O 1190.85 (330.9) 114501.29 (4618.2) 115692.13 (4892.0)

1 With 990.04 (348.6) 107108.14 (5406.2) 108098.18 (5728.8) 6.56%

2 With 785.87 (209.5) 105376.11 (3998.5) 106161.98 (4134.2) 8.24%

3 With 876.47 (272.4) 105448.80 (3918.6) 106325.27 (4103.1) 8.10%

This table shows the results of multi-server tests run on networks with di�erent bandwidths,

with the other factors at base levels. The left column shows the peak bandwidth (Band) of

the link connecting the client and servers. Other columns show the number of servers (S), use

of SETS, amount of processing (CPU), client CPU idle time (Stall), and total elapsed times

in milliseconds. The rightmost column shows the savings in total elapsed time due to SETS,

calculated with Equation 7.9. Although the magnitude of the variance in fetch times for SLIP is

much higher than for the Wavelan numbers, the coe�cient of variation is less than 10%. The runs

on di�erent networks use di�erent values of limitOpens than the other tests to avoid overruning

the low bandwidth networks. The numbers for 10Mbps (Ethernet) are pulled from Figure 9.8 for

comparison as an aid to the reader.

Figure 9.18: Bene�ts of SETS for Di�erent Bandwidth Links

Figure 9.18 shows the results of the multi-server experiment run on Wavelan and SLIP.
Because the experiment is concerned with the impact of lower bandwidth on the bene�t

of concurrent fetching, the �gure only shows the results for SETS when S > 1. The

di�erence between runs without SETS for di�erent values of S was nominal. In order

to avoid overrunning the slow link, the Wavelan tests used limitOpens = 3 and the

SLIP tests used limitOpens = 1. The numbers for 10Mbps (Ethernet) are pulled from
Figure 9.8 for comparison as an aid to the reader.

The basic result of the tests is that dynamic sets does o�er a small bene�t even on low

bandwidth links. SETS reduces idle time by over 40% for the Wavelan tests, and elapsed
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time by close to 36%. The di�erence for the SLIP tests is much smaller, just over 6%.

Although the numbers are close, they are still statistically di�erent at a signi�cance level

of 5%.

A more disturbing trend is that SETS does not seem to bene�t from parallel fetches. On
SLIP this is not surprising, since the network is so much slower than any other component

in the system. However, even runs on the Wavelan network get relatively little bene�t
from concurrent fetches. The reason for this is that one disk can produce enough data

to consume all of the network bandwidth. The server's disk bandwidth is measured at

around 400KBps, while the network's peak bandwidth is 512KBps. Thus there is little
opportunity to decrease latency by running concurrent fetches.

The low performance bene�ts from SETS for the SLIP runs is due to the overwhelming
contribution of the network to I/O latency. The disk takes around 20 milliseconds to

read 16KB, but the network takes over 8 seconds to transmit it at 14.4Kbaud (with
compression enabled). Although there is little bene�t from concurrent fetches, SETS can

bene�t by overlapping I/O and computation, particularly user think time. Figure 9.19
shows the results of interactive search run on SLIP. Recall that interactive searches have
pauses between each �le during which the user reads the �le's data. Since SETS can

prefetch a �le before it is requested, it can overlap I/O latency with these pauses to
reduce the amount of time a user must wait for data. The table shows that for even a

modest pause of 6 seconds per �le, SETS is able to substantially reduce I/O times and

thus the runtime of the application.

Figure 9.19 also shows a puzzling trend: runs without SETS bene�t from higher values

of Think. It may be the case that spreading out requests reduces the load on the SLIP
connection. Unfortunately, the test environment does not permit �ner analysis of these
results, and I am unable to determine a better explanation for this phenomenon at this
time.

9.3 Conclusion

In summary, these experiments demonstrate the SETS do o�er signi�cantly improved
performance for search on NFS. Further, SETS is able to realize all three of the poten-

tial performance improvements of prefetching in a variety of situations: exploitation of
parallelism via concurrent fetches, overlapping computation and I/O, and increasing the

utilization of servers and the network. In many cases, SETS is able to o�er near-optimal
reductions in latency (up to limits of the implementation).

This experiment also shows the bene�ts of reordering. By using the system's knowledge
of the cache, SETS can detect a member in the cache and yield that member immediately.

By doing so, SETS can eliminate I/O stalls in many cases, even for 1MB �les.
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Think SETS User App Fetch Total Savings

seconds seconds milliseconds milliseconds milliseconds in Fetch

0 W/O 0.00 (0.0) 194.80 (0.7) 106702.74 (5904.3) 106467.61 (5978.2)

With 0.00 (0.0) 194.55 (1.3) 108380.45 (5961.1) 108299.15 (6065.6) -1.57%

1 W/O 12.35 (0.0) 195.16 (1.1) 92078.29 (4529.4) 104004.91 (4409.0)

With 12.34 (0.0) 194.84 (1.2) 93174.21 (2747.7) 105374.40 (2909.7) -1.19%

2 W/O 24.91 (0.1) 194.25 (0.9) 79149.41 (4094.4) 103991.97 (4169.7)

With 24.97 (0.1) 194.99 (0.9) 82618.17 (4086.1) 107262.11 (4134.6) -4.38%

4 W/O 49.92 (0.4) 194.29 (1.6) 67873.44 (2056.7) 117664.90 (1858.8)

With 50.12 (0.2) 196.17 (1.2) 61881.91 (5956.1) 111437.19 (5850.7) 8.83%

6 W/O 75.46 (0.3) 194.85 (0.9) 69560.18 (3371.1) 144297.56 (3526.4)

With 76.32 (3.1) 195.40 (1.6) 39732.98 (5009.3) 115596.14 (4312.3) 42.88%

This table shows the results of running the benchmark with di�erent values of Think on 16KB

NFS �les accessed over a SLIP link, with the other factors at their base level. The left col-

umn shows the values of user think time, the metrics in the other columns are explained in

Section 7.2.2. The chief observation is that SETS can o�er substantial bene�t for interactive

searches even with very little bandwidth by overlapping I/O latency with user think time.

Figure 9.19: Bene�ts of SETS vs Think over SLIP

However, these experiments do point out a de�ciency in the implementation. As shown
in Figure 9.7, SETS can be less e�cient at I/O because it sometimes does not access data
sequentially. Sequentiality is lost because of the way SETS prefetches �les: one thread
per �le means accesses from di�erent �les are interleaved. A small change to the SETS

prefetching engine should address this problem, but the change is left as future work.



Chapter 10

Evaluation: Search on local �le systems

The third experiment examines search on the local �le system (LFS). There are two
goals in determining the bene�t of SETS in this domain. The �rst goal is to evaluate
the behavior of the SETS prefetching engine under a di�erent domain than that for
which it was designed. The prefetching engine was designed to prefetch remote objects

in a distributed system e�ciently, and prioritizes remote accesses (prefetching) over local

accesses (prereading). In particular, SETS only prereads data from disk into the cache's
pin-space. As a result, a set of local �les is a worst case for SETS. Second, it may be the
case in practice that some portion of the set is either stored on the local �le system or
already cached when the set is opened. As a result, the performance of SETS on local

data is relevant to determining the performance of SETS in general.

The LFS domain is important because many users store their personal data on their
local �le system even when a DFS is available. In addition, at the heart of every WWW,

NFS, or other server is a local �le system which stores the data. This domain is di�erent
from both GDIS and DFS because it involves no network communication. As a result,
all I/O requests are known to the �le system, and the latency to access data is often

smaller than that in GDIS and DFS (depending on load and the hit rate in the server's
in-memory cache). Further, since there are fewer components involved, the performance
of the application is more directly tied to the performance of the disk. Thus low level
issues such as data layout and the disk's parameters are likely to have a greater impact.

The representative example of an LFS examined here is the Unix Fast File System (FFS)

running on an array of independent parallel disks (Just A Bunch Of Disks, JABOD).

Unix FFS and variants are commonly used in Unix systems, and are similar to other
PC and workstation �le systems. JABOD is the simplest form of a disk array. Data is

stored in �les; each �le resides on exactly one disk, but di�erent �les can be stored on
di�erent disks. Examples of potential uses of FFS on JABOD are the local �le system for

GDIS and DFS servers, workstations or PCs with multiple disks, and object repositories.

167
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Factors Name Description

Primary Cardinality Number of objects in a set
File size Average size of candidate objects

Disks Number of disks holding candidate objects

Cache E�ects of incidental cache hits

Think Inter-block and inter-�le processing time

Secondary Disk speed Bandwidth, latency, seek time

Bus Bandwidth Usually su�cient to support up to 6 disks
File system Block size, number of bu�ers

Prefetch parameters Described in Chapter 6
Cache Size Number of in-memory bu�ers and inodes

This table lists the primary and secondary factors a�ecting the performance of search on the

FFS. The impact of the primary factors is examined through experiments, whose results are

presented below. The secondary factors have a smaller e�ect on the elapsed time of the search,

or are independent of dynamic sets, and are not directly examined in this dissertation.

Figure 10.1: Factors A�ecting Search Performance on the FFS

An example of this type of repository is the QBIC image database[61]. QBIC stores

the images as �le system objects. A query to QBIC returns the names of the �les
containing the desired images, and the system then returns the �les themselves to the
client for processing on demand. One can imagine modifying QBIC to use SETS: forming
a dynamic set using the names returned from the query, and having SETS prefetch the

�les on behalf of the application. Other servers which provide indexed access to technical
reports, for instance, or video libraries could use SETS in a similar fashion.

Figure 10.1 describes the factors a�ecting the performance of search in an LFS. These
factors are similar to those a�ecting search on NFS, with the obvious exception of the
network parameters. Bandwidth for JABOD refers to bus bandwidth, which is typically

su�cient to support parallel access to a small number of disks. Since the tests presented
below limit concurrent accesses to at most 3 disks, bus bandwidth is not a signi�cant

factor in determining system performance for this experiment.

10.1 Test Methodology

Although the performance characteristics of FFS di�er from NFS, the application mix is
roughly identical. In addition, FFS on JABOD provides another good domain in which

to perform low level analysis to better understand the performance of SETS. For these
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reasons, it makes sense to use the same test methodology used in the NFS experiments.

A bene�t of this strategy is that one can compare the results for similar tests on both

systems for further insights into the bene�t from SETS.

10.2 Results of FFS Experiments

The machine on which these tests were run is a DECStation 5000/200 with 32 MB of
RAM running the Mach 2.6 operating system. The disks were 3 Digital RZ24 3.5" hard

drives, connected to one SCSI controller. The machines have a hardware cycle counter

with which the kernel can accurately time events to within a few microseconds. The

machine was lightly loaded: only the user running tests was logged in during the tests.
Although the machine was not booted single user, it was isolated from the network to

avoid interference. Since this machine is normally shared among several users, it was
rebooted before each series of tests to ensure a clean test environment.

This experiment uses the same benchmark as the NFS experiment, but accesses the �les
o� local disks instead of o� NFS servers. The numbers are the averages of 10 runs.1 The
factor levels for the base test used sets of 12 16KB �les stored on 1 disk, 0 seconds of
think time per �le (non-interactive search), 1 microsecond of processing/byte, and a cold

bu�er cache (no objects cached), which are similar to the base levels used in the NFS
experiment. The tests used the same SETS cache parameters as the WWW and NFS
tests, shown in Figure 7.3. The �le system block size was 8KB.

10.2.1 Cardinality

Figure 10.2 shows the results from running the benchmark on di�erent sized sets of 16KB

�les. The results show the increase in CPU overhead from SETS and prefetching, the
signi�cant decrease in idle time as a result of prefetching for N � 4, and the resulting
decrease in run time from using SETS. These results are also graphed in Figure 10.3.

Compared with the NFS results in Figure 9.2 and Figure 9.3, prefetching small �les from
disk does not produce as big of a bene�t. Since the I/O latencies are much smaller, there

is less of an opportunity to bene�t from prefetching. The CPU times are also lower,

which is likely due to the smaller overhead to setup a SCSI disk request as compared

with an NFS request. A related observation is that the di�erence in CPU times between

1Although the machine was isolated for the tests, occasionally some background activity from Unix

daemons such as update would consume CPU or disk bandwidth, resulting in signi�cantly higher num-

bers. No more than two out of 15 runs were anomalous; more often all 15 runs had low variance. Since

these anomalies happened both with and without SETS, these abnormal runs were discarded from the

results.
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N SETS CPU Stall Total Savings

milliseconds milliseconds milliseconds in Total

1 W/O 21.58 (0.3) 9.37 (0.0) 30.95 (0.3)

With 23.56 (0.4) 8.97 (0.2) 32.53 (0.4) -5.11%

2 W/O 39.27 (0.6) 18.59 (0.4) 57.86 (0.5)

With 43.48 (0.2) 12.93 (0.0) 56.42 (0.2) 2.49%

4 W/O 75.69 (1.7) 36.64 (1.2) 112.32 (0.6)

With 84.33 (0.6) 16.70 (0.2) 101.03 (0.7) 10.05%

8 W/O 145.81 (0.4) 130.92 (1.9) 276.73 (1.9)

With 171.28 (0.8) 50.75 (5.2) 222.04 (5.4) 19.76%

12 W/O 217.47 (1.4) 186.92 (5.9) 404.39 (6.1)

With 255.98 (1.4) 60.00 (4.1) 315.99 (3.7) 21.86%

16 W/O 287.70 (1.0) 258.21 (6.6) 545.91 (6.3)

With 341.16 (2.0) 64.22 (4.0) 405.39 (4.1) 25.74%

This table shows the e�ect of set cardinality on the bene�t from dynamic sets. The left column

(N ) shows the number of 16KB �les processed by the benchmark program, the other factors were

set to their base level. The metrics in the other columns are described in Section 7.2.2. The

numbers are the mean of 10 runs, standard deviations are presented in parenthesis. Negative

savings mean SETS degraded performance. The chief result of this experiment is that SETS

does o�er bene�t to this domain, but the magnitude of the savings are smaller than in DFS.

Figure 10.2: E�ect of Set Cardinality on Bene�t from SETS for FFS

runs with and without SETS is smaller. Based on this observation I conjecture that
some of the increase in CPU for the runs with SETS is due to context switching and

prefetching overhead, which is endemic to any prefetching mechanism. Thus the overhead

due exclusively to SETS is smaller than the di�erence in CPU between runs with and
without SETS.

The bene�t from SETS in this experiment has two sources, the overlap of CPU and I/O
and the ability to aggressively prefetch. Overlapping CPU and I/O produces the chief

bene�t for this test; there is little opportunity to exploit parallelism or pipelines in the
I/O channel. SETS also provides bene�t by prefetching aggressively, which means it can
queue reads for a �le's data before the �le is opened. FFS only begins to read-ahead

after the application requests the �rst 2 blocks, and thus gets no bene�t from read-ahead
for 16KB �les.

One interesting observation that I made while running the experiment is that the cost of

I/O, and thus the bene�t of SETS in this situation, seems to depend on the layout of the

�les on disk. For instance, I reran this test using identical 16KB �les stored in a di�erent

directory, allowing the �le system to determine placement of the �les' inodes and data



10.2. RESULTS OF FFS EXPERIMENTS 171

Set Cardinality
2 4 6 8 10 12 14 16

E
la

ps
ed

 T
im

e 
(m

se
c)

200

400

600

800

1000

1200

1400

1600

1800

0

Total w/o SETS
Total with SETS
CPU w/o SETS
CPU with SETS

This graph shows the cost and bene�t of SETS for di�erent sized sets of 16KB disk �les. The

points are the experimental results from Figure 10.2, with lines �tted via regression with a

correlation coe�cient of greater than .998 in all cases. The dots show the results without SETS,

the pluses those with SETS. The solid lines show the total elapsed time and the dashed lines show

the amount of CPU, the di�erence between the solid and dashed lines is the idle time. From the

graph, one can see the increase in CPU usage due to SETS, but also the larger reduction from

overlapping computation and I/O. The result is that SETS can reduce the run time for every

�le in the set, and thus get more bene�t as the set grows in size. To allow for comparison, this

graph uses the same scale as the graph of the NFS cardinality test results, shown in Figure 9.3.

Figure 10.3: Bene�t of SETS vs Cardinality on FFS

blocks. The only di�erence between the two sets of 16KB �les was the cylinder group

in which the �les were stored, and the layout of the blocks within the group. In this
second test, the bene�ts from SETS were uniformly better than shown here, particularly
for N < 8, although the cost of I/O was higher both with and without SETS. As an

example, the base case (N = 12) for runs on this second set of �les saw stall times 358.36

(14.58) without SETS and 174.87 (8.55) with SETS, while the total savings were 27.05%.

The CPU costs were equivalent between the tests.

Unfortunately, the in
uence of data layout is larger on the cost of I/O as captured by

the Work metric than is the in
uence of SETS. As a result, it is di�cult to determine
the e�ect of prefetching in this domain on the cost of I/O. To a �rst approximation,

however, it appears that the chief e�ect of SETS' prefetching on the cost of I/O is the
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lack of sequentiality of access, which introduces extra seeks.

10.2.2 File Size

Size SETS CPU Stall Total Savings
KB milliseconds milliseconds milliseconds in Total

1 W/O 25.40 (0.6) 78.66 (5.7) 104.05 (5.8)

With 36.18 (1.1) 37.70 (5.7) 73.88 (5.3) 29.00%

4 W/O 62.23 (0.2) 80.03 (2.3) 142.27 (2.2)

With 74.67 (0.6) 46.22 (4.1) 120.88 (4.3) 15.03%

16 W/O 217.09 (1.3) 192.82 (2.0) 409.90 (2.4)

With 255.53 (1.2) 58.13 (2.8) 313.66 (3.0) 23.48%

64 W/O 849.25 (1.8) 1037.24 (2.3) 1886.50 (1.5)

With 941.57 (4.7) 1014.38 (26.4) 1955.95 (24.7) -3.68%

256 W/O 3410.52 (59.9) 4768.95 (49.0) 8179.47 (107.8)

With 3463.56 (42.5) 5559.59 (65.6) 9023.14 (83.6) -10.31%

1024 W/O 13706.57 (53.8) 15737.23 (47.1) 29443.80 (41.6)

With 13770.13 (51.3) 16300.27 (74.1) 30070.39 (53.0) -2.13%

This table shows the e�ect of member size on the bene�t from dynamic sets. The left column

shows the member size in KB for each test (Size in the model in Section 7.1), the other factors

were set to their base levels. The numbers are the mean of 10 runs, standard deviations are

presented in parenthesis. The metrics in the other columns are described in Section 7.2.2. This

table shows that SETS does improve performance for small �les typical in Unix, but degrades

performance for large �les.

Figure 10.4: E�ect of Member Size on Bene�t from SETS for FFS on JABOD

Figure 10.4 shows the results of a test to determine the e�ect of �le size on the bene�t
from SETS. The results show two di�erent trends, depending on �le size. For small �les,

those 16KB in size and smaller, SETS reduces the idle time by aggressive prefetching.
This results in overall reduction in runtime of greater than 15%. The primary reason for

the reduction in idle time is that SETS anticipates access to the �le before it is opened,

and can prefetch. FFS cannot know the �le will be accessed, and must read its data

synchronously.

For large �les, those larger than 64KB, SETS increases the idle time seen by the bench-

mark in addition to increasing the amount of computation. As a result, SETS increases
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runtime by prefetching! There are two reasons why SETS performs poorly for large disk

�les. One reason, as has been mentioned several times previously, is the lack of sequen-

tiality resulting from the way SETS queues concurrent reads. A more in
uential reason,

however, is that SETS only reads a pre�x of nprefix blocks into the cache for these

large �les, and for this experiment nprefix = 8. When an application processes a �le, it
will miss on blocks 9 through n, triggering reads by the �le system. Thus a majority of

reads for large �les use the same code with or without SETS, and SETS will obtain little
bene�t from prefetching over read-ahead. As a result, any positive or negative impact of

SETS on the �rst nprefix reads will be dwarfed by the cost to read the other blocks,

and the e�ect of SETS on performance will asymptotically approach zero as the �le size
increases.

The behavior for �les larger than 16KB and no larger than 64KB is slightly di�erent
than either of these two groups (represented by 64KB �les in Table 10.4). For these �les,

SETS does o�er some reduction in idle time, but not enough to overcome the overhead

in CPU and seek time that it introduces. The savings in idle time is lower than that
for smaller �les because FFS is prefetching 6 of the 8 data blocks per-�le through read-
ahead during runs without SETS. FFS is thus getting the bene�t of prefetching for most
of the reads, while SETS is losing some of the bene�t of prefetching by increasing the
cost of performing I/O. However, with additional opportunities for prefetching, such as

Think > 0, SETS will be able to further decrease latency for these �les while simple
read-ahead may not.

10.2.3 SETS on Small and Medium-Sized Files

Because SETS exhibits such di�erent behaviors on small and large �les, the remainder
of the chapter will discuss each case separately. As mentioned above, all of the bene�ts
from SETS apply to the �rst nprefix bu�ers of a �le. For �les with fewer than nprefix

bu�ers, use of SETS results in performance improvements in many situations. The

following subsections show the e�ect of parallel fetches, increased computation, user
think time, and cache state on the bene�t from sets. These subsections present the

results for 16KB and 64KB �les; smaller �les should do as well as these since the FFS
does not use read-ahead for �les smaller than 16KB.

10.2.3.1 Multiple Disks

Figure 10.5 shows the results of parallel fetches on the bene�t of SETS for 16KB and

64KB �les. As predicted, SETS can utilize all the disks to reduce idle and elapsed times

by fetching multiple �les in parallel. As with NFS, fetching from multiple disks allows

S reads to be performed in close to the time to perform one, and reduces the load on
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Size S SETS CPU Stall Total Savings

KB milliseconds milliseconds milliseconds in Total

16 1 W/O 217.00 (0.6) 186.47 (6.0) 403.47 (6.2)

With 254.66 (1.0) 63.35 (3.7) 318.01 (3.4) 21.18%

2 W/O 217.99 (2.1) 270.60 (6.5) 488.59 (7.3)

With 256.01 (0.8) 46.14 (1.9) 302.15 (1.3) 38.16%

3 W/O 219.32 (3.2) 248.68 (10.0) 468.00 (12.8)

With 257.35 (1.3) 19.82 (0.3) 277.17 (1.2) 40.78%

64 1 W/O 848.88 (1.3) 1044.83 (9.5) 1893.71 (9.1)

With 948.40 (4.6) 950.26 (27.1) 1898.67 (24.8) -0.26%

2 W/O 852.40 (3.6) 1029.61 (18.5) 1882.01 (17.9)

With 976.75 (7.8) 291.57 (56.1) 1268.32 (49.2) 32.61%

3 W/O 849.29 (2.8) 1099.01 (9.1) 1948.30 (9.2)

With 1006.44 (76.3) 243.89 (20.4) 1250.33 (66.0) 35.82%

This table shows the results of running the benchmark on sets of 16KB and 64KB �les stored

on multiple disks (S � 1), with the other factors at their base level. The left column shows the

size of the �le, the next column shows the number of disks on which the �les were stored. The

metrics in other columns are described in Section 7.2.2. The numbers are the mean of 10 runs,

standard deviations are presented in parenthesis. The table shows that SETS can reduce latency

through parallel disk reads, and thus produce substantial bene�t even for 64KB �les.

Figure 10.5: E�ect of Parallelism on Bene�t from SETS for FFS on JABOD

Size S

KB 1 2 3

16 89.38 (2.4) 72.65 (3.6) 60.99 (2.0)

64 615.24 (12.7) 344.09 (17.3) 328.76 (27.9)

This table shows the average time in milliseconds for SETS to read a �le from disk. By comparing

the times for di�erent values of S, one can see how distributing the load over multiple disks reduces

the I/O penalty SETS incurs from increasing the average seek time per I/O.

Figure 10.6: SETS Prefetch Time vs Degree of Parallelism

and therefore the contention for a single disk head. Figure 10.6 shows the average time

it took SETS to read a �le from disk for di�erent values of S. As one can see, spreading

the load onto multiple disks lowers the cost of I/O.

The savings which result from fetching from 3 disks is little more than that from two

disks. Thus it is likely that SETS would not derive signi�cant bene�t from more than 3
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disks. This means SETS can achieve near optimal performance without requiring special

high-bandwidth bus hardware. However, it may be the case that reducing the prefetch-

ing parameter limitOpens to equal the number of disks would reduce the overhead in

seek time without limiting the ability of SETS to reduce idle time. Initial experiments

would indicate that this is the case, and exploring a mechanism to dynamically adjust
limitOpens may prove fruitful.

10.2.3.2 Computation

Size Comp SETS CPU Stall Total Savings

KB milliseconds milliseconds milliseconds in Total

16 0 W/O 23.43 (0.8) 322.05 (9.0) 345.49 (8.7)

With 35.33 (0.9) 257.88 (9.0) 293.21 (9.0) 15.13%

1 W/O 218.82 (3.5) 187.36 (7.0) 406.17 (8.2)

With 255.13 (1.2) 55.18 (3.1) 310.30 (2.5) 23.60%

2 W/O 410.21 (0.7) 171.15 (5.4) 581.36 (5.1)

With 466.43 (38.1) 44.04 (3.6) 510.46 (39.5) 12.20%

64 0 W/O 63.63 (1.3) 1729.73 (19.0) 1793.36 (18.3)

With 108.77 (2.9) 1588.36 (10.9) 1697.13 (11.8) 5.37%

1 W/O 849.45 (1.6) 1038.31 (8.1) 1887.76 (8.2)

With 943.51 (7.6) 982.95 (36.7) 1926.46 (30.5) -2.05%

2 W/O 1693.98 (3.3) 404.10 (24.7) 2098.08 (24.6)

With 1775.61 (1.9) 343.32 (17.8) 2118.93 (16.3) -0.99%

6 W/O 4785.39 (3.8) 285.08 (7.5) 5070.48 (7.2)

With 4870.59 (3.1) 287.78 (3.2) 5158.37 (5.6) -1.73%

This table shows the e�ect of application processing (Comp) on the bene�t from dynamic sets.

The left column shows the size of the set members. The next column shows Comp, the amount

of processing per byte performed by the application (in �sec/byte). The metrics in the other

columns are described in Section 7.2.2. The numbers are the mean of 10 runs, standard deviations

are presented in parenthesis. Although larger values of Comp allow SETS to hide more latency,

it also increases the overall runtime resulting in smaller savings. Since FFS's read-ahead also

bene�ts in this way, SETS does not provide additional savings for larger values of Comp for

64KB �les.

Figure 10.7: E�ect of Application Processing on Bene�t from SETS for FFS on JABOD

Figure 10.7 shows the results of running the benchmark with di�erent amounts of compu-

tation per byte for 16KB and 64KB �les. With larger values of Comp, SETS can further
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decrease the idle time by overlapping I/O with longer amounts of application processing

in the 16KB case. However, spending more time processing data diminishes the relative

contribution of I/O to runtime, reducing the bene�t of SETS as a percentage of elapsed

time.

For the runs without SETS on 64KB �les, increasing the application's computation re-

duces the likelihood of stalling on read-ahead bu�ers, which in turn reduces the idle time

seen by the application. As a result SETS gets little or no bene�t over read-ahead for
large values of Comp, and as a result of overhead actually runs a little slower (although

the di�erence is not statistically signi�cant).

As stated before, the chief reason SETS does not perform better for 64KB �les is that the

bene�t it o�ers from prefetching is outweighed by the cost it introduces by interleaving

reads of di�erent �les. It is likely that �xing this behavior and reducing limitOpens to

the number of disks will result in lowering the overhead, and thus decreasing the latency
seen by applications that use SETS.

10.2.3.3 User Think Time

Size Think SETS User App Fetch Total Savings
KB seconds seconds milliseconds milliseconds milliseconds in Fetch

16 0 W/O 0.00 (0.0) 195.37 (2.2) 213.89 (15.8) 411.86 (18.5)

With 0.00 (0.0) 218.58 (2.0) 92.43 (6.9) 315.23 (6.5) 56.79%

1 W/O 12.33 (0.0) 205.56 (32.2) 245.04 (32.3) 12727.97 (30.6)

With 12.38 (0.0) 197.16 (0.8) 74.84 (3.7) 12616.22 (5.3) 69.46%

64 0 W/O 0.00 (0.0) 791.20 (3.3) 1104.01 (6.1) 1888.17 (6.8)

With 0.00 (0.0) 838.62 (7.6) 1086.03 (26.9) 1922.67 (21.5) 1.63%

1 W/O 12.35 (0.0) 792.24 (3.0) 1117.81 (75.2) 14199.60 (81.7)

With 12.33 (0.0) 796.38 (37.3) 376.97 (4.4) 13448.16 (33.4) 66.28%

This table shows the results of running the benchmark with di�erent values of Think on 16KB

and 64KB �les, with the other factors at their base level. The metrics in the other columns are

described in Section 7.2.2. Note that the savings is in terms of Fetch, not overall runtime, since

this test uses interactive search. As pointed out in Section 7.1.1, SETS can take advantage of

larger values of Think while read-ahead cannot, and so greatly reduces latency.

Figure 10.8: E�ect of User Think Time on Bene�t from SETS for FFS

Figure 10.8 shows the bene�t of SETS for interactive search tools running on local disk
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�les. This experiment shows that SETS can overlap I/O with user think times to reduce

the aggregate latency of accessing the set members. As with the NFS experiments, the

time for I/O is bounded below by the time to fetch one member. In addition, SETS does

not derive additional bene�t for Think > 1 since it takes less than one second for SETS

to read a �le o� the disk.

Size # in SETS CPU Stall Total Savings

KB Cache milliseconds milliseconds milliseconds in Total

16 0 W/O 602.77 (0.8) 168.99 (7.5) 771.76 (7.3)

With 646.55 (1.0) 50.10 (7.8) 696.66 (8.0) 9.73%

1 W/O 603.29 (0.6) 130.54 (7.0) 733.83 (7.2)

With 647.13 (0.7) 15.42 (5.5) 662.56 (5.2) 9.71%

2 W/O 604.84 (4.6) 137.52 (19.4) 742.36 (19.7)

With 647.13 (3.2) 0.00 (0.0) 647.13 (3.2) 12.83%

64 0 W/O 2465.96 (2.1) 331.90 (15.6) 2797.86 (15.7)

With 2552.64 (3.8) 307.13 (16.8) 2859.77 (14.8) -2.21%

1 W/O 2464.43 (2.7) 295.09 (11.3) 2759.52 (11.0)

With 2554.99 (5.3) 33.99 (38.0) 2588.98 (33.0) 6.18%

2 W/O 2460.10 (7.5) 271.64 (17.5) 2731.74 (21.9)

With 2547.78 (1.4) 0.00 (0.0) 2547.78 (1.4) 6.73%

This table shows how SETS can take advantage of cached set members to e�ectively eliminate

I/O stalls when Comp = 3 through reordering. The left column shows the size of the members,

the test was run on 16KB and 64KB �les with the other factors at their base level. The next

column is the number of members that were cached prior to starting the application (out of 12).

The metrics in the other columns are described in Section 7.2.2. Although the overall savings

are not impressive, the idle times for runs with SETS drop to zero when more than one member

is cached.

Figure 10.9: E�ect of Warm Cache on Bene�t from SETS for FFS on JABOD

One anomaly, higher App time for runs with SETS when Think = 0, results from mea-

suring the amount of application processing (App) via elapsed time. When Think = 0,

the computation to perform I/O directly competes for the CPU with the application,

resulting in longer elapsed times to perform the same amount of application computa-

tion. When Think > 0, some of the computation of prefetching is performed while the

application is sleeping, reducing the competition for the CPU and thus the elapsed time
measured by App. Although both cases do overlap computation and I/O to some extent,

this anomaly is more pronounced for SETS which prefetches more aggressively. This ef-
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fect can also be seen in the NFS interactive search tests, shown in Figures 9.14 and 9.19.

This anomaly is only apparent because the experiment used an elapsed time pro�ler to

measure App, as opposed to counting the number of application instruction that were

executed.

10.2.3.4 Cache State

Figure 10.9 shows the results of warming the cache with some of the set members before
running the application, and using Comp = 3. Two observations should be made. First,

SETS is able to eliminate I/O stalls when more than one �le is in the cache when the

benchmark runs. Second, as a result of SETS ability to reorder, the benchmark runs
faster with SETS than without, even for 64KB �les. However, it should be noted that
since the stall time for these sets is small, the overall savings that result from eliminating

I/O stalls is modest.

10.2.4 SETS on Large Files

The results discussed in Section 10.2.2 showed that SETS o�ers no bene�t for sets of
large �les stored on one local disk for the base factor levels. One of the problems is

that SETS only prefetches nprefix blocks from a �le, where nprefix = 8 for these
experiments. Thus SETS only prefetches a fraction of the blocks: 256KB �les have 33
blocks in addition to the inode (32 data blocks and one indirect block), 1MB �les have

129. As a result, SETS cannot o�er any bene�t to a majority of the reads of a large �le's
data.

This point is made by Figure 10.10, which shows the results of running the benchmark

on sets of �les stored on multiple disks. Whereas SETS could achieve large bene�t by
prefetching NFS �les in parallel from di�erent servers, here the gain is minimal. Fortu-
nately, the savings are su�cient for SETS to o�er a small improvement in performance.
Similarly, SETS achieves either modest savings or no savings when Think > 0, or the

cached is warmed with some of the members, although the results of these tests are not

presented here.

The reason for restricting prefetching to a �le's pre�x is to overcome a limitation of

Mach's bu�er cache. As discussed in Section 6.4.3, the mapping between a bu�er and

the �le to which it belongs can be expensive in Mach, which uses a hash of the block's
physical address to locate the block. The decision to limit prefetching to the pre�x of a

�le reduces the cost of this mapping by avoiding the need for it or by doing it when it is
least expensive. Other operating systems, like NetBSD, which use a logical block hash

do not have this problem. As a result, a port of SETS to one of these operating systems
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S SETS CPU Stall Total Savings

milliseconds milliseconds milliseconds in Total

1 W/O 13695.76 (57.0) 15743.05 (74.9) 29438.81 (42.1)

With 13781.14 (49.4) 16253.53 (88.3) 30034.67 (64.1) -2.02%

2 W/O 13687.83 (44.1) 15821.73 (47.2) 29509.56 (23.9)

With 13794.64 (42.3) 15332.80 (120.6) 29127.44 (112.3) 1.29%

3 W/O 13635.17 (102.4) 15801.39 (52.4) 29436.57 (132.5)

With 13739.64 (106.4) 15206.56 (77.5) 28946.19 (163.2) 1.67%

This table shows the results of the benchmark run on 1MB �les stored on multiple disks (S � 1),

with the other factors set to their base level. The left column shows the number of disks storing

set members. The metrics in the other columns are described in Section 7.2.2. As described

in Section 10.2.2, SETS can o�er minimal bene�t to sets of large �les due to limitations in the

implementation. In particular, SETS can only prefetch the �rst 8 blocks of 1MB �les, so a

majority of the accesses use the same path with or without the use of SETS.

Figure 10.10: Test Results for Sets of 1MB FFS Files Stored on Multiple Disks

will likely perform better for large �les in situations where SETS can beat read-ahead,
such as when S > 1, Think > 0, or some of the members are cached.

S SETS CPU Stall Total Savings
milliseconds milliseconds milliseconds in Total

1 W/O 13679.76 (70.5) 15760.92 (108.2) 29440.68 (69.3)

With 14775.47 (101.2) 28345.67 (201.9) 43121.14 (186.5) -46.47%

2 W/O 13638.62 (69.5) 15849.80 (85.0) 29488.43 (96.6)

With 15470.39 (153.5) 8088.52 (142.4) 23558.91 (179.4) 20.11%

3 W/O 13687.15 (69.9) 15865.24 (82.7) 29552.39 (28.8)

With 15910.47 (132.8) 2886.68 (30.2) 18797.15 (148.2) 36.39%

The results in this table indicate that removing the nprefix limitation would allow SETS to

reduce the latency over sets of large �les. This table shows the results of the same test as

Figure 10.10, but with di�erent SETS prefetching parameters: nprefix = 128, sets max =

3.125MB, pin max = 3MB, and limitOpens = 3. These parameters were chosen to allow SETS

to prefetch whole �les from disk. The left column shows the number of disks storing set members

(S), the metrics in the other columns are discussed in Section 7.2.2.

Figure 10.11: Tuning SETS Parameters for 1MB Files on Multiple Disks
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In order to validate my assertion that the poor performance of SETS on large �les resulted

from the nprefix limit, I repeated this experiment using di�erent values for the SETS

prefetching parameters. These new values allow SETS to prefetch an entire 1MB �le

from disk. Table 10.11 shows the results of this experiment, which uses nprefix= 1282,

sets max = 3.125MB, pin max = 3MB, and limitOpens = 3.

This test shows two results. First, SETS is able to substantially reduce I/O by prefetching

from di�erent disks in parallel. The result is nearly 40% reduction in overall runtime for

3 disks. Second, SETS pays a big penalty for one disk because it must wait until the

entire �le has been read before yielding it to the application. One of the reasons this
pause is so large is the lack of sequential access from SETS. Another reason is that SETS

waits until the entire pre�x has been cached before yielding the �le to the application.

When nprefix is small, this is a reasonable approach; for large nprefix it clearly is

not. However, a port of SETS to another operating system which does not need nprefix

should not su�er this large penalty.

10.3 Conclusion

These experiments demonstrate that SETS do o�er improved performance for search on
FFS on JABOD, particularly when read-ahead is ine�ective. Read-ahead only bene�ts
�les larger than 2 blocks (16KB), and cannot take advantage of user think time or con-
currency between �les, and cannot reorder access to �les in a set to make use of cached

data before it is evicted.

As stated in the beginning of this chapter, SETS was designed to prefetch from a dis-

tributed system, and not from the local disk. As a result, this experiment stresses SETS

in di�erent ways than it was intended to support. Still, SETS performs quite well in
this environment, providing substantial bene�ts for small and medium-sized �les across
a wide range of factors. Since 80 to 90% of �les on Unix systems are smaller than 64KB,

SETS provides bene�t in a majority of cases[3, 64, 78]. Although the bene�ts for large

�les are not as great, SETS does o�er some reductions in latency over a more restricted
range of factors.

The experimental results also show three opportunities for improving the performance of

SETS in this domain. First, a simple change to the prefetching engine would allow SETS

to ensure that requests for blocks on the same disk are submitted sequentially. This would

decrease a penalty SETS incurs, and greatly reduce the cost of I/O when prefetching from
the local disk. A second change would be to add more complicated prefetching algorithms

2The indirect block is read in as a side e�ect of prefetching the data blocks, so setting nprefix to

128 allows the entire 1MB �le to be preread.
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which dynamically adapt to suit the current system and application parameters. As an

example, SETS could limit the number of opens to no more than S when reading from

the local disk. Third, removing the nprefix restriction will allow SETS to o�er more

bene�ts to search on large �les.
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Chapter 11

Related Work

Dynamic sets are an interface extension designed to reduce the aggregate latency of search
applications through informed prefetching. There are two basic bodies of work related to
dynamic sets: systems attempting to reduce the e�ect of I/O latency and systems that

attempt to improve support for search by changing the �le system interface. Relevant
work in these areas is discussed in Section 11.1 and Section 11.2. Section 11.3 discusses
other work that is related to speci�c aspects of dynamic sets or SETS.

11.1 Addressing Latency

In most computer systems, the memory system architecture is structured as a hierarchy
in which small, fast, and expensive memory is used to hold data from a larger, slower,

and cheaper form of memory at the next level. Misses at level i incur a high latency to

fetch data from level i + 1, relative to the cost of a hit at level i. Because there are a

number of levels, each with di�erent characteristics and design tradeo�s, several bodies of
work focus on how best to overcome latency for some particular layer. For example, both

VLSI and distributed �le system designers use caches to reduce I/O latency, although

the cache structure and policies di�er.

Of particular interest to this dissertation are e�orts to reduce the latency to read persis-
tent data into local memory from its place on a local or remote disk. Figure 11.1 shows

the basic approaches to eliminating latency in �le systems, along with example systems

for each approach. There are e�ectively three alternatives: cache to increase the hit
rate, prefetch to lower the e�ect of missing, and reduce the overhead and thus the cost

of a miss. Systems that prefetch can be further classi�ed into those that use inferred,
explicit, and informed prefetching, based on how the system decides what to prefetch

and which level of the system controls I/O. The following sections discuss each of these
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�ve alternatives and how they relate to dynamic sets. Relevant or interesting examples

of each class are also presented. In addition, Section 11.1.6 discusses approaches which

use a similar philosophy to SETS in their attempts to overcome I/O latency.

Caching Prefetching Reduce Overhead

Inferred InformedExplicit

Dynamic Sets Persistent TCPRoverGriffioen

Techniques for Reducing Latency

AFS, NFS
HTTP-NGTIP, ACFSMowrySEERWWW Proxies

This �gure shows a hierarchy of techniques to reduce latency. The bottom 2 rows contain

examples of a particular class of techniques. The names in the bottom row are either the names

of representative systems or the �rst author of papers describing those systems which were not

explicitly named. Dynamic sets are an example of informed prefetching.

Figure 11.1: Hierarchy of Techniques to Reduce Latency

11.1.1 Caching

Caching has been widely used to overcome read latency in distributed systems. Systems

such as AFS[34], NFS[77], and Sprite[58] rely on caches to provide good performance,

and most WWW browsers employ some form of caching as well. As described in Sec-

tion 2.1.2.1, caches only work well when an application exhibits good temporal locality.
Search applications tend to exhibit poor locality, and so caching does not perform well for
searches. In addition, the data accessed by a search can 
ush the cache, and thus harm

the performance of other concurrently running applications. This e�ect is shown by one

study of a WWW proxy cache shared by several thousand users. The cache showed a hit

rate of roughly 33%, even though all accesses passed through the cache and the cache's

size was unlimited (e.g. no object was evicted to make space for another object)[27]. The
low hit rate was due to �rst references of objects as well as invalidations of cache entries

for objects that were no longer valid. Since this study is in many ways optimal, it is a
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demonstration of the limited bene�t caches o�er to applications on a GDIS.

Another use of caching proxies, called geographic push-caching[31], o�oads servers by
pushing objects to a proxy that is geographically closer to the source of the requests.
For instance, if a large number of CMU students access WWW pages from Harvard,

the Harvard server may choose to push these pages to a caching proxy at CMU. This

would result in lower latencies for CMU students and a lower load on Harvard's server.
However, this approach assumes that one can dynamically �nd proxies that are near a

cluster of clients on the network and are willing to serve these objects. It also assumes
that the popularity of these objects will continue long enough to justify pushing them out

to a proxy, and that issues involving access control and ownership of intellectual property

will be solved shortly.

11.1.2 Inferred Prefetching

Many systems attempt to reduce latency by prefetching data based on guesses of future
accesses [45, 19, 93, 44, 43]. In some cases, these guesses can be reasonably accurate and

result in performance improvements. However, the penalty of inaccurate predictions is
overutilization of the I/O channel. Since the I/O channel is likely to be the bottleneck

of systems that would bene�t from prefetching, these faulty predictions can lead to

signi�cant performance degradation.

A common form of inferred prefetching is the one-block read-ahead mechanism employed
by the Unix local �le system[2, 87]. The system detects that a �le is being read se-
quentially and automatically queues a read for block i+ 1 when block i and i � 1 have

been read. Results from the NFS and FFS experiments discussed in Chapters 9 and 10
indicate read-ahead is e�ective at reducing I/O when a �le is read sequentially. However,
the bene�t of this approach is limited to applications that read �les sequentially, and
read �les that are large enough to allow the system to infer sequentiality. For instance,

most Unix �les are too small (less than 16KB) to bene�t from read-ahead[3, 64, 78].

The bene�ts of more aggressive inferred prefetching are less clear. Korner proposed the
use of an expert system to analyze I/O traces and build a model which can predict the
I/O needs of an application. The system would then use these predictions to manage the
cache and prefetch information. Although the paper describes a simulation study which

shows impressive bene�ts from this approach, it is unclear whether these bene�ts would

carry to a real system. In addition, it would require repeatedly running an application

\to fully exercise its �le behavior" (p 222) before any bene�ts could be realized. Although
this may be useful in determining how a search application will process a �le, it is unlikely
to determine accurately what �les it will access.

Gri�oen and Appleton suggest the use of a probability graph to make prefetch and cache
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decisions[29, 28]. The graph, built over time, shows the number of times that some �le

(A) is accessed after some other �le (B). One can infer a semantic dependency between

the two �les if the probability that B is accessed when A is accessed (i.e. P (BjA)) is

high. Similarly, Curewitz, Krishnan, and Vitter study the use of a compression algorithm

to drive prefetching[19]. Intuitively, the act of predicting future references in a reference
stream is similar to a compression algorithm's predictions of bit patterns in a data stream.

The algorithm eliminates I/Os in the reference stream by prefetching or smarter eviction
policies just as it eliminates bits in the data stream. The drawback of both of these

techniques is that they require reference patterns that are regular and have been exhibited

before. Search applications do not exhibit either property to a great degree, and any small
gains are likely to be overwhelmed by the increased load from inaccurate predictions.

Mogul and Padmanabhan are currently exploring Gri�oen and Appleton's technique for
reducing the latency of WWW access[65]. In their approach, a WWW server builds the

probability graph, and informs clients of likely objects to prefetch when responding to a
fetch request. The client can then chose to prefetch the objects speculatively. Simulations

based on traces of their WWW server show a small bene�t. The technique can reduce
latency, but does increase the bandwidth consumption due to inaccurate predictions.
They have not deployed this technique on the WWW at this point, and have no experience

on this approach in practice.

11.1.3 Explicit Prefetching

As an alternative to speculative prefetching, some systems expose asynchronous I/O

operations directly to applications, and applications manage prefetching themselves by
explicitly invoking these operations. Since applications know their own data needs, they
can often initiate fetches early enough that the operation to fetch some piece of data

completes before the data is needed. The two drawbacks of this approach are that it places

the burden of e�cient I/O on the application programmer and that applications lack
information such as the state of the local cache necessary to utilize resources e�ciently.

In addition, applications that manage I/O themselves are highly sensitive to changes in
CPU or I/O speed, and are thus di�cult to port or maintain.

One recent system that advocates this approach is the Rover Toolkit, which o�ers queued

remote procedure calls as its communications paradigm[37]. Since QRPC do not block

the calling thread, the application programmer must manage asynchrony directly, such as
polling Rover to �nd out when an operation has completed. In addition, the application

must preserve the context of the call in order to respond appropriately if the operation
ever fails. Although they do not study this e�ect, conversations with the authors indicate

that programming Rover is non-trivial even for expert programmers.
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A recent paper by Mowry, Demke, and Krieger describes a similar approach which uses

compiler inserted hints to pre-page in a virtual memory system[55]. Rather than having

the application writer generate I/O directives, their compiler generates prefetch requests

by analyzing program loops to determine near-future data accesses in virtual memory.

Similar data-
ow analysis allows the compiler to insert hints to release pages as well.1

One drawback of their approach is that the compiler cannot know the state of physical

memory, and must generate many more I/O requests than is necessary. They overcome
this problem by exposing the state of the page tables to the user-level, and having a

library �lter out unnecessary page-faults at run-time. One drawback of their approach is

that it violates software engineering principles like information hiding by exposing page
tables to the application. Further, the approach is limited to applications with regular

loop structures and available source code. One interesting extension of their idea would
be to couple compiler-generated hints with an informed prefetching mechanism such as

TIP or ACFS.

11.1.4 Informed Prefetching

Informed prefetching avoids the problems with explicit and inferred prefetching by having

the application inform the system of future accesses. Prediction is not needed since the
application tells the system what to prefetch. In addition, the application does not have
to control prefetching itself, and can leave decisions of what and when to prefetch to the

system. Dynamic sets is a form of informed prefetching, where the knowledge of remote
access is derived from a set's membership.

Informed prefetching was pioneered by Patterson, Gibson, and Satyanarayanan in the

TIP system[67, 66, 68]. TIP provides a hint-based interface which allows applications to
disclose future accesses or access patterns to the �le system. The system uses a dynamic
estimate of resource value to control its prefetching decisions. Results of TIP implemented

as part of the OSF/1 operating system show speedups on a local disk array similar to
those seen by SETS on NFS, but for a di�erent mix of applications. For reasons stated in

Chapter 6, the approach taken by TIP is not suited to the target domain of SETS, since

it relies on the ability to accurately estimate the latency of a remote operation. SETS
could be layered on TIP, for instance as a new estimator, allowing SETS to prefetch

remote data while TIP manages the local bu�er cache.

A similar approach is taken by Cao et al. in their studies of application controlled �le

caching and prefetching[12, 13, 14]. In addition to use of hints for disclosure, their system

1Their prefetch requests appear to be explicit I/O requests, but the release operations seem similar

to informed prefetching hints. Because the composition of a system is open to interpretation, compiler-

generated hints to a run-time system can either be viewed as explicit or informed.
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(ACFS) allowed applications to request speci�c cache policies, such as a most recently

used eviction policy. A comparison between the behavior of ACFS and TIP based on

trace-driven simulation shows the two systems o�er comparable performance across a

range of applications[40], although studies of the e�ects of either approach in a DFS or

GDIS have not been published.

11.1.5 Reducing Network Overhead

Another approach to reducing latency is to reduce the cost of fetching remote data.

Studies of HTTP performance have detected opportunities to improve performance by
modifying the protocols[54, 88]. Padmanabhan and Mogul examine two such strategies,

long-lived connections and pipelining of requests[54]. The �rst technique is based on the
observation that TCP connections are expensive to setup. Reusing the TCP connection
for multiple fetches to the same server can amortize the cost of setting up the connection.
The trade o� is that maintaining connections consumes state on the server, and may limit
their scalability. The second technique batches the requests for a document and some or
all of its inlined-images into a single request. Next generation HTTP protocols (HTTP-

NG) propose similar extensions[89], although it is unclear when these protocols will be
in widespread use.

Although these techniques seem promising, they require modifying protocols and servers.

In a system like the WWW which has a large embedded base, upgrading clients and
servers may be infeasible. In addition, there may be only limited opportunity to bene�t
from these techniques, since they require a form of spatial locality { multiple requests to
the same server over a short period of time. As discussed in Section 3.1.1.4, dynamic sets

only require modi�cations to the client and thus do not have this drawback. However,

SETS could be extended to leverage the bene�ts of these approaches if they became
widely available. For instance, SETS could schedule requests to increase spatial locality

in a manner similar to the way it reorders to exploit cache state to reduce latency.

11.1.6 Deriving Hints from Operation Semantics

The SETS prefetching engine achieves good performance by leveraging o� the semantics

of search applications, in particular the fact that they read whole-�les sequentially. Sev-
eral other systems use a similar philosophy, such as a number of studies of bu�er pool

management in database systems[16, 74, 18]. In particular, Chou and DeWitt analyze
a number of relational database access methods to determine the bu�er needs of each

method. When a query enters the system, it �rst determines which access methods will
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be used and then allocates a su�cient number of bu�ers to that query. By using op-

eration semantics to carefully allocate bu�ers, the system can support potentially more

concurrent queries and thus increase the throughput of the database.

Similarly, Grimshaw and Loyot propose extending the �le system interface to include

objects (types with methods) in a system called ELFS (Extensible File System)[30]. A
�le's methods can be written to exploit domain-speci�c knowledge, such as reading a

matrix by rows or scanning a database's index. Where appropriate, this knowledge can

be used to prefetch data or to change the �le's layout on disk. The chief drawbacks of
this approach are that application programmers must learn to use a new interface, and

that �le access is directly tied to �le type. Applications which access a �le contrary to

the �le type's implementation may see poor performance as a result.

11.2 Improving Support for Search

Another way to improve the performance of search applications is to reduce the amount
of information accessed during a search by increasing the precision of the set of candidate

objects. The information retrieval community (see the text by Salton and McGill[75])
has made great strides in automatic indexing technology and improving query languages.

Dynamic sets bene�t from their advances: with higher quality sets, the set's members

are more likely to be accessed and fewer prefetches will be wasted.

Recently, a number of researchers have explored ways to add better support for search
to �le systems. Essentially, they propose either extending or replacing the standard
�le system interface and name space structure to support associative (attribute-based)
naming. These proposals must provide ways to automatically extract a �le's attributes

and index them, and must also provide a query language for �nding �les. This language

can either be integrated with an existing system, be part of a new system interface, or
only be accessible to the user through new applications.

Dynamic sets do not provide a mechanism for extracting attributes, but do extend the

standard �le system interface with a 
exible query language, as described in Chapters 3

and 4. Extending SETS to use a new type of index, such as WAIS[39] or Essence[33],

requires extending an existing warden or supplying a new one. Adding a warden is

relatively straightforward and should take no more than a man-month. Fortunately, most
of these services provide a WWW interface, and are thus accessible today via SETS's

HTTP warden.
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11.2.1 Extracting Attributes from Files

One approach provides associative naming through a user interface. Schwartz et al. sur-

vey early examples of this approach, which they call \Internet Resource Discovery"[84].

These systems are layered on top of an existing system and do not require modi�ca-

tions to the underlying DFS or GDIS or its interface. Examples of this approach are

GLIMPSE[50], Archie[21], WAIS[39], Essence[33], and WWW search engines such as

Altavista2 or the WebCrawler3[69]. These systems focus on a di�erent problem than

dynamic sets, that of identifying sets of candidate objects. As a result, this work bene�ts
from their successes because searchers can create more accurate sets through queries to

these search engines.

Essence, a resource discovery system from Hardy and Schwartz[33], allows users to regis-

ter summarizers which can parse �les of a particular type. A �le's type is inferred from
its name (or possibly its contents) using user-supplied rules. Consistency between the

index and the �le contents is bounded; the index is regenerated by rerunning the Essence

program.

The WebCompass search engine from Quarterdeck Corporation[95] performs two tasks: it
runs queries on a user-supplied list of WWW search engines and collates the results, and
builds a local database of interesting objects. This local database can be automatically
updated by an agent which re-executes a user's queries periodically, for instance to get

the latest news articles on a particular subject.

WebCompass is in many ways similar to dynamic sets, but it di�ers in two key ways.
First, WebCompass creates persistent copies of query result sets, but does not ensure

that the copies remain consistent. The drawback of this approach is that the local copies
consume valuable disk resources and may not be useful to future searches (as discussed
in Section 3.1.3.1). For example, almost all newspaper articles have little value after

the day on which they are published. The e�ort to collect this data and the cost of
storing it may be completely wasted. Further, WebCompass only provides rudimentary

mechanisms for pruning unneeded objects from its database. A review of WebCompass

in Byte Magazine cites this problem of excessive consumption of disk space as one of
WebCompass's drawbacks[4].

A second di�erence is that WebCompass does not prefetch members of a result set,

therefore it o�ers no performance advantages to interactive search. The key observation

that WebCompass's designers failed to make is that a query's result set is a hint of future
access. Dynamic sets shows that this hint can be used to fetch objects just-in-time,

to get the performance improvements without consuming a signi�cant amount of local

resources.

2http://altavista.digital.com
3http://webcrawler.com
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11.2.2 Extending File Systems to Support Search

A second class of solutions adds some form of attribute-based naming to an existing �le

system. These systems extend the �le system's interface to support a query language in

addition to providing automatic attribute-extraction and indexing. They are similar to

dynamic sets in that they add a query language to the �le system name space, and may
add operations to the �le system interface. However, none of these systems attempt to

use search information to drive a prefetching engine. Further, they require modi�cations

to servers.

The most notable example of this approach is the Semantic File System (SFS) from
Gi�ord et al.[26]. SFS is a modi�ed NFS server which automatically extracts attributes

from �les as they are stored, using �le-type speci�c transducers or �lters. SFS queries
are pathnames consisting of successive attribute-value pairs. Each pair adds a constraint
(the speci�ed attribute should have the speci�ed value) which the identi�ed �les should
satisfy. Pathname lookup results in a virtual directory which contains objects that satisfy
all of the constraints. This mechanism is similar to that employed by SETS, but is

unwieldy, restricted (it only supports conjunctive queries), and not extensible. However,
standard Unix applications can access SFS �les with no modi�cations. In addition,
the SFS implementation does not modify the NFS client, and so cannot bene�t from the

approach advocated in this dissertation. Dynamic sets, however, could easily be extended
to access �les in a semantic �le system with the addition of an SFS warden, and may

even be able to access SFS �les now via the NFS warden.

11.2.3 Replacing the File System

Another alternative is to abandon the �le system interface in favor of a more powerful

paradigm. One example of this approach is the WWW, which provides a hypertext name

space and de�nes its own operations through the HTTP protocol[6]. A survey of Internet
resource discovery systems[84] describes this and other Internet-based systems such as

Gopher[52] or Prospero[60]. Dynamic sets eschews this approach, and instead makes a

small extension to the �le system interface without totally abandoning it. As a result,
one can modify existing applications to use SETS with little e�ort.

One interesting idea is to replace the traditional �le system with an object-oriented

repository or database. The bene�ts of such a move are that all objects have a type, and
the system need not conform to �le system (e.g. POSIX) semantics. Since an object's

type is well known to the system, the system can leverage an object's semantics to
prefetch, much in the way SETS does for dynamic sets. The penalty is that applications

would have to be rewritten for this system, and may not be portable to new platforms.
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An example of this approach is the ELFS �le system discussed earlier[30]. Another

example is the Rufus system by Shoens et al.[86]. Rufus \provides searching, orga-

nizing, and browsing for the semi-structured information commonly stored in computer

systems"[86](p 97). Rufus consists of a class hierarchy, an object-oriented database which

stores �le contents and attributes, and an automatic indexing mechanism based on type-
speci�c classi�ers. Users import objects into the Rufus system to add them to the

database, supplying the object's class which identi�es which classi�er to use to extract
the object's attributes. New classes (and classi�ers) can be de�ned by the user to support

new types of �les. The main drawback of Rufus is that applications must be rewritten to

invoke Rufus methods. Another drawback is that Rufus does not maintain consistency
between the original and imported copies of an object, although one can re-import ob-

jects to update the database with little overhead (such as periodically running a Rufus
daemon).

11.3 Mechanisms

In addition to the preceding systems, there is also work which is related to speci�c aspects

of dynamic sets. The following subsections discuss work that is relevant to three aspects
of dynamic sets: iterators, digests, and user-level �le systems.

11.3.1 Sets and Iterators

Use of sets and iterators are not new to dynamic sets. One example of their use in

programming languages is cursors in SQL. The unique contribution of this work is the
exploitation of the semantics of dynamic sets to reduce the aggregate latency to access a
group of objects.

One could use an approach similar to dynamic sets by using membership in an SQL cursor

to prefetch tuples in a database. However the payo� in a database is much smaller than

the payo� in a DFS or GDIS, as the I/O costs of executing a query (select statement)

far outweigh the costs of fetching tuples. In fact, in some cases the database must fetch

the tuple's data in order to perform the join. With DFS or GDIS, the time to identify

the candidate objects is often equivalent to the cost of fetching just one of the objects,

providing an opportunity for an approach like dynamic sets.

11.3.2 Digests

Chapter 3 introduces a summary type which provides a way of obtaining the attributes

of a set's members to allow searches to control their search without having to fetch the
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members. Searchers can obtain these summaries via the setDigest() iterator, and then

use these summaries to restrict the focus of their search to include only promising objects.

Since summaries may be obtained much more cheaply (either in terms of money, time, or

bandwidth) than the objects' data, use of digests may result in faster and more e�cient

searches. One should note that this dissertation does not explore the use of digests in
detail, and SETS only o�ers one type of summary: the object's name. However, it would

be easy to extend SETS to provide attributes which many WWW search engines include
with the results.

Fox et al. describe an approach that creates distillations (digests) dynamically[25]. The
basic idea is similar to that of digests in SETS: reduce the bandwidth requirements

by type-speci�c lossy compression. Because distillation is successful at reducing the

amount of transmitted data, the time to perform it on demand is more than covered
by savings in transmission time. To allow a user to see the full object (or some portion

of the original representation) after viewing the distillation, their system also provides
type-speci�c re�nement. Re�ning a distillation consists of fetching and displaying some

or all of the original object. For instance, one might download the distillation of a
dissertation into an abstract and keywords, and then re�ne the distillation to include the
introduction chapter. One interesting question they do not answer is whether distillation

and re�nement should be type-speci�c or search-speci�c. For instance, a searcher may
prefer a particular form of lossy video compression for one search and another form for
some other search.

Another approach is taken by the Synopsis File System (SynFS), which associates a
summary (synopsis) of a �le's contents with every object in a �le system[36, 11]. Like
the Semantic File System[26], synopses are created when a �le is stored, and maintained
by a separate server. The chief use of a synopsis is in �le location, although the contents

of a synopsis could be used interactively along the lines of setDigest(). Synopses di�er
from distillation because they are pre-computed and persistent. The chief di�erence

between the SFS and SynFS is that the latter stores attributes independently from the

index of these attributes, and thus allows searches to make use of them outside of queries.

11.3.3 User-level File Systems

Although not central to the dissertation, SETS does make use of user-level �le system

client subsystems through Coda's Minicache. The chief bene�ts of this approach are the

ease of prototyping wardens and the ability to dynamically extend SETS to access objects

in other systems. Recently, a number of other techniques have allowed �le systems to
be extended in a similar manner. For instance, Linux provides dynamically loadable

modules with which one can add a new �le system on the 
y. Although this increases
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dynamic extensibility, it does not simplify the job of prototyping since new modules run

as part of the kernel.

Watchdogs[8] and the Intensional File System[20] both provide a mechanism to allow
users to modify the semantics of �le system operations. Watchdogs allow users to attach

a program to �les or directories. When the object is accessed, the operation is passed by

the kernel to the watchdog process. The watchdog can then either satisfy the operation
itself to provide modi�ed semantics, or let the system handle the request to provide the

default semantics. Although not directly relevant to SETS, similar techniques could be
used in the execution of queries.

The Intensional File System modi�es the standard Unix name syntax to allow programs

to be executed as part of name resolution. The result of executing the program can be
used as a name, to be further resolved by the system in order to satisfy the original call.

Thus IFS is also similar to SETS' executable membership speci�cations. The Intensional

File System is implemented in libraries at the user level, and provides neither a secure
environment in which to execute the commands nor a tight integration with the system.

11.4 Conclusion

In summary, the problem of I/O latency and the lack of support for search applications

are critical to the future of distributed systems. Dynamic sets provides a unique solution
to the problem of I/O latency for search applications, and increases system support
for search by supporting iteration over sets and query execution. Dynamic sets can
substantially reduce latency for search without requiring modi�cations to protocols or
servers, without violating software engineering principles, and without relying on caching.
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Conclusion

A key goal of distributed systems is to provide prompt access to shared information

repositories. The high latency of remote access is a serious impediment to this goal.

Latency is especially problematic for search, a critical application, because it tends to
access many objects and may experience long latencies for each object accessed. Existing

techniques like caching, inferential prefetching, or explicit prefetching are either ine�ec-
tive at reducing latency for search, or greatly increase the complexity of the programming
model.

This dissertation shows that dynamic sets can substantially reduce the aggregate latency
of search applications. Dynamic sets o�er a powerful interface for search applications

without sacri�cing the simplicity of the �le system interface. An application's use of
dynamic sets discloses hints of future access to the system. The system can use these
hints to drive an informed prefetching engine, thereby reducing the aggregate I/O latency

to process set members. Dynamic sets o�er the bene�ts of prefetching: overlapping
concurrent requests to exploit I/O parallelism, overlapping computation and I/O, and

more e�cient resource utilization. In addition, dynamic sets allow the system to reorder
access to set members to fetch them more e�ciently.

Dynamic sets are unique in that they o�er the performance improvements of asynchrony

without signi�cantly increasing the complexity of the system interface. Instead, dynamic
sets o�er clean and well-de�ned semantics, and increase the power of existing interfaces

by supporting iterators, associative naming, and direct management of sets of objects.
In addition, dynamic sets adhere to well-established software engineering principles by

preserving the strong boundary between applications and the system.

195
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12.1 Contributions of the Dissertation

The original insight of this dissertation is that current interfaces restrict a system's ability

to reduce latency, and that a small and carefully designed set of interface extensions
can overcome this limitation without sacri�cing the integrity of the system interface.

Dynamic sets can substantially reduce or eliminate I/O latency for a variety of search
applications on a broad range of systems. Further, they achieve this without pushing

the onus of reducing latency to the application programmer, which would both result in

ine�ciency and unnecessarily complicate the programming model. The demonstration
of the dynamic sets abstraction and its bene�ts are thus the primary bene�t of this

dissertation.

Speci�c contributions of this dissertation are listed below, categorized in four major areas:

� Design

The design of the dynamic sets abstraction provides a powerful yet natural and easy-

to-use extension to the �le system interface. Dynamic sets expose asynchrony to

the application programmer in a well-de�ned and controlled fashion. In addition,
dynamic sets are designed to minimize restrictions on the implementation. In
particular, dynamic sets can be implemented without modifying underlying system
protocols or servers, and still achieve substantial reductions in latency.

� Implementation

This dissertation described SETS, an implementation of dynamic sets as an exten-
sion to the �le system interface of Mach 2.6. SETS experimentally validates the
design by showing that dynamic sets can be implemented in a clean and e�cient
manner, achieving all of the bene�ts of the design. Further, SETS demonstrates

that a single tunable prefetching engine can provide performance improvements on
a range of platforms, from search on local disk �les to search on the WWW.

The implementation serves as a platform for further research in areas such as dy-

namic system adaptation to changing resource availability, mobile search on global

distributed systems, and function shipping to reduce network bandwidth consump-
tion. In addition, SETS may prove to be useful as a platform on which to explore
the bene�ts of dynamic sets in domains such as data mining.

� Qualitative Evaluation

Another contribution of the dissertation is a qualitative evaluation of the applica-

tion and system interfaces of dynamic sets through the implementation of several

applications and wardens. The applications include a number of Unix search util-

ities such as grep, ls and more, and the Mosaic WWW browser, and represent
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both interactive and non-interactive search tools. The wardens allow SETS to ac-

cess data in a variety of distributed systems, including the WWW, SQL databases,

NFS, and the Coda �le system.

This experience, although subjective, does indicate that the dynamic sets pro-
gramming model is indeed suitable to support search applications and is simple

to program. Changes to the Unix applications involve a handful of lines of source
code; changes to Mosaic are more extensive because they also involved extensions to

the GUI. In addition, the design of the warden interface allows support for new dis-

tributed systems to be easily added to SETS. The NFS and Coda wardens which
were based on existing client subsystems were easy to implement, requiring less

than one percent additional code and a few days of e�ort. The HTTP and SQL
wardens required more work, but were implemented from scratch. Based on the

experience of adding these four wardens, I conjecture that support for other GDIS
or DFS could be added to SETS with a minimal investment of time.

� Quantitative Evaluation

A fourth contribution of this dissertation is the quantitative evaluation of the per-

formance bene�ts of dynamic sets. This evaluation consists of three experiments,
each of which examines the bene�ts of SETS to search in a di�erent domain: GDIS,
DFS, and local �le systems. Together, the three experiments show that the perfor-
mance bene�ts of using SETS are robust across a range of very di�erent systems,

including one for which SETS was not intended. An additional contribution of the
evaluation is a performance model which characterizes the performance bene�t of
dynamic sets.

The GDIS experiment examined the e�ect of SETS on interactive search on the

WWW through trace replay, and found that SETS provided an order of magnitude
reduction in I/O latency seen by the application. The DFS experiment used a
synthetic benchmark to examine the e�ect of SETS on search on NFS �les. This

experiment shows that SETS can decrease runtime by up to half over a range of

factors, as predicted by the model; in some cases SETS can eliminate I/O stalls
altogether. The third experiment used the same synthetic benchmark to determine

the performance bene�t of SETS on search on the Unix Fast File System. Although
not designed for this domain, SETS was still able to provide signi�cant reductions

in latency for small and medium-sized �les under a wide range of conditions, and

for large �les under a smaller range.
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12.2 Future Work

This dissertation points out a number of minor modi�cations which would improve the
implementation of dynamic sets. For instance, the NFS and FFS tests found that SETS

increased the cost of I/O in certain circumstances by interleaving accesses to di�erent

�les through prefetching. In addition, the FFS test performed poorly on large �les

because of a limitation on the prefetching engine due to an aspect of Mach's bu�er cache
implementation. Although SETS performs well enough as is, �xing these minor problems

would improve its usefulness in these situations.

Beyond these minor enhancements, the contributions of this dissertation could be strength-
ened in the areas of evaluation, performance, and dynamic adaptability. Each of these

areas is discussed in the following subsections. Some of these points will be addressed by
other members of the Odyssey project; others are left as suggestions.

12.2.1 Further Qualitative Analysis

The experiments and implementation which comprise the evaluation described by this
dissertation conclusively demonstrate the tremendous performance improvements that
can result from using sets. These results could be strengthened by a broader validation
which examines the utility of dynamic sets, for instance through deployment to an exter-

nal community of users. Such an exercise would answer a number of open questions. Do
opportunities exist to express applications' �le needs as dynamic sets? Can users employ
dynamic sets to perform search? Can users precisely specify membership, or does set
membership necessarily include false positives? If so, does the presence of these false set

members in
uence the performance bene�ts of sets? Most importantly, does the use of
sets improve the overall runtime of search in practice?

The exploration of two interesting avenues might answer these questions. One would

be to reimplement the SETS functionality as a Netscape plug-in or Java applet. Doing

so would allow any user of the WWW to download dynamic sets and gain most of the

bene�ts of SETS. In addition, it would become possible to study some of these users
to determine how they use dynamic sets. Such an implementation is necessarily less
general and e�cient than SETS, since it will only run within Netscape or other Java-

enhanced browsers at the user level. However, it may still possible to achieve signi�cant
performance improvements with such an approach.

A second avenue to explore would be to re-design the user interface to SETS applications,

train a user population on the use of dynamic sets, and then perform a study of how
dynamic sets in
uence the users' search behavior. Possible extensions to the current

interface include specifying set membership by highlighting portions of a WWW page
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with the mouse, color coding the names in a digest to indicate which have been fetched,

and allowing users to indicate use of SETS for forms and inlined-images on a page-by-page

basis.

A di�erent extension of the evaluation would be to explore the bene�ts of sets in domains
other than search. Examples of such domains are listed in Section 3.3. SETS could be

used as a platform for such exploration, perhaps after porting it to a more suitable

operating system such as Linux[5] or NetBSD[59].

12.2.2 Enhancing the Performance of SETS

An explicit goal in the design of dynamic sets was to avoid modifying protocols or servers

to support sets. If, however, one were to remove this restriction there are several oppor-
tunities to improve the performance of SETS, or to reduce bandwidth consumption. The

set could be exposed to lower levels of the system, such as to proxies or servers, to allow

them to obtain the bene�ts of SETS to reduce latency.

One such opportunity improves search performance on a low bandwidth link and results
from exposing sets to a proxy. As discussed in Section 8.2.4, a low bandwidth link
between a client and the Internet introduces a problem: overcoming Internet latencies

demands concurrent access, but doing so may overwhelm the weak link. If one added a
proxy on the remote side of the weak link, the proxy could expand the set and fetch the
members to its local disk utilizing its high bandwidth connection to the servers to fetch

objects concurrently. The client could then optimize use of the low bandwidth link when
fetching from the proxy.

A second extension mentioned in Section 3.2.3.4 involves partially exposing a set's mem-
bership to the server to enable batching. Batching allows the client to fetch multiple
objects with one request, and reduces the number of packet exchanges. In addition, this

technique could make use of compression to reduce the amount of bandwidth transmit-

ted, or reuse the connection in protocols which currently establish a new connection for
every request (such as the WWW's HTTP protocol)[54].

A third extension would completely expose sets to servers to enable function shipping.

Clients ship a �lter to servers; this small piece of code can examine a server's data locally.

Objects that satisfy the �lter are shipped back to the client for closer examination. If the
�lter is successful, fewer objects need to be shipped and the ones that are shipped are

more likely to satisfy the search. In addition to lowering bandwidth consumption, these
�lters may increase the productivity of users by showing them higher quality matches to

their searches.
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12.2.3 Dynamic Adaptation to Changing Resources

In performing the experiments and in use of the system, it became clear to me that a

prefetching engine must be tunable in order to perform well across the range of systems

pertinent to this dissertation. As described in Chapter 6 (in Figure 6.5), the SETS'

prefetching engine has �ve parameters, plus one which results from use of the Mach

bu�er cache. Although one may manually set these parameters, SETS does not provide

a mechanism that automatically tunes these parameters to adapt the behavior of the

prefetching engine to suit current resource availability.

The basic idea of dynamically tuning these parameters is that optimal performance comes
from pushing the system as aggressively as possible without driving the system into over-

load. The appropriate level of aggressiveness depends on the current situation. For in-

stance, in the NFS experiments on the Ethernet, SETS bene�ted when limitOpens> S,
since it could overlap use of the network with work at the server. However, this same
setting produced poor performance on Wavelan or SLIP by overloading the network.
Reducing the value of limitOpens improved the performance for these lower bandwidth
networks. In general, the ability to dynamically adapt to changing resource availability
would result in more e�cient resource utilization. Dynamic adaptability would be espe-

cially valuable to clients which see a large range of performance, such as mobile clients
which are sometimes directly connected to an Ethernet, sometimes to a wireless network,
and sometimes connected over SLIP.

The key unanswered question is whether or not there exist reasonable algorithms which
can infer the right settings for SETS parameters using information available to the client.

One such algorithm measures the response time from NFS servers and the average I/O

to the local disk, and prefetches NFS �les to the local disk if the server is too slow. The
dangers of these algorithms is that they may lead to thrashing and device overutilization

by either reacting too quickly to transients or through positive feedback loops.

The idea of dynamically adapting to changing resources is not new. Dynamic window
sizing network protocols such as the one used in TCP[35] or Coda[56] tune the behavior

of a network connection to increase the average bandwidth over a long transfer of data.

A dynamically adapting prefetching mechanism is slightly more complicated, however,

as it has more degrees of freedom.

12.3 Closing Remarks

Reducing I/O latency is critical to the continuing success of distributed systems. Long

latencies lower the productivity of users. Variance in the length of the delay increases

their annoyance. Unfortunately, technology and usage trends indicate that latency will
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continue to be a problem, and may worsen as latencies grow longer relative to CPU

speeds. With the large growth in use of global distributed systems like the WWW, load

from usage is likely to overwhelm the increase in performance from technology for the

foreseeable future. Existing techniques to overcome latency either depend on temporal

locality or shift the burden of providing e�cient data access to the programmer.

Dynamic sets address the problem of I/O latency by exposing the bene�ts of asynchrony
to applications through a controlled and well-de�ned interface. By using sets, applications

disclose hints of future data needs to the system, and the system can use these hints to
drive a prefetching engine to reduce the aggregate latency of accessing a set of objects.

Use of a set is also an indication that reordering access to the members is acceptable to

the application, which frees the system to fetch the members in optimal order.

This dissertation demonstrates that dynamic sets can o�er substantial reductions in la-

tency to applications without signi�cantly increasing the complexity of the programming

interface. The experiments presented herein have shown that dynamic sets can reduce
latency by up to an order of magnitude, can eliminate I/O stalls in some cases, and that

these bene�ts are robust across a diverse set of domains. Further, adding the dynamic
set abstraction to a system enhances its functionality by supporting iterators, associative

naming, and direct management of sets of objects. With these advantages, I believe

dynamic sets will become a standard feature of distributed systems on which search is a
common operation.
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)

N

SETCLOSE ( 2 ) SETS Programmer’s Manual SETCLOSE ( 2

AME
setClose – deallocate a set descriptor

SYNOPSIS
##include <<sys/sets.h>>

D

setClose(int d)

ESCRIPTION
The setClose call deletes a descriptor from the per-process set reference table. If this is the last refer-

a
ence to the set, then it will be deactivated. For example, on the last close of a set the currentiterator
ssociated with the file is lost; and the set’sdescriptor is no longer valid. If this descriptor is the last

b
reference to a set, all holds on objects in the set will be released, and the resources (memory) consumed
y the set will be freed.

A close of all of a process’s descriptors is automatic onexit , but since there is a limit on the number of

W

active descriptors per process,close is necessary for programs that deal with many descriptors.

hen a process forks (seefork(2)), all descriptors for the new child process reference the same objects
-

c
as they did in the parent before the fork. If a new process is then to be run usingexecve(2), the pro
ess would normally inherit these descriptors. Most of the descriptors can be rearranged withdup2(2)

n
or deleted withsetClose before theexecve is attempted, but if some of these descriptors will still be
eeded if the execve fails, it is necessary to arrange for them to be closed if the execve succeeds. For

a
this reason, the call ‘‘fcntl(d, FiSETFD, 1)’’ is provided, which arranges that a descriptor will be closed
fter a successful execve; the call ‘‘fcntl(d, FiSETFD, 0)’’ restores the default, which is to not close the

b
descriptor. Similarly, a set that is opened with the ‘‘SETSiNODUPiONiFORK’’ will not be inherited
y the child process (seesetOpen(2)).

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value of –1 is returned and the glo-

ERRORS

bal integer variableerrno is set to indicate the error.

SetClose will fail if:

[EBADF] d is not an active set descriptor.

[

[EINVAL] The process has no open sets.

EOPNOTSUPP] Sets are not supported on this machine.

SEE ALSO
accept(2), flock(2), setOpen(2), execve(2), fcntl(2), close(2)
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)

N

SETDIGEST ( 2 ) SETS Programmer’ s Manual SETDIGEST ( 2

AME
setDigest – get a list of member names

SYNOPSIS
##include <<sys/set.h>>

int setDigest(int set, struct digest ∗∗ buf, int count);

DESCRIPTION
setDigest returns a list of the names of set members in the buffer buf. count should hold the size of the

e
n
buffer in bytes. setDigest will return as many names as it can fit into the buffer. If it cannot return th
ames of all unyielded members, the last entry will hold the string ‘‘ ...’’ . If this is the case, the next

t
call to setDigest will return these unyielded names; successive calls are guaranteed to avoid returning
he same name twice (with the obvious exception of the special name ‘‘ ...’’ ).

e
b
The structure struct digest contains two fields, next and name. next is a pointer to the next digest in th
uffer, name is a null-terminated string containing the next name.

RETURN VALUE
The value returned by setDigest is either a whole number indicating the amount of data that was

t
returned or -1 to indicate an error. If -1 is returned, the global integer variable errno is set to indicate
he error.

ERRORS
The named file is opened unless one or more of the following are true:

[

[EBADF] d is not an active set descriptor.

EINVAL] The process has no open sets.

.[EOPNOTSUPP] Sets are not supported on this machine

OSEE ALS
setOpen(2), setIterate(2)
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)

N

SETINTERSECT ( 2 ) SETS Programmer’ s Manual SETINTERSECT ( 2

AME
setIntersect – create a new set to be the intersection of 2 existing sets.

SYNOPSIS
##include <<sys/set.h>>

int setIntersect(int set1, int set2, int flags);

DESCRIPTION
setIntersect creates a new set which is the intersection of two existing sets. set1 and set2 are handles

t
s
for sets created earlier by setOpen(2), setUnion(2), setIntersect(2), or setRestrict(2). The flags argumen
elects the desired behavior for this set, see setOpen(2) for more details.

e
d
setIntersect returns a set descriptor which can be used in future operations on this set. Since sets ar
ynamic and transitory in nature, the set will only exist until setClose(2) is called on this set.

RETURN VALUE
The value returned by setIntersect can be used as an argument to other set operations, such as

t
d
setIterate(2). However, other Unix operations that expect a file descriptor will fail if given a se
escriptor. The new descriptor will remain open across execve system calls; see close(2). If the opera-

T

tion fails, -1 will returned and errno will hold a code indicating the error that occurred.

he system imposes a limit on the number of set descriptors open simultaneously by one process.

ERRORS

Getdtablesize (2) returns the current system limit.

The named file is opened unless one or more of the following are true:

.

[

[EBADF] The set handles set1 or set2 do not refer to valid sets

EMFILE] The system limit for open set descriptors per process has already been reached.

[

[ENFILE] The system set table is full.

EINVAL] The process has no open sets.

.[EOPNOTSUPP] Sets are not supported on this machine

OSEE ALS
close(2), dup(2), getdtablesize(2), setClose(2), setOpen(2), setUnion(2), setRestrict(2)
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)

N

SETITERATE ( 2 ) SETS Programmer’ s Manual SETITERATE ( 2

AME
setIterate – open the next object in a sequence of set members

SYNOPSIS
##include <<sys/set.h>>

setIterate(char ∗∗ set, int flags, char ∗∗ buf, int bufsize, int ∗∗ error);

DESCRIPTION
setIterate returns an open file descriptor for the next unyielded member of a set. The order of objects

t
e
returned is not defined. It is guaranteed that setIterate will never return the same object twice, and tha
very member will be returned by setIterate if it is called a sufficient number of times (equal to the size

S

of the set). SETS also guarantees that all members of a set satisfy the set’ s membership specification.

ince there is no way to determine the name of an object given a file descriptor for it, setIterate allows

n
an application to ask for the member’ s name along with the open descriptor. An application requests a
ame by supplying a buffer and setting SETSiGETNAME in the flags argument. buf should point to a

I

valid buffer, and bufsize should contain the length of the buffer in bytes.

t is sometimes the case that SETS was unable to fetch a member due to an fetch error. If the applica-

e
tion wishes to see these error codes, it should supply a pointer to an integer in the error field. If the
rror field is set and the SETSiGETERR flag is set in flags, setIterate will return error codes for failed

o
i
member fetches (possibly returning the name as will if SETSiGETNAME is also set), returning a 0 t
ndicate the error. If not set, SETS will skip over that member but mark it as seen.

RETURN VALUE
Upon successful completion, setIterate returns a (non-zero,non-negative) open file descriptor which will

f
give the application read-only access to a previously unyielded set member. This descriptor can be used
or any non-mutating operation that accepts file descriptors, such as close(2). Although this descriptor

-
g
will be automatically closed when the set is closed (such as via setClose(2)), it is usually good pro
ramming style to close a file descriptor when it is no longer needed.

o
b
If there are no more members to yield and the set is fully expanded, setIterate returns 0. A 0 may als
e returned if SETSiGETERR was set, but one can distinguish between these two cases by testing

l
i
error, which will be 0 if the iterator has terminated. A return code of -1 indicates an error, the globa
nteger variable errno is set to indicate the error.

ERRORS
The named file is opened unless one or more of the following are true:

[

[EBADF] d is not an active set descriptor.

EINVAL] The process has no open sets; SETSiGETNAME is set and buf is NULL or bufsize is

[

negative; or SETSiGETERR is set but error is NULL.

EOPNOTSUPP] Sets are not supported on this machine.

SEE ALSO
open(2), setOpen(2), setUnion(2), setRestrict(2), setDigest(2)

BUGS
Unfortunately the way Unix returns errors is really ugly so setIterate cannot raise an exception or in
some other way distinguish between set errors, fetch errors, and termination of the iterator.
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)

N

SETMEMBER ( 2 ) SETS Programmer’ s Manual SETMEMBER ( 2

AME
setMember – Membership predicate over sets

SYNOPSIS
##include <<sys/set.h>>

;

D

int setMember(int set, char ∗∗ path)

ESCRIPTION
setMember can be used to determine if a particular file specified by path is a member of the set

t
r
specified by the set handle set (see setOpen(2)). The name of path should be the name of the objec
elative to the set, i.e. the name that resulted from SETS evaluation the specification when the set was

.
s
created (see setOpen(2)). Alternatively, the name of objects can also be obtained from setDigest(2)
etMember returns a nonzero value if the object is a member, otherwise it returns zero.

a
m
If SETS has not yet fully determined the set’ s membership, it can only answer correctly if the file is

ember of this set. If the member is not known to be a member at the time setMember is called, set-

b
Member will return 0 and the test ISiPARTIAL(return), will succeed, where return is the value returned
y setMember.

RETURN VALUE
Upon successful completion, setMember will return a negative integer if the object is not a member,

ERRORS

and a positive integer if it is.

If either argument is invalid, setMember will return zero and set errno to indicate the error. The follow-

[

ing values are possible:

ENOTDIR] A component of the path prefix is not a directory.

.

[

[EAMBIG] Due to the nature of sets it cannot be told if the object is a member

EINVAL] The pathname contains a character with the high-order bit set.

[

[EINVAL] The set handle does not refer to an open set.

ENAMETOOLONG]
A component of a pathname exceeded 255 characters, or an entire path name

[

exceeded 1023 characters.

ENOENT] A component of the path name that must exist does not exist.

.

[

[EACCES] Search permission is denied for a component of the path prefix

ELOOP] Too many symbolic links were encountered in translating the pathname.

[

[EFAULT] Path points outside the process’ s allocated address space.

EOPNOTSUPP] Sets are not supported on this machine.

SEE ALSO
setOpen(2), setIterate(2), setDigest(2)

BUGS
Unfortunately the way Unix returns errors is really ugly so that there is no easy or clean way to indi-
cate partial membership expansion in a clean way.
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)

N

SETOPEN ( 2 ) SETS Programmer’ s Manual SETOPEN ( 2

AME
setOpen – open a set for perusal.

SYNOPSIS
##include <<sys/set.h>>

int setOpen(char ∗∗ specification, int flags);

DESCRIPTION
setOpen opens the set specified by specification for perusal, either by iteration or by digestion. The flags

s
argument is used to select specific behavior for the set or to indicate intended use. setOpen returns a
et descriptor which can be used in future operations on this set. Since sets are dynamic and transitory

S

in nature, the set will only exist until setClose(2) is called.

pecification is the address of a string of ASCII characters representing a specification, terminated by a

p
null character. The syntax and semantics of the specification language are beyond the scope of this man
age, please refer to the Chapter 4 of the dissertation for more details.

c
b
There are a number of flags which can be passed in, which allow the application to request specifi

ehaviors for this set.
SETSiNODUPiONiFORK Prevent children from inheriting this set.

.
S
SETSiDUPiONiFORK Duplicate set in children, but do not share iterator

ETSiSHARESET Share set and iterators with children.
.

S
SETSiANTICIPATEiDIGEST Tell system to aggressively expand membership

ETSiANTICIPATEiITERATE Tell system to aggressively begin to prefetch members.

RETURN VALUE
The value returned by setOpen can be used as an argument to other set operations, such as setIterate(2).

d
However, other Unix operations that expect a file descriptor will fail if given a set descriptor. The new
escriptor will remain open across execve system calls; see close(2). If the operation fails, -1 will

T

returned and errno will hold a code indicating the error that occurred.

he system imposes a limit on the number of file and set descriptors open simultaneously by one pro-

ERRORS

cess. Getdtablesize (2) returns the current system limit.

The named set is opened unless one or more of the following are true:

n[EINVAL] The specification contains a character with the high-order bit set, or the specificatio
string is Null.

[ENAMETOOLONG]
A component of a specification exceeded 255 characters, or an entire specification

[

exceeded 1023 characters.

ENOENT] A component of the specification that must exist does not exist.

.

[

[ELOOP] Too many symbolic links were encountered in translating the specification

EMFILE] The system limit for open set descriptors per process has already been reached.

[

[ENFILE] The system set table is full.

EFAULT] Specification points outside the process’ s allocated address space.

[EOPNOTSUPP] Sets are not supported on this machine.

OSEE ALS
setClose(2), fork(2), dup(2), getdtablesize(2)
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)

N

SETRESTRICT ( 2 ) SETS Programmer’ s Manual SETRESTRICT ( 2

AME
setRestrict – Open a subset by applying a restriction to an open set.

SYNOPSIS
##include <<sys/sets.h>>

setRestrict(int set, char ∗∗ specification, int flags);

DESCRIPTION
setRestrict creates a new set by applying a restriction function to an existing set. The new set is

r
a
guaranteed to be a subset (or equivalent) to the set specified by set. The specification argument is eithe

string interpretable by SETS (see below) or is the pathname of an executable function to be run by
t

r
SETS. The flags argument is used to specify set behavior, ala the flags used in setOpen(2). setRestric
eturns a set descriptor which can be used in future operations on this set. Since sets are dynamic and

T

transitory in nature, the set will only exist until setClose(2) is called on this set.

he specification is expanded relative to the base (input) set’ s membership. For instance, the
’

w
specification string ‘‘ ∗ ’’ would select all members of the base set for membership in the new set, ‘‘ d∗ ’

ould select only those that begin with a ‘‘ d’’ .

The system imposes a limit on the number of file and set descriptors open simultaneously by one pro-

R

cess. Getdtablesize (2) returns the current system limit.

ETURN VALUE
The value returned by setRestrict can be used as an argument to other set operations, such as

t
d
setIterate(2). However, other Unix operations that expect a file descriptor will fail if given a se
escriptor. The new descriptor is set to remain open across execve system calls; see setClose(2). If the

ERRORS

operation fails, -1 will returned and errno will hold a code indicating the error that occurred.

The restricted set is opened unless one or more of the following are true:

[

[EBADF] set is not an active set descriptor.

EINVAL] The process has no open sets.

[ENAMETOOLONG]
A component of a specification exceeded 255 characters, or an entire specification

[

exceeded 1023 characters.

EMFILE] The system limit for open file descriptors per process has already been reached.

[

[ENFILE] The system-wide set table is full.

EFAULT] Specification points outside the process’ s allocated address space.

[EOPNOTSUPP] Sets are not supported on this machine.

OSEE ALS
close(2), dup(2), getdtablesize(2), setUnion(2), setOpen(2)
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)

N

SETSIZE ( 2 ) SETS Programmer’ s Manual SETSIZE ( 2

AME
setSize – Determine the cardinality of (number of elements in) a set.

SYNOPSIS
##include <<sys/sets.h>>

D

int setSize(int set);

ESCRIPTION
setSize returns the number of elements in a set. set is the handle (descriptor) of a set returned by setO-

r
a
pen(2). setSize either returns the actual number of elements (if the set’ s membership is fully defined) o
n approximation which is guaranteed to be less than or equal to the actual numbers of the set (if the

e
r
membership is only partly defined). In this case, the test ISiPARTIAL(return), will succeed, wher
eturn is the value returned by setSize.

RETURN VALUE
The value returned is the size of the set, or -1 if an error occurs. In case of an error, errno will be set to

ERROR

indicate the nature of the error that occurred.

The following errors are possible:

.

[

[EBADF] set is not an active set descriptor

EINVAL] The process has no open sets.

.[EOPNOTSUPP] Sets are not supported on this machine

OSEE ALS
setOpen(2), setUnion(2), setRestrict(2), setIterate(2)

BUGS
Unfortunately the way Unix returns errors is really ugly so that there is no easy or clean way to indi-
cate partial membership expansion in a clean way.
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)

N

SETUNION ( 2 ) SETS Programmer’ s Manual SETUNION ( 2

AME
setUnion – create a new set to be the union of 2 existing sets.

SYNOPSIS
##include <<sys/set.h>>

int setUnion(int set1, int set2, int flags);

DESCRIPTION
setUnion creates a new set which is the union of two existing sets. set1 and set2 are handles for sets

s
t
created earlier by setOpen(2), setUnion(2), setIntersect(2), or setRestrict(2). The flags argument select
he desired behavior for this set, see setOpen(2) for more details.

e
d
setUnion returns a set descriptor which can be used in future operations on this set. Since sets ar
ynamic and transitory in nature, the set will only exist until setClose(2) is called on this set.

RETURN VALUE
The value returned by setUnion can be used as an argument to other set operations, such as iterate(2).

d
However, other Unix operations that expect a file descriptor will fail if given a set descriptor. The new
escriptor is set to remain open across execve system calls; see close(2). If the operation fails, -1 will

T

returned and errno will hold a code indicating the error that occurred.

he system imposes a limit on the number of set descriptors open simultaneously by one process.

ERRORS

Getdtablesize (2) returns the current system limit.

The named file is opened unless one or more of the following are true:

.

[

[EBADF] The set handles set1 or set2 do not refer to valid sets

EMFILE] The system limit for open set descriptors per process has already been reached.

[

[ENFILE] The system set table is full.

EINVAL] The process has no open sets.

.[EOPNOTSUPP] Sets are not supported on this machine

OSEE ALS
close(2), dup(2), getdtablesize(2), setIntersect(2), setRestrict(2)
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)

N

SETWEIGHT ( 2 ) SETS Programmer’ s Manual SETWEIGHT ( 2

AME
setWeight – Assign weights (or priorities) to members

SYNOPSIS
##include <<sys/set.h>>

int setWeight(int set, int ∗∗ weights, int count);

DESCRIPTION
setWeight can be used to inform SETS of the relative importance of the set members. weights is an

r
o
integer array with count elements, where count should be less than or equal to the set’ s size. The orde

f the elements in the weight array should match the order in which setDigest(2) returned the names of

a
the members. Each element of the array should contain the relative importance of that member. The
bsolute value of the weight is unimportant. As a result of this call, the set’ s member array will be

R

sorted by member’ s weight, with ties broken arbitrarily.

ETURN VALUE
Upon successful completion, setWeight will return a negative integer will return zero and set errno to

ERROR

indicate the error.

The following values are possible for errno:

.

[

[EBADF] set is not an active set descriptor

EINVAL] The process has no open sets.

.[EOPNOTSUPP] Sets are not supported on this machine

OSEE ALS
setOpen(2), setIterate(2), setDigest(2)



214 APPENDIX A. MANUAL PAGES FOR SETS API



Bibliography

[1] Accetta, M., Baron, R., Bolosky, W., Golub, D., Rashid, R., Tevanian,

A., and Young, M. Mach: A new kernel foundation for Unix development. In

Summer USENIX Conference Proceedings (Atlanta, 1986).

[2] Bach, M. J. The Design of the Unix Operating System. Prentice Hall, Inc. A
division of Simon & Schuster, Englewood Cli�s, New Jersey 07632, 1986. Chapter
3: The Bu�er Cache.

[3] Baker, M. G., Hartman, J. H., Kupfer, M. D., Shirriff, K., and Ouster-

hout, J. K. Measurements of a distributed �le system. In Proceedings of the 13th
ACM Symposium on Operating Systems Principles (October 1991).

[4] Baldazo, R. Navigating with a web compass. Byte 21, 3 (Mar. 96).

[5] Beck, M., B�ohme, H., Dziadzka, M., Kunitz, U., Magnus, R., and Ver-

worner, D. Linux Kernel Internals. Addison-Wesley Publishing Company, Inc.,
1996. Comes with a CD-ROM containing a distribution of Linux.

[6] Berners-Lee, T., Cailliau, R., Luotonen, A., Nielsen, H., and Secret,

A. The World Wide Web. Commun. ACM 37, 8 (August 1994).

[7] Berners-Lee, T., Fielding, R., and Frystyk, H. HTTP/1.0 Internet Draft,
third edition. IETF Hypertext Transfer Protocol (HTTP) Working Group, Nov.

1994. Available as http://www.w3.org/hypertext/WWW/Protocols/.

[8] Bershad, B., and Pinkerton, C. B. Watchdogs { extending the UNIX �le

system. Computing Systems 1, 2 (Spring 1988).

[9] Bershad, B. N., Savage, S., Pardyak, P., Sirer, E. G., Fiuczynski, M.,

Becker, D., Eggers, S., and Chambers, C. Extensibility, safety and perfor-

mance in the SPIN operating system. In Proceedings of the 15th ACM Symposium

on Operating Systems Principles (December 1995).

215



216 BIBLIOGRAPHY

[10] Birrell, A., Levin, R., Needham, R., and Schroeder, M. Grapevine: An

exercise in distributed computing. Commun. ACM 25, 4 (April 1982).

[11] Bowman, M., Spasojevic, M., and Spector, A. File system support for

search. Transarc white paper, 1994.

[12] Cao, P. Application Controlled File Caching and Prefetching. PhD thesis, Prince-
ton University, 1996. Available as technical report Princeton TR-CS-522-96.

[13] Cao, P., Felten, E. W., Karlin, A., and Li, K. A study of integrated prefetch-
ing and caching strategies. In Proceedings of the ACM SIGMETRICS Conference

on Measurement and Modeling of Computer Systems (May 1995).

[14] Cao, P., Felten, E. W., and Li, K. Implementation and performance of
application-controlled �le caching. In Proceedings of the First USENIX Symposium

on Operating Systems Design and Implementation (November 1994).

[15] Cate, V. Alex - a global �le system. In Proceedings of the USENIX 1992 File

Systems Workshop (Ann Arbor, MI, 1992).

[16] Chen, C. M., and Roussopoulos, N. Adaptive database bu�er allocation using
query feedback. In Proceedings of the 19th VLDB Conference (Dublin, Ireland,

1993).

[17] Chen, J. B., and Bershad, B. N. The impact of operating system structure

on memory system performance. In Proceedings of the 14th ACM Symposium on

Operating Systems Principles (December 1993).

[18] Chou, H., and DeWitt, D. An evaluation of bu�er management strategies for
relational database systems. In Proceedings of the 11th Int. Conf. on Very Large
Data Bases (Stockholm, 1985).

[19] Curewitz, K. M., Krishnan, P., and Vitter, J. S. Practical prefetching via

data compression. In Proceedings of the 1993 ACM Conf. on Management of Data
(SIGMOD) (May 1993).

[20] Eggert, P., and Parker, D. File systems in user space. In Winter USENIX
Conference Proceedings (San Diego, 1993).

[21] Emtage, A., and Deutsch, P. Archie { an electronic directory service for the

internet. In Winter USENIX Conference Proceedings (San Francisco, 1992).

[22] Enderton, H. B. Elements of Set Theory. Academic Press, a division of Harcourt

Brace Javanovich, Publishers, 111 Fifth Avenue, New York, New York 10003, 1977.



BIBLIOGRAPHY 217

[23] Engler, D. R., Kaashoek, M. F., and O'Toole Jr., J. An operating system

architecture for application-level resource management. In Proceedings of the 15th

ACM Symposium on Operating Systems Principles (December 1995).

[24] Firestone, D., Project Manager, Tables of Contents, INC. Personal Communica-

tions, Message ID: 01BB6E44.AAF476C0@dick.�restone. Jul 10, 1996.

[25] Fox, A., Gribble, S. D., Brewer, E. A., and Amir, E. Adapting to network

and client variability via on-demand dynamic distillation. In The ACM Seventh

International Conference on Architectural Support for Programming Languages and

Operating Systems (Cambridge, October 1996).

[26] Gifford, D. K., Jouvelot, P., Sheldon, M. A., and O'Toole, Jr., J. W.

Semantic �le systems. In Proceedings of the 13th ACM Symposium on Operating

Systems Principles (October 1991).

[27] Glassman, S. A caching relay for the world wide web. Computer Networks and

ISDN Systems 27, 2 (Nov. 1994). Special Issue: selected papers from the First

International WWW Conference.

[28] Griffioen, J., and Appleton, R. Reducing �le system latency using a predictive

approach. In Summer USENIX Conference Proceedings (June 1994).

[29] Griffioen, J., and Appleton, R. The design, implementation, and evaluation
of a predictive caching �le system. Tech. Rep. CS-264-96, Department of Computer
Science, University of Kentucky, June 1996.

[30] Grimshaw, A. S., and Loyot, E. C., J. ELFS: Object-oriented extensible
�le systems. Tech. Rep. TR-91-14, Computer Science Department, University of

Virginia, July 1991.

[31] Gwertzman, J. S., and Seltzer, M. The case for geographical push-caching. In

Proceedings of the Fifth Workshop on Hot Topics in Operating Systems (HOTOS-V)
(Orcas Island, WA, May 1995).

[32] Harbison, S. P. Modula-3. Prentice Hall, 1992.

[33] Hardy, D. R., and Schwartz, M. F. Essence: A resource discovery system

based on semantic �le indexing. In Winter USENIX Conference Proceedings (San
Diego, 1993).

[34] Howard, J., Kazar, M., Menees, S., Nichols, D., Satyanarayanan, M.,

Sidebotham, R., and West, M. Scale and performance in a distributed �le

system. ACM Trans. Comput. Syst. 6, 1 (Feb. 1988).



218 BIBLIOGRAPHY

[35] Jacobson, V. Congestion avoidance control. In Proceedings of the SIGCOMM '88

Conference on Comuunications Architectures and Protocols (1988).

[36] John, R., Bowman, M., and Spasojevic, M. An extensible type system for

wide-area information management. In Proceedings of the 1994 IWOOS Workshop

(August 1995).

[37] Joseph, A. D., deLespinasse, A. F., Tauber, J. A., Gifford, D. K., and

Kaashoek, M. F. Rover: A toolkit for mobile information access. In Proceedings
of the 15th ACM Symposium on Operating Systems Principles (December 1995).

[38] Joy, W. An introduction to the C shell. In Unix User's Manual, Supplementary
Documents, M. J. Karels and S. J. Le�er, Eds. Computer Science Division, De-

partment of Electrical Engineering and Computer Science, University of California,
1980.

[39] Kahle, B., and Medlar, A. An information system for corporate users: Wide

area information servers. ConneXions { The Interoperability Report 5, 11 (Nov.

1991).

[40] Kimbrel, T., Tokmins, A., Patterson, R. H., Bershad, B., Cao, P., Fel-
ten, E. W., Gibson, G. A., Karlin, A. R., and Li, K. A trace-driven compar-
ison of algorithms for parallel prefetching and caching. In Proceedings of the Second

USENIX Symposium on Operating Systems Design and Implementation (Oct. 1996).

[41] Kistler, J. Disconnected Operation in a Distributed File System. PhD thesis,
Carnegie Mellon University, 1993. Available as technical report CMU-CS-93-156.

[42] Kleiman, S. Vnodes: An architecture for multiple �le system types in Sun UNIX.
In Summer USENIX Conference Proceedings (Atlanta, 1986).

[43] Korner, K. Intelligent caching for remote �le service. In Proceedings of the 10th

International Conference on Distributed Computing Systems (1990).

[44] Kotz, D., and Ellis, C. Practical prefetching techniques for parallel �le sys-
tems. In Proceedings of the 1st International Conference on Parallel and Distributed

Information Systems (Miami Beach, Florida, Dec. 1992).

[45] Kuenning, G. H. The design of the SEER predictive caching system. In Proceed-
ings of the Workshop on Mobile Computing Systems and Applications (Santa Cruz,

CA, Dec. 1994).



BIBLIOGRAPHY 219

[46] Kumar, P. Mitigating the E�ects of Optimistic Replication in a Distributed File

System. PhD thesis, Carnegie Mellon University, 1994. Available as technical report

CMU-CS-94-215.

[47] Leffler, S. J., McKusick, M. K., Karels, M. J., and Quarterman, J. S.

The Design and Implementation of the 4.3BSD Unix Operating System. Addison-

Wesley Publishing Company, Inc, 1989.

[48] Liskov, B., and Guttag, J. Abstraction and Speci�cation in Program Devel-

opment. The MIT EECS Series. MIT Press, Cambridge, MA ; McGraw-Hill, New

York, 1986.

[49] Long, D., Carroll, J., and Park, C. A study of the reliability of Internet

sites. In Proceedings of the 10th IEEE Symposium on Reliable Distributed Systems

(Pisa, Italy, Sept. 1991).

[50] Manber, U., and Wu, S. Glimpse: A tool to search through entire �le systems.
InWinter USENIX Conference Proceedings (1994). Also available as The University
of Arizona Department of Computer Science Technical Report TR 93-34.

[51] Mauldin, M., and Leavitt, J. Web-agent related research at the CMT.
In Proceedings of the ACM Special Interest Group on Networked Informa-
tion Discovery and Retrieval (SIGNIDR-94) (Aug. 1994). Also available as
http://fuzine.mt.cs.cmu.edu/mlm/signidr94.html.

[52] McCahill, M. The Internet Gopher: A distributed server information system.
ConneXions { The Interoperability Report 6, 7 (July 1992).

[53] McKusick, M., Joy, K., Leffler, W., and Fabry, R. A fast �le system for

Unix. ACM Trans. Comput. Syst. 2, 3 (August 1984).

[54] Mogul, J. C. The case for persistent-connection HTTP. In Proceedings of the SIG-
COMM '95 Conference on Comuunications Architectures and Protocols (1995). An

expanded version is available as Digital Equipment Corporation Western Research

Lab Research Report 95/4.

[55] Mowry, T. C., Demke, A. K., and Krieger, O. Automatic compiler-inserted
I/O prefetching for out-of-core applications. In Proceedings of the Second USENIX

Symposium on Operating Systems Design and Implementation (Oct. 1996).

[56] Mummert, L., Ebling, M., and Satyanarayanan, M. Exploiting weak con-
nectivity for mobile �le access. In Proceedings of the 15th ACM Symposium on

Operating Systems Principles (December 1995).



220 BIBLIOGRAPHY

[57] NCSA Mosaic 2.6 for X Window System. National Center for Supercom-

puting Applications, University of Illinois at Urbana-Champaign. Available as

http://www.ncsa.uiuc.edu/SDG/Software/Mosaic/NCSAMosaicHome.html.

[58] Nelson, M., Welch, B., and Ousterhout, J. Caching in the Sprite Network

File System. ACM Trans. Comput. Syst. 6, 1 (Feb. 1988).

[59] NetBSD Operating System. The NetBSD Foundation, 131 Santa Marina, San

Francisco, CA 94110. See http://www.netbsd.org.

[60] Neuman, B. The prospero �le system: A global �le system based on the virtual

system model. Computing Systems 5, 4 (Fall 1992).

[61] Niblack, W., Barber, R., Equitz, W., Flickner, M., Glasman, E.,

Petkovic, D., Yanker, P., and Faloutsos, C. The QBIC project: Querying
images by content using color, texture, and shape. Tech. Rep. RJ 9203 (81511),
IBM Research Division, 1993.

[62] OSF/1 Operating System. Open Systems Foundation, 11 Cambridge Center,
Cambridge, MA 02142-1405. See http://www.osf.org.

[63] Ousterhout, J. K. The role of distributed state. In CMU Computer Science, a
25th Anniversary Commemorative, R. F. Rashid, Ed. ACM Press, 1991, ch. 8.

[64] Ousterhout, J. K., Da Costa, H., Harrison, D., Kunze, J. A., Kupfer,

M., and Thompson, J. G. A trace-driven analysis of the UNIX 4.2 BSD �le

system. In Proceedings of the 10th ACM Symposium on Operating Systems Principles
(December 1985).

[65] Padmanabhan, V. N., and Mogul, J. C. Using predictive prefetching to im-
prove world wide web latency. ACM SIGCOMM Computer Communication Review

26, 3 (July 1996).

[66] Patterson, R. H., and Gibson, G. A. Exposing I/O concurrency with informed
prefetching. In Proceedings of the 3rd International Conference on Parallel and

Distributed Information Systems, Austin, TX (Sept. 1994).

[67] Patterson, R. H., Gibson, G. A., Ginting, E., Stodolsky, D., and Ze-

lenka, J. Informed prefetching and caching. In Proceedings of the 15th ACM
Symposium on Operating System Principles (Dec. 1995).

[68] Patterson, R. H., Gibson, G. A., and Satyanarayanan, M. A status report
on research in transparent informed prefetching. ACM Operating Systems Review

27, 2 (April 1993).



BIBLIOGRAPHY 221

[69] Pinkerton, B. Finding what people want: Experiences with the WebCrawler. In

Proceedings of the Second International WWW Conference: Mosaic and the Web

(Sept. 1994). Also available as http://www.ncsa.uiuc.edu/SDG/IT94/Proceedings/

WWW2 Proceedings.html.

[70] Postel, J., and Reynolds, J. File transfer protocol (FTP). Network Work-

ing Group Request for Comments (RFC) 959, ISI, October 1985. Available as

http://www.w3.org/hypertext/WWW/Protocols/rfc959/Overview.html.

[71] Relational Database Systems, Inc. Informix. 4 100 Bohannon Drive Menlo
Park, CA 94025.

[72] Rosenblum, M., and Ousterhout, J. The design and implementation of a log-
structured �le system. ACM Transactions on Computer Systems 10, 1 (February
1992).

[73] Ruemmler, C., and Wilkes, J. UNIX disk access patterns. In Winter USENIX
Conference Proceedings (San Diego, 1993).

[74] Sacco, G., and Schkolnick, M. Bu�er management in relational database
systems. ACM Trans. Database Syst. 11, 4 (Dec. 1986).

[75] Salton, G., and McGill, M. Introduction to Modern Information Retrieval.
McGraw-Hill, 1983.

[76] Saltzer, J., Reed, D., and Clark, D. End-to-end arguments in system design.

ACM Trans. Comput. Syst. 2, 4 (Nov. 1984).

[77] Sandberg, R., Goldberg, D., Kleiman, S., Walsh, D., and Lyon, B.

Design and implementation of the Sun Network File System. In Summer USENIX

Conference Proceedings, Portland (1985).

[78] Satyanarayanan, M. A study of �le sizes and functional lifetimes. In Proceedings

of the 8th ACM Symposium on Operating Systems Principles (December 1981).

[79] Satyanarayanan, M. RPC2 User Guide and Reference Manual. School of Com-
puter Science, Carnegie Mellon University, Oct. 1991.

[80] Satyanarayanan, M.Mobile information access. IEEE Personal Communications

3, 1 (February 1996).

[81] Satyanarayanan, M., Howard, J., Nichols, D., Sidebotham, R., Spec-

tor, A., and West, M. The ITC Distributed File System: Principles and design.
In Proceedings of the 10th ACM Symposium on Operating System Principles, Orcas

Island (Dec. 1985).



222 BIBLIOGRAPHY

[82] Satyanarayanan, M., Kistler, J., Kumar, P., Okasaki, M., Siegel, E.,

and Steere, D. Coda: A highly available �le system for a distributed workstation

environment. IEEE Trans. Comput. 39, 4 (Apr. 1990).

[83] Satyanarayanan, M., and Spasojevic, M. AFS and the Web: Competitors or

collaborators? In ACM SIGOPS European Workshop, 1996 (September 1996).

[84] Schwartz, M. F., Emtage, A., Kahle, B., and Neuman, B. C. A comparison

of internet resource discovery approaches. Computing Systems 5, 4 (Fall 1992).

[85] Shaw, M., Wulf, W. A., and London, R. L. Abstraction and veri�cation in
Alphard: De�ning and specifying iteration and generators. Commun. ACM 20, 8

(Mar. 1977). Reprinted in Tutorial: Programming Language Design, text for IEEE
Tutorial by Anthony I. Wasserman, 1980, pp. 145-155.

[86] Shoens, K., Luniewski, A., Schwarz, P., Stamos, J., and Thomas, J. The
Rufus system: Information organization for semi-structured data. In Proceedings of
the 19th International Conference on Very Large Data Bases (Dublin, Ireland, Aug.
1993).

[87] Smith, A. J. Disk cache { miss ratio analysis and design considerations. ACM
Trans. Comput. Syst. 3, 3 (Aug. 1985).

[88] Spero, S. E. Analysis of HTTP performance problems. http://sunsite.unc.edu/
mdma-release/http-prob.html, July 1994.

[89] Spero, S. E. HTTP-NG architectural overview. http://www.w3.org/pub/WWW/

Protocols/HTTP-NG/http-ng-arch.html, 1995.

[90] Steele, Jr., G. L. Common LISP. Digital Press, 1984.

[91] Steere, D., Kistler, J., and Satyanarayanan, M. E�cient user-level �le

cache management on the Sun vnode interface. In Summer USENIX Conference

Proceedings (Anaheim, CA, 1990).

[92] Steere, D., and Satyanarayanan, M. A case for dynamic sets in operating
systems. Tech. Rep. CMU-CS-94-216, School of Computer Science, Carnegie Mellon
University, November 1994.

[93] Tait, C. D., and Duchamp, D. Detection and exploitation of �le working sets. In

Proceedings of the 11th International Conference on Distributed Com puting Systems

(Arlington, TX, 1991).



BIBLIOGRAPHY 223

[94] Wahbe, R., Lucco, S., Anderson, T. E., and Graham, S. L. E�cient

software-based fault isolation. In Proceedings of the 14th ACM Symposium on Op-

erating Systems Principles (December 1993).

[95] WebCompass 1.0. Quarterdeck, Corp. Marina del Ray, CA. (800) 683-6696. Ad-
ditional information is available at http://www.quarterdeck.com.

[96] Wing, J., and Steere, D. Specifying weak sets. In Proceedings of the Interna-
tional Conference on Distributed Computer Systems (Vancouver, June 1995). Also

available as Carnegie Mellon University School of Computer Science technical report
CMU-CS-94-194.


