Exploiting the Non-Determinism and Asynchrony of Set Iterators
to Reduce Aggregate File I/O Latency

David C. Steere

dcs@cse.ogi.edu
Department of Computer Science and Engineering
Oregon Graduate I nstitute

Abstract

A key goal of distributed systemsis to provide prompt accessto shared
information repositories. The high latency of remote accessis a seriousim-
pediment to this goal. This paper describes a new file system abstraction
called dynamic sets — unordered collections created by an application to
hold the files it intends to process. Applications that iterate on the set to
accessits membersallow the systemto reducethe aggregatel/O latency by
exploiting the non-deter minismand asychrony inherent in the semantics of
set iterators. This reductionin latency comes without relying on reference
locality, without modifying DFS serversand protocols, and without unduly
complicating the programming model. This paper presentsthis abstraction
and describesan implementation of it that runson local and distributed file
systems, aswell asthe World Wide Web. Dynamic setsdemonstrate substan-
tial performance gains— up to 50% savings in runtime for search on NFS
and up to 90% reductionin I/O latency for Web searches.

1 Introduction

A central problem facing distributed systemsis the high latency to
accessremote data. Latency is problematic becauseit reducesthe
benefit typical applications can receive from faster CPUs, and re-
ducestheproductivity of userswhoareforced towait for data. Long
1/0 delayscanreducethe usability of asystem, especialy if thevari-
ancein the delay is high. This paper showsthat a small, carefully
designed extension to the system-call interface of an operating sys-
tem can result in asubstantial reductionin the aggregatel/O latency
seen by applicationsthat use iterators, without requiring locality of
reference or modificationsto protocolsor servers.

The essence of the argument is that extending the systeminter-
face to support set iteratorswill allow the systemto reducel/O la-
tency transparently for those applicationsthat usethem. Thisargu-
ment is based on three observations. First, current file systeminter-
facesrestrict the system’s opportunity to reduce latency by forcing
applicationsto processgroups of filesin aserial, and often imposed
order. Asaresult, systems manage /O for applicationswithout ac-
curate knowledge of their future data needs. However, the alterna-
tive of pushing I/0 management to the application significantly in-
creases the complexity of the programming model. Second, itera-

This research was supported by the Air Force Materiel Command (AFMC) and
the Defense Advanced Research Projects Agency (DARPA) under contract number
F19628-93-C-0193. Additional support was provided by the IBM Corporation, Dig-
ital Equipment Corporation, and Intel Corporation.

tors are a convenient mechanism for processing groups, as attested
by the widespread use of iterator-like constructs such as cursorsin
SQL; foreach loopsin shellslike perl, tcl, and sh; the Enumeration
classinJava[1]; anditeratorsin higher level languageslike Alphard
[33] and CLU [23]. Third, the use of iterators on sets of files could
allow asystem to transparently reduce the aggregate |/O latency of
accessing the set membersif the iterator wasvisible to the system.

To explore the utility of iterators, | added a new abstraction
called dynamic sets to the application programmer interface (API)
of adistributed file system (DFS). A dynamic set is a lightweight,
transitory, and unordered collection of files that is created on-the-
fly by an application to hold the files that it wishes to process. A
file'smembership in adynamic set indicatesthe likelihood of near-
term access, allowing the systemto safely prefetch thefiles' datato
reducelatency.

An application creates a dynamic set by supplying a member-
ship specification that is evaluated by the system to ascertain the
names of the set members. Applications can then process the set
members by iterating on the set. Every call to theiterator returns a
handleto a member that has already been fetched. Asaresult, the
application sees either little or no latency to access the member’s
data. Applications can also manipulate set membership using stan-
dard set operations. For example, one might create setsto hold the
resultsof queriesto two newsservices, and then intersect the setsto
find stories common to both services.

A crucia aspect of this work isthat the application’s use of it-
erators on unordered sets freesthe system to determinethe order in
whichit yieldsset membersto the application. Thereiscurrently no
way for anapplication to expressto the kernel that it doesnot require
adeterministic order. Thisforces determinism on applicationsand
restricts the system’s opportunities for reducing latency. Dynamic
sets provide ameansfor applicationsto discloseto the system that
their correctness does not depend on the order of access, allowing
the system to schedule 1/0O and manage its caches more efficiently.
Dynamic setsdo allow applicationsto request an order, but applica-
tionsthat do so limit the system’sability to optimize accessthrough
reordering and may pay aperformance penalty for their ordering re-
quirements.

One application domain that can benefit from dynamic setsis
search and retrieval of file data, hereafter referred to as search.
Search applications identify a group of candidate files, and then
fetch and examine them in turn to find any files that satisfy the
search criteria. Search has several important characteristics that
makeit anideal application for dynamic sets. First, searchisanim-
portant application asis dramatically apparent to any user of alarge
distributed system. Second, search exhibits poor locality of refer-
ence and thus gets little benefit from caches. Studies of cache per-
formance on the World Wide Web (Web) bear this out: Web proxy
cachesget low hit rates(30-40%) evenwith unlimited sizeand large
user populations [11, 3, 9]. Third, searches often run until some

satisfactory file is found, and thus either have no preference of the
order in which files are fetched or have insufficient knowledge to
specify the order at the time of search.

2 Related Work

1/0 latency haslong plagued computer systems, and systembuilders
have developed two basic techniquesto overcomeit: caching and
prefetching. Cachingiswidely used, andisnearly ubiquitousindis-
tributed file systems[14, 31, 26] in which accessingremote datain-
curshighlatency. However, cachingiseffectiveonly if applications
exhibit temporal locality of reference. Prefetching doesnot rely on
locality and so is more suited to applicationswith poor locality like
search. The drawbacks of prefetching are that one must somehow
predict future accessesin order to prefetch the data, and inaccurate
predictionsincrease the load on the /O subsystem, and can lead to
thrashing. Systemsthat infer future accessesbased on past accesses
[22, 8, 39, 28, 12] are most susceptibleto this problem. One study
found a20x slow downin one casewhen prefetching datafrom disk
onaparallel computer [21]. However, prefetching can producesub-
stantial improvement if the accesspatternis sufficiently regular and
easily detected, such as Unix’s one-block read-ahead mechanism
[2, 34].

One way to avoid the problem of inaccurate predictions is to
expose asynchronous I/O directly to applications, and let applica
tions managetheir 1/0 explicitly. However, this approachincreases
the burden on the application programming, and violates software
engineering principlesthat call for hiding low-level details beneath
strong interface boundaries. In addition, applications that manage
1/0 themselvesare highly sensitiveto changesin CPU or 1/0 speed,
and are thus difficult to port or maintain. An example of explicit
prefetching is the Queued RPC mechanism of the Rover toolkit
[16], which exposes asynchrony to application programmers and
users. Although this can result in more efficient 1/0, it requiresthe
application programmer to poll to determinewhen an operation has
completed and to maintain the operation’s context until the opera-
tion terminates.

In another approach, called Informed Prefetching, the appli-
cation informs the system of its future data needs but leaves the
management of asynchrony to the system. The system can safely
prefetch based onthese hints, and the applicationis not complicated
by the need to control prefetching or manage systemresources. Re-
cent studies by Patterson et a. [29], Cao et d. [6, 7], and Kimbrel
et a. [18] havefound significant speedupsfrom informed prefetch-
ing in local file systems, particularly when reading data from mul-
tiple disksin parallel. These systems require application program-
mers to manually augment their code to pass hints of future block
accessesto thefilesystem. Mowry etal. describeasimilar approach
that uses compiler generated hintsto pre-pagein avirtual memory
system [25]. Their compiler generates prefetch requestsby analyz-
ing program loops to determine near-future data accessesin virtual
memory. Similar analysisallows the compiler to insert hintsto re-
lease pagesas well.

Thework described hereisalso aform of informed prefetching
to reduce latency, but differs in severa respects. First, the hints of
future accessare derived from the membership of adynamic set as
opposed to being supplied by the compiler or application program-
mer. Second, dynamic sets offer the opportunity to schedulefile ac-
cessesmore efficiently through reordering. In particular, thisallows
the system to use a more opportunistic prefetching strategy, for in-
stancestarting several fetchesin parallel and yielding thefirst to re-
turn. Third, theimplementation of dynamic setsistunedfor search
on distributed file systemsand prefetcheswhol e files, asopposed to
prefetching blocks within afile.

Dynamic sets can aso be viewed as a higher-level microlan-
guage for expressing near-future data accesses, which is used by

the storage system to improve performance. Other examplesof this
approachinclude collective /O operationsin a paralld file system
[20], application defined operations on structured files[13], and do-
main specific microlanguages[30] such as complex-content multi-
media specifications[36].

3 Dynamic Sets

To better understand how applications could use dynamic sets, con-

sider a search using the Unix command gr ep, such as “grep

pattern *.c”". Currently, theshell expandsthewildcard“*. c”

into an al phabetizedlist of filenames, and gr ep openseach of these
filesinthat order. For eachfile, gr ep readsthefile’sdataand prints
lines matching the pattern. Although gr ep knows the identity of
thefilesit will read when it starts, it has no way of disclosing this
information to the system, and thusthe system hasno opportunity to
prefetchthefiles. Inaddition, theorder in whichthefilesare opened
isimposed by the shell, independent of gr ep’s, thesystem'’s, or the
user’s needs.

Now consider how gr ep might use dynamic sets. First, gr ep
would createadynamic set to hold thefilesnamed by “*. ¢”. G- ep
wouldthenloop, callingtheiterator toretrieve thenextfile, and pro-
cessingit using the same codeasstandardgr ep. Eachcall totheit-
erator returns apreviously unseenfile, andtheloop terminateswhen
all set membershavebeen seenand processed. Figure 1 containsthe
main loop of gr ep with and without dynamic sets.

Modifying grep to use dynamic sets yields three benefits.
First, the system can prefetch the filesnamed by “* . ¢” with area-
sonable assurance that gr ep will shortly access them. Through
prefetching, files on separate servers may befetchedin parallel, and
thefetching of somefilesmay overlap the processingof others. Sec-
ond, the system can reorder the fetching of the files, since gr ep
does not require that the files be processed in any order. Thusif
some of the files are local and others remote, the system could re-
turn the local files first to reduce the time to begin processing the
data, and could overlap processingthesefileswith thefetching of re-
motefiles. Third, prefetching and reordering together givethe sys-
tem greater flexibility to adapt its behavior to changing resources.
For instance, the system might prefetch all of aset when communi-
catingwith alightly loaded server, but may only prefetch oneor two
memberson alow bandwidth or loaded connection. In addition, the
system can chooseto prefetch only some of the members to avoid
wasting I/O bandwidth should the search terminate prematurely.

3.1 Properties of Dynamic Sets

Although | have used search in distributed file systemsto motivate
dynamic sets, infact they offer benefit to any applicationthat canit-
erate, that suffers substantial 1/0 latency, and that caninexpensively
name the filesin its short-term working set. The first two proper-
tiesenablethe useof sets; several application domainsin additionto
search satisfy these properties, such as datamining, query process-
ing in object oriented databases, or document processing. Thethird
property means that the time to create a set and identify its mem-
bersis less than the potential savings from prefetching the mem-
bers' data. This property is true for any persistent repository with
large objects, such as digital libraries, image repositories, object-
oriented databases, distributed file systems, and the Web. As such,
| designed dynamicssetsto begeneral, carefully avoiding decisions
that would overrestrict the implementation and unnecessarily limit
its ability to reducelatency. The following paragraphs describe the
key properties of dynamic sets.

e Created on-demand

Applications create dynamic sets on-demand by supplying a
specificationthat the system eval uatesto determinethe names

Main loop of gr ep

Main loop using dynamic sets

while (*filenames) {
fd = open(filenames++);
execute(fd);
close(fd);

s = setOpen(set_spec);

while (fd = setlterate(s)) {
execute(fd);
close(fd);

éetCI 0se(9);

The two sections of code reflect how gr ep can be modified to use dynamic sets. The code on the left is the main loop of gr ep, which steps throughalist of
filenames passed to gr ep as command line arguments. The code on the right shows the main loop of gr ep using dynamic sets, which iterates on a set whose
membership is defined by a membership specification suchas’ *. ¢’ . Thisexampleillustrates two points. First, it shows the ease with which one can modify
commonsearch applicationsto usedynamicsets. Second, themainfunctionality of gr ep, locating substringsin afile, doesnot need to be modifiedto usedynamic
sets. Inthis example, the command line argument must be quoted to prevent shell expansionof “*. c”.

Figure 1: Code Example Showing the Use of Dynamic Sets

of the set members. Themembership specificationlanguageis
orthogonal to the design of sets, the paper discussesone such
mechanism below. Becausethis specification is evaluated at
runtime, aset’'smembership dependson the state of the system
at the time of the set’s creation, hence the name “dynamic”.
One advantage of determining membership at runtime is that
applications see current information by default, but can relax
currency by opening a set before it is needed. Fortunately,
eval uating membership consistsof nameresolution, e.g. Unix
filenameglobbing, whichistypically asmall percentageof the
time to fetch the set members' data.

e Short-lived

Because the membership of each newly created set is dy-
namically determined, the system need only preserve a set
while its creator isrunning. Thisin turn allows the system to
maintain setsin volatile memory, which resultsin sets being
lightweight. Since the time spent creating and maintaining a
set directly offsets any potential benefit of prefetching and re-
ordering, lightweight setscanreducelatency in awider variety
of settings.

e Unordered

By using a set as the abstraction underlying dynamic sets, ap-
plications can disclose their short-term working set without
imposing a deterministic order on it. This non-determinism
freesthe systemto scheduledataaccessfor greater efficiency,
resulting in three distinct benefits. First, the system can ex-
ploit differencesin latency between members by immediately
yielding an availablemember, overl apping the computati on of
that object' with the 1/0 to fetch other members. Second, the
system could reorder accessto better utilizethe cache. If some
members are cached, the system could yield them first and
thus avoid stalling the application at al. Further, the system
could prevent cached members from being evicted from the
cachebeforethe application getsachanceto read them. Third,
theability to reorder allowsthe prefetcher to fetch opportunis-
tically, rather than based on estimates of server latency. For
instance, the prefetcher can initiate three fetches and use the
first to return, rather than waiting to determine the size of ev-
ery object and calculating the expected latency to fetch them.
Thisis particularly important in the presence of unpredictable
failuresthat result in lengthy timeouts. Theability to prefetch
with little advance knowledge is one of the key distinguish-
ing features of this approach, allowing use of dynamic setsin
systemswith widely varying performance like the Web.

Currently, many applications have no particular ordering
needs and so could use dynamic sets, but are forced to seri-

! Because dynamic sets can be used in contextsother than file systems, | refer to set
members as objects instead of more specificaly as files.

alizetheir accessesby current system APIs. Oftentheorderis
provided by some third party, such asthe csh in the case of
filename globbing. For search, the proper order is unknown
until thesearchterminateswith asatisfactory object, sincethat
object would befirst in the optimal order. Search enginerank-
ingsapproximatethisorder, but arenot sufficiently accurateto
warrant strict adherenceto them. For those applications that
do have an ordering preference, dynamic sets allow applica
tions to assign a priority to members, for instance based on
search engine rankings. The system treats these rankings as
hints, using them to drive prefetching but potentially violat-
ing the order rather than blocking the application if amember
with lower rank is available.

e Loosely consistent

Ideally, membership would be evaluated atomically and have
perfect precision and recall (no false positives or negatives).
However, it can be expensivein system complexity and per-
formance to provide these properties [41]. Further, dynamic
setsare layered on top of existing systemsfor simplicity, and
as such cannot provide a stronger consistency model than
the underlying system. Fortunately, many searches on DFS
are satisfied without strong consistency guarantees, as the
widespread use of these systems can attest. For example, a
programmer can usually find the right version of a sourcefile
without having to lock all the candidate objects for the dura-
tion of the search.

Rather than promisetheillusion of atomicity, dynamic setsin-
stead guaranteethat:

e Every member must satisfy the membership specifica-
tion at some point during the lifetime of the set.

e Oncean object isknown to be amember, it will remain
amember of the set.

Together, these guaranteesensurethat the membership of aset
is current but not necessarily complete. In addition, the state
of each member captured in the set is the state that satisfied
the specification, and not necessarily the most current version
of that object. However, specificationsthat involve queriesto
search engines can only be as correct as the search engine's
index, sincethe engines are external to dynamic sets.

¢ Noduplicates,immutable

Dynamic sets are similar to mathematical setsin that they do
not contain duplicate membersand areimmutable. Duplicates
can be eliminated automatically by testing for name or value
equivalence with other members. Using name equivalence
has the added benefit of eliminating duplicates before fetch-
ing their data, while still providing reasonable semantics. To

ensure immutability, operations that would otherwise modify
a set’'s membership create a new set instead. Since sets are
lightweight, the cost of immutability is small.

4 Implementation

The implementation consists of adding dynamic sets to the Unix
file system interface, and is hereafter referred to as SETS to dis-
tinguish its features from those of the dynamic sets abstraction or
from other potential implementations. The architecture of SETS
contains three basic components, as depicted by Figure 2. SETS
definesasynchronousinterfaces between these componentsto avoid
unnecessarily stalling the processing of a set. The API component
manages the dynamic sets data structures and exports the SETS
API to applications. The prefetching engine evaluates member-
ship specifications to determine the names of members and man-
ages prefetching. Wardens serve as portals between SETS and in-
formation repositories, allowing SETSto fetch objectsand evaluate
queries. For example, the NFSwardenisan NFS client extendedto
communicate with SETS and to prefetch files.

One controversia aspect of this architectureisthat the APl and
prefetcher residein the operating systemkernel, asopposedto resid-
ing in a user-level library. A kernel implementation allows SETS
tointeract closely with the file system at low cost. For instance, the
prefetcher needslow latency accessto thefile system’sbuffer cache
to locate cached set members and to avoid overrunning the cache
with prefetch data. Note that this decision is specificto SETS: in
some other domain such as a Web browser it may be more appro-
priate to implement dynamic setsas a plug-in or library.

4.1 Application Programming Interface

The dynamic sets API provides operations to create and destroy
sets, merge setsthrough union or intersection, createasubset, query
aset’'smembership, determine aset’s size, list the namesor proper-
ties of members, and iterate on the set. For brevity, the paper dis-
cusses only the representation of an open set and the membership
specification language.

In SETS, anopen setissimilar in natureto an openfiledescrip-
tor. Theopen set handleis an index into a per-processtable of open
sets. This handle can then be passed to set operations, in much the
sameway that afile descriptor ispassedto ther ead() systemcall.
When the process exits, open sets are automatically destroyed and
their resourcesfreed.

When a set is created, the creator supplies a specification that
SET S evaluatesto produce alist of the names of the set members.
Thespecificationlanguageusedby SET Sextendsthecsh wildcard
set notation [17] to support three types of specifications: explicit,
interpreted, and executable. Figure 3 gives examples of each.

Explicit specifications use standard csh wildcard notation, or
globbing, to indicate the names of the members of the set.

Interpreted specifications contain strings in some query lan-
guage, such as SQL, delimited by “\". The query is passed to the
warden responsible for the file or directory named by the prefix of
the specification, resultinginalist of namesthat arethen usedtofur-
ther expand the specification. The warden that interprets the query
is not necessarily responsible for the files named by the query, for
instance a GLIMPSE [24] warden could reference NFSfiles. The
second example in Figure 3 would cause SETS to send the SQL
query to adatabase mounted at “/ st af f . If this warden did not
support SQL queriesor the selected fieldsdid not contain valid file-
names, the specification would result in the empty set.

Executabl e specificationsname programs that act asfilters over
a portion of the system’s name space, returning the names of sat-
isfactory filesto SETS. Note that interpreted and explicit specifi-
cations are only a naming mechanism, and require the existence of

tools such as search enginesor libraries of search filtersin order to
be useful. Separating the naming mechanism from the search tool
inthis way allows SETSto utilize arange of tools such as search-
enhanced file systems [10, 24, 5], Web search engines, and SQL
databases.

4.2 SETS Prefetching Engine

The prefetching engine prefetches set members, eval uates specifi-
cations, and manages local resources such as the buffer cache on
behalf of SETS applications, and consists of a number of worker
threads. When aset is opened, the API layer generatesand queuesa
reguestto eval uatethe set’smembership. A worker thread dequeues
the request and beginsthe processof evaluation, adding new mem-
bersto the set asit discoverstheir name. Explicit specificationsare
performed by the worker directly.

Because of the potentially high latency involved, SETS evalu-
ates interpreted and executable specifications lazily. When evalu-
ating such a specification, the worker opensa cursor to the appro-
priate warden or executing program. This cursor allowsthewarden
or program to asynchronoudy run the query, freeing the worker to
perform some other activity. The application’sfirst accessto the set
generates a request to expand the cursor, which causesa worker to
reads as many names from the cursor as possible and add them to
theset. Asthesetisprocessed, SETSwill queuefurther expansion
reguests as heeded to read al the namesfrom the cursor.

Upon the application’sfirst call to the iterator, SETS generates
requeststo prefetch some of the members, to avoid prefetching until
itiscertain that the applicationwill accessat least someof themem-
bers. When aworker dequeuesa prefetch request, it synchronously
fetchesthe data using the file's warden. The fetch may modify the
set’s data structures or queue other requestsas aside effect. For in-
stance, the worker may move the member forward in the list of ob-
jectsto beyielded when the fetch compl etes.

4.2.1 Prefetching Policy

| designed the SETS's prefetching policy to work in an environ-
ment where remote access incurs a high latency, such as a wide-
area DFS like AFS [35] or a mobile client connected over a low-
bandwidth link. The policy has to balance conflicting goals. ag-
gressive prefetching resultsin lower latencies, but may overwhelm
disks, networks, or servers, resulting in thrashing and loss of perfor-
mance. Prefetchingin aDFSiscomplicated by variancein latency,
both over time (to the same server) and from server to server. This
varianceis due to many factors. Variance over timeis dueto load
from other clients, communication failures, or cache effects. Vari-
ance between servers can result from differences in server or net-
work performance, current load, or location of the serversrelative
totheclient (either interms of network topology or geography). All
of these factors make it difficult for aclient to predict how long an
operation will take, and measurements of past accesslatenciesto a
server may be out-of-date or unavailable.

In order to prefetch in the face of inaccurate or incomplete
knowledgeof system state, the prefetching policy makesthree sim-
plifying assumptions. First, it assumesthat accessingdatafrom the
local file systemisfaster than fetching it from aserver (propagation
delays and connection setup are often larger than local disk 1/0 in
wide-area DFS)?. Second, SET S assumesthat local disksarelarge
enough to hold reasonably sized sets. Disks capacities have been
growing exponentially, and even low-end PCs typically come with
severa gigabytesof free disk space. Third, SETS assumesthat set
memberswill be accessed sequentially and as wholefiles.

2When this assumptionisfalse, SET Scan adjust its buffer cache eviction policy to
refetch datafrom the servers on demand instead of evicting it to the local disk.

| |
I I)
Informix
I | g L Warden 9
Application | | < Database
| |
I N
| |
CodaFile
I [.
| | CodaWarden — fe—sge System
| |
: Kernel API T
|
SETSAPI : |
I SETS Prefetching I
| m——— i
| Erris | NFSWarden (== NFS
| |

This figure depicts the main componentsof SETS: the API layer, the prefetching engine, and the wardens. The shaded box
indicates the kernel boundary, the dashed lines separate different threads of control. The API layer extendsthe kernel interface
with the SET Soperations, the prefetching engine sits within the kernel. In the picturetwo wardensare outsideand oneis inside

the kernel; the location is chosen by theimplementor.

Figure 2: The Architecture of SETS

Explicit: /projects/*src*/*.c
Interpreted: /staff/\sel ect
Executable:

home from users where nane |ike "%lavi d% \
/ sour ces/ pkgs/ contri b/ %wwMakeDepend foo0.c%

Thisfigure gives examples of the three different kinds of membership specifications supported by SETS. Explicit specifications list
thenamesusing csh’s regular expressions. Interpreted specifications allow applicationsto use strings that areinterpreted by search
enginesas queries, returningthe names of the files that satisfy the query. Executable specifications name executabl e programswhose
execution resultsin alist of object names. With these types of specifications, SETS can easily be extended to support a variety of

query languages and modes of search.

Figure 3: Examplesof SETS Membership Specification Language

These assumptions result in several simplifications. SETS
stores prefetched data in the loca file system, SETS prefetches
wholefilesopportunistically, and SET S can tuneits policy to adapt
to different kinds of systems. When a set is opened for iteration,
SETS concurrently fetches a small number of files, spreading the
requests acrossserversor disksif possible. The number of filesini-
tially fetched depends on the local system’s guess of the available
bandwidth, but is currently limited to fivefiles’. When the applica-
tion callstheiterator, SET Sreturnsthelargest fully cached member
that has the highest rank if the application has specified an order.
On each call to the iterator, SETS starts a new prefetch, and thus
automatically tunestherate at whichit prefetchesfilesto therate at
which the application consumesthem. This mechanism is similar
to TCP'swindow-based flow control [15], although currently there
is no mechanism to dynamically changethe window size.

In addition, SETS needsto manage its consumption of the file
system buffer cache to maximize the application’s hite rate and to
avoid overruning the cache. For instance, if several of the concur-
rently fetchedfilesarelarger thanthebuffer cache, prefetching them
entirely would evict the beginning of thefilesfrom the cacheaong
with everything elseinit. Sincethe application will read thesefiles
sequentialy, it will misson theevicted data, evictingthe next blocks
to read and so on, thus missing on every block in thefile. In addi-
tion, unconstrained use of the cache by a set will evict thisor other
concurrent applications’ data, and may result in ageneral decrease
in performance asaresult of prefetching.

SETS extends Unix’s buffer cache management to handle
buffers with prefetched datain three ways. First, SETS limits the
number of buffers that can be used to hold prefetched data. This
also limits SETS consumption of network bandwidth, since the
prefetcher will stall whenit runsout of buffers. Second, SET Spins
datain the buffer cacheto prevent other data from evicting it, un-
pinning it after the application reads it or when the set is closed.

3Thislimit is based on typical file size, application processing rate, and latency.

SETS then uses the knowledge of what is pinned when deciding
whichfilesto yield to the application. Third, SET Scan proactively
warm the cache with unpinned data that was flushed to disk when
all pinned data has been consumed by the application.

4.3 Wardens

A SET Swardenisaclient of adistributed systemthat isextendedto
support prefetching and interpreted specifications. Wardenscanrun
in the kernel, such asthe NFS warden that is based on an in-kernel
NFS client, or in user-level processes. User-level wardens com-
municate with SET S using an existing upcall mechanism [37] that
passes VFS file system operations [19] to user-level DFS clients,
caching data in the kernel to avoid upcalls where possible. | ex-
tended this mechanismwith operationsto prefetch afile, openacur-
sor for aninterpreted specification, expand the cursor to retrieve the
resulting filenames, and close the cursor. This mechanism also al-
lowswardensto mount themselvesasvirtual file systemsin thelo-
cal file system namespace. Wardens can implement all or part of
this extended VFS interface. For instance the warden to an SQL
database may choose to support only queries, while an NFS war-
den may support prefetching and the standard VV FS operations, but
not queries.

The open cursor operation passes the specification to the war-
den, which respondswith a cursor —ahandleto an as-yet empty set
of names. The warden asynchronously interprets the specification
to produce alist of filenames. The expand cursor operation returns
any names that are currently available, or blocks until the warden
produces some names or finishesthe interpretation. The close cur-
sor operation is necessary to allow SET Sto inform wardensto pre-
maturely terminate the cursor if the application has closed the set.

The prefetch operation causes the warden to fetch a file, and
blocksuntil the entire file is cached. Simple wardens fetch the data
on demand, more complicated wardens can use asynchronous|/O
or lower priority operations if their system allows. Once afile is

cached, SET Sholdsit opento prevent the warden from evicting its
data.

4.4 Current Status

SETS isan extension to the file system of the Mach 2.6 operating
system, avariant of 4.3BSD Unix. Although SETS uses Mach for
historical reasons, the implementation avoids Mach-specific func-
tionality and ports of SETS to NetBSD* and Linux are underway.
The NFS warden took 3 daysto implement (starting from the NFS
client source code), and adds or modifies 379 (out of 6887) lines of
code.

I modified a number of Unix utilities to use dynamic sets. Al-
though one must recompile an application to use sets, the changes
arerelatively simple, asshownin Figure 1, and are easy to make.

5 Evaluation

The evauation consists of a number of synthetic benchmarks that
examine the potential benefits of dynamic sets with respect to the
cardinality of aset of files, the size of thesefiles, the degree of par-
allelism, and the amount of application computation. In addition,
two experiments examine the effect of reordering and the benefits
of dynamic setsfor search onalocal file system. A more complete
set of experiments, including low bandwidth and interactive search
tests, is described el sewhere [38].

5.1 Test Methodology

The experimentsuseabenchmark program called synthGrepto gen-

erate a workload for the system. SynthGrep is derived from the
Unix gr ep utility, preserving the I/O pattern of gr ep (whole file
sequential, process a block before reading the next), but providing

a parameter to control the amount of computation. This parame-
ter, Comp, isthe amount of processing to be done expressedin mi-

croseconds/byte. It controlsthe number of instructions executed by

the benchmark program between file system reads.

Each experiment consists of running synthGrep on a set of un-
cachedNFSfiles, onceusing the standardfile system operationsand
again using dynamic sets. The experiments flush both the client’s
and the servers' buffer caches before running synthGrep to elimi-
nate dependenciesbetween runs. Use of warm cacheswould elim-
inate 1/O latency atogether, and obviate the need for prefetching or
reordering. Theexperimentsrecord thetotal elapsedtimeto runthe
test aswell as the amount of time spent in theidle loop. In the ab-
sence of competition for the client’s CPU, idle time is equivalent
to the amount of time the application was blocked waiting for data.
The experimental results are the average of 10trials.

The experiments ran on DECStation 5000/200s (25Mhz Mips
R3000A) with 32 MB of RAM running the Mach 2.6 operating sys-
tem, which includes an in-kernel NFS version 2 client and server.
The machines have a hardware cycle counter with which the ker-
nel can accurately time eventsto within afew microseconds. The
tests were run on an isolated 10Mbps Ethernet, and the machines
were lightly loaded: only the user running tests was logged in dur-
ing the tests, although the machines were not booted single user.
Since the machines are normally shared among several users, they
were rebooted before each series of tests to ensure a clean test en-
vironment. On these machines, gr ep takes an average of 718 mil-
lisecondsto process 12 16KB files (o = 12.1), spending 257 mil-
liseconds (o =4.7) reading data, or Comp = 1.3 usec/byte.

*Kip Walker at CMU is porting SETS to NetBSD.

1800
o e—— Tota w/o SETS
£1600F | +—— Tota with SETS
g e— —e CPUwW/oSETS

= 14001 |+ 4 CPUwWithSETS
g 1200

o

800 [

600 [

200

0 2 4 8 10 12 14 16

Set Cardinality

This graph shows the cost and benefit of SETSvs. set cardinality. The points
are experimental results; the lines plotted via regression with a correlation co-

efficient of greater than .9995 in all cases. The dots show the results without
SETS, the pluses those with SETS. The solid lines show the total elapsed time
and the dashed lines show the amount of CPU. The difference between the solid

anddashedlinesisthestall time. Fromthegraph, onecan seetheincreasein CPU

usage dueto SET S, but also the larger reduction from overlapping computation

and I/O. Theresult isthat SET Scan reducethe runtime for every file in the set,

and thus get more benefit for larger sets.

Figure 4: Benefit of SETSvs. Cardinality

5.2 Cardinality

Figure 4 showsthe results of running the benchmark on setsof size
N of uncached 16K B fileson one server with Comp = 1. Theresults
show that dynamic sets reduce the running time of the application
for N > 1, and the amount of reduction grows with the size of the
set. For N = 1 thereisno statistical differenceintheruntimes. The
reductionin runtime isaresult of lower idle times: the application
spendslesstime waiting for data and more time working.

Thetradeoff is an increasein computation to prefetch the files.
Thisincrease is shown by the higher line for CPU when using dy-
namic sets. Fortunately this increase is small, and in particular
much smaller than the decreasein latency from prefetching.

What is the cause of this reduction in latency? One source
is clearly the ability to overlap computation and 1/0. Rather than
blocking, the application can process data and the system can send
and receive other messages, reducing the amount of idle time with
legitimate work. Another source is a higher utilization of the I/O
system, which resultsin higher 1/O efficiency. For instance, while
the server iswaiting for adisk read to complete it can processother
read requests or send dataover the network. It should be noted that
this higher utilization from prefetching can have a negative impact
if the server or network is fully utilized by demand traffic. SETS
alsoderivesasmall benefit by pre-reading afile'sdataimmediately,
while Unix read-ahead must wait for a sequential access pattern to
be established.

5.3 Overlapping Computation and I/O

Onereasonthat prefetching canlower latency isthat 1/0 can be per-
formed in parallel with computation, hiding the delaysand increas-
ing client CPU utilization. The second experiment examines this
effect by varying the amount of computation (Comp) performed by
synthGrep on sets of 12 16K B files stored on one server. Figure5
show the results of this experiment. Asshownin the graph, thereis
almost no difference in synthGrep's runtime between Comp = 0

and Comp = 1 when using SETS, even though the application
spendsmoretime computing. Theadditional computation hides|/O
latency from the application, reducing the amount of idle time. For
Comp > 2, the application is compute bound because SETS has
eliminated asmuch latency asit can. For higher valuesof Comp, the
relative benefit of prefetching diminishes as the contribution of 1/0
latency to runtime grows smaller compared to the amount of CPU.

2 2100 — Legend
£ 1800 WJ/O SETS:
£ 1 Stall
|_ N —
-§ 1500 — | CPU
i | - g
I 1200 — With SETS:
] _ [] stall

900 CPU

600]

300 L

.
o 1 2 3 6
CPU (psec/byte)

This graph shows the time to run synthGrep with different amounts of compu-
tation (u:sec/byte). Solid bars show the results for runswithout and stripped bar
for runswith SETS. Thelight portion of each bar is the amount of time spentin
theidleloop, which indicates the amount of time the application blocked on I/O.
From the graph, one can see that SET S can reduce latency by overlapping 1/0
and computation. For higher amounts of computation the application becomes
compute bound, which reduces the relative benefit of prefetching.

Figure 5: Benefit of SETSvs. Computation

5.4 The Effect of Parallel I/O

A second benefit of prefetching is the ability to exploit parallelism
by fetching data from independent disks or servers concurrently.

Such parallelism would exist, for instance, if a search’s candidate
files were stored on multiple servers. The third experiment exam-

ines the effect of concurrent fetches by running synthGrep on sets
of filesstored on one, two, andthree servers. Because SET Sisable

to eliminate most of thelatency to access 16K B filesby overlapping

1/0 and computation, this experiment also runs synthGrep on larger

files.

Figure 6 showsthe results of running synthGrep on sets of 12 files
of equal size, with Comp = 1. The graph showsfour clusters, each

correspondingto adifferent file size(16, 64, 256, and 1024KB). The
bars within each cluster of bars correspond to (from left to right) a
set of 12 files stored on three servers (4 files per server) using stan-

dard file system operations®, 12 files on one server, 12 files on 2
servers (6 on each) and 12 files on 3 servers (4 each). Theleftmost

bar in each cluster presents times without using SETS, the other
bars are for runs with SETS. All values are normalized to the av-
eragetotal executiontime without SETS. By comparing the results
acrossclusters one can seethe effect of file size on the relative ben-

efit from dynamic sets, by comparing within the cluster one can see
the effect of parallel fetches.

This experiment has two chief results. First, it demonstrates that
SETS is able to exploit paralelism between servers to virtualy
eliminate latency, evenfor largefiles. In fact, theremaining latency
is close to the minimum achievable by the implementation’s use of

whole file transfer, sincethe best SETS can do is diminate dl la-
tency but the time to fetch the first file. Without prefetching, NFS
canonly read from onefile, and thusoneserver at atime, and so can-

not exploit parallelism between serversascan SETS. Thedrawback
of concurrently fetching dataisthat it consumesmore network and
server bandwidth by fetching the same data in a shorter amount of

time.

5 Thereis no significant differencebetween times for non-SE T Stests with one, two,
and three servers, so the graph only shows the results for three servers.

qE_) 110 Legend
£ 100]]] W/O SETS:
x 90— — — —
& - Stall
Iy 80 — H CPU
g 70
c | With SETS:
s 60 | L — S
% 50 o L | Stall
1 — 7 - CPU
B 40+ e L4
30 LI 3 servers W/O SETS
1 server With SETS
20 2 servers With SETS
“wm— 3 servers With SETS
10
0
16 64 256 1024
File Size (KB)

This graph showsthe timeto run synthGrep on different file sizes and files stored on multiple servers. Each cluster of barsrepresentsafile size, and
bars within the cluster are normalized to the total time for runs without SETS. The dark portion of each bar is the time spent computing, the light
portion is the time spent in the idle loop stalled on 1/0. The graph showsthat SET S can exploit parallelism through concurrent prefetching.

Figure 6: Benefit from SETS vs. Concurrent Prefetching

GE) 1104 Legend
§ 100 — — 1 | 1 | W/O SETS:
r 904 _
& - Stall
Iy 80 — . B CcPU
g 70 — —] 7
c L1 | | With SETS:
s 60 — _
% 50 - | Stall
CPU
B 40+ L4
30 — W/O SETS, 0 Cached
W/O SETS, 1 Cached
20 — With SETS, 0 Cached
~=— \\ith SETS, 1 Cached
10
0
16 64 256 1024
File Size (KB)

This graph shows the time to run synthGrep when one set member is cached. Each cluster of barsrepresentsafile size, and barswithin thecluster are
normalizedto the total time for runswithout SET Swith no files cached. The dark portion of each bar is the time spent computing, the light portion
isthe time spent in theidleloop stalled on I/O. These results show that SET S can eliminate1/O when afileis cached by reorderingaccess to use the

cached file beforeit is evicted.

Figure 7: Benefit of Reordering When One File Is Cached

Second, the benefit from SETS is smaller for larger files than
for small files. One can see this effect by comparing the bars cor-
responding to runs on one server for different file sizes. The rea-
sonisthat the relative benefit SETS gets by prefetching decreases
asthe performanceimprovement from read-ahead increases. How-
ever, therange of sizesunder which dynamic sets offer greatest per-
formance improvements covers most files in a typical Unix envi-
ronment. Studies have shown median file sizes between 10KB and
16K B, and 80%to 90% of filesarelessthan 50K B insize[4, 27, 32].

5.5 Reordering

In addition to the benefits of prefetching, dynamic sets alow the
systemto reorder fetches. Reordering is advantageouswhen /O la-
tency differs between members, such aswhen some membersarein
the cache when the set is created. Figure 7 showstheresults of an
experiment that cached one member of the set before running syn-
thGrep, and used setsof 12 files of equal sizestored on 3 servers. In
order to best demonstrate the benefits of reordering, the experiment
used Comp = 3 to achieve the maximal benefit from prefetching.
Thegraph in Figure 7 showsfour clusters of bars corresponding to
filesof 16, 64, 256, and 1024K B in size. Thetwo barson theleft of
each cluster correspond to runswithout SET S, the oneson theright
torunswith SETS. Thefirst and third barsin each cluster show the
results when no files were in the cache, the second and forth bars
show the results when one set member was cached.

The chief result of this experiment is that reordering allows
SETS to eliminate al 1/0O latency. In the previous experiments,
SET S could not eliminate the latency to fetch thefirst file sincethe
application had no dataupon which to perform computation. A sec-
ondary effect is shown in the 1IMB file tests. Becausethe client’s
buffer cacheis too small to hold the entire set, the cached member
isevicted beforethe application canreadit. By reordering, SETSis
ableto determine the member is cached and yield thefile beforeits
datais evicted. The benefits of reordering are more dramatic when
the disparity in latency is very high, such as when some requests
timeout. Although timeouts are atypical in test environments, they
are common in large distributed systems and can contribute to ag-
gregate latency.

5.6 Accessing Data from the Local File System

qE_) 110] Legend
€109 1 I I] | wosers
X 90]
? || sl
< 70
2 - With SETS:
= 60 —
% 50 - [|| | Stall
=g | | CPU

B 40+ 4

30

20

10

0
16 64 256 1024
File Size (KB)

This graph shows the time to run synthGrep on sets of local files. Each cluster
of bars represents a file size, and bars within the cluster are normalized to the
total time for runswithout SET S. The dark portion of each bar is the time spent
computing, thelight portionisthetime spentin theidleloopstalled on1/O. These
results show that prefetchinglocal files off onedisk has limited benefit over read-
ahead, but SET Sstill providesasizeable benefit (25%) for typical Unix filesizes.

Figure 8: Benefit of SETSfor Local Disk Files

The previous experiments show that SET S offers substantial bene-
fitsinthe domainfor whichit wasdesigned—search on adistributed
filesystem. Figure 8 showstheresultsof running synthGrep onfiles
ontheloca disk. The experiment ran synthGrep on sets of 12 files
stored on one disk, using Comp = 1. The graph shows clusters
corresponding to file sizes of 16, 64, 256, and 1024KB, normal-
izedtoruntimeswithout SETS. For small files (16K B and smaller),
SETS reduces latency and overall runtime. For larger files, how-

Set Mame:

Digest
lterate
Fewind

http: //www . cs.cmu. edu/~dcs/pictures. html]

Size Dismiss

Close Help...

Thiswindow appears when a user opensaset. Clicking onthe “Iterate” button causes Mosaic to get the next set element by
calling the set’siterator. The other buttonsallow users to see the member names (“ Digest”), print the set cardinality (“ Size"),
open anew set to beginiteration again (“Rewind”), and to close the set (“Close”).

Figure 9: Mosaic Window for Managing Open Sets

ever, SETS' prefetching resultsin anincreasein latency!

Threefactors contributeto this negativeresult. First, | designed
SETS to prefetch remote files into the local file system, and thus
did not tuneit to prefetch local files aggressively. Second, the Unix
read-ahead mechanism is very effective at reducing latency, leav-
ing little additional opportunity for SETS. Third, SETS' prefetch-
ing strategy, which was designed for network reads, attempts to
prefetch from more than onefileat atime. Asaresult, the accesses
seen by the disk are not sequential, and force the disk to seek more
often. The performance penalty incurred from these seeksdoes de-
pendon datalayout. A comparisonof theresultsof thistest runwith
different layouts indicates the latency in this experiment is highly
sengitive the location of the data. In some cases| was able to elim-
inate the increase in latency by carefully placing the data on disk.
However, controlling datalayout in thismanner isnot practical ina
real-world setting. An alternate strategy that avoided concurrently
reading more than onefile from the samedisk should not suffer this
problem. An extension of SETS to use a system like TIP2 [29] to
manage local disk prefetching would have this property.

6 Dynamic Sets and the Web

Having seen the benefit of dynamic setsin traditional file systems,
it is natural to ask whether search on the World Wide Web could
benefit from dynamic sets as well. The Web is an interesting do-
main becauselatenciesarevery high, thereissubstantial variancein
latency between different servers and over time, and because Web
search tends to be interactive. Unfortunately, Web browsers cur-
rently only support “ point-and-click” interaction, which leaveslittle
opportunity to use set iterators. However, one could easily extend
abrowser’s interface to support user-controlled creation and itera-
tion over sets of web objects, and then use dynamic sets to reduce
1/0 latency. Itiscritical that userscontrol the creation and member-
ship of setsin order to maximize the accuracy of the hintsinherent
inaset. Having the system, server, or browser infer set boundaries
from access patterns is equivalent to inferred prefetching, and thus
is likely to induce substantial extraneous network and server load
for each inappropriately inferred use of sets.

Thereareanumber of caseswhereiteration over setsispossible.
Any hypertext page can be thought of as a set whose members are
the objects to which the page has alink. For instance, Web search
engines represent the query results as an HTML page, many Web
servers have a top-level page that serves as an index of their site,
and many pagescontain linksto siteswith related information. If a
user decides that she might wish to visit some number of the links
on a page, she could create a set by selecting these links and then
iterate on the set to view the members. Tools that provide this ca-
pability, such asWebCompass[40], are available, but only prefetch
members of predefined sets well in advance of a search. Dynamic
sets, if successful, would allow searchersto specify setsat runtime
and still substantially reduce the latency of processing the objects.

6.1 Adding Web Supportto SETS

In order to evaluate the use of dynamic sets on the Web, | imple-
mented awarden to allow SET Sto prefetch Web documentsand to
query search engines, and extended the NCSA Mosaic 2.6 browser
to usedynamic sets. Thebrowser redirects queriesto searchengines
through the warden when requested to do so by the user, and the
warden parses the responseto extract links. Currently al links on
apage are added to the set, but thisisjust alimitation of the proto-
type. Infact, thewarden can useany hypertext pageto defineaset’'s
membership since search engine queries are URL s (Web document
names) and return HTML.

Onceaset iscreated, the browser displaysapop-up dialog such
astheoneinFigure9. Usersrequest the next set member by clicking
the“iterate” button; Mosaicloadsthe member by calling the set’sit-
erator and displaying the object it receives. Thewarden prefetches
whole objects to the local disk using the standard HTTP protocol
and stores the HTTP headers with the objects to allow Mosaic to
properly parse their data.

6.2 Experimental Methodology

Because the Web is so large and amorphous, capturing its perfor-
mance characteristics accurately in a model, simulation, or clean
test environment is difficult. The experiment avoids this problem
by replaying traces of real searchesto achieve both repeatability
and realism. The traces® were captured by recording the activity
of 5 expert Web users, each performing 3 searches and spending
10 minutes per search. The traces record the names of the objects
that were fetched (including inlined images) and the times at which
thefetcheswere requested by the user. By determining the time be-
tweenthereturn of onefetch and the start of the next, onecan obtain
the user think time — the amount of time the user spent examining
the object before moving on. The five traces can be viewed as in-
dependent samples from the population of directed search activity
performed by expert Web users. Figure 10 summarizesthetracesto
give an idea of the workload they represent.

To create equivaent traces that use dynamic sets, | manually
copied these traces, replacing demand load operations with itera-
tion over sets, one set for each task or 3 sets per trace. | created
15 HTML pages corresponding to the 15 traced tasks (3 per user).
Each page capturesthe corresponding set’s membership by contain-
ing alink to each object referenced by the trace for that task. | then
inserted operations into the traces to open the set using the corre-
sponding HTML page defining the set’s membership, and to close
the set at the end of that task.

It is important to realize that since the creation of the SETS
traces employed an oracle (me) to determine set membership, this
experiment provides an upper bound on the benefit one would ex-

SBill Camargo at Transarc, Inc. designed and implemented the trace capturing
mechanism.

Task A Task B Task C
[Trace# | 1 | 2 | 3 [4[5 1 [2 3 [4][5 [1[2]3]4]5
Think(sec) | 378 | 174 | 211 | 284 | 110 || 322 | 385 [244 | 307 |266 ||351 |263 [281 |228 |286
#of Objects | 21 13 12 17 3 15 20 12 9 10 39 16 16 | 20 12
#of Images | 12 | 30 | 26 15 12 56 9 22 19 18 48 | 30 6 46 21
Bytes(KB) | 226 | 80 | 134 | 154 | 136 || 254 | 263 | 152 | 459 [176 | 132 | 63 |131 |273 |256
Figure 10: Summary of 5 WWW Search Traces
—~ 900+
8] Legend
& 800 W/O SETS:
?) _ Fetch
g 700—: M CPU
£ 600- _ User
5] _
' 500 With SETS:
-g— 400 _; -’] . CPU
"l o Y 7V s - Y us
WUV say /p W W
17 / / /) W4 = == / / /
~EPEEE v . EEE PEFEE
] / 71 78l 7B%=q / , MWWV
VYW 7y VU 170 788 A 7 A7
S AAAA/BAAAA'BAANA
1A 2A 3A 4A D5A 1B 2B 3B 4B 5B 1C 2C 3C 4C 5C
Trace (grouped by task)

This graph shows the results of replaying traces of user search activity on the live Web. Five users weretraced, and each trace consisted of three search tasks.
The graph shows the cumulative user think time, amount of computationto display data, and 1/O latency seen by Mosaic to replay the trace of one search task for
one user. The chief feature of this graphis the potentia savings from latency that can be obtained by using dynamic sets.

Figure 11: Results of Replaying User Traceson the Web

pect from using dynamic sets. |f one can exactly capture one' snear-
term future data needs, such as by iterating over the results of a
query to asearchengine, then one should see performanceimprove-
ments comparable to the results shown below. However, the bene-
fits from dynamic sets do depend on the user iterating over a set of
obj ects whose membership she defines. The benefits shown by the
experiments below are realizable in practice only to the extent that
the user adoptsthis mode of operation.

6.3 Experimental Results

| replayed the traces on a DECStation 5000/200 with 64MB of
RAM; al client cacheswere flushed prior to each run. The client
software is version 2.6 of NCSA Mosaic modified to replay traces
and use dynamic sets, and the client operating systemis Mach 2.6.
The replay mechanism loads the objectsin the trace from live Web
servers, Mosaic displays the objects, and then pausesto approxi-
mate the user think time captured in the traces. The trace output
recordsthelatency seen by thetrace mechanism, theamount of time
Mosaic spent processing the object, and the amount of simulated
user think time. The client shared a 45Mbps T3 connection to the
Internet with other computersfrom CarnegieMellon University and
the University of Pittsburgh. The traces were replayed during peak

hours (afternoon EST) for greatest realism; other experiments that
replay the traces on weekends, without loading inlined images, and
over aphone line see vastly different latencies but similar relative
benefitsfrom the use of setsto those shown here [38].

Figure 11 showstheresults of replaying thesetraces, broken out
by search task and averaged over 5 runs. Each bar consists of three
parts: the user think time captured in the trace, CPU time to fetch
and display theimages, and the latency seen by Mosaic. Thelabels
on each cluster of bars denote the search task and user that cluster
represents; solid bars show the times for runs that did not use dy-
namic sets and striped bars show the times for runs with sets.

Figure 11 showsthree chief results. First, dynamic setscandra-
matically reduce aggregate I/O latency on the Web by overlapping
egregious Web latencies with even larger user think times, and by
fetching datain parallel. Theresults show between a 70% and 98%
reduction in latency, which meansthat userswould wait much less
timefor their dataif they were using dynamic sets. Second, reduc-
ing the latency reduces the magnitude of variance in latency that
results in a more predictable, and therefore more usable system.
Third, the savingsfrom dynamic setslargely depend on the compo-
sition of the set, the amount of user think time, and the speed of the
network. In the extreme, dynamic sets offer no performance ben-
efitsfor sets of 1 object, and induce a small overhead to create the

set.

This experiment also demonstrates the advantages of reorder-
ing. Severa of the fetches in each trace take tens of seconds to
complete. Prefetching alone would force the user to block on these
fetches, even though other objectsare waiting to be processed. Be-
cause of the nature of iterators, SETS can yield any member that
isready, and thus overlap these long fetcheswith user think time to
substantially reduce the amount of time the user is blocked waiting
for data.

7 Conclusions

Dynamic sets are anew operating system abstraction that givessys-
tems greater opportunity to transparently reduce 1/O latency, while
providing a better interface for applications that process groups
of objects. This paper has demonstrated that systems can reduce
latency over a wide range of systems through reordering and in-
formed prefetching by exploiting the non-determinism of iterating
over sets. These benefits do not depend on locality of reference
and therefore apply to applicationsfor which cachesand predictive
methodsperform poorly. Dynamic setscanbeimplemented without
requiring modificationsto protocols or servers, and so can beeasily
deployed. Finally, dynamic sets adhereto established software en-
gineering principles by preserving strong interface boundaries and
shielding applications from low-level system details.

Dynamic sets address the problem of 1/O latency by exposing
an application’s non-determinism and future data needsto the sys-
tem, which can exploit this knowledgeto reduce latency. Applica-
tions benefit from prefetching without having to manage/O explic-
itly, and the systemis given greater knowledgewith whichto sched-
ule I/O and manageresources. As aresult, the system can prefetch
without accurate predictions of latency by fetching asmall number
of objectsconcurrently and opportunistically yielding thefirst tore-
turn.

8 Acknowledgements

This paper describes work originaly presented in my thesis [38]
performed while | was a doctoral student in the School of Com-
puter Science at Carnegie Mellon University. My advisor, M.
Satyanarayanan, made significant contributions to the work, as did
my thesis committee — Garth Gibson, Jeannette Wing, and Hector
GarciasMolina. The insightful comments of Andrew Black, Jon
Inouye, Dylan McNamee, Hugo Patterson, Karin Petersen, Dan
Revel, and the anonymous reviewers hel ped me improve this doc-
ument tremendously.

References

[1] ARNOLD, K., AND GOSLING, J. The Java Programming Language.
The Java Series. Addison-Wesley, 1996, pp. 221-223.

[2] BACH, M. J. TheDesignof theUnix Operating System. Prentice Hall,
Inc. A division of Simon & Schuster, Englewood Cliffs, New Jersey
07632, 1986. Chapter 3: The Buffer Cache.

[3] BAENTSCH, M., BAUM, L., MOLTER, G., ROTHKUGEL, S., AND
STURM, P. Enhancing the web infrastructure — from caching to repli-
cation. |EEE Internet Computing 1, 2 (Apr. 1997). Also available as
http://www.computer.org/internet/9702/baentsch9702.htm.

[4] BAKER, M. G., HARTMAN, J. H., KUPFER, M. D., SHIRRIFF, K.,
AND OUSTERHOUT, J. K. Measurements of a distributed file sys-
tem. In Proceedings of the 13th ACM Symposium on Operating Sys-
tems Principles (October 1991).

[5] BOWMAN, M., SPASOJEVIC, M., AND SPECTOR, A. File system
support for search. Transarc white paper, 1994.

(6]

(8

(9

[10]

(11]

[12]

[13]

[14]

[19]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

Cao, P, FELTEN, E. W., KARLIN, A., AND L1, K. A study of inte-
grated prefetching and caching strategies. In Proceedingsof the ACM

S GMETRICS Conference on Measurement and Modeling of Com-

puter Systems (May 1995).

Cao, P, FELTEN, E. W., AND LI, K. Implementation and perfor-
mance of application-controlled file caching. In Proceedings of the
First USENIX Symposium on Operating Systems Design and Imple-
mentation (November 1994).

CUREWITZ, K. M., KRISHNAN, P., AND VITTER, J. S. Practica
prefetching via data compression. In Proceedings of the 1993 ACM
Conf. on Management of Data (S GMOD) (May 1993).

DuUSKA, B., AND MARWOOD, D. Squid proxy analysis. Appeared
in the Second Web Caching Workshop, Boulder, Colorado, June
1997. http://ircache.nlanr.net/Cache/Workshop97/, 1997. Also avail-
able as http://www.cs.ubc.ca/spider/marwood/Projects/ SPA/Report/
Report.html.

GIFFORD, D. K., JOUVELOT, P.,, SHELDON, M. A., AND O’ TOOLE,
JR., J. W. Semartic file systems. In Proceedings of the 13th ACM
Symposiumon Operating Systems Principles (October 1991).

GLASSMAN, S. A caching relay for the world wide web. Computer
Networksand | SDN Systems27, 2 (Nov. 1994). Specia Issue: selected
papersfrom the First International WWW Conference.

GRIFFIOEN, J., AND APPLETON, R. The design, implementation,
and evaluation of apredictivecachingfile system. Tech. Rep. CS-264-
96, Department of Computer Science, University of Kentucky, June
1996.

GRIMSHAW, A. S., AND LovorT, E. C., J. ELFS: Object-oriented
extensiblefile systems. Tech. Rep. TR-91-14, Computer Science De-
partment, University of Virginia, July 1991.

HOWARD, J., KAZAR, M., MENEES, S., NICHOLS, D., SATYA-
NARAYANAN, M., SIDEBOTHAM, R., AND WEST, M. Scaleand per-
formancein adistributed file system. ACM Trans. Comput. Syst. 6, 1
(Feb. 1988).

JAcoBSON, V. Congestion avoidance control. In Proceedings of
the SGCOMM '’ 88 Conference on ComuunicationsArchitecturesand
Protocols (1988).

JOSEPH, A. D., DELESPINASSE, A. F., TAUBER, J. A., GIFFORD,
D.K., AND KAASHOEK, M. F. Rover: A toolkit for mobileinforma-
tion access. |n Proceedingsof the 15th ACM Symposiumon Operating
Systems Principles (December 1995).

Joy, W. Anintroductionto the C shell. In Unix User’s Manual, Sup-
plementary Documents, M. J. Karels and S. J. Leffler, Eds. Computer
ScienceDivision, Department of Electrical Engineeringand Computer
Science, University of California, 1980.

KIMBREL, T., TOKMINS, A., PATTERSON, R. H., BERSHAD, B.,
CAo0, P, FELTEN, E. W., GIBSON, G. A., KARLIN, A.R., AND L1,
K. A trace-driven comparison of algorithmsfor parallel prefetching

and caching. In Proceedings of the Second USENIX Symposium on

Operating Systems Design and Implementation (Oct. 1996).

KLEIMAN, S. Vnodes: An architecturefor multiple file system types
in Sun UNIX. In Summer USENI X Conference Proceedings (Atlanta,
1986).

KoTz, D. Disk-directed 1/O for MIMD multiprocessors. In Proceed-
ings of the First USENIX Symposium on Operating Systems Design
and Implementation (November 1994).

KoTtz,D., AND ELLIS, C. Practical prefetching techniquesfor paral -
lel file systems. In Proceedingsof the 1st International Conferenceon
Parallel and Distributed Information Systems (Miami Beach, Florida,
Dec. 1992).

KUENNING, G. H. The design of the SEER predictive caching sys-
tem. In Proceedings of the Workshop on Mobile Computing Systems
and Applications (Santa Cruz, CA, Dec. 1994).

Liskov, B., AND GUTTAG, J. Abstraction and Specificationin Pro-
gram Development. The MIT EECS Series. MIT Press, Cambridge,
MA ; McGraw-Hill, New York, 1986.

[24]

[29]

[26]

[27]

(28]

[29]

[30]

(31]

(32

MANBER, U., AND Wu, S. Glimpse: A tool to search through en-
tire file systems. In Winter USENIX Conference Proceedings (1994).
Also available as The University of Arizona Department of Computer
Science Technical Report TR 93-34.

MowRy, T. C., DEMKE, A. K., AND KRIEGER, O. Automatic
compiler-inserted 1/0O prefetching for out-of-coreapplications. In Pro-
ceedingsof the Second USENI X Symposiumon Operating Systems De-
sign and Implementation (Oct. 1996).

NELSON, M., WELCH, B., AND OUSTERHOUT, J. Caching in the
Sprite Network File System. ACM Trans. Comput. Syst. 6, 1 (Feb.
1988).

QuUsSTERHOUT, J. K., DA CosTA, H., HARRISON, D., KUNZE,
J. A., KUPFER, M., AND THOMPSON, J. G. A trace-driven analy-
sisof the UNIX 4.2 BSD file system. In Proceedingsof the 10th ACM
Symposium on Operating Systems Principles (December 1985).

PADMANABHAN, V. N., AND MogGuL, J. C. Using predictive
prefetching to improve world wide web latency. ACM S GCOMM
Computer Communication Review 26, 3 (July 1996).

PATTERSON, R. H., GIBSON, G. A., GINTING, E., STODOLSKY, D.,
AND ZELENKA, J. Informed prefetching and caching. In Proceedings
of the 15th ACM Symposium on Operating System Principles (Dec.

1995).

Pu, C., BLACK, A., CowAN, C., WALPOLE, J., AND CONSEL,
C. Microlanguagesfor operating system specialization. In Proceed-
ings of the S GPLAN Workshop on Domain SpecificLanguages (Paris,
France, Jan. 1997).

SANDBERG, R., GOLDBERG, D., KLEIMAN, S., WALSH, D., AND
LyoN, B. Design and implementation of the Sun Network File Sys-
tem. In Summer USENIX Conference Proceedings, Portland (1985).

SATYANARAYANAN, M. A study of file sizes and functiond life-
times. In Proceedingsof the 8th ACM Symposiumon Operating Sys-
tems Principles (December 1981).

[33]

[34]

[39]

[36]

[37]

[38]

[39]

[40]

[41]

SHAW, M., WULF, W. A., AND LONDON, R. L. Abstraction
and verification in Alphard: Defining and specifying iteration and
generators. Commun. ACM 20, 8 (Mar. 1977). Reprinted in
Tutorial: Programming Language Design, text for IEEE Tutorial by
Anthony |. Wasserman, 1980, pp. 145-155.

SMITH, A. J. Disk cache— missratio analysis and design considera-
tions. ACM Trans. Comput. Syst. 3, 3 (Aug. 1985).

SPASOJEVIC, M., AND SATYANARAYANAN, M. A usageprofileand
evaluation of a wide-area distributed file system. In Winter Usenix
Conference Proceedings (San Francisco, CA, 1994).

STAEHLI, R. Quality of Service Specification for Resource Manage-
ment in Multimedia Systems. PhD thesis, Department of Computer
Science and Engineering, Oregon Graduate I nstitute, 1996. Available
as ftp://cse.ogi.edu/publ/tech-reports/1996/96-TH-001.ps.gz.

STEERE, D., KISTLER, J., AND SATYANARAYANAN, M. Efficient
user-level file cache management on the Sun vnodeinterface. In Sum-
mer USENIX Conference Proceedings (Anaheim, CA, 1990).

STEERE, D. C. Using Dynamic Setsto Reduce the Aggregate Latency
of Data Access. PhD thesis, School of Computer Science, Carnegie
Mellon University, 1997. Available as technical report CMU-CS-96-
194.

TAIT, C. D., AND DuCHAMP, D. Detection and exploitation of file
working sets. In Proceedings of the 11th International Conferenceon
Distributed Com puting Systems (Arlington, TX, 1991).

WEBCoMPASS 1.0. Quarterdeck, Corp. Marina del Ray,
CA. (800) 683-6696. Additional information is available at
http://www.quarterdeck.com.

WING, J., AND STEERE, D. Specifying weak sets. In Proceedingsof
the International Conference on Distributed Computer Systems (Van-
couver, June 1995). Also available as Carnegie Méellon University
School of Computer Science technical report CMU-CS-94-194.

