A Programming Interface for Application-Aware
Adaptation in Mobile Computing

Brian D. Noble, Morgan Price, and M. Satyanarayanan

February 1995
CMU-CS-95-119

School of Computer Science
Carnegie Méellon University
Pittsburgh, PA 15213

To appear in the Proceedingsfor the Second USENIX Symposium on Mobile and L ocation-Independent Computing,
April 1995, Ann Arbor, Michigan.

Abstract

Mobhile clients face wide variationsin network conditionsand local resource availability when accessing remote data.

Coping with this uncertainty requires the ahility to retrieve and present data at varying degrees of fidelity. In this paper

we present applicaton-aware adaptation as a solution to this problem. The essence of our solutionis a collaborative
partnership between applications and the operating system. We describe the Odyssey API for application-aware
adaptation and demonstrate its use in accessing two types of data: video and maps.

This research was supported by the Air Force Materiel Command (AFMC) and the Advanced Research Projects Agency
(ARPA) under contract number F19628-93-C-0193. Additional support was provided by the IBM Corporation, Intel Corporation
and AT&T Corporation. The views and conclusions contained in this document are those of the authors and should not be
interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of AFMC or ARPA or the
U. S. Government, nor of any other supporting agency.

Keywords: adaptation, mobile computing, distributed systems, video data, spatial data, UNIX

1. Introduction

Mobhile clients face many challenges in accessing data from servers. Because a mobile client has to be compact and
lightweight, it is typically resource-poor relative to a desktop client. Network connectivity, especially via wireless
media over alarge area, tends to vary considerably in bandwidth, latency, reliability and cost. Power management
considerations often require certain actions to be deferred, avoided or slowed down to prolong battery life. The
relative costs of accessing distributed services changes as mobile clients move. Finaly, the very nature of mobility
has a negative impact on robustness and security.

As a consequence of these constraints, the mechanism for mobile data access has to be adaptive in nature,
dynamically conforming to the limitations of individual clients and their current environments. We believe that
such adaptation can best be performed by a collaborative partnership between the operating system and individual
applications. We refer to this strategy as application-aware adaptation[1Q].

Application-aware adaptation characterizes the design space between two extremes. At one extreme, adaptivity is
entirely the responsibility of individual applications. This means that there is no focal point in the system to resolve
the potentially incompatibl e resource demands of individual applications. It also means that there is no way to enforce
limits on resource usage. At the other extreme, adaptivity is completely subsumed by the system. Although the
feasibility of this approach has been demonstrated in systems such as Coda[5, 9], there are limitsto its applicability.
In particular, the end-to-end argument[8] suggests that there will be circumstances where only an application can
determine the best form of adaptation. Unless the system is extended to incorporate specific knowledge about every
application, there will be situations where adaptation by the system will be inadequate or even counter-productive.
By striking a balance between these extremes, application-aware adaptation offers a more promising approach to
mobile data access. It permitsindividual applicationsto determine how best to adapt, but allows the system to retain
management of key resources and enforcement of decisions regarding their usage.

How can application-aware adaptation be effectively supported? This paper is a status report on our work toward
answering this question. This work is being done in the the context of Odyssey, an experimental Unix platform for
mobility. We have implemented a preliminary prototype and have demonstrated its use in two applications accessing
datain a mobile environment. While rudimentary in many respects, our prototype does provide initial evidence of the
feasibility and effectiveness of application-aware adaptation.

We begin the paper by introducing the concept of data fidelity and discussing the central roleit playsin application-
aware adaptation. Next, we discussanumber of factorsinfluencing our design. We then describethe design of Odyssey,
focusing specifically on its support for application-aware adaptation. Finally, we describe the implementation and
status of our prototype.

2. Data Fidelity

Under ideal circumstances, the data presented at a mobile client should be identical to the current server copy. As
resources become scarce, it may no longer be feasible to completely preserve this correspondence; some form of
degradation is unavoidable. How does one characterize the extent of this degradation? We define fidelity asthe degree
to which a copy of data presented for use matches the reference copy.

Fidelity has many dimensions. One well-known, universal dimension is consistency. Other dimensions depend
on the type of data in question. For example, video data has at least two additional dimensions: frame rate and image
quality of individual frames. Spatial data, such as topographical maps, have dimensions of minimum feature size or
resolution. For telemetry data, appropriate dimensionsinclude sampling rate and currency.

Thedimensionsof fidelity are natural axes of adaptation for mobility. But the adaptation cannot be solely determined
by the type of data; it also depends on the application. Aswe show in the next section, different applications using the
same data may make different tradeoffs among dimensions of fidelity.

2.1. Video Data in Mobile Environments

Consider a movie stored on a server, and two applications accessing that video stream from a mobile client. The
first application is a video playback application, player, and the second, editor, is a video scene editor. These two
applications must make different fidelity tradeoffs in accessing the same video stream. No single policy can satisfy
them both.

The player’s primary goal isto preserve correspondence between movie time and real time. A secondary goal is
to play the movie at the original frame rate, resolution, and image quality. In times of plentiful resources, the player
can indeed meet both goals. However, when network bandwidth becomes scarce, the player may have to sacrifice
its secondary goal in order to meet its primary goal. Thus, it may choose to switch to a black-and-white stream at
full frame rate, to drop frames, or otherwise reduce the bandwidth requirements of the stream. To guard against total
disconnection, the player may even hoard a very low quality version of the movie.

The editor’'s main goal is very different from that of the player; it must ensure that the user sees every frame of the
video stream to allow precise editing. To allow this, the editor is willing to relax the correspondence between movie
time and real time. Thus, when network bandwidth decreases, the editor will access the movie at arate slower than
real timeto avoid dropping frames.

It ishard to see how any single operating system policy can adequately service both of these applications’ needs,
even though they are accessing exactly the same data. Regardless of the system’s decision to change the fidelity of the
stream it is retrieving, either the player or the editor — and quite possibly both — will not be satisfied. No system can
be clever enough to anticipate and satisfy every application’s needs. On mobile machines, where the environment is
unpredictable, such unsatisfactory service will be even more evident.

3. Design Considerations

What isrequired to support application-aware adaptation? Generally, the system must provide a set of APl extensions
that allow applications to track and react to their environment, and a system architecture which effectively supports
these extensions. In the sections below, we outline the desired properties of the API extensions and supporting
architecture.

3.1. API Extensions

In order for applications to make decisions based on their environment, they must be able to name aspects of the
environment that are important to them. This naming mechanism must be both simple and extensible. Applications
should be able to specify exactly those features of the environment in which they are interested, and be notified
of changes to just those features. Such specification and notification should be efficient. They must also fit into
the programming style and culture of the base operating system, but cannot depend on esoteric features. Popular
applicationsrun on an increasingly diverse set of operating systems; providing common adaptation facilities enhances
the portability of such applications.

As applications track changes in the environment, they must adapt their access to data. Some types of adaptation
will require changes in operating system policy. There must be an efficient, flexible, and extensible mechanism to
request such changes. Since the operating system isthefinal arbiter of resource usage, the request need not always be
honored.

Resource Units Reference Item?
Network Bandwidth | bits per second yes

Network Latency microseconds yes

Disk Cache Space kilobytes no

CPU SPECints available no

Power minutes of computation no

Money cents no

Thisfigure lists the generic resourcesdefined for the Odyssey system. Thefirst column liststhe name of the resource.

The second column gives the units in which the resourceis measured. Thethird column specifieswhether or not the
resource is measured with respect to a particular item in the Odyssey store. Of particular interest is the last item,
money. Many experimental implementations of electronic money aswell as systemsthat use money in exchangefor

servicesexist. We believe that such services, particularly those which offer some sort of query facility, will become
more common. Note that these are only the generic resources; there may be others that are type-specific.

Figure 1: Generic Resources in Odyssey

3.2. Supporting Architecture

What of the underlying architecture supporting these extensions? The overriding goa is simplicity. We are not trying
to invent a new operating system, but merely extend existing ones in simple ways. We have striven to keep such
extensions minimal, while making them powerful enough to explore application-aware adaptation for a wide range of
data types.

It is important to note that we do not attempt to provide resource guarantees to applications. Such guarantees,
typically encountered in real-time systems, require guarantees from lower layers of the system. But the environment
of amobile computer is too unpredictable for such guarantees. Hence, we only promise to inform applications when
their environment changes, and arbitrate between applications competing for scarce and unpredictable resources.

Finally, our architecture should adhere to sound principles of software engineering. Some functionality in support
of the API will be independent of the type of data, while other functionality will be type-specific. The architecture
should provide isolation between different types of data as well as between the generic and type-specific portions of
the system.

4. Odyssey API

This section describes our design of the Odyssey APl supporting application-aware adaptation. As discussed above,
there are three components to the Odyssey API. First, there is a way for applications and the system to talk about
salient features of the environment. Second, there is a mechanism that enables applicationsto track their environment.
Third, there is a mechanism through which applications request policy changes based upon their environment.

4.1. Whatis an Application’s Environment?

We consider the salient features of an application’s environment to be the resources available to that application. Such
resources can be either generic or type-specific. Generic resources have meaning for all items stored in Odyssey.
Examples of generic resources include network bandwidth between the mobile client and the server storing an item,
available disk space on the mobile client, and battery power remaining on the mobile client. The generic resources in
Odyssey are listed in Figure 1.

Type-specific resources have meaning only for items of a particular type. For example, consider a commercial
database that indexes items in the World Wide Web. Such a service might sell a subscription that enables a client to
make some number of queries per day. The number of queries left in agiven day isaresource that is sensible only in
the context of queries against that database.

Odyssey tracks and reports the availability of a resource, and how that availability changes. We measure the
availability of an individual resource with a single scalar value. The units of a particular resource's availability are
chosen appropriately for that resource. For example, network bandwidth is measured in bits per second. Available
disk space is measured in kilobytes. Power remaining to alaptop is measured in minutes of operation.

Some resources are estimated with respect to a particular item in the Odyssey store. We call such items reference
items. For example, network bandwidth between a mobile client and a server differs for different servers. Thus, we
only speak of network bandwidth with respect to a particul ar reference item; the bandwidthin questionisthat between
the client and the server storing that particular item. Since type-specific resources only have meaning for items of a
particular type, they always have reference items.

4.2. How to Track the Environment?

For an application to track the availability of resources two things must happen. First, the application must inform
the system of the resources in which it is interested. Second, the system must monitor the availability of resources,
and notify the application when the availability of one or more relevant resources changes in an interesting way. For
efficiency, we chose to use asynchronous notification rather than polling in Odyssey.

Naturally, not all applicationswill be interested in the same set of resources. To tell the system what resources an
applicationisinterested in, the Odyssey APl providesacall, ody r equest . For example, an application making an
ody_r equest mightask, “Pleaseinvokeprocedurebar if the network bandwidth between here and the server storing
/ ody/ f 00. ¢ exceeds ten Mb/s or falls below one Mb/s.” The C declarations for ody _r equest and associated
data structures appear in Figures 2 — 4.

Requests name the resource of interest, the bounds of tolerance on that resource’s availability, the reference item,
and an upcall procedure. In our example above, the resource of interest is network bandwidth. The upper tolerance
bound is ten Mb/s, and the lower bound is one Mb/s. The reference itemis/ ody/ f 0o. ¢, and the upcall procedure
isthe procedure bar .

Theresourceisnamed intheody _r eq_des_t structure, as are the tolerance bounds and the address of the upcall
procedure, which is a handler function much like a signal handler. The resource is named by an integer identifier.
Generic resource identifiers are known throughout the system; type-specific identifiers are known only to portions of
the system that implement that type, but are limited to a specific range. If the resource is not within the specified
tolerance bounds, the call fails and returns the current value in r es. Otherwise, the request is registered with the
system. If the resource later strays outside of those bounds, the system invokes the handler through an upcall.

If arequest is granted by the system, the system returns a request identifier. That request identifier is aso passed
to the request handler when the applicationis notified by the system. If the application no longer wishes to be notified
for that request, it can invokeody_cancel onit.

4.3. How to Request Policy Change?

As applications are notified of resource changes, they will need to adapt their access patterns. Some of this
adaptation will require changes in policy within the operating system. Since policies are type-specific, these requests
for changes in policy must also by type-specific. We call such a request a type-specific operation, or ody_t sop.
An example of a type specific operation would be, “Please switch from the full color version of this stream to the
black-and-white version.”

/ * Pathnameresourcerequest */
int ody_request (path, req, res);

char *pat h; / * pathname of referenceitem */
ody_req_des_t *req; / * Arequest descriptor */
| ong *res; / * Therequest id returned, or current value */

/ * Cancel arequest */
int ody_cancel (reqid);
I ong reqid; / * Therequest to cancel */

Thisfigure showsthe C declarationsfor the pathname-basedversion of ody _r equest , aswell asody _cancel . The
descriptor-based versionisidentical except that afile descriptor isusedinstead of pat h. Notethat ody _r equest is
similar to the UNIX si gvec systemcall. ody _r equest allowsan application to place anotification request r eq;
ody_cancel cancels an outstanding request. Declarations for relevant data structures can be found in Figure 3;
the signature for the callback function to be invoked on notification of an outstanding ody _r equest is shownin
Figure 4.

Figure 2: C Declaration for ody _r equest and ody_cancel

/ * Aversion stamp* /
typedef struct {

| ong gs; / * Version of generic resource interface* /
ody_codex_t codex; | * Thetype of the referenceitem* /
| ong CS; / * Version of type-specific resource interface* /

} ody_vers_t;

/ * Aresource request descriptor */
typedef struct {

| ong resour ce; / * Resourceidentifier */
ody_vers_t ver si on; /* Version stamp */

| ong I ow, high; / * low, high values of window */
DY REQ FN. T fn_ptr; [* functionto call if window isleft */

} ody_req_des_t;

These are the principal data structures used in the ody _r equest call. ody_vers_t isused to ensure that the
application and system are using the same set of resource identifiers, and that the application and the system agree
on the type of the referenceitem. Thetype ody_codex_t isan enumeration of known typesin the system, called
codices. Thereg-des_t type holds the fields of a request: the resource, version information, the window of
tolerance, and the upcall procedure. The signature for upcall proceduresis shown in Figure 4.

Figure 3: Data Structuresfor ody r equest

/ * Aresourcerequest handler */

typedef void (*ODY_REQ FN T)(long, long, long);
/ * thethree argumentsare: */

/* therequest id to which this notification is responding */

/* the resource identifier */

/* the current value of the resource */

This figure shows the type signature of a request handler. A request handler takes three arguments: the request
identifier, as returned by ody _r equest , to which this notification is responding, a resource identifier denoting the
resource that has changed, and the new availability of that resource.

Figure 4: Notification Handler Declaration

/ * Pathname-based type specific operation */
long ody_tsop (path, vers, op, argsz, arg, retsz, ret);

char *pat h; / * pathnameof referenceitem */
ody_vers_t vers; [* version of this codex’ interface */
| ong op; / * which operation to perform */
size_t argsz; | * size of argument buffer */

voi d *arg; / * argumentsfor operation */
size_t retsz; | * sizeof return buffer */

voi d *ret; [* return buffer */

Thisfigure showsthe C declaration for ody _t sop, the pathname-based invocation of atype-specific operation. The
descriptor-based version is identical except that afile descriptor is used instead of pat h. The arguments namethe
reference item, version information, the operation to be performed, and buffers for the arguments and results. The
definition of ody ver s_t canbefoundin Figure 3. The sizes of the argument and result buffers must be passed, so
that layersthat do not know the details of the particular type can passarguments correctly. Note that thisissimilar in
flavor to the UNIX i oct | systemcall.

Figure 5: C Declaration for ody _t sop

(TN sQL Tome
[] unix Tome
E== Mpeg Tome

i

[payroll éball.mpg cal.mpg}j

Thisfigureillustrates a sample Odyssey namespace. In this example, there are three tomes, each of a different type.
Thefirst tome, rooted at odyssey, containsthe single UNIX file hel | 0. c. The second, rooted at payrol | , is
a database. Note that no nodes appear inside of payr ol | ; it is named associatively rather than hierarchically. The
third tome, rooted at novi es, containstwo MPEG movies, bal | . mpg andcal . nmpg.

Figure 6: Odyssey Tomes

Just as there is no way to predict the needs of all applications, thereis also no way to predict all possible requests
for policy changes. So, instead of trying to enumerate them for each type a priori, we instead provide a general
mechanism to allow for experimentation and extension. The C declaration for ody _t sop appears in Figure 5.

Toinvokeody _t sop, an application must specify areference item. It must also specify the operation to perform,
the arguments to the operation, and a buffer for the return value. The type of the reference item determines the type
of theody _t sop, and the reference item is passed through to the body of code that implementsthe ody _t sop. The
reference item can be specified by file descriptor or pathname. The operation is denoted by an integer identifier, and
need only be unique within a single type, thus preserving independence between different types. The sizes of these
buffers are specific to the operation; hence, they are also type-specific. To preserve isolation between generic and
type-specific portions of Odyssey, the sizes of these buffers must be specified.

The type-specific operation mechanism is designed to allow applicationsto make policy requests. However, once
itispresent, ody _t sop can beleveraged to providea set of access methods richer than the simplefile system interface
provided by common operating systems. For example, items of type*“video” might support the type-specific operation
vi deo_r ead_f r ane, which reads a single variable sized frame, in addition to the simpler r ead system call. Such
extension allows us to use data of different typesin ways that are natural to the data, rather than forcing the data to fit
the more restrictive file system model.

5. Odyssey Structure

To support the Odyssey AP, our design providesthree extensionsto UNIX. First, we have added a notion of typetothe

standard UNIX file system. Second, we have added a generic cache manager, the viceroy, to provide type-independent
support for the Odyssey API. Third, we have provided a set of wardens, which are part of the Odyssey cache manager,

each providing support for an individual type in the Odyssey store. The next three sections explore each of these in

turn.

5.1. Adding Types to the Operating System

Odyssey provides a single, global namespace to its clients. A simple example of such a namespace is shown in

The Viceroy

Generic Support

The Wardens
Type-Specific Support

Application Cache Manager
API
Extensions Kernel

This figure illustrates the architecture of an Odyssey client. Odyssey applications make use of the Odyssey API
extensions along with the operating system’s API. Operations on Odyssey objects are redirected by the kernel to the
cachemanager, which is at user level for ease of implementation. The cache manager is split into two logical pieces:
the viceroy, providing generic support, and a set of wardens, each supporting asingle type.

Figure 7: Odyssey Client Architecture

Figure 6. This namespace is broken into subspaces called tomes, or typed volumes. Tomes are similar to volumesin
AFS and Coda[11, 4, 9]. A tome carries with it a notion of type; all itemsin atome are of the same type. A tome's
type determines type-specific resources, operations, and dimensions of fidelity for itemsin that tome. All tomeswhich
have the same type are logically grouped together into a codex.

We envision a small number of typesin Odyssey. The implementation effort to add a type is nontrivial, and will
likely be undertaken by experienced system builders. A new type will be justified when applications using data of that
type exhibit access patterns fundamentally different from any other existing ones. Inthe video examplein Section 2.1,
the player and editor have roughly the same access patterns, but prefer to make different tradeoffs. In contrast, video
data, which isinherently linear, will be accessed differently from topographical maps, which are inherently spatial.

5.2. Providing Generic Support

There are many client-side tasks that are independent of data type. This generic functionality is implemented
by the viceroy. The viceroy can be thought of as the generic cache manager, which depends on type-specific cache
managers to do its job. The logical role of the viceroy isillustrated in Figure 7.

The viceroy’s most important task is to act as the single point of resource control in the system; al other pieces
of the Odyssey client are subordinate to it. The viceroy also handles requests for generic resources, and notifies
applications when those resources leave requested bounds. Finally the viceroy responds to requests on individual
Odyssey objects, and forwards them to the appropriate warden.

5.3. Providing Type-Specific Support

We call Odyssey’s type-specific cache managers wardens. There is one warden in the Odyssey cache manager for
each type in the Odyssey store. The wardens' logical role on the client isillustratedin Figure 7.

The wardens are responsible for implementing the access methods on objects of their type — both the standard
UNIX operations as well as the type-specific ones. The wardens also implement a number of different fidelity
mechanisms, and allow applicationsto choose between them. In addition, they provide reasonable default policiesfor
naive applications. Default policies are also important in providing backward compatibility with legacy applications.

6. Implementation Status

We have built a preliminary prototype of the Odyssey client along with applications, wardens and servers for two
data types. The goals of the prototype were twofold. First, we wanted to code applications that might benefit from
application-aware adaptation to the Odyssey AP to test the efficacy of the interface. Second, we wished to explore
the practical implications of the division between viceroy and warden.

The two data types we have explored are QuickTime[1] and GRASS[7]. QuickTime is a multi-media encoding
standard proposed by Apple Computer. GRASS is a public domain geographical information system. Along with
some basic applications using these data types, we provide a simple control program to a user of the prototype. The
control program is used to simulate various network bandwidths on the connection between the cache manager and
various servers. The applications then change the fidelity of the data they access to match the simulated bandwidth.
While each application works well in isolation, we have not yet explored resource control mechanisms to arbitrate
between them.

The QuickTime application we have explored is a movie player. The player can open a QuickTime movie on a
server viathe Odyssey cache manager and begin playing it. The server stores the movie at several different levels of
fidelity, and bundles them into alogical movie. The player, by usingody _r equest and responding to notifications,
asksthe cache manager to fetch the highest fidelity stream that can be played in real time given the available bandwidth.

The GRASS prototype supports applications via a modification to the GIS library. These applications display,
guery, and combine geographical data. The main type of dataisraster data: atwo-dimensional array of values set into
a coordinate space. The client caches files from the server in the local filesystem; the raster data is fetched at various
resolutions, depending on available network bandwidth. The GRASS applications then access those cached files.

We have made many simplificationsfor ease of rapid prototyping. The current prototypeis completely user-level,
trading realistic resource management policies and performance for simple implementation. It makes no attempt to
measure resources, and depends on the control program instead. The UNIX file system call interface is not currently
implemented; the application uses the Odyssey APl exclusively in communicating with the viceroy, and uses the
local file system when necessary for a cache. The prototype consists of a library linked into Odyssey applications, a
prototype cache manager and wardens, and the applications and servers. Each of these is discussed below.

6.1. The Odyssey Library

The API extensions are provided by a library linked with the prototype application. All of the calls described in
Section 4 are provided, but the prototype does not includethe standard file system interface. Thelibrary communicates
with the cache manager viaRPC. Thelibrary respondsto all notificationsby the prototype cache manager, and forwards
them to the proper upcall handler registered by the application; theUNIX si gnal interfaceisusedto simulate upcalls.

6.2. The Prototype Cache Manager

The prototype cache manger consists of a simple viceroy, along with the QuickTime and GRASS wardens. It
performs minimal resource management, and makes no attempt to authenticate users or arbitrate between conflicting
applications. Rather than attempt to estimate resources, it depends on the external control program to advise it. It
implements ody _r equest and ody_cancel , and forwards ody _t sop operations to the wardens based on the
reference item’s type. It notifies applications by sending them a signal, and passing information about the notification
through the filesystem. In the sections below, we describe both the QuickTime and GRASS wardens.

Qr_OpenMovi e(m Open movie mand return track information.
Qr_C oseMovi e(m Close movie mand free resources.

Qr_Get Frame(t) Returnsthe first frame to display after timet .
Qr_Swi tchTracks(mi) Asktomaketracki of movie mthe active track

Figure 8: Operations Supported by the QuickTime Warden

6.2.1. The QuickTime Warden

The QuickTime warden exports the interface we envision for the final system. It has no type-specific resources, but
has four type-specific operations. Those operations are shown in Figure 8. QT_Swi t chTr acks, is a request for
policy change, while the other three perform data access. Each of these operationsis explained below.

QT _OpenMbvi e takes a string which represents a movie name and attemptsto open it at every available fidelity
level on the server. Each version is opened as a track of the base movie, and they are logically bundled as a single
movie and returned. Alongwith a handlefor the movie, akin to afile descriptor, QT_OpenMovi e returnsinformation
about each track — specifically, the average bytes per second required to transmit each track across the network and the
encoding method of each track. Upon opening, the best possible track is made the active track, and will remain active
until the application requests otherwise. QT_Cl oseMovi e frees up any resources associated with an open movie.

QT _Get Fr ame takes amovie handle, returned by QT_OpenMbvi e, and atime offset into the movie, and returns
thefirst frame of the active track to be displayed after the offset. The frame is copied intothe ody _t sop return buffer
for use by the player. Get Fr ane also returns the index of the currently active track, so the application can properly
decode the frame.

Qr_Swi t chTr acks takes a movie handle, and atrack identifier within that movie handle, and makes that track
the new active track. Readahead isterminated for the old active track, and started for the new track. After the pre-read
portion of the old track is exhausted, QT _Get Fr amre will return a frame from this new track. The new track will be
used until another QT_Swi t chTr acks request is made.

6.2.2. The GRASS Warden

The GRASSwarden providestwo operations: Gr ass Fet ch, whichfetchesalogical filefrom a server if not already
cached, and Gr assSet Qual i t y, which determines which fidelity level future fetches will use. The final version of
the system won't need Gr assFet ch: it'll have open redirected to it instead.

GRASS storeslogical filesin groups of related physical files. To avoid inconsistencies such as araster header file
showing the full size and a raster data file with lower resolution data, the prototype warden fetches files as a group.
The GRASS warden currently makes no effort at cache replacement. Future refinements will address thisas well.

6.3. The QuickTime Server and Player

The obvious fidelity dimension to exploit in video is the quality of individual frames; by reducing frame quality, we
can aso reduce bandwidth requirements. The QuickTime server currently stores movies at three different fidelity
levels: full color uncompressed, full color with lossy JPEG compression, and black and white. Individual tracks can
be opened, pre-read and closed. The server itself does not manage the different fidelity levels of the same logical
movie as a unit; that is handled by the QuickTime warden.

The QuickTime player was modeled after a previously built standalone version that used the UNIX file system

10

interface. It was redesigned to use the ody _t sop interface exported by the warden, rather than the standard UNIX
file system interface. The new player opens a movie, finds the stream with the highest possible quality, and begins
playingit. It also places arequest to be notified if the bandwidth dropstoo low to support thistrack. If so, it switches
to the new best possible stream. If, at some later time, bandwidth improves enough to allow playing a better track, the
player will request a change.

Although the prototype explicitly trades performance for ease of implementation, the player has adequate perfor-
mance in playing back movies, even at the highest quality. Of particular interest is the fact that the player was both
simplified and functionally improved by the switch from the UNIX file system interface to that provided by Odyssey.

6.4. The GRASS Server and Applications

The server stores raster objects at three levels of fidelity, losing a factor of two in resolution for each degradation.
Because the rasters are two dimensional, each degradation provides a savings of a factor of four in data size.

Applicationswishingto open raster objectsshareasingleroutineinthe Gl Slibrary. That routinefirst determinesthe
estimated bandwidth available to the viceroy through the request interface with an empty bounds window, effectively
polling the viceroy. Since no value could satisfy that bounds window, the bandwidth estimation is returned by the
request call. The application then uses the Gr assSet Qual i t y operation to ask for a particular fidelity of raster.
That fidelity is then cached on local disk for future use by GRASS applications.

7. Conclusion

Though rudimentary in many respects, our preliminary prototype has allowed us to gaininitial validation of our ideas
at low implementation cost. The results so far are encouraging. We have taken the source code of applicationsfor two
data types and have been able to restructure them into the Odyssey framework with modest effort.

We are now working toward a more complete and efficient prototype, motivated by two goals. First, we would
likethe prototypeto support abroader collection of datatypes and associated applications. Thiswill stressthe designs
of the Odyssey API and architecture, expose shortcomings, if any, and lead to refinements in both. It will also deepen
our understanding of application-aware adaptation. Second, we would like the prototype to be better integrated with
an operating system. An in-kernel implementation will allow more serious resource management, provide better
performance and functionality, and enable more rigorous eval uation of our design.

As was discussed early in this paper, the constraints of mobile computing lead inevitably to the recognition that
adaptivity isessential inany system that providesmobile dataaccess. But althoughthegeneral importance of adaptivity
has been recognized by many researcherg 2, 3, 6, 12, 13], we are not aware of specific system designs, much less
implementations, that support application aware adaptation. The work reported here thus represents a journey into
uncharted waters.

References

[1] ApPPLE COMPUTER, INC. Inside Macintosh: QuickTime. Addison-Wesley Publishing Company, 1993.

[2] DucHAMR D. Issuesin WirelessMobile Computing. In Proceedingsof the Third Workshopon Wor kstation Oper ating Systems
(Key Biscayne, FL, April 1992).

[3] FORMAN, G. H., AND ZAHORJAN, J. The Challenges of Mobile Computing. |EEE Computer 27, 4 (April 1994).

[4] HowaRD, J. H., KAZAR, M. L., MENEES, S. G., NICHOLS, D. A., SATYANARAYANAN, M., SIDEBOTHAM, R. N., AND WEST,
M. J. Scale and Performancein a Distributed File System. ACM Transactionson Computer Systems 6, 1 (February 1988).

[5] KISTLER, J.J., AND SATYANARAYANAN, M. Disconnected Operation inthe CodaFile System. ACM Transactionson Computer
Systems 10, 1 (February 1992).

11

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

KULKARNI, D. C., BANERJI, A., CASEY, M. R., AND COHN, D. L. Information Accessin Mobile Computing Environments.
Tech. Rep. TR-93-11, University of Notre Dame, Notre Dame, 1993.

MADRY, S. Geographical Resources Analysis Support System (GRASS), an Integrated Public Domain GIS and Image
Processing System. In GIS/LIS 1989 Proceedings (Orlando, FL, November 1989).

SALTZER, J.,, REED, D., AND CLARK, D. End-To-End Argumentsin System Design. ACM Transactions on Computer Systems
2, 4 (November 1984).

SATYANARAYANAN, M., KISTLER, J. J., KUMAR, P, OkAsAKI, M. E., SIEGEL, E. H., AND STEERE, D. C. Coda: A Highly
Available File System for aDistributed Workstation Environment. | EEE Transactions on Computers 39, 4 (April 1990).

SATYANARAYANAN, M., NOBLE, B., KUMAR, P, AND PrRICE, M. Application-Aware Adaptation for Mobile Computing.
Operating SystemsReview 29, 1 (January 1995). Also availableas Tech. Rep. CMU-CS-94-183, Carnegie Mellon University,
School of Computer Science.

SIDEBOTHAM, R. Volumes: The Andrew File System Data Structuring Primitive. In European Unix User Group Confer-
ence Proceedings (August 1986). Also available as Tech. Rep. CMU-ITC-053, Carnegie Méellon University, Information
Technology Center.

THEIMER, M., DEMERS, A., AND WELCH, B. Operating System Issuesfor PDAS. In Proceedings of the Fourth Workshop on
Workstation Operating Systems (October 1993), |EEE.

WEISER, M. Some Computer Science | ssuesin Ubiquitous Computing. Communictionsof the ACM 36, 7 (July 1993), 75-84.

12

