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Abstract

A key goal of distributed systems is to provide prompt access to shared
information repositories. The high latency of remote access is a serious im-
pediment to this goal. This paper describes a new file system abstraction
called dynamic sets – unordered collections created by an application to
hold the files it intends to process. Applications that iterate on the set to
access its members allow the system to reduce the aggregate I/O latency by
exploiting the non-determinism and asychrony inherent in the semantics of
set iterators. This reduction in latency comes without relying on reference
locality, without modifying DFS servers and protocols, and without unduly
complicating the programming model. This paper presents this abstraction
and describes an implementation of it that runs on local and distributed file
systems, as well as the World Wide Web. Dynamic sets demonstrate substan-
tial performance gains – up to 50% savings in runtime for search on NFS,
and up to 90% reduction in I/O latency for Web searches.

1 Introduction

A central problem facing distributed systems is the high latency to
access remote data. Latency is problematic because it reduces the
benefit typical applications can receive from faster CPUs, and re-
duces the productivity of users who are forced to wait for data. Long
I/O delays can reduce the usability of a system, especially if the vari-
ance in the delay is high. This paper shows that a small, carefully
designed extension to the system-call interface of an operating sys-
tem can result in a substantial reduction in the aggregate I/O latency
seen by applications that use iterators, without requiring locality of
reference or modifications to protocols or servers.

The essence of the argument is that extending the system inter-
face to support set iterators will allow the system to reduce I/O la-
tency transparently for those applications that use them. This argu-
ment is based on three observations. First, current file system inter-
faces restrict the system’s opportunity to reduce latency by forcing
applications to process groups of files in a serial, and often imposed
order. As a result, systems manage I/O for applications without ac-
curate knowledge of their future data needs. However, the alterna-
tive of pushing I/O management to the application significantly in-
creases the complexity of the programming model. Second, itera-
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tors are a convenient mechanism for processing groups, as attested
by the widespread use of iterator-like constructs such as cursors in
SQL; foreach loops in shells like perl, tcl, and sh; the Enumeration
class in Java [1]; and iterators in higher level languages like Alphard
[33] and CLU [23]. Third, the use of iterators on sets of files could
allow a system to transparently reduce the aggregate I/O latency of
accessing the set members if the iterator was visible to the system.

To explore the utility of iterators, I added a new abstraction
called dynamic sets to the application programmer interface (API)
of a distributed file system (DFS). A dynamic set is a lightweight,
transitory, and unordered collection of files that is created on-the-
fly by an application to hold the files that it wishes to process. A
file’s membership in a dynamic set indicates the likelihood of near-
term access, allowing the system to safely prefetch the files’ data to
reduce latency.

An application creates a dynamic set by supplying a member-
ship specification that is evaluated by the system to ascertain the
names of the set members. Applications can then process the set
members by iterating on the set. Every call to the iterator returns a
handle to a member that has already been fetched. As a result, the
application sees either little or no latency to access the member’s
data. Applications can also manipulate set membership using stan-
dard set operations. For example, one might create sets to hold the
results of queries to two news services, and then intersect the sets to
find stories common to both services.

A crucial aspect of this work is that the application’s use of it-
erators on unordered sets frees the system to determine the order in
which it yields set members to the application. There is currently no
way for an application to express to the kernel that it doesnot require
a deterministic order. This forces determinism on applications and
restricts the system’s opportunities for reducing latency. Dynamic
sets provide a means for applications to disclose to the system that
their correctness does not depend on the order of access, allowing
the system to schedule I/O and manage its caches more efficiently.
Dynamic sets do allow applications to request an order, but applica-
tions that do so limit the system’s ability to optimize access through
reordering and may pay a performance penalty for their ordering re-
quirements.

One application domain that can benefit from dynamic sets is
search and retrieval of file data, hereafter referred to as search.
Search applications identify a group of candidate files, and then
fetch and examine them in turn to find any files that satisfy the
search criteria. Search has several important characteristics that
make it an ideal application for dynamic sets. First, search is an im-
portant application as is dramatically apparent to any user of a large
distributed system. Second, search exhibits poor locality of refer-
ence and thus gets little benefit from caches. Studies of cache per-
formance on the World Wide Web (Web) bear this out: Web proxy
cachesget low hit rates (30-40%) even with unlimited size and large
user populations [11, 3, 9]. Third, searches often run until some



satisfactory file is found, and thus either have no preference of the
order in which files are fetched or have insufficient knowledge to
specify the order at the time of search.

2 Related Work

I/O latency has long plagued computer systems, and system builders
have developed two basic techniques to overcome it: caching and
prefetching. Caching is widely used, and is nearly ubiquitous in dis-
tributed file systems [14, 31, 26] in which accessing remote data in-
curs high latency. However, caching is effective only if applications
exhibit temporal locality of reference. Prefetching does not rely on
locality and so is more suited to applications with poor locality like
search. The drawbacks of prefetching are that one must somehow
predict future accesses in order to prefetch the data, and inaccurate
predictions increase the load on the I/O subsystem, and can lead to
thrashing. Systems that infer future accessesbased on past accesses
[22, 8, 39, 28, 12] are most susceptible to this problem. One study
found a 20x slow down in one case when prefetching data from disk
on a parallel computer [21]. However, prefetching can produce sub-
stantial improvement if the access pattern is sufficiently regular and
easily detected, such as Unix’s one-block read-ahead mechanism
[2, 34].

One way to avoid the problem of inaccurate predictions is to
expose asynchronous I/O directly to applications, and let applica-
tions manage their I/O explicitly. However, this approach increases
the burden on the application programming, and violates software
engineering principles that call for hiding low-level details beneath
strong interface boundaries. In addition, applications that manage
I/O themselves are highly sensitive to changes in CPU or I/O speed,
and are thus difficult to port or maintain. An example of explicit
prefetching is the Queued RPC mechanism of the Rover toolkit
[16], which exposes asynchrony to application programmers and
users. Although this can result in more efficient I/O, it requires the
application programmer to poll to determine when an operation has
completed and to maintain the operation’s context until the opera-
tion terminates.

In another approach, called Informed Prefetching, the appli-
cation informs the system of its future data needs but leaves the
management of asynchrony to the system. The system can safely
prefetch based on these hints, and the application is not complicated
by the need to control prefetching or manage system resources. Re-
cent studies by Patterson et al. [29], Cao et al. [6, 7], and Kimbrel
et al. [18] have found significant speedups from informed prefetch-
ing in local file systems, particularly when reading data from mul-
tiple disks in parallel. These systems require application program-
mers to manually augment their code to pass hints of future block
accessesto the file system. Mowry et al. describe a similar approach
that uses compiler generated hints to pre-page in a virtual memory
system [25]. Their compiler generates prefetch requests by analyz-
ing program loops to determine near-future data accesses in virtual
memory. Similar analysis allows the compiler to insert hints to re-
lease pages as well.

The work described here is also a form of informed prefetching
to reduce latency, but differs in several respects. First, the hints of
future access are derived from the membership of a dynamic set as
opposed to being supplied by the compiler or application program-
mer. Second, dynamic sets offer the opportunity to schedule file ac-
cessesmore efficiently through reordering. In particular, this allows
the system to use a more opportunistic prefetching strategy, for in-
stance starting several fetches in parallel and yielding the first to re-
turn. Third, the implementation of dynamic sets is tuned for search
on distributed file systems and prefetches whole files, as opposed to
prefetching blocks within a file.

Dynamic sets can also be viewed as a higher-level microlan-
guage for expressing near-future data accesses, which is used by

the storage system to improve performance. Other examples of this
approach include collective I/O operations in a parallel file system
[20], application defined operations on structured files [13], and do-
main specific microlanguages [30] such as complex-content multi-
media specifications [36].

3 Dynamic Sets

To better understand how applications could use dynamic sets, con-
sider a search using the Unix command grep, such as “grep
pattern *.c”. Currently, the shell expands the wildcard “*.c”
into an alphabetized list of filenames, andgrep opens each of these
files in that order. For each file, grep reads the file’s data and prints
lines matching the pattern. Although grep knows the identity of
the files it will read when it starts, it has no way of disclosing this
information to the system, and thus the system has no opportunity to
prefetch the files. In addition, the order in which the files are opened
is imposed by the shell, independent of grep’s, the system’s, or the
user’s needs.

Now consider how grep might use dynamic sets. First, grep
would create a dynamic set to hold the files named by “*.c”. Grep
would then loop, calling the iterator to retrieve the next file, and pro-
cessing it using the same code as standardgrep. Each call to the it-
erator returns a previously unseenfile, and the loop terminates when
all set members have been seen and processed. Figure 1 contains the
main loop of grep with and without dynamic sets.

Modifying grep to use dynamic sets yields three benefits.
First, the system can prefetch the files named by “*.c” with a rea-
sonable assurance that grep will shortly access them. Through
prefetching, files on separate servers may be fetched in parallel, and
the fetching of some files may overlap the processingof others. Sec-
ond, the system can reorder the fetching of the files, since grep
does not require that the files be processed in any order. Thus if
some of the files are local and others remote, the system could re-
turn the local files first to reduce the time to begin processing the
data, and could overlap processingthese files with the fetching of re-
mote files. Third, prefetching and reordering together give the sys-
tem greater flexibility to adapt its behavior to changing resources.
For instance, the system might prefetch all of a set when communi-
cating with a lightly loaded server, but may only prefetch one or two
members on a low bandwidth or loaded connection. In addition, the
system can choose to prefetch only some of the members to avoid
wasting I/O bandwidth should the search terminate prematurely.

3.1 Properties of Dynamic Sets

Although I have used search in distributed file systems to motivate
dynamic sets, in fact they offer benefit to any application that can it-
erate, that suffers substantial I/O latency, and that can inexpensively
name the files in its short-term working set. The first two proper-
ties enable the use of sets; several application domains in addition to
search satisfy these properties, such as data mining, query process-
ing in object oriented databases, or document processing. The third
property means that the time to create a set and identify its mem-
bers is less than the potential savings from prefetching the mem-
bers’ data. This property is true for any persistent repository with
large objects, such as digital libraries, image repositories, object-
oriented databases, distributed file systems, and the Web. As such,
I designed dynamics sets to be general, carefully avoiding decisions
that would overrestrict the implementation and unnecessarily limit
its ability to reduce latency. The following paragraphs describe the
key properties of dynamic sets.

� Created on-demand

Applications create dynamic sets on-demand by supplying a
specification that the system evaluates to determine the names



Main loop of grep

while (*filenames) f
fd = open(filenames++);
execute(fd);
close(fd);

g

Main loop using dynamic sets

s = setOpen(set spec);
while (fd = setIterate(s)) f

execute(fd);
close(fd);

g

setClose(s);

The two sections of code reflect how grep can be modified to use dynamic sets. The code on the left is the main loop of grep, which steps through a list of
filenames passed to grep as command line arguments. The code on the right shows the main loop of grep using dynamic sets, which iterates on a set whose
membership is defined by a membership specification such as ’*.c’. This example illustrates two points. First, it shows the ease with which one can modify
commonsearch applications to use dynamicsets. Second, the main functionalityofgrep, locating substrings in a file, does not need to be modifiedto use dynamic
sets. In this example, the command line argument must be quoted to prevent shell expansion of “*.c”.

Figure 1: Code Example Showing the Use of Dynamic Sets

of the set members. The membership specificationlanguage is
orthogonal to the design of sets, the paper discusses one such
mechanism below. Because this specification is evaluated at
runtime, a set’s membership dependson the state of the system
at the time of the set’s creation, hence the name “dynamic”.
One advantage of determining membership at runtime is that
applications see current information by default, but can relax
currency by opening a set before it is needed. Fortunately,
evaluating membership consists of name resolution, e.g. Unix
filename globbing, which is typically a small percentageof the
time to fetch the set members’ data.

� Short-lived

Because the membership of each newly created set is dy-
namically determined, the system need only preserve a set
while its creator is running. This in turn allows the system to
maintain sets in volatile memory, which results in sets being
lightweight. Since the time spent creating and maintaining a
set directly offsets any potential benefit of prefetching and re-
ordering, lightweight sets can reduce latency in a wider variety
of settings.

� Unordered

By using a set as the abstraction underlying dynamic sets, ap-
plications can disclose their short-term working set without
imposing a deterministic order on it. This non-determinism
frees the system to schedule data access for greater efficiency,
resulting in three distinct benefits. First, the system can ex-
ploit differences in latency between members by immediately
yielding an available member, overlapping the computation of
that object1 with the I/O to fetch other members. Second, the
system could reorder access to better utilize the cache. If some
members are cached, the system could yield them first and
thus avoid stalling the application at all. Further, the system
could prevent cached members from being evicted from the
cache before the application gets a chanceto read them. Third,
the ability to reorder allows the prefetcher to fetch opportunis-
tically, rather than based on estimates of server latency. For
instance, the prefetcher can initiate three fetches and use the
first to return, rather than waiting to determine the size of ev-
ery object and calculating the expected latency to fetch them.
This is particularly important in the presence of unpredictable
failures that result in lengthy timeouts. The ability to prefetch
with little advance knowledge is one of the key distinguish-
ing features of this approach, allowing use of dynamic sets in
systems with widely varying performance like the Web.

Currently, many applications have no particular ordering
needs and so could use dynamic sets, but are forced to seri-

1Because dynamic sets can be used in contexts other than file systems, I refer to set
members as objects instead of more specifically as files.

alize their accesses by current system APIs. Often the order is
provided by some third party, such as the csh in the case of
filename globbing. For search, the proper order is unknown
until the search terminates with a satisfactory object, since that
object would be first in the optimal order. Search engine rank-
ings approximate this order, but are not sufficiently accurate to
warrant strict adherence to them. For those applications that
do have an ordering preference, dynamic sets allow applica-
tions to assign a priority to members, for instance based on
search engine rankings. The system treats these rankings as
hints, using them to drive prefetching but potentially violat-
ing the order rather than blocking the application if a member
with lower rank is available.

� Loosely consistent

Ideally, membership would be evaluated atomically and have
perfect precision and recall (no false positives or negatives).
However, it can be expensive in system complexity and per-
formance to provide these properties [41]. Further, dynamic
sets are layered on top of existing systems for simplicity, and
as such cannot provide a stronger consistency model than
the underlying system. Fortunately, many searches on DFS
are satisfied without strong consistency guarantees, as the
widespread use of these systems can attest. For example, a
programmer can usually find the right version of a source file
without having to lock all the candidate objects for the dura-
tion of the search.

Rather than promise the illusion of atomicity, dynamic sets in-
stead guarantee that:

� Every member must satisfy the membership specifica-
tion at some point during the lifetime of the set.

� Once an object is known to be a member, it will remain
a member of the set.

Together, these guarantees ensure that the membership of a set
is current but not necessarily complete. In addition, the state
of each member captured in the set is the state that satisfied
the specification, and not necessarily the most current version
of that object. However, specifications that involve queries to
search engines can only be as correct as the search engine’s
index, since the engines are external to dynamic sets.

� No duplicates, immutable

Dynamic sets are similar to mathematical sets in that they do
not contain duplicate members and are immutable. Duplicates
can be eliminated automatically by testing for name or value
equivalence with other members. Using name equivalence
has the added benefit of eliminating duplicates before fetch-
ing their data, while still providing reasonable semantics. To



ensure immutability, operations that would otherwise modify
a set’s membership create a new set instead. Since sets are
lightweight, the cost of immutability is small.

4 Implementation

The implementation consists of adding dynamic sets to the Unix
file system interface, and is hereafter referred to as SETS to dis-
tinguish its features from those of the dynamic sets abstraction or
from other potential implementations. The architecture of SETS
contains three basic components, as depicted by Figure 2. SETS
definesasynchronousinterfaces between these components to avoid
unnecessarily stalling the processing of a set. The API component
manages the dynamic sets data structures and exports the SETS
API to applications. The prefetching engine evaluates member-
ship specifications to determine the names of members and man-
ages prefetching. Wardens serve as portals between SETS and in-
formation repositories, allowing SETS to fetch objects and evaluate
queries. For example, the NFS warden is an NFS client extended to
communicate with SETS and to prefetch files.

One controversial aspect of this architecture is that the API and
prefetcher reside in the operating system kernel, as opposedto resid-
ing in a user-level library. A kernel implementation allows SETS
to interact closely with the file system at low cost. For instance, the
prefetcher needs low latency access to the file system’s buffer cache
to locate cached set members and to avoid overrunning the cache
with prefetch data. Note that this decision is specific to SETS: in
some other domain such as a Web browser it may be more appro-
priate to implement dynamic sets as a plug-in or library.

4.1 Application Programming Interface

The dynamic sets API provides operations to create and destroy
sets, merge sets through union or intersection, create a subset, query
a set’s membership, determine a set’s size, list the names or proper-
ties of members, and iterate on the set. For brevity, the paper dis-
cusses only the representation of an open set and the membership
specification language.

In SETS, an open set is similar in nature to an open file descrip-
tor. The open set handle is an index into a per-process table of open
sets. This handle can then be passed to set operations, in much the
same way that a file descriptor is passed to the read() system call.
When the process exits, open sets are automatically destroyed and
their resources freed.

When a set is created, the creator supplies a specification that
SETS evaluates to produce a list of the names of the set members.
The specification languageusedby SETS extendsthecshwildcard
set notation [17] to support three types of specifications: explicit,
interpreted, and executable. Figure 3 gives examples of each.

Explicit specifications use standard csh wildcard notation, or
globbing, to indicate the names of the members of the set.

Interpreted specifications contain strings in some query lan-
guage, such as SQL, delimited by “n”. The query is passed to the
warden responsible for the file or directory named by the prefix of
the specification, resulting in a list of names that are then used to fur-
ther expand the specification. The warden that interprets the query
is not necessarily responsible for the files named by the query, for
instance a GLIMPSE [24] warden could reference NFS files. The
second example in Figure 3 would cause SETS to send the SQL
query to a database mounted at “/staff”. If this warden did not
support SQL queries or the selected fields did not contain valid file-
names, the specification would result in the empty set.

Executable specifications name programs that act as filters over
a portion of the system’s name space, returning the names of sat-
isfactory files to SETS. Note that interpreted and explicit specifi-
cations are only a naming mechanism, and require the existence of

tools such as search engines or libraries of search filters in order to
be useful. Separating the naming mechanism from the search tool
in this way allows SETS to utilize a range of tools such as search-
enhanced file systems [10, 24, 5], Web search engines, and SQL
databases.

4.2 SETS Prefetching Engine

The prefetching engine prefetches set members, evaluates specifi-
cations, and manages local resources such as the buffer cache on
behalf of SETS applications, and consists of a number of worker
threads. When a set is opened, the API layer generates and queues a
request to evaluate the set’s membership. A worker thread dequeues
the request and begins the process of evaluation, adding new mem-
bers to the set as it discovers their name. Explicit specifications are
performed by the worker directly.

Because of the potentially high latency involved, SETS evalu-
ates interpreted and executable specifications lazily. When evalu-
ating such a specification, the worker opens a cursor to the appro-
priate warden or executing program. This cursor allows the warden
or program to asynchronously run the query, freeing the worker to
perform some other activity. The application’s first access to the set
generates a request to expand the cursor, which causes a worker to
reads as many names from the cursor as possible and add them to
the set. As the set is processed, SETS will queue further expansion
requests as needed to read all the names from the cursor.

Upon the application’s first call to the iterator, SETS generates
requests to prefetch some of the members, to avoid prefetching until
it is certain that the application will accessat least some of the mem-
bers. When a worker dequeues a prefetch request, it synchronously
fetches the data using the file’s warden. The fetch may modify the
set’s data structures or queue other requests as a side effect. For in-
stance, the worker may move the member forward in the list of ob-
jects to be yielded when the fetch completes.

4.2.1 Prefetching Policy

I designed the SETS’s prefetching policy to work in an environ-
ment where remote access incurs a high latency, such as a wide-
area DFS like AFS [35] or a mobile client connected over a low-
bandwidth link. The policy has to balance conflicting goals: ag-
gressive prefetching results in lower latencies, but may overwhelm
disks, networks, or servers, resulting in thrashing and loss of perfor-
mance. Prefetching in a DFS is complicated by variance in latency,
both over time (to the same server) and from server to server. This
variance is due to many factors. Variance over time is due to load
from other clients, communication failures, or cache effects. Vari-
ance between servers can result from differences in server or net-
work performance, current load, or location of the servers relative
to the client (either in terms of network topology or geography). All
of these factors make it difficult for a client to predict how long an
operation will take, and measurements of past access latencies to a
server may be out-of-date or unavailable.

In order to prefetch in the face of inaccurate or incomplete
knowledge of system state, the prefetching policy makes three sim-
plifying assumptions. First, it assumes that accessing data from the
local file system is faster than fetching it from a server (propagation
delays and connection setup are often larger than local disk I/O in
wide-area DFS)2. Second, SETS assumes that local disks are large
enough to hold reasonably sized sets. Disks capacities have been
growing exponentially, and even low-end PCs typically come with
several gigabytes of free disk space. Third, SETS assumes that set
members will be accessed sequentially and as whole files.

2When this assumption is false, SETS can adjust its buffer cache eviction policy to
refetch data from the servers on demand instead of evicting it to the local disk.
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This figure depicts the main components of SETS: the API layer, the prefetching engine, and the wardens. The shaded box
indicates the kernel boundary, the dashed lines separate different threads of control. The API layer extends the kernel interface
with the SETS operations, the prefetching engine sits within the kernel. In the picture two wardens are outside and one is inside
the kernel; the location is chosen by the implementor.

Figure 2: The Architecture of SETS

Explicit: /projects/*src*/*.c
Interpreted: /staff/nselect home from users where name like "%david%"n
Executable: /sources/pkgs/contrib/%myMakeDepend foo.c%

This figure gives examples of the three different kinds of membership specifications supported by SETS. Explicit specifications list
the names using csh’s regular expressions. Interpreted specifications allow applications to use strings that are interpreted by search
engines as queries, returningthe names of the files that satisfy the query. Executable specifications name executable programs whose
execution results in a list of object names. With these types of specifications, SETS can easily be extended to support a variety of
query languages and modes of search.

Figure 3: Examples of SETS Membership Specification Language

These assumptions result in several simplifications. SETS
stores prefetched data in the local file system, SETS prefetches
whole files opportunistically, and SETS can tune its policy to adapt
to different kinds of systems. When a set is opened for iteration,
SETS concurrently fetches a small number of files, spreading the
requests across servers or disks if possible. The number of files ini-
tially fetched depends on the local system’s guess of the available
bandwidth, but is currently limited to five files3. When the applica-
tion calls the iterator, SETS returns the largest fully cachedmember
that has the highest rank if the application has specified an order.
On each call to the iterator, SETS starts a new prefetch, and thus
automatically tunes the rate at which it prefetches files to the rate at
which the application consumes them. This mechanism is similar
to TCP’s window-based flow control [15], although currently there
is no mechanism to dynamically change the window size.

In addition, SETS needs to manage its consumption of the file
system buffer cache to maximize the application’s hite rate and to
avoid overruning the cache. For instance, if several of the concur-
rently fetched files are larger than the buffer cache, prefetching them
entirely would evict the beginning of the files from the cache along
with everything else in it. Since the application will read these files
sequentially, it will miss on the evicted data, evicting the next blocks
to read and so on, thus missing on every block in the file. In addi-
tion, unconstrained use of the cache by a set will evict this or other
concurrent applications’ data, and may result in a general decrease
in performance as a result of prefetching.

SETS extends Unix’s buffer cache management to handle
buffers with prefetched data in three ways. First, SETS limits the
number of buffers that can be used to hold prefetched data. This
also limits SETS consumption of network bandwidth, since the
prefetcher will stall when it runs out of buffers. Second, SETS pins
data in the buffer cache to prevent other data from evicting it, un-
pinning it after the application reads it or when the set is closed.

3This limit is based on typical file size, application processing rate, and latency.

SETS then uses the knowledge of what is pinned when deciding
which files to yield to the application. Third, SETS can proactively
warm the cache with unpinned data that was flushed to disk when
all pinned data has been consumed by the application.

4.3 Wardens

A SETS warden is a client of a distributed system that is extendedto
support prefetching and interpreted specifications. Wardens can run
in the kernel, such as the NFS warden that is based on an in-kernel
NFS client, or in user-level processes. User-level wardens com-
municate with SETS using an existing upcall mechanism [37] that
passes VFS file system operations [19] to user-level DFS clients,
caching data in the kernel to avoid upcalls where possible. I ex-
tended this mechanism with operations to prefetch a file, open a cur-
sor for an interpreted specification, expand the cursor to retrieve the
resulting filenames, and close the cursor. This mechanism also al-
lows wardens to mount themselves as virtual file systems in the lo-
cal file system namespace. Wardens can implement all or part of
this extended VFS interface. For instance the warden to an SQL
database may choose to support only queries, while an NFS war-
den may support prefetching and the standard VFS operations, but
not queries.

The open cursor operation passes the specification to the war-
den, which responds with a cursor – a handle to an as-yet empty set
of names. The warden asynchronously interprets the specification
to produce a list of filenames. The expand cursor operation returns
any names that are currently available, or blocks until the warden
produces some names or finishes the interpretation. The close cur-
sor operation is necessary to allow SETS to inform wardens to pre-
maturely terminate the cursor if the application has closed the set.

The prefetch operation causes the warden to fetch a file, and
blocks until the entire file is cached. Simple wardens fetch the data
on demand, more complicated wardens can use asynchronous I/O
or lower priority operations if their system allows. Once a file is



cached, SETS holds it open to prevent the warden from evicting its
data.

4.4 Current Status

SETS is an extension to the file system of the Mach 2.6 operating
system, a variant of 4.3BSD Unix. Although SETS uses Mach for
historical reasons, the implementation avoids Mach-specific func-
tionality and ports of SETS to NetBSD4 and Linux are underway.
The NFS warden took 3 days to implement (starting from the NFS
client source code), and adds or modifies 379 (out of 6887) lines of
code.

I modified a number of Unix utilities to use dynamic sets. Al-
though one must recompile an application to use sets, the changes
are relatively simple, as shown in Figure 1, and are easy to make.

5 Evaluation

The evaluation consists of a number of synthetic benchmarks that
examine the potential benefits of dynamic sets with respect to the
cardinality of a set of files, the size of these files, the degree of par-
allelism, and the amount of application computation. In addition,
two experiments examine the effect of reordering and the benefits
of dynamic sets for search on a local file system. A more complete
set of experiments, including low bandwidth and interactive search
tests, is described elsewhere [38].

5.1 Test Methodology

The experiments use a benchmarkprogram called synthGrep to gen-
erate a workload for the system. SynthGrep is derived from the
Unix grep utility, preserving the I/O pattern of grep (whole file
sequential, process a block before reading the next), but providing
a parameter to control the amount of computation. This parame-
ter, Comp, is the amount of processing to be done expressed in mi-
croseconds/byte. It controls the number of instructions executed by
the benchmark program between file system reads.

Each experiment consists of running synthGrep on a set of un-
cachedNFS files, once using the standard file system operations and
again using dynamic sets. The experiments flush both the client’s
and the servers’ buffer caches before running synthGrep to elimi-
nate dependencies between runs. Use of warm caches would elim-
inate I/O latency altogether, and obviate the need for prefetching or
reordering. The experiments record the total elapsed time to run the
test as well as the amount of time spent in the idle loop. In the ab-
sence of competition for the client’s CPU, idle time is equivalent
to the amount of time the application was blocked waiting for data.
The experimental results are the average of 10 trials.

The experiments ran on DECStation 5000/200s (25Mhz Mips
R3000A) with 32 MB of RAM running the Mach 2.6 operating sys-
tem, which includes an in-kernel NFS version 2 client and server.
The machines have a hardware cycle counter with which the ker-
nel can accurately time events to within a few microseconds. The
tests were run on an isolated 10Mbps Ethernet, and the machines
were lightly loaded: only the user running tests was logged in dur-
ing the tests, although the machines were not booted single user.
Since the machines are normally shared among several users, they
were rebooted before each series of tests to ensure a clean test en-
vironment. On these machines, grep takes an average of 718 mil-
liseconds to process 12 16KB files (� = 12:1), spending 257 mil-
liseconds (� =4.7) reading data, or Comp = 1:3 �sec/byte.

4Kip Walker at CMU is porting SETS to NetBSD.
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This graph shows the cost and benefit of SETS vs. set cardinality. The points
are experimental results; the lines plotted via regression with a correlation co-
efficient of greater than .9995 in all cases. The dots show the results without
SETS, the pluses those with SETS. The solid lines show the total elapsed time
and the dashed lines show the amount of CPU. The difference between the solid
and dashed lines is the stall time. From the graph, one can see the increase in CPU
usage due to SETS, but also the larger reduction from overlapping computation
and I/O. The result is that SETS can reduce the run time for every file in the set,
and thus get more benefit for larger sets.

Figure 4: Benefit of SETS vs. Cardinality

5.2 Cardinality

Figure 4 shows the results of running the benchmark on sets of size
N of uncached16KB files on one server with Comp = 1. The results
show that dynamic sets reduce the running time of the application
for N > 1, and the amount of reduction grows with the size of the
set. For N = 1 there is no statistical difference in the run times. The
reduction in run time is a result of lower idle times: the application
spends less time waiting for data and more time working.

The tradeoff is an increase in computation to prefetch the files.
This increase is shown by the higher line for CPU when using dy-
namic sets. Fortunately this increase is small, and in particular
much smaller than the decrease in latency from prefetching.

What is the cause of this reduction in latency? One source
is clearly the ability to overlap computation and I/O. Rather than
blocking, the application can process data and the system can send
and receive other messages, reducing the amount of idle time with
legitimate work. Another source is a higher utilization of the I/O
system, which results in higher I/O efficiency. For instance, while
the server is waiting for a disk read to complete it can process other
read requests or send data over the network. It should be noted that
this higher utilization from prefetching can have a negative impact
if the server or network is fully utilized by demand traffic. SETS
also derives a small benefit by pre-reading a file’s data immediately,
while Unix read-ahead must wait for a sequential access pattern to
be established.

5.3 Overlapping Computation and I/O

One reason that prefetching can lower latency is that I/O can be per-
formed in parallel with computation, hiding the delays and increas-
ing client CPU utilization. The second experiment examines this
effect by varying the amount of computation (Comp) performed by
synthGrep on sets of 12 16KB files stored on one server. Figure 5
show the results of this experiment. As shown in the graph, there is
almost no difference in synthGrep’s runtime between Comp = 0



and Comp = 1 when using SETS, even though the application
spends more time computing. The additional computation hides I/O
latency from the application, reducing the amount of idle time. For
Comp > 2, the application is compute bound because SETS has
eliminated as much latency as it can. For higher values of Comp, the
relative benefit of prefetching diminishes as the contribution of I/O
latency to runtime grows smaller compared to the amount of CPU.
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This graph shows the time to run synthGrep with different amounts of compu-
tation (�sec/byte). Solid bars show the results for runs without and stripped bar
for runs with SETS. The light portion of each bar is the amount of time spent in
the idle loop, which indicates the amount of time the application blocked on I/O.
From the graph, one can see that SETS can reduce latency by overlapping I/O
and computation. For higher amounts of computation the application becomes
compute bound, which reduces the relative benefit of prefetching.

Figure 5: Benefit of SETS vs. Computation
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This graph shows the time to run synthGrep on different file sizes and files stored on multiple servers. Each cluster of bars represents a file size, and
bars within the cluster are normalized to the total time for runs without SETS. The dark portion of each bar is the time spent computing, the light
portion is the time spent in the idle loop stalled on I/O. The graph shows that SETS can exploit parallelism through concurrent prefetching.

Figure 6: Benefit from SETS vs. Concurrent Prefetching

5.4 The Effect of Parallel I/O

A second benefit of prefetching is the ability to exploit parallelism
by fetching data from independent disks or servers concurrently.
Such parallelism would exist, for instance, if a search’s candidate
files were stored on multiple servers. The third experiment exam-
ines the effect of concurrent fetches by running synthGrep on sets
of files stored on one, two, and three servers. Because SETS is able
to eliminate most of the latency to access 16KB files by overlapping
I/O and computation, this experiment also runs synthGrep on larger
files.
Figure 6 shows the results of running synthGrep on sets of 12 files
of equal size, with Comp = 1. The graph shows four clusters, each
correspondingto a different file size (16, 64, 256, and 1024KB). The
bars within each cluster of bars correspond to (from left to right) a
set of 12 files stored on three servers (4 files per server) using stan-
dard file system operations5, 12 files on one server, 12 files on 2
servers (6 on each) and 12 files on 3 servers (4 each). The leftmost
bar in each cluster presents times without using SETS, the other
bars are for runs with SETS. All values are normalized to the av-
erage total execution time without SETS. By comparing the results
across clusters one can see the effect of file size on the relative ben-
efit from dynamic sets, by comparing within the cluster one can see
the effect of parallel fetches.
This experiment has two chief results. First, it demonstrates that
SETS is able to exploit parallelism between servers to virtually
eliminate latency, even for large files. In fact, the remaining latency
is close to the minimum achievable by the implementation’s use of
whole file transfer, since the best SETS can do is eliminate all la-
tency but the time to fetch the first file. Without prefetching, NFS
can only read from one file, and thus one server at a time, and so can-
not exploit parallelism between servers as can SETS. The drawback
of concurrently fetching data is that it consumes more network and
server bandwidth by fetching the same data in a shorter amount of
time.

5There is no significant difference between times for non-SETS tests with one, two,
and three servers, so the graph only shows the results for three servers.
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This graph shows the time to run synthGrep when one set member is cached. Each cluster of bars represents a file size, and bars within the cluster are
normalized to the total time for runs without SETS with no files cached. The dark portion of each bar is the time spent computing, the light portion
is the time spent in the idle loop stalled on I/O. These results show that SETS can eliminate I/O when a file is cached by reorderingaccess to use the
cached file before it is evicted.

Figure 7: Benefit of Reordering When One File Is Cached

Second, the benefit from SETS is smaller for larger files than
for small files. One can see this effect by comparing the bars cor-
responding to runs on one server for different file sizes. The rea-
son is that the relative benefit SETS gets by prefetching decreases
as the performance improvement from read-ahead increases. How-
ever, the range of sizes under which dynamic sets offer greatest per-
formance improvements covers most files in a typical Unix envi-
ronment. Studies have shown median file sizes between 10KB and
16KB, and 80% to 90% of files are less than 50KB in size [4, 27, 32].

5.5 Reordering

In addition to the benefits of prefetching, dynamic sets allow the
system to reorder fetches. Reordering is advantageouswhen I/O la-
tency differs between members, such as when some members are in
the cache when the set is created. Figure 7 shows the results of an
experiment that cached one member of the set before running syn-
thGrep, and used sets of 12 files of equal size stored on 3 servers. In
order to best demonstrate the benefits of reordering, the experiment
used Comp = 3 to achieve the maximal benefit from prefetching.
The graph in Figure 7 shows four clusters of bars corresponding to
files of 16, 64, 256, and 1024KB in size. The two bars on the left of
each cluster correspond to runs without SETS, the ones on the right
to runs with SETS. The first and third bars in each cluster show the
results when no files were in the cache, the second and forth bars
show the results when one set member was cached.

The chief result of this experiment is that reordering allows
SETS to eliminate all I/O latency. In the previous experiments,
SETS could not eliminate the latency to fetch the first file since the
application had no data upon which to perform computation. A sec-
ondary effect is shown in the 1MB file tests. Because the client’s
buffer cache is too small to hold the entire set, the cached member
is evicted before the application can read it. By reordering, SETS is
able to determine the member is cached and yield the file before its
data is evicted. The benefits of reordering are more dramatic when
the disparity in latency is very high, such as when some requests
timeout. Although timeouts are atypical in test environments, they
are common in large distributed systems and can contribute to ag-
gregate latency.

5.6 Accessing Data from the Local File System
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This graph shows the time to run synthGrep on sets of local files. Each cluster
of bars represents a file size, and bars within the cluster are normalized to the
total time for runs without SETS. The dark portion of each bar is the time spent
computing, the light portionis the time spent in the idle loop stalled on I/O. These
results show that prefetchinglocal files off one disk has limited benefit over read-
ahead, but SETS still providesa sizeable benefit (25%) for typical Unix file sizes.

Figure 8: Benefit of SETS for Local Disk Files

The previous experiments show that SETS offers substantial bene-
fits in the domain for which it was designed – search on a distributed
file system. Figure 8 shows the results of running synthGrep on files
on the local disk. The experiment ran synthGrep on sets of 12 files
stored on one disk, using Comp = 1. The graph shows clusters
corresponding to file sizes of 16, 64, 256, and 1024KB, normal-
ized to run times without SETS. For small files (16KB and smaller),
SETS reduces latency and overall runtime. For larger files, how-



This window appears when a user opens a set. Clicking on the “Iterate” button causes Mosaic to get the next set element by
calling the set’s iterator. The other buttons allow users to see the member names (“Digest”), print the set cardinality (“Size”),
open a new set to begin iteration again (“Rewind”), and to close the set (“Close”).

Figure 9: Mosaic Window for Managing Open Sets

ever, SETS’ prefetching results in an increase in latency!
Three factors contribute to this negative result. First, I designed

SETS to prefetch remote files into the local file system, and thus
did not tune it to prefetch local files aggressively. Second, the Unix
read-ahead mechanism is very effective at reducing latency, leav-
ing little additional opportunity for SETS. Third, SETS’ prefetch-
ing strategy, which was designed for network reads, attempts to
prefetch from more than one file at a time. As a result, the accesses
seen by the disk are not sequential, and force the disk to seek more
often. The performance penalty incurred from these seeks does de-
pend on data layout. A comparison of the results of this test run with
different layouts indicates the latency in this experiment is highly
sensitive the location of the data. In some cases I was able to elim-
inate the increase in latency by carefully placing the data on disk.
However, controlling data layout in this manner is not practical in a
real-world setting. An alternate strategy that avoided concurrently
reading more than one file from the same disk should not suffer this
problem. An extension of SETS to use a system like TIP2 [29] to
manage local disk prefetching would have this property.

6 Dynamic Sets and the Web

Having seen the benefit of dynamic sets in traditional file systems,
it is natural to ask whether search on the World Wide Web could
benefit from dynamic sets as well. The Web is an interesting do-
main becauselatencies are very high, there is substantial variance in
latency between different servers and over time, and because Web
search tends to be interactive. Unfortunately, Web browsers cur-
rently only support “point-and-click” interaction, which leaves little
opportunity to use set iterators. However, one could easily extend
a browser’s interface to support user-controlled creation and itera-
tion over sets of web objects, and then use dynamic sets to reduce
I/O latency. It is critical that users control the creation and member-
ship of sets in order to maximize the accuracy of the hints inherent
in a set. Having the system, server, or browser infer set boundaries
from access patterns is equivalent to inferred prefetching, and thus
is likely to induce substantial extraneous network and server load
for each inappropriately inferred use of sets.

There are a number of cases where iteration over sets is possible.
Any hypertext page can be thought of as a set whose members are
the objects to which the page has a link. For instance, Web search
engines represent the query results as an HTML page, many Web
servers have a top-level page that serves as an index of their site,
and many pages contain links to sites with related information. If a
user decides that she might wish to visit some number of the links
on a page, she could create a set by selecting these links and then
iterate on the set to view the members. Tools that provide this ca-
pability, such as WebCompass [40], are available, but only prefetch
members of predefined sets well in advance of a search. Dynamic
sets, if successful, would allow searchers to specify sets at runtime
and still substantially reduce the latency of processing the objects.

6.1 Adding Web Support to SETS

In order to evaluate the use of dynamic sets on the Web, I imple-
mented a warden to allow SETS to prefetch Web documents and to
query search engines, and extended the NCSA Mosaic 2.6 browser
to use dynamic sets. The browser redirects queries to search engines
through the warden when requested to do so by the user, and the
warden parses the response to extract links. Currently all links on
a page are added to the set, but this is just a limitation of the proto-
type. In fact, the warden can use any hypertext page to define a set’s
membership since search engine queries are URLs (Web document
names) and return HTML.

Once a set is created, the browser displays a pop-up dialog such
as the one in Figure 9. Users request the next set member by clicking
the “iterate” button; Mosaic loads the member by calling the set’s it-
erator and displaying the object it receives. The warden prefetches
whole objects to the local disk using the standard HTTP protocol
and stores the HTTP headers with the objects to allow Mosaic to
properly parse their data.

6.2 Experimental Methodology

Because the Web is so large and amorphous, capturing its perfor-
mance characteristics accurately in a model, simulation, or clean
test environment is difficult. The experiment avoids this problem
by replaying traces of real searches to achieve both repeatability
and realism. The traces6 were captured by recording the activity
of 5 expert Web users, each performing 3 searches and spending
10 minutes per search. The traces record the names of the objects
that were fetched (including inlined images) and the times at which
the fetches were requested by the user. By determining the time be-
tween the return of one fetch and the start of the next, one can obtain
the user think time – the amount of time the user spent examining
the object before moving on. The five traces can be viewed as in-
dependent samples from the population of directed search activity
performed by expert Web users. Figure 10 summarizes the traces to
give an idea of the workload they represent.

To create equivalent traces that use dynamic sets, I manually
copied these traces, replacing demand load operations with itera-
tion over sets, one set for each task or 3 sets per trace. I created
15 HTML pages corresponding to the 15 traced tasks (3 per user).
Each page captures the corresponding set’s membership by contain-
ing a link to each object referenced by the trace for that task. I then
inserted operations into the traces to open the set using the corre-
sponding HTML page defining the set’s membership, and to close
the set at the end of that task.

It is important to realize that since the creation of the SETS
traces employed an oracle (me) to determine set membership, this
experiment provides an upper bound on the benefit one would ex-

6Bill Camargo at Transarc, Inc. designed and implemented the trace capturing
mechanism.



Task A Task B Task C
Trace # 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

Think(sec) 378 174 211 284 110 322 385 244 307 266 351 263 281 228 286
# of Objects 21 13 12 17 3 15 20 12 9 10 39 16 16 20 12
# of Images 12 30 26 15 12 56 9 22 19 18 48 30 6 46 21
Bytes(KB) 226 80 134 154 136 254 263 152 459 176 132 63 131 273 256

Figure 10: Summary of 5 WWW Search Traces
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This graph shows the results of replaying traces of user search activity on the live Web. Five users were traced, and each trace consisted of three search tasks.
The graph shows the cumulative user think time, amount of computation to display data, and I/O latency seen by Mosaic to replay the trace of one search task for
one user. The chief feature of this graph is the potential savings from latency that can be obtained by using dynamic sets.

Figure 11: Results of Replaying User Traces on the Web

pect from using dynamic sets. If one can exactly capture one’s near-
term future data needs, such as by iterating over the results of a
query to a search engine, then one should see performance improve-
ments comparable to the results shown below. However, the bene-
fits from dynamic sets do depend on the user iterating over a set of
objects whose membership she defines. The benefits shown by the
experiments below are realizable in practice only to the extent that
the user adopts this mode of operation.

6.3 Experimental Results

I replayed the traces on a DECStation 5000/200 with 64MB of
RAM; all client caches were flushed prior to each run. The client
software is version 2.6 of NCSA Mosaic modified to replay traces
and use dynamic sets, and the client operating system is Mach 2.6.
The replay mechanism loads the objects in the trace from live Web
servers, Mosaic displays the objects, and then pauses to approxi-
mate the user think time captured in the traces. The trace output
records the latency seen by the trace mechanism, the amount of time
Mosaic spent processing the object, and the amount of simulated
user think time. The client shared a 45Mbps T3 connection to the
Internet with other computers from Carnegie Mellon University and
the University of Pittsburgh. The traces were replayed during peak

hours (afternoon EST) for greatest realism; other experiments that
replay the traces on weekends, without loading inlined images, and
over a phone line see vastly different latencies but similar relative
benefits from the use of sets to those shown here [38].

Figure 11 shows the results of replaying these traces, broken out
by search task and averaged over 5 runs. Each bar consists of three
parts: the user think time captured in the trace, CPU time to fetch
and display the images, and the latency seen by Mosaic. The labels
on each cluster of bars denote the search task and user that cluster
represents; solid bars show the times for runs that did not use dy-
namic sets and striped bars show the times for runs with sets.

Figure 11 shows three chief results. First, dynamic sets can dra-
matically reduce aggregate I/O latency on the Web by overlapping
egregious Web latencies with even larger user think times, and by
fetching data in parallel. The results show between a 70% and 98%
reduction in latency, which means that users would wait much less
time for their data if they were using dynamic sets. Second, reduc-
ing the latency reduces the magnitude of variance in latency that
results in a more predictable, and therefore more usable system.
Third, the savings from dynamic sets largely depend on the compo-
sition of the set, the amount of user think time, and the speed of the
network. In the extreme, dynamic sets offer no performance ben-
efits for sets of 1 object, and induce a small overhead to create the



set.
This experiment also demonstrates the advantages of reorder-

ing. Several of the fetches in each trace take tens of seconds to
complete. Prefetching alone would force the user to block on these
fetches, even though other objects are waiting to be processed. Be-
cause of the nature of iterators, SETS can yield any member that
is ready, and thus overlap these long fetches with user think time to
substantially reduce the amount of time the user is blocked waiting
for data.

7 Conclusions

Dynamic sets are a new operating system abstraction that gives sys-
tems greater opportunity to transparently reduce I/O latency, while
providing a better interface for applications that process groups
of objects. This paper has demonstrated that systems can reduce
latency over a wide range of systems through reordering and in-
formed prefetching by exploiting the non-determinism of iterating
over sets. These benefits do not depend on locality of reference
and therefore apply to applications for which caches and predictive
methods perform poorly. Dynamic sets can be implemented without
requiring modifications to protocols or servers, and so can be easily
deployed. Finally, dynamic sets adhere to established software en-
gineering principles by preserving strong interface boundaries and
shielding applications from low-level system details.

Dynamic sets address the problem of I/O latency by exposing
an application’s non-determinism and future data needs to the sys-
tem, which can exploit this knowledge to reduce latency. Applica-
tions benefit from prefetching without having to manage I/O explic-
itly, and the system is given greater knowledge with which to sched-
ule I/O and manage resources. As a result, the system can prefetch
without accurate predictions of latency by fetching a small number
of objects concurrently and opportunistically yielding the first to re-
turn.
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