

Nothing But Balls

Augmented Reality
Table Tennis Robot

Rensselaer Polytechnic Institute

Carl Harding
Eric Jacob

Brendan Kavanagh
Nathaniel Kurczewski

Nick Leonard
Keith Lim

Dominic Lin
James Rollo
Liam Tallon

Robert Van Dyk

April 30, 2003

Table of Contents

Executive Summary …………………………………………………………………..i
List of Figures …………………………………………………………………………. iv
List of Tables ……………………………………………………………………………vi
Introduction……………………………………………………………………………..vii

1 Augmented Reality (Gus) ………………………………………………………...... 1
 1.1 Introduction …………………………………………………………………… .1
 1.2 Design Description……………………………………………………………...1
 1.3 Bill of Materials………………………………………………………………….6
 1.4 Conclusion……………………………………………………………………….6
 1.5 Reference………………………………………………………………………..7
2 Mobility and Support…………………………………………………………………8
 2.1 Track Assembly…………………………………………………………………8
 2.1.1 Introduction………………………………………………………………8
 2.1.2 Final Design………………………………………………………………8
 2.1.3 Requiremnts and Goals …………………………………………………9
 2.1.4 Analytical Development………………………………………………..13
 2.1.5 Bill of Material……………………………………………………………15
 2.1.6 Conclusion……………………………………………………………….15
 2.2 Support Structure……………………………………………………………..16
 2.2.1 Introduction………………………………………………………………16
 2.2.2 Design Description……………………………………………………..16
 2.2.3 Analytical Development………………………………………………..19
 2.2.4 Bill of Materials………………………………………………………….20
 2.2.5 Conclusion……………………………………………………………….21
 2.3 Motor and Pulley………………………………………………………………22
 2.3.1 Introduction………………………………………………………………22
 2.3.2 Selection Description…………………………………………………...22
 2.3.3 Installation………………………………………………………………..28
 2.3.4 Bill of Materials…………………………………………………………29
 2.3.5 Conclusion……………………………………………………………….29
 2.4 Cart……………………………………………………………………………..30
 2.4.1 Introduction………………………………………………………………30
 2.4.2 Design Description……………………………………………………..30
 2.4.3 Bill of Materials………………………………………………………….31
 2.4.4 Conclusion……………………………………………………………….32
3 Firing………………………………………………………………………………….33
 3.1 Ball Firing Subsystem…………………………………………………………33
 3.1.1 Introduction………………………………………………………………33
 3.1.2 Design Evolution………………………………………………………..33
 3.1.3 Firing System Description Overview………………………………….35
 3.1.4 Design Description and Calculations…………………………………37
 3.1.4.1 Air Compressor and Rate of Fire……………………………37
 3.1.4.2 Pneumatic Piston……………………………………………..38

 3.1.4.3 Firing Wheel Assembly…………………………………….40
 3.1.4.4 Firing Structure – Barrel, Base and End Cap……………41
 3.1.5 Conclusion………………………………………………………………42
 3.1.6 Chapter Nomenclature…………………………………………………43
 3.1.7 Bill of Materials…………………………………………………………43
 3.1.8 References……………………………………………………………..45
 3.2 Ball Hopper Assembly………………………………………………………..46
 3.2.1 Introduction………………………………………………………………46
 3.2.2 The Hopper………………………………………………………………47
 3.2.3 The loading of the Ball………………………………………………….48
 3.2.4 The Hopper Calculations……………………………………………….50
 3.2.5 Bill of Materials…………………………………………………………..51
 3.2.6 Conclusion……………………………………………………………….51
 3.3 Serving / Lobbing and Spin Assemblies……………………………………53
 3.3.1 Serving / Lobbing Assembly…………………………………………..53
 3.3.2 Spinning Assembly……………………………………………………..54
4 Computer System Integration……………………………………………………..56
 4.1 Computer Programming……………………………………………………..56
 4.1.1 Introduction…………..………………………………………………….56
 4.1.2 Projector / Video Files………………………………………………….56
 4.1.3 The Labjack……………………………………………………………..57
 4.1.4 The CMU Cam………………………………………………………….58
 4.4.5 Conclusion………………………………………………………………58
 4.2 Electronics Integration……………………………………………………….60
 4.2.1 Introduction……………………………………………………………..60
 4.2.2 Development……………………………………………………………60
 4.2.2.1 Wire Requirements…………………………………………..60
 4.2.2.2 Support Requirements………………………………………61
 4.2.2.3 Shooting Requirements……………………………………..62
 4.2.2.4 Choosing Relays and Buffer………………………………..62
 4.2.3 Experiments…………………………………………………………….64
 4.2.4 Electronics List Bill of Materials………………………………………67
 4.2.5 Conclusion………………………………………………………………68
 4.3 Sensor using the CMUcam…………………………………………………70
 4.3.1 Introduction……………………………………………………………..70
 4.3.2 CMUcam Goals and Process………………………………………..70
 4.3.3 Communication to the CMUcam……………………………………..74
 4.3.4 Flow Chart……………………………………………………………..75
 4.3.5 Calculations…………………………………………………………….76
 4.3.6 Mounting………………………………………………………………...79
 4.3.7 Bill of Materials…………………………………………………………80
 4.3.8 Conclusion………………………………………………………………80
 4.3.9 References……………………………………………………………..81
Appendix A…...82
Appendix B……………………………………………………………………………85
Appendix C……………………………………………………………………………114

Drawings Tree…………………………………………………………………….120
Drawings……………………………………………………………....................121

 i

Executive Summary
Dominic Lin

 For the spring of 2003 Introduction to Engineering Design course, the
professors presented to the students our final project, the Table Tennis Player.
Our goal as a team was to “design a machine for a table tennis player to play
against,” and this machine would also need to accommodate players of all types
including beginners, average players, and players who play at a professional
level. In addition, this machine should satisfy the player and give that person a
good work out at the same time.
 Our team, similar to other groups, started the design process by asking
ourselves the question, what can we do to improve upon what’s out there already
(the state of the art). After researching for a period of time, we came to realize
that most of what exist out there accommodates almost everything that a player
would need, except one very important aspect. The machine itself is lacking the
key feature that it was originally intended to imitate and replace. It wasn’t the
ability to hit one spot on the table accurately and precisely, the creation of all
types of spin on balls, nor the capacity of balls in the hopper. Instead, these
commercial machines omit the essential interactions between two human players
during a game of table tennis. These interactions include indication of servicing
the ping-pong ball, the return of the ball during game, launching from multiple
positions, and the ability to predict the opponent’s next step. Although building a
fully functional human robot that can analyze the real-time position of the ball and
have the ability to accurately hit and place the ball at a specific location on the
table seems impractical and out of reach, we came up with a similar solution that
cuts both cost and production time.
 We decided to take this opportunity and utilize the technology called
Augmented Reality (AR) to simulate human play in a game of table tennis. With
the combination of video clips, the projector, the variable-positioning firing
mechanism, the propulsion technique, sophisticated ball positioning method, and
a well written computer program that synchronizes all of the above, we
essentially have a system where we could reproduce any action we desire of a
real human opponent on the projector screen doing actions such as serving the
ball, returning the ball, making comments during a game, or even setting up a
tutorial for beginners.

 ii

 Thus, we separated ourselves into subgroups, structural group, propulsion
group, and the controls group, and begun the more in depth design development
process.
 Beginning with the structural group, their goal was to build a structure that
would be able to support the variable position track/cart system, the support for
the projector screen, and a mount for motion capturing camera (CMU CAM). As
requirements set by themselves, they wanted this design to be lightweight, easy
to carry around, and strong enough to have a factor of safety more than three.
Thus, they have constructed a lightweight metal work bench out of bent sheet
steel in combination with several hollow aluminum beams. By using aluminum
and cutting out unnecessary materials at varies spots, the whole structure
weights surprisingly less than 30 pounds despite its size. The screen structure is
composed of pipes made of both PVC and copper, and shower curtains became
our projector screen. Finally, the camera mounted at the end of a metal
aluminum beam is balanced, with the help of a ball head and counter weight, at
the center of the copper pipe that holds the projector screen up.
 The propulsion group began the process by designing a system where the
ping-pong balls would be launched by shots of pressurized air coming from a
barrel. However, during the middle of development phase, they ran into
aerodynamic problems and decided to launch the ball, while keeping the air
propulsion feature, by using the pistons at the end of these solenoid valves to
project the ball. Due to clever use of multiple solenoids, this machine can load,
stop the excess ball from going into the firing barrel, fire, and reload by utilizing
the pressurized air system.
 Last but not least, the controls group was in charge of how everything
functioned together. Since the professor introduced to us the benefits of using
National Instruments LabVIEW 6.1, we started out the process by trying the
program. However, we soon discover that what we intended to do with our final
design may be out of the capability of LabVIEW, especially the integration of our
augmented reality system, and thus switched immediately to programming with
Java. With Java programming, we were able to send input/output, to and from
motors and solenoids, signals using LabJack, capture information coming in from

 iii

the CMU CAM, and at the same time project the image of AR opponent on the
screen.
 All together, we have our Augmented Reality table-tennis player. We
realize that due to the limited amount of time, resources, and small college
student budget, our final design has much room for improvement. We imagine
the biggest area of improvement would come in the controls section. First of all,
better equipments could be used for the real-time ball capturing system. On our
current system, we utilized the camera developed by a group of students at
Carnegie Mellon University which captures only up to 17 frames per second.
Although an inexpensive and most practical option, the flight of ping-pong balls
during an average game tangent the confines of the camera. Also, the camera
tracks moving objects by color coding, thus causing a lot of trouble if there’s an
interference of colors. Thus, if the tracking of the ping-pong ball could be done by
heat tracking or perhaps methods of sound/vibration detection, we could have a
system that will have a higher efficiency and processing rate.

 iv

List of Figures

Figure Description Page Number

1.1 Augmented Reality Video Clip 1
1.2 Screen Placement 2
1.3 Projector Placement 4
1.4 Projector Placement 4
1.5 Projector Placement 4
1.6 Projector Placement 4
1.7 Current Projector Placement/Anlge 4

2.1 Support 8
2.2 Structure Diagram 9
2.3 Sidewall 10
2.4 Beam 11
2.5 Assembly 11
2.6 Rivet Placement 12
2.7 Connectors 12
2.8 Beam 13
2.9 Beam 13
2.10 FBD 14
2.11 Leg 16
2.12 Leg 17
2.13 Leg with hole 17
2.14 Hole Placement 18
2.15 Gusset 18
2.16 Gusset Rivet Locations 19
2.17 FBD 20
2.18 Motor Graph 23
2.19 Motor Picture 24
2.20 Characteristic Curves 25
2.21 Schematic 26
2.22 Pulley Piece 27
2.23 Timing Belt 27

3.1 Airflow around the ball 34
3.2 Barrel 35
3.3 Barrel 36
3.4 Barrel 36
3.5 Barrel 36
3.6 Barrel 37
3.7 Graph 37
3.8 Graph 37
3.9 Bracket FBD 40

 v

3.10 Wheel 40
3.11 Barrel 42
3.12 Ball Hopper Assembly 46
3.13 Slide Plate Assembly 48
3.14 Ball Feed Slide Plate 48
3.15 Serve Assembly 53
3.16 Spin Assembly 54

4.1 CMUcam GUI files 58
4.2 Protoboard 61
4.3 Circuit Schematic 63
4.4 CMUcam 71
4.5 CMUcam circuit 71
4.6 CMUcam placement 71
4.7 Projection Lines 72
4.8 CMU Cam Lense Focus 72
4.9 TestProgram 73
4.10 Flow Chart 75
4.11 Table Sections 76
4.12 Table 76
4.13 Coordinates 77
4.14 Picture Dimensions 78
4.15 CMUcam mount 79
4.16 Mounting Dimensions 79

 vi

List of Tables

Table Description Page Number
1.1 Projector Placement/Angle 5
1.2 Bill of Materials 6
2.1 Weight Matrix 14
2.3 Bill of Materials 15
2.4 Weight Matrix 20
2.5 Bill of Materials 20
2.6 Bill of Materials 29
2.7 Bill of Materials 31
3.1 Bill of Materials 43
3.2 Bill of Materials 51
4.1 Bill of Materials 67
4.2 Baud Rates 73
4.3 Calculations 78
4.4 Bill of Materials

 vii

Introduction
Eric Jacob

We are a group of 10 Rensselaer Polytechnic Institute (RPI, located in
Troy, NY) students with diverse majors. We have participated in a class at RPI,
called Introduction to Engineering Design. This course requires students to
perform a task and create a project, using knowledge gained from previous
classroom experience. The task given to us was to create a ping pong playing
machine capable of competing with the state of the art ping pong playing
machines that are currently available on the market today.
 The usage of this product is to recreate simulated play for the average
ping pong playing opponent. The operational capability of our specific project is
to create the idea of the ability, functionality of this system. Our system due to
financial, time, and knowledge restraints was not designed to be compatible with
ping pong players that would rate themselves as advance players.

Starting from Scratch We researched ideas, specifications, and
requirements relating to the task at hand. While organizing leadership and
design responsibility a project concept was created. This concept was based on
three ideas.
 The first objective was to create an operational shooting device that could
perform several main tasks. These tasks included the versatility to be able to
simulate serves as well as volleys that an opposing player could use to recreate
actual play. The second function was to be able to control the accuracy of the
shooting device. The third and final objective was to be able to load the machine
consistently, and proficiently.
 The second objective was to create a support system for the shooting
device capable of movement, through a belt driven system. This movement
would be focused along the end of the ping pong table, to create the ability of to
perform serves and volleys at various positions along the end of the table. The
function would only be on one axis, without the versatility to move up and down,
exercising a change in height. The support system was created capable of
supporting the stresses created from varying forces created by a varying pulley
and motor system attached to the support system
 The third and final objective was to create an augmented reality system
that would, act as an actual simulated opponent. With the use of sensors such
as a Carnegie Mellon University camera (CMU), and projectors the goal of this
system would to sense the location of the return play of an opposing player, to
project a simulated image of a player returning. This goal will be completed by
integrating the CMU cam with computer programs to project a simulated player
on a screen, and create an actual opponent of any individual player.
 This machine has experience some set backs throughout the creation of it,
but in the end is capable of recreating simulated play. Speed, consistency, and
continuity of all aspects of this machine have not been manufactured to an exact
science so some discrepancy in various areas does occur. Every one of the
team members contributed in some fashion to create the finished project. Enjoy
what we have created.

Chapter 1: Augmented Reality System
Components

Dominic Lin

1.1 Introduction

Augmented Reality (AR) is the combination of real life action with virtual and/or
computerized enhancement to sound, graphics, or other human senses. Since I
had originally introduced the possibility of an AR system integrated into the game
of ping –pong in our individual concept report, naturally when our team decided
to follow this route, I was put in charge of the visual augmentation of our team
final concept. Included in the augmented reality system components are the
capturing of video clips of the AR opponent, the analysis for the screen size and
projector placement, in addition to the final screen structure that incorporates all
of the above.

1.2 Design Description

Visual Enhancement 1) Video clips
First and foremost, since this we are building an AR system where the ping -pong

ball player who uses this
machine would play against an
AR human opponent instead of
the machine itself,
we started our augmentation
process by capturing videoclips
of the human opponent. The
team have also naturally
designated me for the position
and I feel very honored. To
begin he process, we
determined how

Figure 1.1

wide of a picture we would need so that most of the actions would be included
within its boundaries. After observing several games at the ping -pong club
practices, we determined that no wider than 5 inches would need to be added to
each side of the table, making the total distance across the picture 70 inches. We
also setup the camera to be as tall as me, 5foot 11inches, thus compensating for
the angle the player is going to be looking from when he/she is looking onto the
screen during a game.

 2

The requirements we set for ourselves were as follows. Since this final
product have to satisfy a wide range of players who play at different levels, we
these videoclips have to include varying speed of both servics and ball returns.
We achieve that goal by recording different takes where I would swing in slow
motion, some in average speed, and finally some with lightning and frightening
speed. Thus depending on the the difficulty the player chooses, he/she might be
in for a surprise.

Another requirement we set for ourselves is, unlike the static location of
the usual Newgy or the TTmatic machine, to have varying launch locations to
provide more realism and variety to this game. Thus, we seperated our clips into
3 areas (right, center, and left). In each location, we made sure that the location I
swung at were placed accurately where the ball would be shot out of the
launching device thus making the illusion that the AR opponet actualy returns
balls. These three locations also had varient speed incorporated so to cover our
first requirement.
 Third requirement, we wanted some form of indication of service of the
ping-pong ball so firstly the player can see and predict the AR opponent’s next
step and secondly we further satisfy our goal of visual enhancement. We had
only included one location for service in this prototype (from leftside of the
player), but I imgagin it won’t be hard to include othre postions as our iteration.
The launching device at that position recalebrates when the program sigals it to
serve instead of return.
 All this information is sent to and organized by the JAVA program done by
Robert.

Visual Enhancement 2) Screen Requirement

Figure 1.2

 3

 Since our image of video clips would need to be projected somewhere, we
sat down and wrote down the functions and also set requirements for what this
projector screen would look like. The following explains the benefits and
disadvantages of the alternatives generated.

Alternative 1: Actual Projector Screen with Tripod

Benefits: Ready made, we have one in possession, easy to
carry around, stable when standing.

Disadvantages: Heavy, hard to store, expensive, cannot cut through
the screen (explain later)

Alternative 2: Window Pull down Shades
 Benefits: Ready made, easy storage, lightweight, easy mount
 Disadvantages: Expensive, not large enough, material too hard thus
the ball

bounces off
Alternative 3: Shower Curtain Screen
 Benefits: Lightweight, easy storage, inexpensive, large enough,
may

cut through, zero setup time
 Disadvantages: Easy to cause wrinkles, flimsy

Thus, we went with alternative 3. The shower curtain is made out of 100% vinyl,
and when laid flat, it covers an area of 70 inches by 71 inches. This satisfies our
requirement set for the width of the captured video clips. The height doesn’t
really matter in this case because the image would only be projected onto the top
half of the screen. Since the table is 2.5 feet tall, with my height as the AR figure,
the screen would only need to be 3.5 feet above the table, which leaves a slack
of 28 inches below the table. If the player chooses so to play against a player like
Michael Jordan for some bizarre reason, the height of the screen could be
increased to accommodate for such desire.

In our final design, there is a slit that cuts horizontally across the screen.
This is to allow the barrel from the firing mechanism to poke through so that the
screen does not interfere with the launching of the balls. This does however
weaken the structure of the screen since it is only made out of vinyl, thus a thin
plastic string is tied across the screen and tapped to the bottom half of the screen
with heavy duty clear shipping tape so that the screen would stay relatively flat.

Visual Enhancement 4) Projector Placement Analysis
 In the beginning, we thought that the projector itself would just be a plug-
n-play device. However, we soon discovered the trouble that is involved in the
placement of the projector and thus decided to analyze the different options we
have. In the first phase, we considered options as to what height should be place
the projector.

 4

FIGURE 1.3 FIGURE 1.4

 FIGURE 1.5 FIGURE 1.6

 All four of the positions except for the third figure could not be easily done

due to the fact that any deflection in the
angle of the projection in relations to the
plane of the projector screen could cause a
slight distortion depending on how large that
angle is. In some cases, the picture would
be 3 inches wider up top compared to below.
This distortion can be easily fixed by using
the program Adobe Premiere, however,
having enough on our hands, we have
decided to go with the position that placed
the projector at the height of the table thus
causing no distortion in angle horizontally.
Next comes the decision of where to put the
projector in relations to the plane of the table
top.

Figure 1.7

 5

Angle
(degrees) A

Distance
(ft) D Placement Zoom

 0 10 Center Max

0 15 Center Min

18.5 9.4
Right of
table Max

15 13.5
Right of
table Min

Table 1.1

Placing the projector at zero degree A from the projector screen, we realize that
the projector needs a range of 10 to 15 feet to place the image on the screen
depending on the zoom size. Thus, it indicates that the projector will at least be a
table length away from the screen if not more. Obviously, putting the projector at
that angle also places it in the way o f the player. Thus moving it to the side of the
table, we came up with more analysis of the possible positioning of the projector.
This however does reintroduce the problem we have in the first phase, but the
distortion itself is not as noticeable. Again, given more time, Adobe Premiere
would come in handy. Following the ranges listed above as a guide, on
presentation day, we would find an ideal location.

Visual Enhancement 5) Final Screen Structure

Drawing Number: C1

 6

 Finally, to put everything together, the screen structure seen above
combines the visual enhancement equipment to the track and support system
thus creating the innovative Augment Reality integration with the machine. The
requirements we have set were simple in this case. The whole structure should
have relatively zero setup time, lighter the better, and the part that holds the most
weight (vertical screen/CMU CAM support bar) should have relatively low vertical
deflection with all the weight and action happening. Thus, to satisfy our goals, we
setup a Lego-like system constructed of pipes and connectors. First, the two
shorter vertical support pipes of 1.25 inches in diameter is strapped onto the
gussets of the metal support structure with two clamps each. Then, a 6 foot tall
vertical PVC pipe of 1 inch diameter slides right into the shorter pipes. Third, we
used a copper pipe of ¾ inches as the horizontal bar that supports most of the
weight including the CMU CAM and the Screen, and that pipe is connected to the
vertical pipe with a 1in to ¾in connector. The screen itself connects to the pipe
via shower curtain rings, and the setup time for the complete structure takes less
than two minutes.

1.3 Bill of Materials
Table 1.2

Supplier Part Number
Drwg
No. Part Name QTY

Unit Cost
($)

WalMart
Bathroom
Products N/A Shower Screen 1 2.89

Home
Depot Pipe Dept C1c 3/4" Copper Pipe 1 8.95
Home
Depot Pipe Dept C1d 1" PVC Pipe 2 3.25
Home
Depot Pipe Dept C1e 5/4" PVC Pipe 2 3.51
Home
Depot Pipe Dept C1f

5/4" Steel Pipe
Clamp 4 0.59

1.4 Conclusion

 Thanks to the technology today, capturing video clips, converting it to
digital information stored inside the computer, and projecting these images from
a projector onto a screen was relatively an easy process. Since we knew exactly
what we wanted to do as far as the components we would like to see integrated
into the AR system, we got right to it and finished most of these parts early.
Seems like every requirement we have set for ourselves have been achieved if
not gone beyond the expected. The real key to AR system’s success will be held
in the hands of the engineers in charge of the controls. All of the necessary
components are provided, but it depends on how much gets used. If we had a
chance for iteration, I imagine a better placement of the projector would be
achieved. Otherwise, I am pretty satisfied with our progress.

 7

1.5 Reference

Alok Govil, Suya You, and Ulrich Neumann. “A Video-Based Augmented Reality

Golf Simulator” Comp-Sci Department, Integrated Media System Center,
Web Address: http://www.acm.org/sigs/sigmm/MM2000/ep/govi/-demo/:
2000.

 8

Chapter 2: Mobility and Support

2.1 Track Assembly
Brendan Kavanagh

2.1.1 Introduction

 In these next few pages I will be taking you through our design of the
structure that is going to serve as the base for our whole project. Since it is a
requirement that our shooting mechanism have the ability to scale back and forth
along the edge of the table, it is also a requirement that our structure span the
length of the table. I was directly responsible for designing the Track Assembly,
and this is what will be discussed in this chapter.

2.1.2 Final Design

Figure 2.1 shows a basic overview of our final design for the structure

Figure 2.1 – isometric view of Structure Assembly

 9

This is a steel and aluminum composite structure, the top part of the
structure serves as the tracks that the cart will roll back and forth on, and the
bottom part consists of the legs holding the track up and the gussets added
for strength and for supporting the screen and CMU cam.

2.1.3 Requirements and Goals

• The structure must be able to hold up the weight of the shooting

mechanism and screen supports.
• Structure must be light enough for one person to move without

much effort

A closer look at the cross section of the track in fig. 2.2 shows the
materials more in depth:

Figure 2.2 – cross section of Track Assembly

 The material the side walls are galvanized steal sheet metal and it is 1/32”
thick. The square tubing used for the Track Beams is 1/8” Aluminum stock
tubing. The clearance on the top track is .6” and is necessary for the cart to be
constrained to move only in one direction, back and forth.

The galvanized steel sidewalls serve as the boundaries for the track, and
also as the medium that will connect the legs to the rest of the assembly. The 16

Side Walls
1/32” Steel Sheet Metal

Track Beams
1/8” Aluminum tubing

 10

holes seen in fig.2.3 were drilled because it was an opportunity to get some
weight savings. After drilling all 64 holes for the four Side Walls, a .993 lbs
weight savings was realized. When examining the sidewalls, people have asked
why I didn’t make the holes right in the middle of the sidewalls, this was my
reasoning. Since there is a .6” clearance between the top of the top track beam
and the top of the sidewalls, and it was a requirement that the top and bottom of
the holes line up with the centerlines of the track beams, therefore ensuring the
holes would not interfere with our placement of rivets, the center of the holes
were calculated to be 2.2” measured from the bottom of the side walls. The
holes are 3” in diameter and it was necessary to file down the punched holes, as
a hole saw was used and that made for some very rough edges. Each wall is
1/32” thick, and is 5” high. Each Side Wall spans 6 feet and weighs 2.165 lbs,
contributing 8.66 lbs to the entire structure. (2.165 lbs X 4 walls)

Figure 2.3 – Side Wall

 The top Track Beam serves as the actual track that the wheels of the cart
will roll on, and it will bear the weight of the cart and shooting mechanism. The
bottom Track Beam will serve as a stabilizer for the structure when it is faced
with forces exerted on it by the motor. It is essentially a no load bearing member,
except for the rivet points, where the load from the top Track Beam and the
weight of the structure is transferred at those points. The beams chosen for our
application are 1” square, with a wall thickness of 1/8”. Each beam is 6 feet ling
and weighs 3.065 lbs constituting for a total of 12.26 lbs of the entire structure.
(3.065 lbs X 4 beams)

Holes are 3” in diameter,
and the centers are 2.2” up
from the bottom of the
structure

 11

Figure 2.4 - Track Beam

The 2 track beams and the 2 side walls that make up half of the track
assembly are riveted every 4 inches, at the midpoint of the top and bottom
beams, directly in the middle of the area between each hole. The assembly of
the 2 sidewalls and the 2 track beams can be seen in fig. 2.5 in an exploded
state.

Figure 2.5 – Exploded
view of one half of the
track assembly

 12

After the fabrication of the two components of the assembly was complete,

a means of connecting the two was necessary to figure out. Four connecting
members were chosen from stock Aluminum, two of which have 90° bends to
added stiffness, See fig. 2.7. Since the members were only going to be
essentially pin jointed, it was necessary to have two of the members opposing
each other in a triangle fashion. It was decided to use the two members with the
bends to have opposing each other, making it even that much more ridged. The
bent members weigh .516 lbs each, contributing 1.03lbs to the entire assembly.
The simpler design of the members serve as the perpendicular supports. These
weigh .255 lbs each, contributing .51lbs to the whole assembly.

Figure 2.7 – Isometric view of triangled member and perpendicular member

Rivet point on top beam

Rivets on the bottom beam are placed in a similar
fashion, simply mirrored about the center of the holes

Figure 2.6 – side view of Track Assembly showing rivet
placement

 13

These members were riveted
to the bottom. Figure 2.8 shows a
picture of how the assembly looks
when finally put together. Figure 2.9
shows the opposing triangles that do
not allow the track assembly to see-
saw back and forth

Figure 2.8 – Isometric view of
completed Track Assembly (right)

Figure 2.9 – Bottom side view
showing gusset points and member placement

2.1.4 Analytical Development

 Much numerical analysis went into many previous designs, however with
this current design the pressure was on to get the Assembly created so that our
programmers could get working. It is not a secret that this structure is totally
over-engineered. But for completeness sake, I have calculated the stresses
where it is most critical to the design for our application, namely where the rivets
are connected to the legs at the bottom Track beams. The worst case scenario

32°angle bettwen bottom track beam
and member

Rivet points, 3 at each

 14

for the shear in the rivets attaching the legs to the track assembly is when the
robot is directly over that point.

Figure 2.10 – Worst case scenario for rivets with respect to shear

SFy = 0, structure is stationary

Ra + Rb – 28.462 lbs = 0

SMa = 0, structure is stationary

Rb*(70in) – 22.462 lbs*(35in) = 0
 Rb = 11.231 lbs

 Therefore, Ra = 17.231 lbs

Table 2.1 – Weight Matrix of Track Assembly

Component # of Weight (lbs) Extd. Weight
Track Beams 4 3.065 12.26

Side Walls 4 2.165 8.66
Tri members 2 0.516 1.032
90 members 2 0.255 0.51

 Total Weight 22.462

Ra = Rb
SMa = 0
 Rb*1.5 + 8.62 lbs *.75in = 0
 Rb = 4.31 lbs = Ra
A = ?* r2

A = 3.14159*(1/16)^2 = 0.01227in2

s = F/A = 4.31 lbs / 0.01227in2

s = 351.3 lbs/in2

s ultimate = 10,000psi (low grade Al)

351.3 < 10,000,

Rivets will not fail in shear!

 15

2.1.5 Bill of Materials

Brendan Kavanagh - Bill of Materials

SUPPLIER PART NUM.
DRAWING
NUMBER

PART
NAME

PART
DESCRIPTION #

UNIT
COST

EXTENDED
COST NOTES:

ALBANY
STEEL UNAVAILABLE A1b

SIDE
WALLS

4 SIDEWALLS
FOR TRACK

ASSY
4 $1.08 $4.32

$0.50
per LB

ARCADIA UNAVAILABLE A1c
TRACK
BEAMS

BEAMS FOR
TRACK, AND

STABILIZATION
4 $13.75 $55.00

HOME
DEPOT UNAVAILABLE MED POP

RIVETS
1/8" DIA, 1/8"

RANGE 75 $0.04 $3.19

TROY
HARDWARE UNAVAILABLE

LONG
POP

RIVETS

1/8" DIA, 1/4
RANGE 100 $0.05 $4.55

RPI
MACHINE

SHOP
UNAVAILABLE A1a

BOTTOM
MEMBER .25"X7" Al PLATE 2 $1.00 $2.00

RPI
MACHINE

SHOP
UNAVAILABLE A1d

BOTTOM
MEMBER

(TRI)

.25" X 10" X (.25
lip) 2 $1.00 $2.00

Table 2.2 – BOM of Track Assembly (total: $ 71.06)

2.1.6 Conclusion

 In conclusion, the final iteration of the Track Assembly shown in this report
performs consistently with what the goals are requirements are. The materials
that were chosen and the actual design of the structure could be modified in a
few ways however, and performance would probably not be affected much. If
more time was granted to do further analysis and design before it came down to
whatever the latest design was at this point had to be fabricated, here are some
of the things that one should have looked into to better this design.

• Instead of using 1/8” thick Aluminum tubing, why not go with 1/16”. One
would recognize a weight savings of 1.423 lbs per beam, or 5.69 lbs per
structure. 1/16 would definitely hold up the 6 lb shooting mechanism also.

• Instead of using 4 Track beams, one could possibly get by only using two.
Using the top two for the track, and taking out the bottom two and simply
U channeling the sheet metal around the track could be something one
could look into. A weight savings of 6.13 lbs if all other factors stayed the
same.

• Since the walls are non load bearing, Aluminum walls could possibly be a
sound alternative to the steel walls we have now, a weight savings (1/32,
Al sheet metal) of 1.414 lbs per wall or 5.656 lbs per assembly.

 16

Chapter 2.2 – Support Structure
Carl Harding

2.2.1 – Introduction

 In this part of the report I will be examining a certain aspect of the
structure that is the major component of our group’s project. This structure
consists of a track assembly, belt drive system, and leg supports. I was
delegated the responsibility of designing the leg supports and this is the aspect of
the project that will be explored is this chapter.

2.2.2 - Design Description

 Figure 2.1 displayed a basic model of our group’s track and support
structure. As one can see, this structure is basically only comprised of the track
assembly and the supports. The supports system consists of four individual legs
and four gussets. The legs are responsible for holding up the track and the
gussets for additional strength. Also, the gussets serve as a support for a
structure that is designed to support the screen, CMU cam, and the hopper.
 In designing the legs I had a specific goal that I wanted to achieve. I
desired for the legs to be able to support the track assembly and the belt drive
system. This belt drive system will have cart moving back and forth along the
track, which will have the launching mechanism attached to the top of it. So it
was necessary that the legs I designed will be able to withstand all the pressures
and forces being placed upon them. In the attempt to achieve this goal I set, I
decided to add gussets to the legs.
 The basis for my design for the leg supports came from the advice of
Professor Puffer. He advised my subgroup to build legs out of bended sheet
metal in the shape of a “U”. This seemed to be an effective and wise design, so I
decided to go with it and implement it.

 Figure 2.11 exhibits a model of
one of the legs used in supporting the
structure. The legs were fabricated
from 1/32” thick galvanized sheet metal
that was left over the fabrication of the
sidewalls for the track assembly. This
was ideal for the subgroup because this
lowered forecasted costs for materials.
My first step in this design process for
the legs was to create a layout, which I
used a template. This layout can be

seen in the following figure.
Figure 2.11 – Isometric view of one leg
used for support

Fabricated From
1/32” Steel Sheet

Metal

 17

Figure 2.12 – Layout for machining a leg

After the layout for the legs was established, I proceeded to mark out four

identical pieces out the steal sheet using the template. Once the marks were
made, I was now able to cut the pieces out. I used the shear machine in the
machine shop to cut the edges of the legs and the band saw to cut out the two
top corners. If the edges were rough due to the cutting, I filed them down to
make the smooth and to prevent unsafe situations. At this point, the legs need to
be bent in the specified areas. These areas are depicted as center lines in the
layout previously shown. This bending process took place using the brake
machine, which is special machine that makes bending sheet metal very quickly
and easily.
 Before the legs could be attached the track assembly, one of the legs had
to have a hole cut out of the top it. The reason for this is for the mounting of
motor that will be used to power the belt drive system. The whole is 1.5” in
diameter, 1.5” from the edge at the top of the leg, and 2” from the side edge of
the leg. This individual leg is depicted in fig
2.13.
 Once the process of fabricating the
legs was completed, they were then capable
of being attached to the track assembly.
Hole placement was determined by the
examining the CAD model of our structure.
One leg was clamped, 0.5” from the edge of
the track, at a time and the holes were
marked by using a hammer and nail to create
an indentation in the metal. The holes were
with a hand held power drill using a 1/8” drill
bit. When drilling I made sure that each
individual leg was perfectly aligned and

Places Where
Bends Will Made

Note: Dimensions
Are An Inches

Figure 2.13 – Isometric view of
the legs that has the whole
being used to mount motor

 18

supported properly. The holes were then filled with 1/8” medium pop rivets. The
following figure display the hole and rivet placement that was done on all four
legs.

Figure 2.14 – Depiction of hole and rivet placement in leg attachment process

Now that the legs were attached, I decided to create gussets to provide
additional support to the legs. A basic model for the design of one of the gussets
is depicted in fig. 2.15.

Four gussets were created and
each was individually fabricated out of
galvanized sheet metal. One gusset is
17” in length, 3” in height, and 1/32” in
thickness. They were machined using
the shear machine for the straight
edges and the band saw was used to
make the angle cuts, which are 45-
degree cuts. Professor Foley advised
my subgroup to fold the straight
edges over a bit to make the gusset
a more structurally sound piece. I
trusted his advice and put it into
action. I used the brake machine to fold the straight edges of the gussets to
about 90 degrees. Then I placed the gussets on a flat surface and hammered
the folded edges to exceed to 90 degrees. Finally, I used to a vice to finish the
bending of the edges.
 Since the fabrication was complete, the gussets needed to be attached to
the legs, which will complete the support system for the Structure Assembly. I
first aligned and clamped the gussets in the desired position, two gussets on
each side. The first set of gussets are placed about 3 inches from the bottom of

Location Of
Holes And
Rivets

Figure 2.15 – Isometric view of one
gusset used for additional support

 19

the track assembly and the second set is placed about 5 inches from the first set.
Then I drilled four holes in each gusset and filled the holes with 1/8” medium pop
rivets. I drilled the holes using a 1/8” drill bit on a power drill. Figures 2.16 will
show the hole and rivet placement and the over of the assembly process of the
attachment of the gussets.

Figure 2.16 – Side view of one gusset showing hole and rive placement

2.2.3 - Analytical Development

 Many calculations went into designing the legs and gussets, but there was
time constraint applied to me. I was sort of pressing to get these structures
fabricated and attached as soon as possible, so the controls group would ample
amount of time to work on their responsibilities of the project. Looking at the
completed structure, it is clearly obvious that it can with stand any additional
load, pertaining to this project, placed upon it. I even took this to the limit by
sitting on it my self. I weigh about 285 pounds and currently the starting nose-
guard for the varsity football team here at Rensselaer. This only is evidence that
our structure will not fail. However, I still calculated the stresses that would be
applied to one of legs in a worst-case scenario, when our robot is directly over it
and not taking into the gussets.

Location Of The
Holes And Rivets

 20

 6 lb

 6 lb
Figure 2.17 – worst-case scenario for one leg with respect to
shear

Table 2.4 - Weight matrix for this system

Component Quantity Weight (lbs) Extended Weight
Leg 4 5.314 21.256

Gusset 4 0.937 3.748

 Total Weight = 25.004 lbs

2.2.4 - Bill Of Materials

Table 2.5 - Bill of Materials

Supplier
Part
Num.

Drawing
Number

Part
Name

Part
Description #

Unit
Cost

Extended
Cost Notes

ALBANY
STEEL N/A A1e LEG

4 LEGS FOR
SUPPORT OF

TRACK
ASSEMBLY
AND BELT

DRIVE SYSTEM

4 $2.66 $10.64 $0.50/lb

ALBANY
STEEL N/A A1d GUSSET

4 GUSSETS TO
PROVIDE

ADDITIONAL
STRENGTH TO

LEGS

4 $0.47 $1.87 $0.50/lb

HOME
DEPOT N/A

MEDIUM
POP

RIVETS

1/8” DIAMETER,
1/8” RANGE 32 $0.04 $1.28

Point Where Stress
Is Experienced the
Most Due To
Bending

Area Of This Cross
Section Is 0.09375in2

σ = F/A
σ = 6 lb / 0.09375in2

σ = 64 lbs/ in2

σUltimate = 21 ksi (low grade of steel)

64 lbs/ in2 < 21 ksi

Therefore, the legs will not fail in shear.

 21

2.2.5 - Conclusion

 In conclusion, the final design and fabrication of the support system for the
major structure for the group’s project meets the entire goal I set before the
design process began. The legs and gussets support the structure adequately
and with stand any additional load added that pertains to the project. I even sat
on the structure when it was completed and the structure did not cause any
negative effects on the structure. That alone clearly demonstrates the success
the legs and gussets have reached. If allocated more time I would make one
adjustment to my design of the legs. It came to my attention, with the help of
Professor Foley, that the top piece of the leg that attached to the side of the track
should have been longer. The reason for this is because the bottom hole and
rivets penetrate the panel and beam of the track; however, the top ones on two
legs do not. This will cause the legs to pull on the panels if an extreme amount
of weight is applied to the structure.

 22

 22

2.3 Motor and Pulley
Nick Leonard

2.3.1 Introduction

 The following chapter is devoted to the explanation of the requirement
analysis, the selection, and the mechanical logistics. The motor described here is
the motivator for the cart’s movement along the tracks.
 There were several electrical constraints placed by the course, the most
applicable to this area was the limitation to a maximum of 24 V, for the safety of
the system. The requirements set up by the team were much more defining: If
possible, it would simplify the electrical team’s work to have a 12 V system, but
more importantly it must not consume much amperage, due to the cost of an
appropriate power supply. From the mechanical requirements, the team decided
to aim high and attempt to have the cart be able to traverse the full five-foot
range in a mere 1.5 seconds. This expectation, together with the low amperage
draw, stood out in my mind as the most challenging.

2.3.2 Selection Description

 In order to begin the search for the appropriate motor, I needed to procure
some ball park numbers that would define the motor’s requirements. The first and
most important was the output power, but that had to be qualified. Since the
components of power are RPM and torque, and since we would need a particular
combination of those with relatively small ranges of variation, I decided to pick
RPM as the first variable to seek. The motor is attached to its load, the cart via a
pulley, and I intentionally left the diameter of the pulley variable, to ease the
constraints between the variables torque and RPM.
 The first step was to determine what loadings would be placed on the
motor, in the worst possible case: the acceleration phase of a five foot run from
rest. The loading on the motor arises from several sources, including mass of the
cart, friction between the cart and the track, internal friction in the motor, and
rotational inertia both in the motor and the pulley. At this early stage, it was
impossible to speculate on the internal friction and the rotational inertias, so I
added a safety factor. The summation is presented below:

SF = mca + µmcg + 25%
 The mass of the cart was obtained from the launching team as 4 pounds,
and I rounded it off for good measure. After a brief discussion with my professor,
I decided that coefficient of friction between the rubber wheels and the aluminum
track would safely be set at µ = .05. The acceleration was obtained by setting a
motion profile in the shape of a trapezoid (See Figure 2.18).

 23

Figure 2.18

I made an assumption and set the actual acceleration tie at only .3 s, an
admittedly ambitious number for our goals. After an attempt at using algebraic
kinematics, I realized that the problem was indeterminate and used the fact that
the integral of the total area had to equal the total distance traveled which was
known to be five feet. The result was a maximum velocity of 4.4 ft/s, and an
according acceleration of 9.88 ft/s2.

With this found, the load on the motor could be calculated, and the result
was 1.794 ft*lbf/s2. At this point, I had a load, and a maximum velocity which had
to be reached, all the requirements to start to size the appropriate pulley. I
started by picking an arbitrary size, a two inch diameter pulley. The result was a
torque of 28.69 in*oz at 509.3 RPM. The power associated with this combination
(and any other combination so long as RPM and torque remained inverse to
each other) was in the ball park of .15 hp.

Armed with some rudimentary calculations, Liam of the electrical team and
I spent a few hours browsing the internet, looking for suitable motors. It quickly
became apparent that while all manner of power motors were to be found, many
of them, such as brushless DC, were operating at tens of thousands of RPM with
relatively little torque. Indeed, we realized that we were looking for “gearmotors”
with an integral gearbox attached. And no common motor, as our particular
combination of requirements in torque and RPM were fairly high end. I quickly
learned that a 2” diameter pulley would not work with any of the motors we found;
we would have to use 4” at the least, with according requirements of 57.38 in*oz

 24

of torque and 254.65 RPM. A 6” pulley was even more appealing, but it would
have infringed on a design consideration on the support structure.

After some time looking around, we happened upon the site of Igarashi
Electrical Works and found a motor that fit all of our needs, the 37GN3657-043-
G-5. See figure XX. It was 12V and drew 1.03 A at peak efficiency, so Liam was
pleased, and it met my torque and speed requirements at a load similar to mine. I
sent an inquiry on that particular motor to the company to check on price and the
details.

Figure 2.19

My message was answered by Dale Howard, an Applications Engineer
with Igarashi with some troubling news: they did not have that particular motor in
stock, and the minimum order was 2,500 units! But he asked for more of the
specifics which I sent to him. He then offered to lend us a motor more powerful
than the one we were looking at, free of charge, with feedback being the only
stipulation, which we were more than happy to give. Upon receiving the motor
and its specifications, I found that under the loading we would impose, the motor
was just reaching its peak efficiency. We had been blessed. Schematics and
characteristic curves sent by Igarashi can be seen below in Figures 2.20 and
2.21.

 25

Figure 2.20 – Characteristic Curves

 26

Figure 2.21 - Schematic

 27

At this point, I began my search for an appropriate pulley and belt to
compliment our new motor. And to start off I developed some requirements for
each. The max tension on the belt worked out to 1.54 lbf, at a max velocity of 264
ft/min. The pulley would need a 4” diameter to leave a good deal of reserve at the
efficiency peak with a combination of 60 in*oz of torque and 250 RPM.

It was clear that we would need something that interfaced professionally
with a belt, and decidedly with teeth. Immediately I looked into timing pulleys and
belts, and found W.M. Berg at the advice of a professor. They had 125 lbf
ultimate yield, .5 in wide belting available in bulk length, of which we needed 15
ft. Also available was a timing pulley of the same pitch with a diameter of 4.267”.
I ordered these two items, figures 2.22 and 2.23.

Figure 2.22

Figure 2.23

 28

2.3.3 Installation

Weeks later I mounted the motor to the support, using cursed metric Allen
screws and a simple backing plate against the inner wall of the forward track
assembly. I reinforced the 1/32 galvanized steel with another layer, attached to
the aluminum beams to provide a more sound moment resistance to the motor’s
torque.

The most notable task was the fabrication of a bushing and the
preparation of the pulley’s hub. The output shaft of the motor was considerably
less in length than the depth of the hub of the pulley, and length was constrained
directly by the location of the through screw. In order to minimize the moment
produced (90? from the rotational axis of the shaft), the hub of the pulley had to
be milled down to its minimum depth without infringing on the plastic structure,
and this was done on a CNC machine with the professor’s help. The numbers
were now in existence to allow the creation of the bushing, which was turned out
of .5” diameter aluminum rod stock. It was made to extend the full depth of the
pulley hub for maximum contact area, and was glued in but extra grip. Again with
the aid of my professor, the delicate task of drilling the through screw hole in the
pulley hub was accomplished.

The final element that was fabricated for this subsystem was the
freewheeling pulley to provide the second point of support for the belt. Rather
than pay another $35 dollars for a second timing pulley, it was decided to simply
turn an approximate facsimile out of aluminum. Nate was responsible for the time
on the lathe, and Liam had a hand in the assembly. This wheel did not need
teeth, as it was not under translational loading from the motion of the cart, its only
task in life was to freewheel.

The assembly was smooth. The pulley was attached to the shaft of the
motor with almost no difficulty. The free wheeling pulley was very simply
mounted to the opposite end of the support, and with the addition of the cart, the
belt was snugly fitted into place.

 29

2.3.4 Bill of Materials

Table 2.6 – Bill of Materials

2.3.5 Conclusion

Hindsight, they say, is 20-20. I was pleased by the results of my efforts,
but there are a few points I would alter. Firstly, there is still some moment that is
applied to the motor shaft, in a way it is not intended to operate in an optimal
setup. To solve this I would probably change the size of the timing pulley, since it
is the .5” in belt width that requires a thick hub. A thinner hub, would have worked
slightly better with the motor shaft setup. Berg provides belting down to .2”, and I
know now our belt was considerably over strength, the limiting factor of the
selection being the diameter of the pulley, since all of the smaller belt pulleys
were considerably less in diameter.

Since the belt is in position over the center of mass of the cart, I couldn’t
ask for better placement of the motor and pulleys. Perhaps with more time and
money, a duplicate timing pulley would replace the free wheeling pulley with a
bearing to reduce friction. The integral encoder on the motor itself is not being
used for our purposes, but again with more time, could be use to determine the
velocity and acceleration, if not the position, of the cart.

SUPPLIER PART
NUMBER

DRAWING
NUMBER

PART
NAME

PART
DESCRIPTION

QUANTITY UNIT
COST

EXTENDE
D COST

NOTES

Igarashi
Electrical

Works

Unavailable Motor Power for cart
movement

1 NA NA Donated

W.M. Berg TP37L8W
8-36

 Timing
Pulley

Power
Transmission

1 $38.65 $38.65

W.M. Berg 37TB-
15FT

 Timing
Belt

Power
Transmission

15 ft $51.25 $51.25

Aluminum
Stock

NA Bushing Integration 1 NA NA Gift of
John

R. Puffer #6-32
UNC

 Set
Screw

Integration 1 NA NA Gift of
prof

R Puffer 3-M3 Metric
Screws

Motor Mounting 3 NA NA Gift of
prof

 30

2.4 Cart
Nick Leonard

2.4.1 Introduction

The purpose of the cart was to provide a mobile platform from which the
shooting mechanism could fire. Its motion is powered by the motor, and
transmitted via the timing pulley and the timing belt.
 The goals for the cart were of course functionality based: low friction and
light weight to minimize the strain on the motor. In addition to spanning the
distance between the two rails in a stable fashion, I decided to make the cart the
closing of the loop of belt.

2.4.2 Design Description

 The major constraining factor of the cart’s dimension was of course the
distance between the tracks it would need to span. Since the tracks were
designed beforehand, this number was predetermined for me. The most
important decision was the material from which to make the cart. Time and ease
of manufacture were important, as I did not have days to spend on the cart. My
inspiration came while searching in a pile of sheet metal, when I saw an
aluminum piece that had been bent with a brake.
 I decided that I would aim to make the design reflect my situation, such
that I could build the entire cart in under an hour, given all the parts excluding the
chassis. The body would be cut from sheet aluminum, and tabs would be bent
90° to provide the axles with some clearance. I had early on spied some model
airplane wheels in a local hobby shop, and had thought them an ideal
commercial solution to the wheel problem. I also purchased the appropriate 5/32”
spring steel wire to accompany them. After brief research on the quality
difference between aluminum on steel and plastic on steel, I decided it would be
better to allow the wheels themselves to freewheel on the axles rather than have
the axles spin and wear on the aluminum. Wear was not the problem, as
aluminum on steel is not significant enough to worry about for the short life span
of this project, the decision was made with ease of manufacture in mind. A third
item procured at the hobby shop was a packet of locking collars to secure the
wheels to the shaft.
 When the evening came in which it became necessary to create the cart, I
needed only a single sketch. I had calculated the bearing stress that the
aluminum would be under when the 5 lbf shooting mechanism was accelerated
as we had calculated, and found that 1/16” stock was factors more than
sufficient; the limiting variable was simply the rigidity of the structure in terms of
handling and other non application loadings. Armed with my sketch, I purchased
the appropriate stock from the machine shop and in a matter of 20 minutes had
ban sawed and bent the chassis. Upon assembly I realized I needed some sort
of spacers between the chassis and the wheels due to interference between the

 31

chassis and rubber tires, and I borrowed some scrap nylon tubing from the
pneumatics team. Within minutes, the cart was operational, save for the
attachment to the belt.
 I had decided to close the loop of the belt with the cart chassis, and
desired variable tensioning of the belt. In order to do this, from 1/8” aluminum
sheet I cut two female clamps that were fit to the pitch of the belt in such a way
as to provide a lock with simple pressure exerted through hardware. This would
allow a variability resolution equal to the pitch of the belt itself.
 Once these brackets were made and installed, the cart was ready for
service. When the shooting mechanism was mounted and the belt engaged, we
got our first taste of the integrated systems working together. And our first taste
of what had to change.
 For one, the belt had to be as close to the center of mass of the cart as
possible. As we had it set up, the belt’s force would create a moment, literally
skewing the cart on the tracks, and creating tremendous friction as the rubber
tires deformed against the side of the track walls. The solution to this problem
was carried out independent of the cart, but it illustrated other problems. First,
when under loading, the wheels deformed often asymmetrically. Second, when
the wheels deformed there was interference between the track and the cart.
Third, the clearance between the wheels and the track was far too much,
allowing all manner of deviant motion and skewing.
 These problems were solved in one step: the replacement of the wheels.
After some deliberation on deciding what to use, I purchased some Delrin from
the science center to turn a set of four wheels. I adjusted the diameter somewhat
to increase the clearance between the track walls and the chassis near the axles.
 At this point a last minute design change in another subsystem required
me to build a new cart, but as I built the damn thing only hours ago, we’ll stick
with the original since I can only cite dimensions and not design flaws of the
second cart, yet.

2.4.3 Bill of Material

Table 2.7 – Bill of Materials

SUPPLIER PART
NUMBER

DRAWING
NUMBER

PART
NAME

PART
DESCRIPTION

QUANTITY UNIT
COST

EXTENDED
COST

NOTES

HobbyTown
USA

Unavailable Wheels Rubber Tired
Wheels

2 $4.95 $9.90

HobbyTown
USA

Unavailable 5/32” Wire Axle Stock 1 $0.87 $0.87

HobbyTown
USA

Unavailable Locking
Collars

4 Axle Retainers 2 $1.59 $3.18

Machine Shop NA A2a 1/16”
Sheet

Aluminum
Chassis

2 $1 $2

Science Center NA A2b 2” Rod
Stock

Replacement
Wheels

5 in $8 $8 No
receipt

Machine Shop NA A2e Brackets Belt Retainers 2 NA NA Scrap

 32

2.4.4 Conclusion

 My conclusion at present is simple. I have made all of the changes I have
found to be necessary and have integrated them into the new cart. The flaws of
the old cart are above, and the flaws of the new cart are unknown unknowns at
this time. I will assert the critical importance of placing the applied force as close
as possible to the centroid, in this application, it is key.

 33

 33

Chapter 3: Firing

3.1 Ball Firing Sub System
Nathaniel Kurczewski

The ball firing system consists of the firing assembly, the manifold assembly,
the ball feed assembly, and the serve and spin assemblies. The integration of
these systems is shown in drawings B1 and B2. The entire system is mounted to
the cart. The bottom of the base is screwed to the cart from the underside. All
tubing is drawn out the back with enough slack for the entire system to be moved
along the track without interferences. The electrical wires are routed in a similar
fashion. The entire system is 39.4 inches high, 5.9 inches wide, and 18 inches
long and weighs approximately 3 lbs. (excluding the manifold assembly and air
compressor).

3.1 Firing Assembly (Nathaniel Kurczewski)

3.1.1 Introduction

This system is responsible for the actual projection of the ping pong ball. It must
fulfill multiple requirements for the course as well as for the team. The course
requires that we be able to hit a one square foot section anywhere on the table,
as well as being able to adjust for service and volleys . The group set
requirements forth as follows: we did not want to duplicate the state of the art, we
wanted a lightweight shooter, we wanted a shooter that fulfilled the course
requirements, we wanted to accommodate both size balls, 38 and 40 mm, and
we wanted a shooter that integrated easily with the augmented reality system.
Our groups augmented reality robots ultimate goal was to create a more life-like
table tennis robot. In doing so, the controls group was presented with an
extensive and difficult task. It was thus decided to keep the shooter as simple as
possible for the controls group to program for and work with. It was decided that
the easiest, most efficient approach for our group would be to use compressed
air to fire the ball. However, late in the construction, it was decided to also add a
spinning wheel to give the ball more velocity. These changes will be discussed in
further detail in the next section.

3.1.2 Design Evolution

The shooter was initially designed to operate solely off of compressed air. An air
compressor would supply the air at 90 psi. A burst of air would be fired (using a
solenoid valve) which would propel the ball. The pressure would be manually
adjustable to adjust the velocity of the ball. This idea was abandoned after early

 34

tests resulted in numerous problems. First, there was a need to accommodate
two sizes of balls, the 40mm and 38mm balls. The 40mm ball fits snugly inside
the PVC pipe, whose inside diameter is 1.592 inches (40.437 mm). This would
essentially create an air tight seal and the ball would be propelled with the
pressure created by the air. However, the 38 mm ball is too small to create an air
tight seal, so the ball would be projected by the actual stream of air. This creates
inconsistencies between the two balls. This is not a problem if one type of ball is
used exclusively, but if both balls are to be used interchangeably then this is
more difficult to control. The second problem was that when using a burst of air
to fire, some of the air would escape out of the ball feed opening in the top of the
barrel. This problem was partially solved by using a solid plate which would slide
over and cover this hole. However, this was still not an air tight seal.

Once experimentation using the burst of air to fire the balls began, it was
discovered that it would not in fact fire the 38mm ball at all. The air inlet was
centered directly behind the ball. When a burst of air was fired, instead of firing
the ball, it actually sucked it in. This occurred because the air hit the center of the
ball and curved around the ball, causing it to actually stick to the air source (see

Figure 3.1). This was not the case with
the 40mm ball.

Several ideas were suggested to solve
this problem, including offsetting the air
stream, using more pressure, and not
using a raw burst of air at all. To correct
the problems, the latter method was
chosen. Instead pneumatic pistons would
be used to fire the ball. A dual acting
pneumatic piston was mounted behind
the ball and the piston arm was used to

strike the ball. The kinetic energy of the piston would be transferred to the ball
and would provide the means for projection. This would alleviate all of the earlier
problems. Both ball sizes could now be accommodated. There was no longer a
problem of air escaping. Also, an added benefit was that air consumption was
drastically reduced. The piston for firing is split off of a line which also supplies
the ball feed piston. The ball feed piston works simultaneously with the firing
piston off of the same solenoid valve. The velocity was to be adjusted using the
two inlet/outlet valves on the piston. This would adjust the amount of air entering
the cylinder. The optimal ball velocity at the point of impact was determined to be
about 160 feet per second. However, this neglects the following: The coefficient
of restitution between the ball and piston when struck, friction between the ball
and the barrel, drag on the ball while moving, the work needed to push the
column of air out of the end of the barrel as the ball exits, minor and major flow
losses in the air system due to head loss, bends, valves, edges, etc., frictional
losses in the piston, air exiting the solenoid valve at the outlet, and air pressure
being used by the ball feed piston. These losses all affect the pressure of the air

Figure 3.1

 35

entering the piston, the efficiency of the piston, and the velocity of the ball. Many
of these losses cannot be compensated for. However, the following was done to
minimize the losses: Air slits were cut into the barrel to dissipate the column of air
in front of the ball. Instead of the ball having to push out a column of air, the air is
moved off to the side and out. The air being used by the ball feed piston was
minimized by adjusting the inlets to the minimum pressure required to move the
ball feed plate.

A preliminary test was used to determine the feasibility of this set-up. A 5 gallon
air tank charged to 90 psi was used. The piston was seated into the end cap and
a short 3 inch length of 1.5 inch PVC pipe was attached. The ball was placed in
the setup and fired. The ball fired with significant velocity. However, once the
final setup was added to the 12 inch barrel, and tested, the balls velocity was
significantly less. The combination of all of the previously listed losses in the
system apparently affected the ball more than anticipated. Most significant is the
loss due to the long barrel. As the ball exits the barrel, it does not do so in a
straight line. It not only rubs against the wall, but also bounces around the inside
walls. This leads to decreased and inconsistent velocities.

At this time it was determined that either a spinning wheel or more pressure was
required to achieve more consistent results. More pressure would not work (as
our compressor was rated to only 100psi), so a spinning wheel was added. All of
the pneumatics would be left in place and would still be an integral part of the
system.

3.1.3 Firing System Description and Overview

The assembly for the firing system is depicted in B3a. The resulting system
works simultaneously with the ball feed system. A cross-sectional view of the
inside of the barrel is shown in Figure 3.2.

Figure 3.2

The ball feed piston and the firing piston are both run from the same solenoid
valve and work simultaneously. This means that when the ball feed slide plate (S

 36

in Figure 3.3) retracts, allowing a ball (B in Figure 3.3) to enter the barrel, the
firing piston (P in Figure 3.3) retracts as well, making room for the ball, figure 3.4.

Figure 3.3

Figure 3.4

Then, the piston fires the ball forward, figure 3.5, into the already spinning wheel
(W in figure 3.3) as the ball feed slide plate is simultaneously retracted to prevent
more balls from entering the barrel.

Figure 3.5

This process repeats itself in rapid succession, shown in figure 3.6

 37

Figure 3.6

The velocity of the ball leaving the barrel can be adjusted by either adjusting the
voltage on the motor, or with a lesser effect, the pistons firing speed (the balls
input speed into the rotating wheel). The latter will be used for minor
adjustments, if needed. Through experimentation it was determined that the
spinning wheel needs to protrude between 3/8” to ¼” into the barrel to actually
grip and propel the ball. Any less and it merely spits out a slow shot with a lot of
spin on it. Any more and it won’t be able to fit the ball through at all.

3.1.4 Design Description and Calculations

3.1.4.1 Air Compressor and Rate of Fire

The compressor being used is a 120 VAC
Campbell Hausfeld quiet air compressor
that charges an attached 2 Gallon air tank
to a maximum pressure of about 90 psi at
0.7 SCFM. A compressor was chosen
instead of a simple charged air tank for
numerous reasons. First, a compressor is
stand-alone. It does not require refilling.
This makes it more desirable, especially if
our robot were to be used in a residence or
somewhere where filling air is not

convenient. Secondly, an air tank loses
pressure as it is used. The pressure drops
from 90 psi very quickly and anything under
about 45 psi was of no use anymore. An
approximated simple graph of the pressure
versus shot rate is shown in figure 3.7, which
was compiled after experimentation with the
compressor is on. After experimenting with
the rate of fire, it was determined that our
system would most likely operate with about

65

70

75

80

85

90

95

0 15 30 40 45 50

Shots per Minute

P
re

ss
u

re
 (

p
si

)

Figure 3.7

Profile of Air Pressure at 40 shots per minute

70

75

80

85

90

95

0 9 18 27 36 45 54

Time (seconds)

P
re

ss
u

re
 (p

si
)

Figure 3.8

 38

80 psi given that we shoot about 40 shots per minute (1 shot/1.5 seconds). The
reason for this is because the compressor charges to 90 psi, then shuts off. It
does not turn on again until the pressure in the storage tank is about 75 psi.
Once it turns on again to recharge, though, and air is being used at about 40
shots per minute it settles around 80 psi. A profile of this is shown in Figure 3.8
for 40 shots per minute starting with a fully charged tank (@ 90 psi). Note: this
analysis was done when the valves on the firing piston were fully open and the
valves on the ball feed piston were open ¾ turn.

3.1.4.2 Pneumatic Piston

The pneumatic piston used to fire the ball into the spinning wheel is a Bimba
Dual Acting Piston with a 5/16” bore. The piston is fitted at either end with flow
control valves, which connect to the ¼” polyethylene tubing. The end of the
piston is threaded and fitted with a custom turned aluminum end piece. The
purpose of the end piece is two-fold. First, it prevents the ball from being dented
by the thin piston end (which was a problem during experimentation). Second, it
extends the throw of the piston by 1-1/4“. This places the retracted piston end
just inside the ball feed hole so there is no interference, but at the same time,
when extended, ensures that the ball is pushed into the spinning firing wheel.
The piston end piece was designed to screw into the 5 -24 size threaded end of
the piston. It was designed with a large surface head and a thin shaft which
provides a sufficient striking area while maintaining a light weight design. The
smaller the mass of the piston end piece, the faster it extends (according to the
simple relationship F=ma) and the less of a moment it puts on the piston when
extended.

The force for the piston itself was calculated as follows:

Using this force and the mass of the piston (calculated through mass properties
in SolidWorks assuming the material is steel) the acceleration for the piston was
calculated using F = ma:

 39

This acceleration is high for numerous reasons. First, it does not account for
friction in the piston. It also does not account for any work done in moving the air
out from in front of the accelerating piston. To calculate this latter loss one might
use the following relationship solve for the work done by the piston in moving the
air in front of it out the exit valve:

where

Using this calculated acceleration, it is easy to determine the velocity of the
piston:

Because the firing system now uses a spinning wheel to fire the ball it is no
longer necessary to calculate the velocity of the piston. Originally, the velocity of
the piston may be used along with the conservations of kinetic energy and
momentum, and the coefficient of restitution to calculate the velocity of the ping
pong ball when struck with the piston. However, the method of launching has
since changed and now relies on the energy of the spinning wheel.

 40

3.1.4.3 Firing Wheel Assembly

The firing wheel assembly consists of the
mounting bracket, the motor, the wheel,
and the mounting hardware. A schematic
of the assembly and how it fits together
is depicted in drawing B3b. The bracket
is bent out of sheet metal (steel) and is
drilled with two sets of mounting holes:
two holes drilled on the short bent end
for mounting to the base, and three holes
drilled at the end of the long end to
mount the motor. The bracket was
designed to support the weight of the
motor across the vertical web. See figure
3.9. It extends forward from the base out

along the barrel and is attached so that the firing protrudes 3/8” into the barrel.

The wheel used is a 2 inch diameter plastic hobby wheel with a solid rubber tire.
The solid rubber tire provides the proper grip for launching the ball, and because
it is solid, does not significantly change shape when spinning at high speeds.
While testing the wheel at operating speeds the rubber tire would separate from
the teeth on the plastic hub which held it in place. This caused excessive
vibrations, was unstable, and caused the wheel to hit the sides of the cut in the
barrel. This problem was solved by using epoxy to glue the wheel to the teeth
and the hub. See figure 3.10. The hole in the center of the wheel is the same
diameter as the gear teeth on the motor shaft. The wheel is fitted snugly onto the
motor shaft and the remaining space is filled with
plastic to secure the wheel to the shaft.

The motor being used is a 7.5 volt starter motor
from a Remote Controlled Truck. The only
information available for the motor from the
company was the voltage and the use. All other
specifications were determined through
experimentation and similar motors. After testing
with an adjustable DC power source, it was
determined that the best speed for the wheel was
achieved when the motor ran at 2.5 to 3 volts. The
current drawn while running at 3 volts is 1.5 A +/-
0.1A. The current at startup is however in excess of
5 A. The power source being used for the robot only
has a 4 amp (slo blo) fuse. Therefore, the power
source for the motor will be a separate 3 volt
battery.

Figure 3.9

Figure 3.10

 41

Using the following calculations the angular velocity of the motor shaft was
determined:

The resistance and back emf constant were
approximated by using values from a similar motor.
The tolerance is +/- 15% (Pittman Servo Motor
Application Notes 2).

The linear velocity of the wheel is then
found and used to calculate the velocity of
the ball using the conservation of kinetic
energy. For this calculation the wheel is
assumed to transfer all of its energy to the
ball since it is kept in constant rotation by
the motor.

Using this velocity and a simple 2
dimensional motion equation the location
the ball will hit the table was calculated.

The velocity of the ball will be adjusted by either altering the speed that the piston
feeds the ball and/or adjusting the voltage of the motor. During testing it was
discovered that for hitting the opponent’s side of the table, the change in voltage
would only have to range between 2.5 and 3 volts.

3.1.4.4 Firing Structure -- Barrel, Base and End Cap

The structure for the firing system is made from PVC. PVC is lightweight, readily
available, inexpensive, durable and easy to machine. The barrel is constructed
from one foot of standard 1.5 inch PVC pipe (1120 SCH 40 ASTM D1785). Even

 42

though it is labeled 1.5 inches, the actual outside diameter is 1.90 inches and the
actual inside diameter is 1.57 inches. Incidentally this is almost a perfect fit for
ping pong balls: the 40 mm is 1.56 inches in diameter and the 38 mm is 1.48
inches in diameter. The barrels ball inlet hole is cut to fit the 40 mm ball, and has
a dimple and back stop piece immediately underneath to prevent the ball from
rolling back into the barrel or out the front. See figure 3.12. In order to lighten the
barrel and increase air flow in front of and behind the firing ball, a hole in the rear
(see figure 3.12) and several slits were added at the end of the barrel; see
drawings B3ci and B3cii.

The barrel is then fitted with a 1.5” PVC end cap. There is a hole in the center
rear of the end cap for the piston. This hole has a 1/8” pipe thread for the piston
to screw into. There are also 4 holes symmetrically placed around the center of
the end cap to
reduce weight and
provide more
paths for airflow
for when the ball
is being fired. The
end cap’s length
was also
shortened to
reduce weight and
save space.
Reference
drawing B3d.

The base is also machined out of PVC and has several functions. It provides for
a secure barrel mount, a secure firing motor bracket mount, and a place to mount
the solenoid valves. It also mounts the entire firing system to the aluminum cart
with two machine screws. The base is a solid piece of PVC to provide the most
strength for all of the mounting screws.

3.1.5 Conclusion

The final firing system uses a hybrid spinning wheel/pneumatic piston launching
method with speed varying ability. The air is supplied with a quiet compressor
and the voltage for the motor with a 3 volt battery. The system integrates easily
with the ball feed mechanism, the serve and spin mechanism, the mobility
system and the controls/augmented reality system.

In hindsight, if I were to redesign this system I would go with spinning wheels
from the beginning. I would leave it up to the controls guys to then dictate
whether or not they want to adjust the wheel speeds independently for different
speeds and spins. Spinning wheels are the most efficient means for projecting
the ball, which is why the Newgy and TT-matic robots use them. I would still

Figure 3.11

 43

incorporate pneumatics. Pneumatics are very efficient and easy to work with, and
make our shooter unique.

3.1.6 Chapter Nomenclature

A: amp
ASTM: American Society for Testing and Materials
KE: kinetic energy
lbf: pound force
lbm: pound mass
m: mass
mm: millimeters (in reference to the standard size of the ping pong balls
psi: pounds per square inch
PVC: Polyvinyl Chloride
v: velocity
V: volt

3.1.7 Bill of Materials

Table 3.1- Bill of Materials

FIRING SUB-ASSEMBLY BILL OF MATERIALS

SUPPLIER PART NO.
DRWG.

NO. PART NAME PART DESCRIPTION QTY. UNIT COST
EXTENDED

COST

BORROWED (ALSO
AVAILABLE AT

GRAINGER)
45A-RR1-

DACA-1BA SOLENOID VALVE

MAC VALVES BRAND 45
SERIES, 1/8" NPT PORT

SIZE 1 $31.00 BD
CAMPBELL
HAUSFELD

(BOUGHT OFF
EBAY) FP2003

AIR
COMPRESSOR

120 V COMPRESSOR AND
2 GAL. STORAGE TANK,

0.7 SCFM @ 90 PSI 1 $94.99 $94.99

SHAKOS
PT24044NA-

1000
POLYETHYLENE

TUBING 1/4" TUBING (.040 WALL)
45

FT. $0.19 $8.55

 B4b MANIFOLD

1-1/2" ALUMINUM BAR
STOCK, 1 INLET WITH 1/4"
PIPE THREAD, 3 OUTLETS
WITH 1/8" PIPE THREAD

0.75
LBS. 4/LB. $3.00

BORROWED (ALSO
AVAILABLE AT

GRAINGER)
0072-DXP

#MJ
PNEUMATIC

PISTONS
BIMBA DUAL ACTING
PISTON, 5/16" BORE 1 $18.00 BD

SHAKOS 1168X4

PUSH TO
CONNECT
FITTINGS

1/4" MALE NPT/TUBE PUSH
TO CONNECT 3 $2.61 $7.83

BORROWED (ALSO
AVAILABLE AT

GRAINGER) 6MN01

PUSH TO
CONNECT

ELBOW SWIVEL
FITTINGS

ANDERSON, 1/4" TUBE
SIZE, 1/8" THREAD SIZE 2 $3.57 BD

 44

SHAKOS 1107X4
 INLINE Y-
SPLITTER 1/4" TUBE SIZE 2 $10.55 $10.55

 B3e BASE PVC 1 $4/LB. $4.00

HOME DEPOT B3d PIPE END CAP
1.5" PVC MODIFIED PIPE

END CAP 1 $0.49 $0.49

HOME DEPOT
B3ci &

B3cii BARELL
1.5" PVC, 1120 SCH 40

ASTM D1785 1 FT. $0.29/FT $0.29

BORROWED (ALSO
AVAILABLE AT

GRAINGER) 6LG98 PLUG
1/4" HEX HEAD BRASS

PLUG 1 $1.72 BD

SHAKOS CP TT41 TEFLON TAPE
1/2" X 520 FT HIGH

DENSITY TEFLON TAPE 1 $5.28/ROLL $5.28

HOME DEPOT
QM-

60/81504 EPOXY GLUE 1 $2.91 $2.91

MCMASTER-CARR 4076 K21

RIGHT ANGLE
PUSH-TO-

CONNECT AIR
CONTROL VALVE

 1/4" TUBE OD, 10-32 UNF
THREAD SIZE 2 $12.60 $25.20

MCMASTER-CARR 90011 A117 WOOD SCREW

ZINC-PLATED STL ROUND
HEAD SLOTTED WOOD

SCREW, NO 4 SIZE, 1-1/4"
LENGTH, 100 PACK 2 $2.56/PACK $2.56

 B5fi
PISTON END

PIECE
ALUMINUM STRIKING

PIECE 1 $4/lb. $1.00

BORROWED FROM
CAMPBELL

HAUSFELD 5 GAL.
AIR CARRY TANK
(AVAILABLE AT
HOME DEPOT)

KT050002AV
 AIR HOSE

1/4" THREAD MANIFOLD
TO COMPRESSOR HOSE 1 $18.97* $18.97

HOBBEYTOWN #4578 MOTOR
7.5 VOLT TRAXXAS
STARTER MOTOR 1 $12.00 $12.00

BORROWED
(AVAILABLE AT
HOBBYTOWN) 2455 FIRING WHEEL

2" DIA. PLASTIC WHEEL
WITH SOLID RUBBER

TIRE. 1 $4.25 BD

 B3bi
FIRING WHEEL

BRACKET/MOUNT STEEL 1/16" THICK 1 $1/LB. $1.00

BORROWED (ALSO
AVAILABLE AT

GRAINGER) 4P769

FIRING
ASSEMBLY
MOUNTING
SCREWS

6-20 X 1/2" SELF DRILLING
MACHINE SCREW 2 $3.76/100PK BD

BORROWED (ALSO
AVAILABLE AT

GRAINGER) 3H564
MOTOR MOUNT

BOLTS
4-40 X 1/4" MACHINE

BOLTS 2 $10.08/100PK BD

*Price is For Campbell Hausfeld 5 Gal. air carry tank, from which the hose was taken.
BD = Borrowed

 45

3.1.8 References

Pittman Servo Motor Application Notes. Pittman, Harleysville, PA. Available

online: http://www.pittmannet.com/pdf/220000ALL.pdf.

 46

3.2 Ball Hopper Assembly
Eric Jacob

Figure 3.12

3.2.1 Introduction

 In order for any automatic shooting device to work, a means of loading the
object to be fired must first be assembled. There are several options for attaining
a loading device which is for the most part based, on the mechanics of the
shooting device. These devices range from, gravity fed hoppers, to spring
loaded, to piston fed devices.

Based on the design of our shooting device, our loading system had
several limitations. Since the device is using a piston in the rear of the barrel, a
rear loading option was out of the question. This led to the availability of other
access points to which the ball could be fed, such as through the front of the
barrel, or through one of the sides. Loading the gun from the front required too
much time, and mechanics. This option, would not allow, a high rate of feed, not
to mention the probability of controlling the device so when the ball was and the
timing to when the piston was fired varied too greatly. Loading from the top did
require a time allotment, but it was a much more feasible task. Since we were
using pneumatics to launch our system, it made more sense to bleed some of the
pressure, to use a pneumatic loader instead of a motor. In order to maximize
total usage of balls, we figured we had to use some feeder that kept compressing
the balls into the shooting device, thus gravity fed made the best sense. It
required less work on the mechanics side, and allowed balls to space themselves
while and before being shot. Other possibilities were loading the gun from the
bottom, with some sort of spring device or from the sides, but the know how was
left in the idea for a gravity fed hopper. Compression was not needed, and
neither was preciseness or where the ball was placed, which let this idea lead the
way. .

 47

3.2.2 The Hopper

 The ball hopper assembly’s main objective is to hold a capacity of 80
Ping-Pong balls, and feed them into the launching mechanism. The balls will be
held in helix shaped plastic tubing, and gravity fed into the top of the shooting
device. These calculations can be found at the end of the chapter. The total
length of the helix will be 125.984 inches or 3200 mm. The helix will be at a
10.1degree incline, and have an inside diameter of 45mm, thus allowing it to
easily handle the diameter of a ping pong ball drawing 2). Being attached to the
top of the screen, the hopper will allow the balls to be easily fed. At the top of the
tubing a plastic bucket will be placed, to allow the ability of more balls to be
loaded at a given time. Flexibility is a must in the tubing. It must be able to bend
easily and move with the cart without creating too much torque on either the cart,
or the screen. The inside diameter and smoothness of the inside of the tubing
also must be available to insure that the ping balls are able to freely move
through the tubing with little resistance. This tubing will be connected to the top
of a piece of PVC tubing that has been formatted to allow ping balls to move
freely into the barrel. This was completed by end milling the end of the PVC to
not allow any variation of the location of where the ball will be fed.
 At the top of the tubing an attachment can be made, to incorporate the use
of more ping pong balls. This attachment would be a 1 foot squared container
capable of holding an extra 512 balls maximum. Without a motor to help the flow
of balls this idea, would have to be further researched to incorporate the
complete 512 balls in 1ft^3 box like configuration. Ideas like a motor to control
ball movement into the tubing would be a big advantage, as well, as modifying
the interior to create a funnel, for which the balls would automatically fall into the
hopper.
 Unfortunately, the tubing that was required was beyond the budget of the
group, and could not be bought, so an alternative form of a hopper was needed.
The idea of attaching 3 wires together extending from the hopper holder was
created. These so called wire frames will encompass the ping pong balls, and
freely be able to move with the cart, and shooter. At a length of only 3 feet the
amount of balls that it is able to hand is much less then expected. This length
will only be able to hold 25 balls instead of 80. As the cart moves back and forth
this, hopper will be projected into the air and hold onto the balls.

 48

 Figure 3.13
 The main part of the hopper assembly is shown above in figure 3.13. The
bent aluminum plate that is attached to the PVC, allows for easy movement of
the ball loading system. Without spacing between the two the coexistence of the
two pieces would not be able to occur, and the system would be inoperable.

3.2.3 The Loading of the Ball

Figure 3.14
To create a useful ball feed, problems that might develop had to be looked

at. In order to prevent too many balls in the launching mechanism, or an exhaust
plume rising up from the gun, the use of pneumatics, and a ball holder shield
(figure 3.14) were used. This shield being made out of aluminum will allow one
ball to travel into the gun, by using pneumatics to retract itself into a loading
position, where it and the launchers upper holes match. The ball will then fall into

 49

position. Since the barrel is sized to allow only 1 ball, only one ball will be able to
fall into position. The rest of the balls will then apply a force onto that ball, while
the shield is still open. When the shield closes it will exert a force of 15.3272 lb-
force, or 68psi (Calculations are included at the end of the chapter), to rise the
balls back away from the shooter. Once the shield is fully extended it will cover
up the whole, and thus allow the gun to fire. The relationship between the
loading shield and the firing piston, are equal. As the piston retracts the shield
closes allowing just one ball fall through. When it closes it pushes the rest of the
balls up and out of the way not allowing any contact between the ball being fired
and the rest f the balls. On average we can load approximate one ball a second.
 This device works fairly well, and has few and far complaints. Now and
then balls may get stuck in-between the plate and the PVC barrel. The good
news is that the Pressure created by the piston on the ping pong balls is great
enough to force the balls up and out of the way. The other concern that must be
noticed is that when the whole opens for the ball to drop, if the speed of the
piston on the loading plate is too great, then the ball will not fall into the tube, and
a blank shot may be fired. This error is fairly easy to fix, through several
manipulations. First make sure the all the holes, the hopper holder, the hole on
the PVC, and the hold on the shield all line up correctly. Next adjust the
pressure, on piston at both ends until the ball can easily fall into place. After
these adjustments are made a simple adjustment to make sure that the pressure
is sufficient on the Piston to close must be made by adjusting the pressure of the
piston through the valves. Due to inconsistency in the pressure of the pneumatic
system, no accurate calculations on adjustments can be made so manual
adjustments need to be verified at the beginning of every usage.
 To create the maximum force on the ball, and consistency of shots, the
ball must be placed in a certain position every time. We located where the piston
reaches its maximum length, and decided to place the ball here. This would
allow the piston to accelerate to its maximum velocity before striking the ball.
The loading system was then assembled around this point. To ensure that the
ball once fed would not move from its location to add on features were added to
the interior of the barrel. The first was a small divot located at the center point of
where the piston extended too, to give the ball a place to rest until it was struck.
The second feature was plate located underneath where the piston would extend
over. This plate prevented the ball from sliding back to an undesirable position.
To prevent the ball from moving forward the gun is just slanted backward to allow
the ball to roll back to the desired position.
 The only concern that we had when we first built this was how can a
loading device such as the PVC located on top of the barrel and the separating
shield exist together without interfering with each other (Assembly 1). This
problem was easily solved with two pieces of aluminum. These pieces would be
connected to the base plate and to the PVC at the same time, and would not be
in contact with any other system. This would allow the PVC to exist about the
loading plate, and the loading plate to move freely without touching the loading
hopper.

 50

3.2.4 Hopper Calculations:

 Ball size and Specifications:
 Diameter = 40mm or 1.5748inches
 Weight = 2.7grams or 10.5 ounce s= .00595lb*m
 Volume = 4/3*Pi*r^3
 =1675.52 mm^3 or .001676 m^3
 =2.59704 in^3

Needs to handle 80 Balls
 (Calculations on following pages)
 For straight Tubing
 40mm*80 = 3200mm or 3.2m
 1.5748in*80 = 125.984inches or 10.4987feet

 Height specification of

22inches
528mm

Helix Specification
 Height – 20inches or 508mm
 Length 125.98inches or 3,1998mm
 Radius – 1.823inches or 46.3mm
 1 rotation height 2inches or 50.8mm
 Inside Diameter 45mm
Add on Bucket feature for the hopper
 Dimensions 1ft^3
 On the base
 [(1ft*12in/1ft)/(1.5inc ball diameter)]^3=512 balls

Actual hopper used for amount of balls
 3ft*12inches/1.5747inches(diameter)+2balls in hopper holder=25
balls

Weight of 80 balls
 On plate directly
 2.1168N
 or 15.3272 lb-f

 Correlates to 68psi

 51

3.2.5 Bill of Materials

 Table 3.2 – Bill of Materials

PART
NUMBER

DRAWING
NUMBER

PART NAME PART
DESCRIPTION

UNITS

UNIT COST EXTENDED
COST

NOTES:

45A-AA1-
DFBJ-1KE

 SOLENOID
VALVE

MAC VALVES
BRAND 45

SERIES, 1/8"
NPT PORT

SIZE

1 $31.00 $31.00 BORROWED

Shared by
piston
assembly.

PT24044NA-

1000
 POLYETHYLENE

TUBING
1/4" TUBING
(.040 WALL)

10 FT. $0.19 $1.90

0072-DXP
#MJ

 PNEUMATIC
PISTONS

BIMBA DUAL
ACTING

PISTON, 5/16"
BORE

1 $18.00 $18.00 BORROWED

6MN01 PUSH TO
CONNECT

ELBOW SWIVEL
FITTINGS

ANDERSON,
1/4" TUBE
SIZE, 1/8"

THREAD SIZE

2 $3.57 $7.14 BORROWED

 B5d Hopper Holder 1/8” bent
Aluminum

2 4/LB $1.00

 B3e Shooter BASE PVC 1 $4/LB. $4.00 Shared by
piston

assembly.
 B5e PVC Ball Hopper 1.5" PVC, 1120

SCH 40 ASTM
D1785

1

 B5g Piston bracket 1/8” aluminum
bracket

1 $4/Lb $1.00

90011 A117 WOOD SCREW ZINC-PLATED
STL ROUND

HEAD
SLOTTED

WOOD
SCREW, NO 4

SIZE, 1-1/4"
LENGTH, 100

PACK

4 $2.56/PACK $2.56

3.2.6 Conclusion

 The completion of the hopper assembly has its ups and downs in meeting
the original requirements, set at the beginning of this project. The pneumatic
operating system, used is what I consider to be the best part. The pneumatic
system is efficient and effective at the same time. It’s ability to load balls, one at
a time for a piston to move in some shape or form, in either firing or loading

 52

makes this system a success. The one down fall of this feature is the
requirement of compressed air to control it. Due to the fact that compressors are
not a common tool laying around, and just add bulk to the final feature, another
way to create the pneumatic control my be fairly feasible. A motor perhaps can
be created to perform the same features.
 The actual hopper itself is where I believe the most problems occurred.
The actual tubing that was depicted to be used, was unfortunately to expensive
for this teams budget, so other sources were experimented with. Things such as
plastic vacuum tubing was tried, but created too much torque in the end on both
the CMU cam and firing device supports. Three aluminum strips were then
decided to be used, and project outward from the hopper assembly. This
system, does not secure the ball effectively, though it allows for easy movement
of the ball. The other problem that this makes is that the amount of balls
originally idealized to be used (80), can not fit in this amount of space, which
makes this system much less desirable. Ideally the system to be used is a form
of air duct piping that is fairly flexible. This allows for easy movement, which
lowers the torque created, while maintaining the inside diameter for easy
movement of ping pong balls on the interior.
 Other options for this system could be more feasible, but with the idea of
creating a mechanism based on a device that has not been seen before,
prevented from further development of other devices. It is my current belief that
to make this machine more feasible a re-loadable is needed. This would require
the creation of a ball collector, which could be loaded at the bottom of the shower
curtain that we have decided to use as our back drop screen. This catching
device can be created using PVC, and netting or other device that has minimal
friction allowing for easy rolling movement of a ping pong ball. A conveyor could
then take the ball up to a bucket hopper that would be able to into tubing. This
conveyor does not require much work, and can either use other ping pong balls,
to push each-other up into the hopper; much like the NEWGY machines of today,
act as a drill; and pull the ball up to the top, or in an escalator fashion; and pick
up each individual ball at the bottom and bring it to the top. The hopper bucket
would have a spinning motor on the inside to insure that balls fill into flexible
tubing that feeds to loading device.
 This is just one of the options that could have been created instead of the
device used. The only problem with these other devices is, the time involved,
along with the financial side of it, made these options not feasible. The system
that is being used currently is not only reliable but proven, and thus it
accomplishes its goal.

 53

3.3 Serving / Lobbing and Spin
Assemblies
James Alan Rollo

3.3.1 Serving / Lobbing Assembly

Figure 3.15

For our project to seem more realistic, the machine must be able to serve
the ball, as well as have the ability to lob the ball. Serving the ball is when the ball
is presented, struck with a paddle, and then the ball hits your own side of the
table before cleanly going over the net, and hitting the opposing players proper
side. Lobbing the ball is when the opposing player has fairly returned the ball to
your side of the table and you are able to strike the ball, and return back over the
net hitting the opposing players side of the table, without hitting your own side.

 There are many ways to do this. Such ways include, angling the barrel,
angling the entire unit it-self, redirecting the ball, and many other methods. The
problem with our project is that our barrel for the launching mechanism will be
going through a projector screen. Since the screen needs to be stretched tight
around the protruding barrel, we are unable to move the barrel vertically to angle
the trajectory of the ball. Since angling the barrel it-self is not an option, the only
other feasible alternative would be to redirect the ball.

 The simplest way to redirect a ball coming out of the barrel would be to
have a device at the end of the barrel redirect the ball to a proper angle. A plastic
plate is placed at the end of the barrel to redirect the ball. The plate is held in

 54

place by a small hinge. Initially it was decided to use a servomotor. However this
created some unforeseen problems. The biggest problem was that the controls
were unable to find a way to control the motor. They were able to figure out how
to make it turn in one direction but not the other direction successfully. Even once
it was discovered how to work the servomotor, it was inefficient for our uses.
Since a major part of our launching mechanism is going to be pneumatic
systems, it only makes sense to use a pneumatic piston for this part of the
project as well. A piston is attached to the barrel, and points at the connecting
horn attached to the plate. The plate has torsion springs on it so that in its normal
state it is up. When the piston is extended it push the on the horn, and moves the
plate down in to the serving position.

 A plastic plate is attached to the end of the barrel to redirect the ball
downwards. It is attached to the barrel by a small brass hinge. There are two
options that go with making this idea work, either the plate can be alternated to
differing angles to get the angle we require, or it can go down to a fixed position,
and varying the serve can be done with varying speed. Having the ability to
alternate the angle, at which the plate is put, is the more logical choice. It would
be very difficult to do this with the pneumatic piston however. So it was decided
that the best alternative would be to go with a fixed position for the plate.

 A program was created to determine the angle for which the ball needed
to be launched at for our given average speed for the launcher. This turned out to
be about 15 degrees. Once testing started it turned out that it was slightly more.
Moving the piston slightly forward on the barrel did corrections to the angle.

 Now that construction is completed, no new ideas have come about on
how this could be done better. Under the strict guidelines of having the launcher
physically going through the screen, creates problems in which this is the best
alternative. However, a servomotor would be the better choice for controlling this
assembly piece since having the ability to vary the angle by computer and not
hand, is an immense advantage.

3.3.2 Spinning Assembly

Figure 3.16

 55

 One of the main goals for this project to go above and beyond the current
technologies that is currently out on the market. Every machine on the market
currently, has the ability to put spin on the ball. So, it is imperative that our
machine has the ability to put some kind of spin on the ball as well. There are
many ways to put spin on the ball. Such ways are to use spinning wheels, puff of
air on a certain area of the pad, or friction pads.

 For the current launcher that is made, the choice needs to be small and
compact. It should also be easy to construct since it is a more minor part of the
project. With these points in mind, the best choice would be to use a spinning
wheel. To create a spinning wheel to put spin on the ball, would be small, light
weight, easy to use, and easy to create.

 A small high-speed low voltage motor would be ideal for these purposes.
The following motor is being used for this purpose:

Radio shack 1.5-2VDC Motor

Voltage Range: 1.5 – 3 volts

Current: 0.18 – 0.25 A @ no load

 0.70 +- 15% @ max efficiency

Speed: 8700-RPM +- 12% @ no load

 5800 RPM +- 12% @ max efficiency

Shaft length: 0.0787 mm

Output: 0.31 W

Torque: 5.3 g/cm

 A special bracket needed to be made to attach this motor to the barrel,
see the attached Solid Works files for the Motor Bracket. Once made it was
attached to the barrel by plastic welding it on.

 In retrospect of creating the spinning wheel assembly, this choice is the
best option for this purpose and wouldn’t change anything. Do to the fact that
spin needs to be put on the ball, however in a manor that doesn’t add weight or
take up unnecessary room, this is the best option. The motor works well and
ideal for this because it is high speed but draws little current.

 56

Chapter 4: Computer System Integration

4.1 Computer Programming
Robert Van Dyk

4.1.1 Introduction

 Constructing the code for the Table Tennis Robot served to integrate the
three completely separate elements has not been an easy task. In summary, the
computer program that runs the robot has to communicate with (1) the LabJack,
(2) the CMUCam, and (3) the projector.

There were two options that could put together all these separate
elements. LabView is encouraged to be used by the IED professors, though
after assessing the Table Tennis Robot project there was a doubt about whether
or not LabView would introduce a bottleneck that would slow down the overall
execution time of the mechanical devices and computer I/O that the robot
processes. Also, after many hours of going through the LabView program, no
solution for how to communicate with the projector was found.

The second option is more of a computer science solution then
engineering, though it was picked because it is more flexible then LabView. This
option was to write the Table Tennis Robot program in Java. One huge
advantage that Java has over LabView is that it makes use of pre-written
software packages designed for each device we were using. To put it frankly,
without the work of Chris Reigrut on the LabJack, the developers at Carnegie
Mellon University on the CMUCam, or the resources for Java graphical support
available on the Internet, the Nothing But Balls Table Tennis Robot would not
have been possible.

4.1.2 The Projector/Video Files

 Because of the completely software driven nature of the projector, the
code for this was derived first. I had several options to choose from while putting
this program together and the following is the logical progression on how I
eventually arrived at my decision.

At the onset of the project we were disillusioned into thinking that we
would be able to use Macromedia Director, a powerful graphical program that we
had false hope could be controlled via system calls from LabView. During our
testing with Director though we learned several important things. First, we
learned that there is no way to load every video clip we need into memory.
Without going into too much detail, this is because each video clip we had is
stored on the hard drive (30 Gigabytes) and in order to play it we must transfer it
into computer memory (200 Megabutes). The time it takes to transfer from the
hard drive to memory is not negligible. The result is that when we were playing

 57

video clips in Director, it would noticeably pause for a fraction of a second while it
was loading video. To alleviate this problem, we told Director to convert each
video clip into a string of images and play that. With the super powerful graphics
program, this resulted in a smooth flowing animation of Gus playing table tennis.

When we shifted from Director to Java, the “string of images” idea was
preserved. While scouring the Internet for a method to control images in Java, I
came across the Java Almanac web resource. There, I found a program called
AnimApp.java that taught me how to display a string of images with Java. I was
able to create and execute a video of Gus swaying back and forth in his “ready-
mode” that ran flawlessly. Problems accorded when I trying to add a clip of Gus
serving the ball. Java produced “Memory Overflow Exceptions”. What was
happening in the Java program is the same as what happened in the Director
program, only instead of a tiny stall – the error in Java stopped the program from
continuing correctly. To alleviate this I changed the Java program to load an
image dynamically before displaying it. With this, an unacceptable frame rate
was produced. Though, the main problem with this approach is that it took huge
magnitudes more time to play the short clips. The answer was fairly easy to
come by, instead of playing all 140 or so images, skip every 4-9 images so that
we can simulate Gus moving at a realistic pace. Using the experimental
knowledge I had acquired during this process, I settled on the final version of the
program that would load the entire “ready-mode” clip into memory, then
dynamically load the shots of Gus hitting the ball.

It isn’t perfect, but is good enough for our prototype. If we were given
more time, we would be able to simulate the powerful nature of the Director
program with the simplicity of the Java program using a multi-threading technique
– though with the tight IED time restriction there was not enough time for this.

4.1.3 The LabJack

How is it possible to control the LabJack from the laptop? This was a very
important question that I needed to address before LabJack controlled devices
were built, so that the group would know that I am in control. We first considered
using LabView to control LabJack, though support for this was very weak on the
LabJack website. As a historical note, our subgroup was able to successfully
detect the “vibration” of the the Radio Shack Vibration Detect that we bought.
(Unfortunately table tennis balls do not cause a great enough table vibration for
these devices to be used in our project, so that part of our project flopped).
Around that time I had knowledge of the CMUCam java program, and then I
discovered the LabJackJava program written by Chris Reigrut of Teravation
(http://www.teravation.com). This was the discovery that made Java the choice
for how to run the software for the Nothing But Balls Table Tennis Robot.

Figuring out exactly how to use LabJackJava is a story on its own, though
because of the LabJack Java Forum and help from Mr. Reigrut, I was able to get
this working, and remove a huge burden from my shoulders. Correspondence
between Mr. Reigut and myself is reproduced in ***********Appendix B************.

 58

With knowledge I gained through the developer of LabJackJava, we became able
to control motors and the solenoids that work with the ball shooter.

4.1.4 The CMUCam

 The CMUCam comes with an
extensive Java test program available on the
Carnegie Mellon website (www.cmu.edu). If
you would like to download the code for
yourself it is at http://www-
2.cs.cmu.edu/~cmucam/Downloads/camGUI
_1_1b.zip. I considered printing it out for this
report, but after considering its sheer mass (it
would have been over 20 pages with a tiny
font) decided that it was best not to.

Keith worked hard to learn the
essential commands that we would need to
use the “Track Color” function, which we will
be using to detect the position of the ball over
time. Unfortunately that was a small task
compared the task I had to do to get
CMUcam working with our project.
 The CMUCam Java program is rather
large in size. Overall, there are fourteen separate classes defined in the
following fourteen files. The first six files were the most important to teach us
how to control the CMUCam. The “serial” files were pretty much used in their
entirety with the code in the final program. The function that describes “Track
Color” is in CameraImage.java, so I used a good part of that file as well in the
final. The other eight files define aspects of the test program that we didn’t need
to work with.

4.1.5 Conclusion

The programming for the Nothing But Balls Table Tennis Robot was far
from a simple task to complete. I would like to take all the credit, though this
project marks the first time I have ever written a computer program of this
magnitude and I would be lying if I said I could have done it myself. I would have
never been able to figure out how to communicate through the USB port with the
LabJack, so I would like to personally thank Chris Reigut for his work on the
LabJackJava and his willingness to answer the many questions I posed for him.
I also wouldn’t have been able to figure out how to communicate through the
COM1 with the CMUCam. I would also like to thank Carnegie Mellon for having
the ever helpful test program posted online.

1. CMUcamGUI.java
2. mainWindow.java
3. CameraImage.java
4. colorTrack.java
5. serialComm.java
6. serialPort.java

7. aboutWindow.java
8. camSettings.java
9. channelWindow.java
10. commWindow.java
11. meanWindow.java
12. outWindow.java
13. rawWindow.java
14. setWindow.java

Figure 4.1 – CMUcamGUI files

 59

Although in addition to the guidance I received, integrating everything and
making sure that the timing for everything works properly was a major task. In
the end, there was no way to make everything function smoothly together.
 I guess the only other thing to do is present the code in Appendix C.
Good luck with it.

 60

4.2 Electronics Integration
Liam Tallon

4.2.1 Introduction

 This chapter shows how a laptop is going to interface with the electronics
that control the Ping-Pong robot. A laptop must have an intermediary circuit in
order to control motors and solenoids. The goal was to make a circuit that
consumes a minimum amount of power, from both the laptop and from the DC
power supply. The circuit also needs to be 100 percent reliable and allow full use
of the hardware connected.

4.2.2 Development

 In order to develop the circuit I had to meet some requirements set by the
other subgroups that had elements interfacing with the circuit. I also had to
operate within the parameters dictated by the hardware specification limitations.
The needs of the other people our group were needed before I could finalize the
design of the circuit.

4.2.2.1 Wire Requirements

The Wiring Schematic (Figure 4.3) shows all wire connections needed to

fulfill the robot control circuit. The Graphical representation of this circuit is
shown in Figure 4.2.
 The correct gauges of wire must me chosen with regard to how much
current the line is carrying. The maximum amperage carried on any one wire is
1.5 Amps, this occurs in the wires going to the track motor. Wire gauge #22 is
capable of carrying 7 amps when wired in air. Wire gauge #22 is also the size
that fits best in a protoboard, which makes it the ideal size wire to use for all
components.

Protoboard Layout Diagram (Figure 4.2) is for placement of wires. All
RED wires indicate a connection to a voltage source. All BLACK wires indicate a
connection to a ground. All OTHER wires indicate connections between
components in the circuit. Five colors are needed in the diagram in order for no
wires to cross over a wire of the same color.

 61

Figure 4.2 – Protoboard Layout Diagram

4.2.2.2 Support Requirements

 The control required by the support subgroup for the robot is the ability to
move a Ping-Pong shooting assembly along a track to three discrete shooting
positions as fast as possible. Two roller pushbutton switches are used as limit
switches to ensure the power is cut before the cart reaches the mechanical
stops. The limit switches eliminate the need for sensors because they are
positioned where the left and right shooting locations should be. When the limit
switch is depressed the power for one direction of the motor is cut, while the
power for the other direction remains operational. The need for a center
pushbutton was eliminated. The software will be able to determine when to stop
the motor so the cart is in the middle of the track.

 62

4.2.2.3 Shooting Requirements

The shooting subgroup required the ability to operate a firing piston, firing

motor, deflecting piston, and a spin motor. Since the shooting subgroup decided
to use a spinning wheel to fire the ball very late in the design process, I was not
able to design a circuit for the laptop to modulate the speed of the firing motor. I
decided to use a potentiometer to vary the voltage to the firing motor because it
was the only way to do it in the limited time before the exposition. The LabJack
we are using to interface the laptop with the motors and solenoids is capable of
digital I/O as well as analog I/O. Relays turn on and off all motors and solenoids,
switching direction of motors is also controlled by relays. All of the controls are
operated by a digital high or digital low, which makes the programming and
circuitry very simple and reliable.

4.2.2.4 Choosing Relays and Buffer

 I chose the 74F365 buffer because it has a high sinking current relative to
its device type.

I chose relays with very small power requirements because the Buffer can
sink a maximum of 64mA from each relay. The current being used by the relays
must be less than the buffer can sink, so the LabJack doesn’t get an amount of
current too large at its inputs. If the LabJack were to get a large current at one of
its inputs, it could be damaged, or the laptop could be damaged.
 DPDT relays were chosen to control the reversing of the direction of the
motors.
The spin motor and Shooting motor both operate continuously when the power
supply is on so they only require 1 DPDT relay each. The track motor is the only
one that requires coming to a stop, so an additional SPDT relay is required. I
could not find an SPDT relay that operated at 5VDC and had 2 Amp contact
points, so a second DPDT relay was used. The Schematic (fig. 4.3) shows how
the reversing of current is accomplished using one DPDT relay. Diode protection
was needed to protect circuit elements from the spike in voltage generated by the
coil in the relay. A spike in voltage could damage the buffer chip or the Laptop.
 SPDT relays with built in diode protection control the MAC valves. The
MAC valves only need to be turned on and off. Using one SPDT relay for each
MAC valve is a simple and energy efficient way of controlling them.

 63

 64

Figure 4.3 – Engineering Schematic of the Circuit

4.2.3 Experiments

All of the components needed to be tested prior to their inclusion in the
complete system. I had to make sure the power sources could handle the
current and voltage needed by the devices they operated. It is my job to make
sure the circuits and all components included in them are operational before
anything is hardwired to the laptop and LabJack. If a circuit is not operational it
could damage the laptop or LabJack that it is connected to. It is also more
difficult for the person doing the programming to determine if their program works
when the hardware that it operates is not operational.

4.2.3.1 45A-RR1-DACA-1BA MAC Valve for operating parameters

The valve was borrowed, so I do not have a spec sheet for it. The printed

information on the valve is 24VAC, 7.4 watts. The valve was connected directly
to a power supply in order to observe the voltage and current requirements of the
device. At 24VDC the valve drew 0.72 Amps, using Power = Voltage * Current
the valve requires 17.3 Watts of power. After testing the valve at the 24VDC
voltage, I tested the minimum voltage needed to consistently operate the valve.
The valve reliably switches at 10VDC drawing 0.36 Amps. The valve has the
holding power to remain open down to 0.7VDC drawing 0.02 Amps.

4.2.3.1.1 Observations and Conclusions

The valve turning on and off was observed by a click noise that it made.
At 24VDC the valve is using way more power than it is rated for.
At 24VDC the valve also heats up a great degree.
The current required seemed to drop when the valve was activated, I

speculate this is due to some properties of conductance or inductance within the
valve.

The valve seemed to switch slower when operating at 10VDC than it did at
24VDC; this was observed by rapidly tuning the power supply on and off and
listening to the valve switch.

All testing was done when the valve was under no load.
Since using AC would require circuitry connected directly to a wall outlet I

decided to operate this valve on DC voltage.
At 12VDC the valve does not heat up, switches reliably, and uses less

than the rated power.

4.2.3.2 45-A-AA1-DFBJ-1KE MAC Valve for operating parameters

 65

This valve is a 24VDC MAC valve. This valve draws .071 Amps when
operated, which puts it very close to its operating power of 1.8 watts. The
minimum operating voltage of this valve is 20VDC.

4.2.3.2.1 Observations and Conclusions

A 24VDC power source must be used for this valve

4.2.3.3 Single Pole Single Throw Reed relay for operating parameters

The relay’s coil was connected to a power supply and the switch terminals

were positioned to break a circuit connecting the MAC Valve to a 24VDC power
supply. At 5VDC the relay draws 0.020 Amps. This value is slightly lower than
the 0.025 specified in the spec sheet; the discrepancy is probably due to the
value I measured being the holding value of the relay. Initially activating the relay
takes more current. The relay consistently switches at 1.8VDC drawing 0.006
Amps.

4.2.3.3.1 Observations and Conclusions

This relay is a very low power device.

4.2.3.4 Double Pole Double Throw R40 series relay with 2 Amp
contacts for operating parameters

This relay was connected and tested in the same manor as the Reed

relay. At 5VDC the relay draws 0.049 Amps. When switching the Normally
Closed side of this relay only the minimum voltage that allows the relay to switch
reliably is 2.6VDC drawing 0.024 Amps. When switching the Normally Open side
of this relay only the minimum voltage is 3.0VDC drawing 0.028 Amps.

4.2.3.4.1 Observations and Conclusions

This relay is good for controlling MAC valves and any DC motors we have,

since each device uses less than 2 Amps

4.2.3.5 74F365 Hex Buffer with LabJack for application merit

The buffer was tested by connecting the input to LabJack, which was

connected to a laptop. The output was connected to a Reed relay with diode
protection, then an R40 relay with diode protection. The buffer is set up to sink
current because that is the best use for this buffer. The LabJack put out .169mA
for the Reed Relay and .059mA for the R40 relay when the LabJack output was
high. With a Low output (relay activated) the buffer sunk 100 percent of the
current drawn by the relays.

 66

4.2.3.5.1 Observations and Conclusions

The buffer is able to sink all current form relays, thus protecting the Laptop

from damage.
The buffer draws a small enough amount of current that the LabJack is

able to operate many buffer gates.

4.2.3.6 37GN3657-043-G-5 Track motor for operating parameters

This motor is rated for 24VDC. I tested it with 24VDC and 12VDC loaded

and unloaded. The Load used was the actual load that will be used for the
project. The power supply used is the same power supply that will be used for
the robot

:
4.2.3.6.1 Observations and Conclusions

Unloaded at 12VDC it draws at most 0.175 Amps
Unloaded at 24VDC it draws at most 0.215 Amps
Loaded at 12VDC it draws at most 1.5 Amps
Loaded at 24VDC the mechanics of the motor drive was too unstable to

test
This motor works well with our power supply at 12VDC

4.2.3.7 273-258 DC motor for operating parameters

This motor is used to put spin on the ball, I tested under load. The load is

the wheel attached to add spin to the ball.

1.3.7.1 Observations and Conclusions

Loaded this motor draws at most 1 Amp @ 2.5VDC
Loaded this motor draws at most 0.3 Amps @ 1VDC
The motor’s resistance in approximately 1Kohm when running
This motor can be powered by a “D” cell battery

4.2.3.8 Power Supplies

A 1.5VDC source “D” cell battery is used for the spin motor which draws

0.3 Amps.
We are using a 2 amp, 3 volt power supply to operate the shooting motor

because bringing the 5 volt output of the main power supply down to 3 volts
would be inefficient and would decrease the amount of current available for the
other devices attached to the main power supply. The shooting motor draws 1.6
amps at 3 volts, which makes this small power supply perfect for operating it.

 67

The main power supply we are using is one borrowed from the MDL. The
power supply outputs DC voltages of: +5, -5, +12, -12. The power supply also
has a 4 amp fuse and no rated power output. Purchasing a power supply would
be beyond the limits of our group’s budget, so I had to make sure this power
supply would be adequate.

The +5VDC power output will be driving all of the small electronics on the
circuit board and the shooting motor. The Sum of the currents of the devices is
0.025*2 + 0.049*4 + amperage for shooting motor + amperage for buffer chip =
0.246 + (approximately 1) Amps.

The +12VDC and -12VDC outputs are connected to the firing MAC Valve
to create a 24VDC drop. That MAC Valve draws .075 Amps.

The +12VDC is connected to the loading MAC valve, which draws 0.36
Amps. It is also connected to the track motor, which draws approximately 1.5
Amps.

The total power the supply needs to produce is 22.32+1.8+6.23 = 30.35
watts. If the power supply is not able to produce enough power a voltage drop
will likely occur in the output of the supply. A temporary voltage drop will not be
harmful because the holding voltage for the MAC valves is small compared to the
switching voltage.

4.2.4 Electronics List Bill of Materials

Table 4.1 – Bill of Materials

Part
Number

Part Name Description Source Quantity Price Quantity Budget

 in
package

per
package

Packages

275-017A Roller Lever
Switch

SPDT Radio
Shack

1 2.69 3 8.07

DL1CG05D Reed Relay SPDT 5V Trojan
Elecronics

1 3.95 2 7.9

R40-11D2-5 R40 Series
Relay

DPDT 5V Trojan
Elecronics

1 3.97 4 15.88

45-A-AA1-
DFBJ-1KE

45 Direct
Solenoid

4 way valve MAC
valves

1 Borrowed 1 0

45A-RR1-
DACA-1BA

45 Direct
Solenoid

4 way valve MAC
valves

1 Borrowed 1 0

74F365 Hex
Buffer/Driver

 Buffer chip Mouser
Electronics

1 0.72 1 0.72

37GN3657-
043-G-5

Motor Track Motor Igarashi
Electrical

Works

1 Donated 1 0

273-258 DC Motor Spin Motor Radio
Shack

1 2.99 1 2.99

276-169A Universal
Breadboard

Protoboard Radio
Shack

1 15.99 1 15.99

 68

 N/A 22 guage
wire

3 colors Radio
Shack

3 4.79 1 4.79

 N/A DC Power
Supply

(+5VDC, -
5VDC,

+12VDC, -
12VDC)

Borrowed 1 Borrowed 1 0

270-386A "D" Battery
Holder

"D" Battery
Holder

Radio
Shack

1 1.69 1 1.69

23-823 Enercell Plus
"D"

"D" Cell
Battery

Radio
Shack

2 3.99 1 3.99

64-3086 Snap
Connectors

Solderless
Wire

Connectors

Radio
Shack

10 1.69 1 1.69

P600A Plastic
Regulator

6Amp Diode Trojan
Elecronics

1 1.58 1 1.58

1N4001 Plastic
Regulator

1Amp Diode Trojan
Elecronics

6 0.1 1 0.6

 N/A IBM T22 Laptop
Computer

RPI 1 Borrowed 1 0

 N/A LabJack U12 input output
laptop

interface

LabJack 1 Donated 1 0

WW-010 Linear Taper
1 ohm
potentiometer

Trojan
Elecronics 1 4.95 1 4.95

MW122A
3 Volt power
supply

3 Volt power
supply

Trojan
Elecronics 1 25.35 1 25.35

Table 4.1 – Electronics Bill of Materials

4.2.5 Conclusion

 4.2.5.1 How the Project Turned Out

Through experimentation and analysis I determined that the laptop and
LabJack are in no danger of being damaged by the other electronics in the
system. The circuit does its job of allowing the laptop to operate the motors and
solenoids in a very straight foreword manor. Having a straight forward circuit
saves time by allowing the computer program controlling the circuit to be straight
forward also. There were no major problems when designing the circuit.

4.2.5.2 Things I Would Have Done Differently

 The main problem I encountered was not knowing what devices I needed
to control until the very late in the overall design process. I should have worked
more closely with the mechanical groups so they could incorporate electronic
devices that could be controlled by our means. One instance where this would
have helped was when the shooting team purchased a servo motor. The servo
motor they purchased had no instructions and no online information was
available for it. Through testing I was able to make it work, but the signal
necessary to control was beyond the abilities of the LabJack we are using. If I

 69

had been in closer communication with the other subgroups we would have
saved time and money as a whole group. I realize now that all motors and
solenoids should be researched by both electronics and mechanical subgroups
and discussion should occur before the purchase of each piece used by both
subgroups.

 70

4.3 Sensor using the CMUcam
Keith Lim

4.3.1 Introduction

This section represents what the CMUcam does and how we went about
doing it. The CMUcam is the state of the art technology computer vision
microprocessor made by students and professors in Carnegie Mellon University.
What it does is it tracks difference in color with many great features. The
CMUcam was the part of the project that made the realistic return contribution to
our project. The functionalities of the CMUcam are:

• Captures pictures at 16.7 frames per second
• Tracks position and size of a specific color
• Measure the RGB range or YUV statistics of a captured picture
• Focus for extended range of vision
• Automatically track first object seen
• Serial port connection to laptop
• Dump an complete image through the serial port
• Dump a bitmap showing the shape of the image of the tracked object
• Low power for mobile robots
• 115,200 / 38,400 / 19,200 / 9,600 baud serial communication
• Auto-white balance
• 80x143 resolution
• Auto-gain option (CMU)

The CMUcam was perfect for what we needed our machine to do with the
realistic return.

4.3.2 CMUcam Goals and Process

 The CMUcam captures positions of the ping pong ball and determine
where the next position of the launcher is going to be. This is going to be the
stimulated realistic return. The following pages will show the theory and the
calculations that were derived to come up with such automated realistic play.

Dimensions:

• Camera - 2.25” wide, 1.75” high, 2” deep
• Omnivision OV 6620 single chip – 4mm, F2.8 lens

 71

Figure 4.4- Picture of CMUcam Figure 4.5 – CMUcam circuit
board.

At first, the CMUcam was thought to be placed at the corners of the ping-
pong table looking outward. This idea was soon discarded because the whole
background would be captured as well. If there was a change of color in the
background, the camera would detect that change and think it is the actual ping-
pong ball. This would completely ruin the whole goal of the CMUcam.
 The CMUcam was finally placed above the table looking downward. The
CMUcam would then capture the green table with the white stripe in the middle
for easy detection of an orange ping-pong ball. The background stays constant
while the orange ball moves back and forth. This will create more accurate
detections and effective realistic returns.
 Only one capture with a decent confidence level is needed to determine
where the next position is going to
be. The projector is projecting the
ball in a straight motion. The
projector is only allowed to move to
three designated locations. From
this, we can predict where the ball
is going to land on the other side of
the table. When the ball is
returned and the coordinates are
retrieved, the program will draw
lines from that predicted point to
the captured coordinate. From
there, the program will predict
whether the ball is moving toward
the left, center, or the right position.
Then the projector will quickly
move to that position for a quick
return.
 Figure 4.6- CMUcam Placement Diagram

 72

Figure 4.7 – CMUcam Prediction Line Examples

 The camera is focused by turning the knob in the front of the camera. The
focus of the camera is very sensitive so a small amount of rotations were used
each time it was tested for focus. After focusing, even at a height of 3 ½ feet
above, it was tracking well with a resolution of 80x143 and a frame rate of 16.7
fps.

Figure 4.8 – CMUcam Lens Focus

The CMUcam has two options for better tracking. One is called Auto-gain.
It is an internal control that adjusts the brightness level of the image and
normalizes the light and the dark to best suite the environment. If for example
the light is turned on and the environment gets brighter, the camera will try to
adjust the brightness to dim the overall image. The second option is called White
Balance. This corrects the camera’s color gains on a frame by frame basis. The
ambient light in your image may not be pure white. In this case, the camera is going

 73

to capture the light in some other color than white. If white balance is activated,
the average color will approach the middle “gray”.

Table 4.2 - To set Baud rates:

Baud rates Jumper2 Jumper3
115,200 open open
38,400 set set
19,200 open set
9,600 set open

This part of the project went through many different languages. At first, a

program in C was used to control the CMUcam. Later, LabView was
incorporated because of all its capabilities. Weeks later, the group decided that
using java would effectively eliminate some of the delay time, a language that I
am not familiar with. Unfortunately, all work done up to that point was lost
besides the conceptual part. But because of this, I have made a java skeleton
program that Rob can follow and incorporate into his main program with all the
necessary calculations included. Rob is handling all of this because he is the
most familiar in java out of the controls team.

RGB for Orange
Rmin = 230 Gmin = 100 Bmin = 0
Rmax = 240 Gmax = 180 Bmax = 50

Figure 4.9 Sample CMUcam test program developed by Carnegie Mellon
University.

 74

4.3.3 Communication to the CMUcam

 Here is a list of necessary commands:
\r
 This sets the camera to idle mode. An “ACK” means that it was
acknowledged, and a “NCK” means that the command was a failure.
DM value \r
 This sets a delay before a character is transmitted over a serial port. The
values that can be passed through range from 0 to 255.
GM\r
 This gets the mean color value in the current image. It is good for auto-
tracking and detecting a change of color in a scene
L1 value \r
 This controls the tracking color. Values accepted range from 0 to 2. 0
disables the command. 1 turns on a tracking light. 2 puts the light into a default
auto mode.
MM mode \r
 This is called the middle mass mode. This mode is good if you want
single point representation of where the object is. A mode value of 0 disengages
middle mass, 1 engages middle mass, and 2 engages the mode and turns on the
servo pulse width modulation (PWM) signal that ties to center the camera on the
center of the color mass.
TC [Rmin Rmax Gmin Gmax Bmin Bmax] \r
 This is used for tracking color. It takes the minimum and maximum RGB
values and outputs a type M/C/N data packet. The X values range from 1-80 and
the Y values range from 1-143. A confidence greater than 50 would be a strong
signal, and lower would lean toward it being a guess.
TW \r
 This tracks the color found in the central region of the current window

 Here is a list of the output commands:
ACK
 This means that it was successful
NCK
 This means that an error occurred
C x1 y1 x2 y2 pixels confidence \r

This is a Type C Packet. It is returned from the colo r tracking command.
The x’s and y’s are the boundary of the detected box. The pixels are the number
of pixels tracked. The confidence is the number of pixels / area bounded. A high
confidence means a strong signal.
M mx my x1 y1 x2 y2 pixel confidence \r
 This is a Type M Packet. This is returned from the color tracking of the
middle mass. This is all the same as type C besides the mx and the my. These
are for the middle of the mass.

 75

4.3.4 Flow Chart

Figure 4.10 Flowchart for the CMUcam

Beginning

Projection
Position 1

Projection
Position 2

1st portion
Equation

1st portion
Equation

Projection
Position 3

1st portion
Equation

2nd portion
Equation

2nd portion
Equation

2nd portion
Equation

1st portion = next position 1
2nd portion = next position 2
3rd portion = next position 3

3rd portion
equation

3rd portion
equation

3rd portion
equation

End

 76

4.3.5 Calculations

 Figure 4.11 Table Sections Figure 4.12 Table
Dimensions
 For Calculations for Calculations
The Bottom portions are cut up into three different portions. For the case where
the ball is projected from the center, the CMUcam detects a ball in the A area,
the ball is going to end up in the launder position 1. If the ball is detected in area
C, then the positioning will end up in position 3. If the CMUcam does detect a
ball and it is not in area A or area C, then it must be in area B, therefore the
launcher must have to go to position 2.

 77

Figure 4.13 Coordinates for the CMUcam Calculations

These are the three cases dealing with the calculation of the prediction
line. Each case deals with the three different positions of the launcher. The two
lines represent the min and the max for positions 1 and 3. To get the equation
for these lines, we need two points. The three points under each case
represents the top point and the bottom two. From these we can create 2
equations for each case. If the situation is less than equation 1, then the new
position is 1. If the situation is greater than equation 3, then the new position is
3. If it is neither less than 1 nor greater than 3, then it has to be in the middle
which is position 2.

 equation 1 equation 2 a value b value

case 1 eqn
position 1 8.99 = a * .5 + b

0 = 1.67 * a +
b -7.096 12.172

case 1 eqn
position 2 8.99 = a * .5 + b 0 = 3.63* a + b - 8.513 9.42

case 2 eqn
position 1 8.99 = 2.65 * a + b

0 = .55345 * a
+ b 63.95 -35.39

case 2 eqn
position 2 8.99 = 2.65 * a + b

0 = 1.06145 *
a + b -33.343 35.39

case 3 eqn
position 1 8.99 = 4.8 * a + b

0 = 3.63 * a +
b 18.533 -.42

case 3 eqn
position 2 8.99 = 4.8 * a + b

0 = 3.65 * a +
b 22.83 25.2585

 78

 final equation
programming language
equivalence

case 1 eqn
position 1

y = -7.096 * x +
12.172

if(y + 7.096 * x) < 12.172)
then position 1

case 1 eqn
position 2 y = -8.513 * x + 9.42

if((y + 8.513 * x) > 9.42)
then position 3

case 2 eqn
position 1 y = 63.95 * x – 35.39

if((y - 63.95 * x) < - 35.39)
then position 1

case 2 eqn
position 2

y = - 33.343 * x +
35.39

if((y + 33.343 * x) > 35.39)
then position 3

case 3 eqn
position 1 y = 18.533 * x - .42

if((y - 18.533 * x) < - .42)
then position 1

case 3 eqn
position 2

y = 22.83 * x –
25.2585

if((y - 22.83 * x) > 25.2585)
then position 3

 Table 4.3 Showing Calculations

The x and y values that are going into these equations aren’t what they
should be. From the CMUcam, they come from a resolution of 80x143, which
means the x values range from 1-80, and the y’s 1-143. So we must get a ratio
and figure out how that ratio coincides with meters. From the x values given, we
divide that by 80 then multiply by .853, which is the conversion factor. With y, we
divide by 143 then multiply by 1.525. These will give the x and y values that can
be put into these equations. Figure 8.10 will clarify what the numbers stand for.

Figure 4.14 Dimensions of the Captured Picture of the CMUcam

 Another note is that the CMUcam will return a box, which are the x and y
values of the corners. With these, just find the average of these points to find the
centroids and make the calculation as shown above. This will show whether it is
going to position 1, 2, or 3.

 79

4.3.6 Mounting

Figure 4.15

Figure 4.16- These are the dimensions drawn up for the CMUcam mounting.

 80

4.3.7 Bill of Materials

Table 4.4 – Bill of Materials

SUPPLIER
PART
NUMBER

DRAWING
NUMBER

PART
NAME PART DESCRIPTION QUANTITY

UNIT
COST

EXTENDED
COST NOTES:

SEATLE
ROBOTICS xx CMUCAM

CAMERA ON A
COMPUTER VISION
MICROCONTROLLER 1 $109.00 $109.00 DONATED

HOME
DEPOT xx

NUTS
AND
BOLTS 1 $0.69 $0.69

HOME
DEPOT xx WASHER 1 $0.69 $0.69

Our group was fortunate enough to get the CMUcam donated by Seattle
Robotics for a copy of the final design report posted on their website. The
CMUcam came not as aesthetically sound, but fully functional. From this alone,
we saved about $109.00.

4.3.8 Conclusion

In conclusion, there were some things that could have done to improve the
realistic return.

• A faster microprocessor with a faster frames / second that would capture
at least two points would be able to calculate the velocity or even the
acceleration and create a more realistic return.

• The machine was never tested to check if the ball hit the table. Vibration
sensors were bought and tested but the ball weighed in at a few grams,
which wasn’t heavy enough to create a strong enough signal to the
sensors to detect a hit on the table.

• A Microprocessor with a higher resolution would have been nice to expand
it the other length, instead of having the longer length being the width.

• If the launcher could have been placed at more spots on the sliding
mount, the CMUcam could have more accurately given a predicted point

• If the program was run in a language that everyone on the team knew,
then the programming portion would have been done by all the team
members.

But overall, I was pleased with this part. The CMUcam was initially borderline
from what we needed. After some testing using the sample program given by
CMU, it was shown that the CMUcam was capable of capturing the ping pong
ball. The problem was the CMUcam program integration with the rest of the java
program began 2:00AM the day before exhibition. The time before was used to
test the motor, launcher, and the projector. If there was more time, I strongly
believe the CMUcam would have performed well without a flaw.

 81

4.3.9 References

www-2.cs.cmu.edu/~cmucam. Carnegie Mellon University. Given
the Lab Manual and the sample Java Program.

www.parallax.com. Parallax Incorporated. Rocklin, CA. Given a
second Lab Manual with additional information.

www.seattlerobotics.com. Seattle Robotics. Kent, WA. Company
that had donated the CMUcam.

 82

Appendix A

Correspondence between LabJackJava expert Chris
Reigrut and Robert Van Dyk

From: Robert Van Dyk
Subj: LabJackJava
Date: Apr 2, 2003, 6:11 pm
To: LabJack Forum

Hey Chris,

Nice work with the LabJackJava.

After looking through the LabJackJava .java files and I am lost. I realize that you
don't want to share your source code, though I can' t figure out how to integrate
the LabJackJava software packet into the necessary Java program I will be
making to control other video and user interface needs.

I don't want to suggest that you setup an extensive help library, though I think it
would be helpful if I could get a small amount of direction how to read values off
the LabView input ports and write values to the LabView output ports.

The reason for this request, I am a student at Rensselaer Polytechnic Institute
and I am designing an Augmented Reality Ping Pong Robot and as the software
guru of the group I am in charge of programming it. We choose the LabJack
because of what it claimed it could do and I choose Java because we need it for
interfacing with a second external device and because of LabJackJava.

Any help you could provide would be greatly appreciated. Thank you.

Robert Van Dyk

From: Chris Reigrut
Subj: Re: LabJackJava
Date: Apr 2, 2003, 11:30 pm
To: LabJack Forum

Well, the first thing that you will want to do is to run the monitor program as
outlined in the readme file to make sure that everything is set up correctly. If it is,
you should see the main window with all of your LabJacks listed (if you don't
have any LabJacks connected, the window will be empty). Double-clicking on
one should open the monitor window, and you should be able to maniuplate the

 83

LabJack via the UI. Use the sliders to change the output voltages, change the
input voltages and make sure they're reflected in the UI, etc.

Once that's working, the next thing would be to try to download one of the demo
programs (I'd probably use and attempt to compile it. Make sure that you specify
labjack.jar in your classpath and it should compile with no other problems.

javac -classpath labjack.jar LabJackDIODemo.java

Then test it (again, putting labjack.jar in your classpath).

To program your own application, you'll simply want to get the list of available
LabJacks, and then use one (typically the first one returned). As an example, if
you wanted to read AI0 and set AI1 to 1/2 of AI0, you could write:

public static void main(String[] args) {
 LabJack[] labjacks = null;
 try {
 labjacks = new LabJackFactory().getLabJacks();
 if (labjacks == null || labjacks.length == 0) {
 System.out.println("No LabJacks found!");
 } else {
 LabJack lj = labjacks[0];
 while (true) {
 lj.updateAllAIs();
 lj.setAO(0, 0.5f * lj.getAI(1));
 lj.updateAllAOsAndDigitals();

 try {
 Thread.sleep(500);
 } catch (InterruptedException ie) {
 } } } } catch (LabJackException lje) {
 lje.printStackTrace(System.err);
 } }

I hope this answers your question!

From: Robert Van Dyk
Subj: Re: Re: LabJackJava
Date: Apr 19, 2003, 8:52 pm
To: LabJack Forum

Hey again Chris,

Our group just came together with the LabJack and several of the motors that will
be running and I have run into a minor issue.

 84

I am trying to output two high/low digital signals from IO0 and IO1. I have a
LabJack variable called "lj". I have done several variations of method calls with
"lj.setD(0, true)" or "lj.setIO(0, false)" and "lj.updateD(0)".

I'm guessing that I'm making a pretty easy error, though could you give me a
short explanation for using the digital values of the labjack and how do I change
the values of IO0 and IO1? Thank you

Robert Van Dyk

 85

Appendix B

NBB Java Programming code

import java.awt.*;
import javax.swing.*;
import java.io.*;
import java.awt.*;
import java.awt.image.*;
import java.awt.event.*;
import java.lang.Object;
import java.util.*;
import java.lang.*;
import java.lang.Object;
import com.teravation.labjack.*;

public class AnimApp2 extends JComponent implements Runnable
{
 Image[] sw = new Image[22]; // skip 1
 Image[] sr = new Image[21]; // skip 3 // 16/20
 Image[] sl = new Image[24]; // skip 4 // 15/23
 Image[] sc = new Image[21]; // skip 4 // 17/20
 Image[] vc = new Image[19]; // skip 1
 Image[] vr = new Image[20]; // skip 1
 Image[] vl = new Image[23]; // skip 1

 Image image;
 String clip = "sw";
 String serve = "s";
 boolean centerTrackSwitch;

 int loop = 0; // controls
 int loop_after;
 int frameControlSwitch = 0;
 String switchToClip;
 LabJack lj;
 int frame = 0;
 boolean high = true;
 boolean low = false;

 String mode;
 String shoot_loc;
 String next_shoot_loc; // used in CMU code
 String freq;
 String serveOrVolley;

 String pollCMUcam;

 String runTrack;
 Date time;

 86

 Date trackCurr;
 long trackStart;

 Date cmuCurr;
 long cmuStart;

 Date shooterCurr;
 long shooterStart;

 static int trackTravelTime /* in milliseconds */ = 1500;
 static int timeCMUcamGets = 1500;
 static int shooterTimeToCrossCourt = 650;

 CameraImage cImage;
 int tempVal;

 AnimApp2 ()
 {
 shooterStart = 0;
 cmuStart = 0;
 trackStart = 0;
 }

 public void setupLabJack()
 {

 ////////////////////////
 // CONFIGURE LABJACK //
 //////////////////////

 LabJack[] labjacks = null;
 try
 {
 labjacks = new LabJackFactory().getLabJacks();

 if (labjacks == null || labjacks.length == 0)
 {
 System.out.println("No LabJacks found!");
 }
 else
 {
 lj = labjacks[0];

 lj.setIOForOutput(0); // Control for Serving/Volleying
 // low -> serve position, high -> volley position

 lj.setIOForOutput(1); // Control for Activating the Piston
 // off then on...

 lj.setIOForOutput(2); // Control for Turning the Motor On
 // low -> on, high -> off

 lj.setIOForOutput(3); // Control for the Direction the Motor Spins
 // low -> right, high -> left

 lj.setIO(0, low);

 87

 serveOrVolley = "serve";
 lj.setIO(1, high);

 lj.setIO(2,low); // move Track Motor to the RIGHT/left to begin
 lj.setIO(3,high);
 lj.updateIO(3);
 time = new Date();
 trackStart = time.getTime();
 trackCurr = new Date();
 lj.updateIO(2);
 while ((trackCurr.getTime() - trackStart) < trackTravelTime)
 {
 trackCurr = new Date();
 }
 lj.setIO(2,high);
 lj.updateIO(2);
 }
 }
 catch (LabJackException lje)
 {
 lje.printStackTrace(System.err);
 }
 }

 ///////////////////////
 // CONFIGURE CMUcam //
 /////////////////////

 public void setupCMUcam()
 {
 cImage = new CameraImage(160,144, "1"); // Set serial port
 pollCMUcam = "no";
 }

 ///
 // WHEN YOU CALL REPAINT(), IT RUNS PAINT() //
 ///

 public void paint(Graphics g)
 {
 if (image != null)
 {
 // Draw the current image
 g.drawImage(image, 0, 0, this);
 }
 }

 //
 // WHEN (new Thread(app)).start() IS CALLED, run() IS CALLED REPEATEDLY //
 //

 public void run()
 {
 // Display Loading Screen
 image = new ImageIcon("ex\\" + "load.jpg").getImage();

 88

 repaint();

 /////////////////////////
 // LOAD SWAYING SCENE //
 ///////////////////////

 for (int x = 1; x <= 21; x++)
 {
 sw[x] = new ImageIcon("sw\\" + x + ".jpg").getImage();
 }

 /////////////////////
 // MODE SELECTION //
 ///////////////////

 image = new ImageIcon("ex\\" + "mode.jpg").getImage();
 repaint();

 commWindow cWindow = new commWindow("Mode");
 while(cWindow.ready()==0);
 while (!cWindow.getPort().equals("Game") && !cWindow.getPort().equals("Target"))
 {
 cWindow.getValue("Mode");
 while(cWindow.ready()==0);
 }
 mode = cWindow.getPort();

 ////////////////////////////
 // CONFIGURE TARGET MODE //
 //////////////////////////

 if (mode.equals("Target"))
 {
 //////////////////////
 // SERVE OR VOLLEY //
 ////////////////////

 image = new ImageIcon("ex\\" + "s_or_v.jpg").getImage();
 repaint();

 cWindow.getValue("Serve/Volley ");
 while(cWindow.ready()==0);
 while (!cWindow.getPort().equals("serve") && !cWindow.getPort().equals("volley"))
 {
 cWindow.getValue("Serve/Volley");
 while(cWindow.ready()==0);
 }
 serveOrVolley = cWindow.getPort();

 ///////////////////////
 // SHOOTER LOCATION //
 /////////////////////

 image = new ImageIcon("ex\\" + "loc.jpg").getImage();
 repaint();

 89

 cWindow.getValue("Shooter Location ");
 while(cWindow.ready()==0);
 while (!cWindow.getPort().equals("left") && !cWindow.getPort().equals("center") &&
!cWindow.getPort().equals("right"))
 {
 cWindow.getValue("Shooter Location ");
 while(cWindow.ready()==0);
 }
 shoot_loc = cWindow.getPort();

 ////////////////
 // FREQUENCY // - how long does Gus sway inbetween shots
 //////////////

 image = new ImageIcon("ex\\" + "freq.jpg").getImage();
 repaint();

 cWindow.getValue("Frequency of Shots ");
 while(cWindow.ready()==0);
 while (!cWindow.getPort().equals("very slow") && !cWindow.getPort().equals("slow") &&
 !cWindow.getPort().equals("medium") && !cWindow.getPort().equals("fast") &&
 !cWindow.getPort().equals("very fast"))
 {
 cWindow.getValue("Frequency of Shots ");
 while(cWindow.ready()==0);
 }
 freq = cWindow.getPort();

 // Display Loading Screen
 image = new ImageIcon("ex\\" + "load.jpg").getImage();
 repaint();

 /////////////////////////////
 // LOAD TARGET MODE SCENE //
 ///////////////////////////

 if (serveOrVolley.equals("serve"))
 {
 if (shoot_loc.equals("center"))
 {
 switchToClip = "sc";
 for (int x = 1; x <= 20; x++) { System.out.println("load ... sc" + x + ".jpg");
 sc[x] = new ImageIcon("sc\\" + x + ".jpg").getImage(); }
 }
 else if (shoot_loc.equals("right"))
 {
 switchToClip = "sr";
 for (int x = 1; x <= 20; x++) { System.out.println("load ... sr" + x + ".jpg");
 sr[x] = new ImageIcon("sr\\" + x + ".jpg").getImage();}
 }
 else // (shoot_loc.equals("left"))
 {
 switchToClip = "sl";
 for (int x = 1; x <= 23; x++) { System.out.println("load ... sl" + x + ".jpg");
 sl[x] = new ImageIcon("sl\\" + x + ".jpg").getImage(); }
 }

 90

 }
 else // serveOrVolley.equals("volley"))
 {
 if (shoot_loc.equals("center"))
 {
 switchToClip = "vc";
 vc = new Image[18];
 for (int x = 1; x <= 17; x++) {
 vc[x] = new ImageIcon("vc\\" + x + ".jpg").getImage();}
 }
 else if (shoot_loc.equals("right"))
 {
 switchToClip = "vr";
 vr = new Image[19];
 for (int x = 1; x <= 18; x++) {
 vr[x] = new ImageIcon("vr\\" + x + ".jpg").getImage(); }
 }
 else // (shoot_loc.equals("left"))
 {
 switchToClip = "vl";
 vl = new Image[22];
 for (int x = 1; x <= 21; x++) {
 vl[x] = new ImageIcon("vl\\" + x + ".jpg").getImage(); }
 }
 }

 ///////////////////////
 // POSITION SHOOTER //
 /////////////////////

 if (shoot_loc.equals("right"))
 {
 // lj.setIO(3,high); // Load position -> Right
 // lj.updateIO(3);
 }
 else if (shoot_loc.equals("left"))
 {
 try
 {
 lj.setIO(2,low); // move Track Motor to the RIGHT/left to begin
 lj.setIO(3,low);
 lj.updateIO(3);
 time = new Date();
 trackStart = time.getTime();
 trackCurr = new Date();
 lj.updateIO(2);
 while ((trackCurr.getTime() - trackStart) < trackTravelTime)
 {
 trackCurr = new Date();
 }
 lj.setIO(2,high);
 lj.updateIO(2);
 }
 catch (LabJackException lje)
 {
 lje.printStackTrace(System.err);

 91

 }
 }
 else
 {
 try
 {
 lj.setIO(2,low); // move Track Motor to the RIGHT/left to begin
 lj.setIO(3,low);
 lj.updateIO(3);
 time = new Date();
 trackStart = time.getTime();
 trackCurr = new Date();
 lj.updateIO(2);
 while ((trackCurr.getTime() - trackStart) < (trackTravelTime/3))
 {
 trackCurr = new Date();
 System.out.println("test " + (trackCurr.getTime() - trackStart));
 }
 lj.setIO(2,high);
 lj.updateIO(2);
 }
 catch (LabJackException lje)
 {
 lje.printStackTrace(System.err);
 }
 }

 /////////////////////////////
 // CONFIG EVERYTHING ELSE // - freq
 ///////////////////////////

 // freq can be "very slow" "slow" "medium" "fast" "very fast"

 // in "very fast" control is NOT turned back to swaying scene
 if (freq.equals("very fast"))
 {
 frameControlSwitch = 1;
 loop_after = 0;
 }
 if (freq.equals("fast"))
 {
 loop_after = 0;
 frameControlSwitch = 11;
 }
 else if (freq.equals("medium"))
 {
 loop_after = 0;
 frameControlSwitch = 21;
 }
 else if (freq.equals("slow"))
 {
 loop_after = 1;
 frameControlSwitch = 11;
 }
 else // (freq.equals("very slow")
 {

 92

 loop = 1;
 frameControlSwitch = 21;
 }
 }

 else if (mode.equals("Game"))
 {
 serveOrVolley = "serve";
 shoot_loc = "right";
 frameControlSwitch = 21;
 loop = 0;
 loop_after = 2;
 clip = "sw";
 }

 /////////////////////////////////
 // COUNTDOWN 5...4...3.. .2..1 //
 ///////////////////////////////

 try
 {
 // Display each image for 1 second
 image = new ImageIcon("ex\\" + "5.jpg").getImage();
 repaint();
 Thread.sleep(1000);

 image = new ImageIcon("ex\\" + "4.jpg").getImage();
 repaint();
 Thread.sleep(1000);

 image = new ImageIcon("ex\\" + "3.jpg").getImage();
 repaint();
 Thread.sleep(1000);

 image = new ImageIcon("ex\\" + "2.jpg").getImage();
 repaint();
 Thread.sleep(1000);

 image = new ImageIcon("ex\\" + "1.jpg").getImage();
 repaint();
 Thread.sleep(1000);
 }
 catch (Exception e)
 {
 }

 int delay = 58; // 17 frames a second (speed of CMUcam)

 ///
 // LETS PLAY AUGMENTED REALITY TABLE TENNIS //
 ///

 try
 {
 while (true)
 {

 93

 /////////////////////////
 // TIMER OF CMUTOGGLE //
 ///////////////////////

 if (shooterStart > 0)
 {
 shooterCurr = new Date();
 System.out.println("curr = " + shooterCurr.getTime() + " start= " + shooterStart);
 if ((shooterCurr.getTime() - shooterStart) > shooterTimeToCrossCourt)
 {
 shooterStart = 0;
 pollCMUcam = "yes";
 cmuStart = time.getTime();
 }
 }

 /////////////
 // CMUcam //
 ///////////

 if (pollCMUcam.equals("yes"))
 {
 tempVal = cImage.trackColor(0);
 clear();
 System.out.println("temp= " + tempVal);
 cmuCurr = new Date();
 tempVal = 144 - tempVal;
 if (tempVa l > 0)
 {
 pollCMUcam = "no";
 next_shoot_loc = KeithsPart(tempVal);
 if (shoot_loc.equals(next_shoot_loc))
 {
 next_shoot_loc = "none";
 serveOrVolley = "volley";
 if (shoot_loc.equals("center"))
 {
 frame = 1;
 clip = "vc";
 }
 else if (shoot_loc.equals("right"))
 {
 frame = 1;
 clip = "vr";
 }
 else
 {
 frame = 1;
 clip = "vl";
 }

 }
 else if ((shoot_loc.equals("left") && next_shoot_loc.equals("center")) ||
 (shoot_loc.equals("center") && next_shoot_loc.equals("right")))
 {
 lj.setIO(2, low);

 94

 lj.setIO(3, low);
 lj.updateIO(2);
 lj.updateIO(3);
 time = new Date();
 trackStart = time.getTime();
 shoot_loc = next_shoot_loc;
 next_shoot_loc = "none";
 serveOrVolley = "volley";
 if (shoot_loc.equals("center"))
 {
 clip = "vc";
 System.out.println("Next shot is vc");
 }
 else
 {
 clip = "vr";
 System.out.println("Next shot is vr");
 }
 }
 else if ((shoot_loc.equals("right") && next_shoot_loc.equals("center")) ||
 (shoot_loc.equals("center") && next_shoot_loc.equals("left")))
 {
 lj.setIO(2, low);
 lj.setIO(3, high);
 lj.updateIO(3);
 lj.updateIO(2);
 time = new Date();
 trackStart = time.getTime();
 shoot_loc = next_shoot_loc;
 next_shoot_loc = "none";
 serveOrVolley = "volley";
 loop_after = 0;
 if (shoot_loc.equals("center"))
 {
 clip = "vc";
 frame = 1;
 System.out.println("Next shot is vc");
 }
 else
 {
 clip = "vl";
 frame = 1;
 System.out.println("Next shot is vl");
 }
 }
 }
 else if ((cmuCurr.getTime() - cmuStart) > timeCMUcamGets)
 {
 pollCMUcam = "no";
 loop_after = 4;
 loop = 0;
 frame = 1;
 clip = "sw";
 serveOrVolley = "serve";
 frameControlSwitch = 21;
 lj.setIO(0, low);

 95

 lj.updateIO(0);
 }
 }

 ////////////
 // TRACK //
 //////////

 if (trackStart > 0)
 {
 trackCurr = new Date();
 if ((trackCurr.getTime() - trackStart) < trackTravelTime/3)
 {
 lj.setIO(2,high);
 lj.updateIO(2);
 trackStart = 0;
 }
 }

 //////////////////
 // SWAYING GUS //
 ////////////////

 if (clip.equals("sw"))
 // Precondition : Gus is not in the process of hitting the ball
 // Midcondition : Gus is swaying back and forth
 // Postcondition: Control is passed to one of the other videos.
 {
 image = sw[frame++];
 Thread.sleep(delay*2);

 ////////////////////////
 // CHOOSE NEXT SCENE //
 //////////////////////

 if (mode.equals("Target"))
 {
 if (frame == frameControlSwitch && loop == loop_after)
 {
 frame = 1;
 clip = switchToClip;
 loop = 0;
 }
 else if (frame == 21)
 {
 frame = 1;
 loop++;
 }
 }
 else if (mode.equals("Game"))
 {
 if (serveOrVolley.equals("serve"))
 {
 // System.out.println("frame = " + frame + " frameControl = " +
frameControlSwitch);

 96

 // System.out.println("loop = " + loop + " loop_control = " +
loop_after);
 if (frame == frameControlSwitch && loop == loop_after)
 {
 frame = 1;
 loop = 0;
 loop_after = 0;
 if (shoot_loc.equals("right"))
 {
 clip = "sr";
 // System.out.println("Going to sr");
 }
 else if (shoot_loc.equals("center"))
 {
 clip = "sc";
 // System.out.println("Going to sc");
 }
 else /* shoot_loc.equals("left")) */
 {
 clip = "sl";
 // System.out.println("Going to sl");
 }
 }
 else if (frame == frameControlSwitch)
 {
 frame = 1;
 loop++;
 }
 }
 else /* serveOrVolley.equals("volley") */
 {
 if (next_shoot_loc.equals("right"))
 {
 frame = 1;
 clip = "sr";
 serveOrVolley = "volley";
 }
 else if (next_shoot_loc.equals("center"))
 {
 frame = 1;
 clip = "sc";
 serveOrVolley = "volley";
 }
 else if (next_shoot_loc.equals("left"))
 {
 frame = 1;
 clip = "sl";
 serveOrVolley = "volley";
 }
 else if (frame == frameControlSwitch)
 {
 frame = 1;
 }
 else
 {
 frame++;

 97

 }
 }
 }
 }

 //////////////////////////
 // SERVE FROM THE LEFT //
 ////////////////////////

 else if (clip.equals("sl"))
 // Precondition : Gus is serving from the left
 // Midcondition : Gus makes contact during frame 25/75
 // Postcondition: Return to loop
 {
 // make sure SERVE SWITCH is configured
 if (serveOrVolley.equals("volley"))
 {
 lj.setIO(0, low);
 lj.updateIO(0);
 serveOrVolley = "serve";
 }

 if (mode.equals("Target")) // 'sl' already in Memory
 {
 image = sl[frame++];
 Thread.sleep(delay*3);
 if (frame == 15)
 {
 lj.setIO(1, low);
 lj.updateIO(1);
 }

 else if (frame == 23)
 {
 frame = 1;
 if (!freq.equals("very fast"))
 clip = "sw";
 lj.setIO(1, high);
 lj.updateIO(1);
 }

 }
 else // Load 'sl' dynamically
 {
 image = new ImageIcon("sl\\full\\" + frame + ".jpg").getImage();
 frame += 9;
 if (frame == 73)
 {
 lj.setIO(1, low);
 lj.updateIO(1);
 shooterStart = time.getTime();
 }
 else if (frame == 91)
 {
 lj.setIO(1, high);
 lj.updateIO(1);

 98

 }
 else if (frame >= 115)
 {
 frame = 1;
 clip = "sw";
 }
 }
 }

 ///////////////////////////
 // SERVE FROM THE RIGHT //
 /////////////////////////

 else if (clip.equals("sr"))
 // Precondition : Gus is serving from the right
 // Midcondition : Gus makes contact during frame 21/62
 // Postcondition: Return to loop
 {
 // make sure SERVE SWITCH is configured
 if (serveOrVolley.equals("volley"))
 {
 lj.setIO(0, low);
 lj.updateIO(0);
 serveOrVolley = "serve";
 }

 if (mode.equals("Target")) // 'sr' already in Memory
 {
 image = sr[frame++];
 Thread.sleep(delay*3);

 if (frame == 16)
 {
 lj.setIO(1, low);
 lj.updateIO(1);
 }
 if (frame == 20)
 {
 frame = 1;
 if (!freq.equals("very fast"))
 clip = "sw";
 lj.setIO(1, high);
 lj.updateIO(1);
 }
 }
 else // Load 'sr' dynamically
 {
 image = new ImageIcon("sr\\full\\" + frame + ".jpg").getImage();
 frame += 7;
 if (frame == 64)
 {
 lj.updateIO(1);
 lj.setIO(1, low);
 lj.updateIO(1);
 shooterStart = time.getTime();

 99

 }
 else if (frame == 78)
 {
 lj.setIO(1, high);
 lj.updateIO(1);
 }
 if (frame >= 80)
 {
 frame = 1;
 clip = "sw";
 }
 }
 }

 ////////////////////////////
 // SERVE FROM THE CENTER //
 //////////////////////////

 else if (clip.equals("sc"))
 // Precondition : Gus is serving from the center.
 // Midcondition : Gus makes contact during frame 29/84
 // Postcondition: Return to loop
 {
 // make sure SERVE SWITCH is configured
 if (serveOrVolley.equals("volley"))
 {
 lj.setIO(0, low);
 lj.updateIO(0);
 serveOrVolley = "serve";
 }

 if (mode.equals("Target")) // 'sc' already in Memory
 {
 image = sc[frame++];
 Thread.sleep(delay*3);

 if (frame == 17)
 {
 lj.setIO(1, low);
 lj.updateIO(1);
 }
 if (frame == 20)
 {
 frame = 1;
 if (!freq.equals("very fast"))
 clip = "sw";
 lj.setIO(1, high);
 lj.updateIO(1);
 }
 }
 else // Load 'sc' dynamically
 {
 image = new ImageIcon("sc\\full\\" + frame + ".jpg").getImage();
 frame += 9;
 if (frame == 82)
 {

 100

 lj.setIO(1, low);
 lj.updateIO(1);
 shooterStart = time.getTime ();

 }
 else if (frame == 100)
 {
 lj.setIO(1, high);
 lj.updateIO(1);
 }
 if (frame >= 119)
 {
 frame = 1;
 clip = "sw";
 lj.setIO(1, high);
 lj.updateIO(1);
 }
 }
 }

 ///////////////////////////
 // VOLLEY FROM THE LEFT //
 /////////////////////////

 else if (clip.equals("vl"))
 // Precondition : Gus is volleying from the right.
 // Midcondition : Gus makes contact during frame 12/22
 // Postcondition: Return to loop
 {
 // If it is set to serve, set it to volley
 if (serve.equals("s"))
 {
 lj.setIO(0, high);
 lj.updateIO(0);
 serve = "v";
 }

 if (mode.equals("Target")) // 'vl' already in Memory
 {
 image = vl[frame++];
 Thread.sleep(delay*3);

 if (frame == 12)
 {
 lj.setIO(1, low);
 lj.updateIO(1);
 }
 if (frame == 21)
 {
 frame = 1;
 if (!freq.equals("very fast"))
 clip = "sw";
 lj.setIO(1, high);
 lj.updateIO(1);
 }
 }

 101

 else // Load 'vl' dynamically
 {
 image = new ImageIcon("vl\\full\\" + frame + ".jpg").getImage();
 frame += 4;
 if (frame == 21)
 {
 lj.setIO(1, low);
 lj.updateIO(1);
 shooterStart = time.getTime();

 }
 else if (frame == 29)
 {
 lj.setIO(1, high);
 lj.updateIO(1);
 }
 else if (frame >= 42)
 {
 frame = 1;
 clip = "sw";
 lj.setIO(1, high);
 lj.updateIO(1);
 }
 }
 }

 ////////////////////////////
 // VOLLEY FROM THE RIGHT //
 //////////////////////////

 else if (clip.equals("vr"))
 // Precondition : Gus is volleying from the right.
 // Midcondition : Gus makes contact during frame 20
 // Postcondition: Return to loop
 {
 // If it is set to volley, set it to serve
 if (serve.equals("s"))
 {
 lj.setIO(0, high);
 lj.updateIO(0);
 serve = "v";
 }

 if (mode.equals("Target")) // 'vr' already in Memory
 {
 image = vr[frame++];
 Thread.sleep(delay*3);

 if (frame == 11)
 {
 lj.setIO(1, low);
 lj.updateIO(1);
 }
 if (frame == 18)
 {
 frame = 1;

 102

 if (!freq.equals("very fast"))
 clip = "sw";
 lj.setIO(1, high);
 lj.updateIO(1);
 }
 }
 else // Load 'vr' dynamically
 {
 image = new ImageIcon("vr\\full\\" + frame + ".jpg").getImage();
 frame += 4;
 if (frame == 21)
 {
 lj.setIO(1, low);
 lj.updateIO(1);
 shooterStart = time.getTime();

 }
 else if (frame == 29)
 {
 lj.setIO(1, high);
 lj.updateIO(1);
 }
 if (frame >= 36)
 {
 frame = 1;
 clip = "sw";
 lj.setIO(1, true);
 lj.updateIO(1);
 }
 }
 }

 /////////////////////////////
 // VOLLEY FROM THE CENTER //
 ///////////////////////////

 else if (clip.equals("vc"))
 // Precondition : Gus is volleying from the center.
 // Midcondition : Gus makes contact during frame 19
 // Postcondition: Return to loop
 {
 // If it is set to volley, set it to serve
 if (serve.equals("s"))
 {
 lj.setIO(0, high);
 lj.updateIO(0);
 serve = "v";
 }
 if (mode.equals("Target")) // 'vc' already in Memory
 {
 image = vc[frame++];
 Thread.sleep(delay*3);

 if (frame == 10)
 {
 lj.setIO(1, low);

 103

 lj.updateIO(1);
 }
 if (frame == 17)
 {
 frame = 1;if (!freq.equals("very fast"))
 clip = "sw";
 lj.setIO(1, high);
 lj.updateIO(1);
 }
 }
 else // Load 'vc' dynamically
 {
 image = new ImageIcon("vc\\full\\" + frame + ".jpg").getImage();
 frame += 4;
 if (frame == 21)
 {
 lj.setIO(1, low);
 lj.updateIO(1);
 shooterStart = time.getTime();

 }
 else if (frame == 29)
 {
 lj.setIO(1, high);
 lj.updateIO(1);
 }
 if (frame >= 34)
 {
 frame = 1;
 clip = "sw";
 lj.setIO(1, high);
 lj.updateIO(1);
 }
 }
 }

 // Causes the paint() method to be called
 repaint();
 }
 }
 catch (Exception e)
 {
 }
 }

 ///////////////////
 // KEITH'S PART //
 /////////////////

 public String KeithsPart(int y)
 {
 if (shoot_loc.equals("right"))
 {
 if (y > 100)
 {

 104

 return "right";
 }
 else
 {
 return "center";
 }
 }
 else if (shoot_loc.equals("center"))
 {
 if (y < 55)
 {
 return "left";
 }
 else if (y > 89)
 {
 return "right";
 }
 else
 {
 return "center";
 }
 }
 else
 {
 if (y < 44)
 {
 return "left";
 }
 else
 {
 return "center";
 }
 }
 }

private void clear()
{
 int cnt;

 for(cnt=0; cnt<100; cnt++)
 {
 try{
 Thread.sleep(125);
 } catch(Exception blah){}

 if(cImage.idle()) break;
 }
 if(cnt==99) System.out.println("<clear> time out");
 cImage.flushBuf();
}

 public static void main(String[] args)
 {
 AnimApp2 app = new AnimApp2();

 app.setupLabJack();

 105

 app.setupCMUcam();

 JFrame frame = new JFrame();
 frame.setSize(720, 480);
 frame.setTitle("Nothing But Balls");
 frame.setResizable(false);
 frame.show();

 frame.setLocation(0, 0);
 frame.getContentPane().add(app);
 frame.setVisible(true);

 (new Thread(app)).start();
 }
 }

class commWindow extends Canvas
{
 Frame comm_f;
 Panel comm_p;
 TextField comm_t;
 Dialog comm_d;
 int done;

 commWindow(String foo)
 {
 done=0;
 comm_f = new Frame();
 comm_p= new Panel();
 comm_t = new TextField("", 25);
 Button comm_b = new Button("Ok");
 comm_b.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e)
 {
 done=1;
 }
 });
 comm_d = new Dialog(comm_f,foo + " Select");
 comm_p.add(comm_t);
 comm_p.add(comm_b);
 comm_d.add(comm_p);
 comm_d.setSize(450,62);
 comm_d.show();

 }

 public void getValue(String foo)
 {
 done=0;
 comm_f = new Frame();
 comm_p= new Panel();
 comm_t = new TextField("", 25);
 Button comm_b = new Button("Ok");
 comm_b.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e)

 106

 {
 done=1;
 }
 });
 comm_d = new Dialog(comm_f,foo + " Select");
 comm_p.add(comm_t);
 comm_p.add(comm_b);
 comm_d.add(comm_p);
 comm_d.setSize(450,62);
 comm_d.show();
 }

 public String getPort()
 {
 return comm_t.getText ();
 }
 public int ready()
 {
 if(done==0) return 0;
 comm_d.setVisible(false);
 return 1;
 }
}

///
// CAMERAIMAGE RUNS CMUCAM TRACK COLOR METHOD //
///

class CameraImage extends Canvas implements Serializable
{
 public int mm;
 int mmx,mmy,mmoldx,mmoldy;
 char bmask[][];
 int lm,lmIndex,tc;
 int width,height;
 int pixels[];
 int col,row;
 int mx,my,xcoord,ycoord,zcoord,oldz,oldx,o ldy,x2coord,y2coord,oldx2,oldy2,conf;
 MemoryImageSource source;

 int frames,fps;
 long startTime;
 int start;
 int scale;
 long wdTimer;
 serialComm mySerial;
 CameraImage(int x,int y,String commPort)
 {
 // This sets up the serial communication object
 // all of the read/write commands get called from here
 mySerial=new serialComm("1");
 // Lets clear some variables...
 bmask= new char[10][48];
 lmIndex=0;
 mmoldx=0;
 mmoldy=0;

 107

 mmx=0;
 mmy=0;
 mm=1;
 lm=0;
 scale=0;
 start=1;
 zcoord=0;
 xcoord=0;
 ycoord=0;
 x2coord=0;
 y2coord=0;
 oldx=0;
 oldy=0;
 oldx2=0;
 oldy2=0;
 oldz=0;
 conf=0;
 tc=0;

 col=0;
 row=0;

 // this.setBackground(Color.black);
 width=x;
 height=y;
 /*
 pixels=new int[width*height];
 source = new Memo ryImageSource(width,height,pixels,0,width);
 source.setAnimated(true);
 image=createImage(source);
 */
 frames=0;
 fps=0;
 Date time = new Date();
 startTime=time.getTime();
 }

 public int trackColor(int mode)
 {
 int data;

 if(!sendCommand("TC 220 240 80 160 15 17\r"))return 0;

 try{
 data=mySerial.readByte();
 if(data==0xFE) // Ignore a line mode mean packet
 {
 data=mySerial.readByte();
 while(data!=0xFD) data=mySerial.readByte();
 }
 if(data=='C' || data=='M' || data==0xAA)
 {
 tc=1;

 if(data==0xAA)
 lm=1;

 108

 else
 lm=0;
 lmIndex=0;
 if(lm==1) // Read in the bitmap for lm
 {
 try{
 data=0;
 int index=0;
 Date time = new Date();
 wdTimer=time.getTime();
 while(data!=0xAA)
 {
 data=mySerial.readByte(); //(char)sPortIn.read();
 bmask[index][lmIndex]=(char)data;
 index++;
 if(index==10)
 {
 index=0;
 lmIndex++;
 }
 Date time2 = new Date();
 if(time2.getTime()-wdTimer>1000) {System.out.println("<Track> time
out"); return 0; }
 }

 data=mySerial.readByte();//(char)sPortIn.read();
 if(data!=0xAA)
 {
 System.out.println("Line Mode Termination Error");
 }
 } catch(Exception e) {}
 data=mySerial.readByte();
 data=mySerial.readByte();
 if(data=='S')
 return 2;

 }
 if(data=='M') // If middle mass is on
 mm=1;
 else
 mm=0;
 data=mySerial.readByte();
 if(mm==1)
 {
 mmx=mySerial.readNum();
 mmy=mySerial.readNum();
 }
 xcoord=mySerial.readNum();
 ycoord=mySerial.readNum();
 x2coord=mySerial.readNum();
 y2coord=mySerial.readNum();
 zcoord=mySerial.readNum();
 conf=mySerial.readNum();
 frames++;
 Date time = new Date();
 if(time.getTime()-startTime>1000)

 109

 {
 fps = frames;
 frames=0;
 startTime=time.getTime();
 }

 /*if(lm==0)*/ System.out.println(
 "x1="+ (new Integer(xcoord)).toString()+" y1="+
 (new Integer(ycoord)).toString()+" x2="+
 (new Integer(x2coord)).toString()+" y2="+
 (new Integer(y2coord)).toString()+" size="+
 (new Integer(zcoord)).toString() + " fps="+
 (new Integer(fps)).toString()+" conf="+
 (new Integer(conf)).toString());

 xcoord*=2;
 xcoord=160-xcoord;
 x2coord*=2;
 x2coord=160-x2coord;
 ycoord=144-ycoord;
 y2coord=144-y2coord;
 }
 }catch(Exception e) { System.out.println(e);}

 return ycoord;
 }

 int getx1() { return xcoord; }
 int gety1() { return ycoord; }
 int getx2() { return x2coord; }
 int gety2() { return y2coord; }

 /*
 Flushes all data out of the serial file buffer
 */
 public void flushBuf()
 {
 char a;
 try {
 while(mySerial.readNonBlock()!=0); // used to be an available
 } catch(Exception e) { System.out.println(e); }
 }

 /*
 Trys to get the camera to settle down and idle
 */
 public boolean idle()
 {
 char a,c,k,r,p;
 try
 {
 Date time = new Date();
 wdTimer=time.getTime();
 mySerial.writeStr("\r");
 while(true)
 {

 110

 a=mySerial.readByte();
 if(a==':')
 {
 start=1;
 xcoord=0;
 ycoord=0;
 x2coord=0;
 y2coord=0;
 zcoord=0;
 repaint();
 // System.out.println("Camera OK and idle...");
 return true;
 }
 Date time2 = new Date();
 if(time2.getTime()-wdTimer>1000) {System.out.println("<idle> time out"); return false; }
 }

 }catch(Exception e) {System.out.println(e);}
 return false;

 }

 /*
 Sends a command and checks for an ACK
 Returns 1 if ACK else 0
 */
 public boolean sendCommand(String command)
 {
 char a,c,k,r;
 a=0;
 try
 {
 mySerial.writeStr(command);
 a=mySerial.readByte();
 c=mySerial.readByte();
 k=mySerial.readByte();
 r=mySerial.readByte();
 if(a=='A' && c=='C' && k=='K' && r=='\r')
 {
 // System.out.println(">" + command.trim() + "< confirmed...");
 start=0;
 return true;
 }
 else
 {
 System.out.println(">" + command.trim() +"< failed...");
 start=1;
 return false;
 }

 }catch(Exception e) {System.out.println(e);}
 return false;
 }
}

 111

//
// SERIALCOMM COMMUNICATES BETWEEN TRACK COLOR COMMAND AND SERIAL PORT
//
//

class serialComm
{

 serialComm(String commPort)
 {
 int error;
 error = serialPort.openSerial(new Integer(commPort).intValue(), 5);

 if (error != 0) {
 System.err.println("Error " + error + " during openSerial()");
 System.exit(0);
 }
 serialPort.setReadTimeout(125); //Illah - make this much smaller?

 System.out.println("serial port successfully opened!");

 }

 /*
 Reads in an ascii number and returns an int.
 This function blocks.
 */
 public int readNum()
 {
 char one,two,three,four;
 one=readByte();
 two=readByte();
 if(two==' '|| two=='\r')
 return((int)(one-'0'));
 three=readByte();
 if(three==' ' || three=='\r')
 return((int)(one-'0')*10+(two-'0'));
 four=readByte();
 return((int)(one-'0')*100+(two-'0')*10+(three-'0'));

 }

 public char readByte()
 {
 Date time = new Date();
 long wdTimer=time.getTime();

 int val=-1;
 while(val==-1)
 {
 val = serialPort.readByte();
 Date time2 = new Date();
 if(time2.getTime()-wdTimer>1000)
 {
 System.out.println("<Serial Read> time out");

 112

 return 0;
 }

 }
 return((char)val);
 }

 public char readNonBlock()
 {
 int val;
 val = serialPort.readByte();
 if(val==-1) val=0;
 return((char)val);
 }

 public void writeStr(String in)
 {
 int i;
 byte[] bytes = in.getBytes();
 for (i = 0; i < bytes.length; i++) {
 int error = serialPort.sendByte(bytes[i]);
 if (error != 0) {
 System.out.println("Serial Send error");
 break;
 }
 }
 }
}

//
// SERIAL PORT OPENS A CHANNEL BETWEEN THIS PROGRAM AND CMUCAM //
//

class serialPort extends java.lang.Object
{
 // open serial port at specified baud with other appropriate parameters.
 // returns:
 // 0 on success
 // -1 on failure to open serial port
 // -2 on failure to read port state
 // -3 on failure to set port state
 // coms are: 1 = "COM1"; 2 = "COM2" et cetera
 // baud rates are: 1 = 9600; 2=19200; 3=38400; 4=57600; 5=115200; 6=230400
 public synchronized native static int openSerial(int comNum, int baudSpec);

 public synchronized native static int closeSerial();

 // returns 0 on success or -1 on failure to send byte
 public synchronized native static int sendByte(int theByte);

 // initialTimeout is measured in milliseconds //
 // returns -6 on failure to set timeout, 0 on success
 public synchronized native static int setReadTimeout(int initialTimeout);

 // returns -1 in error or timeout, else returns int between 0 and 255

 113

 public synchronized native static int readByte();

 static {
 System.loadLibrary("sserial");
 }

}

 114

Appendix C: Java Skeleton Program for CMUcam

import java.awt.*; //declaring libraries
import java.awt.image.*;
import java.awt.event.*;
import java.lang.*;
import java.lang.Object;
mport java.util.*;
import java.util.EventListener;
import java.io.*;

public class cmucam extends Canvas
{

/////////////////////////INITIALIZING//////////////////////////////////////
 TextField rMin,rMax,gMin,gMax,bMin,bMax; //initializing variables

 cmucam()
 {

 //set autogain on, track RGB color on, 17 f/s
 int color_mode=44; //returned from camsettings //for RGB settings
 int fps = 17; //for frames per seconds
 int gain = 32; //for autogain

 //set track color
 rMin = 230; //returned from color tracking //for configuring red
 rMax = 240;
 gMin = 130; //for configuring green
 gMax = 170;
 bMin = 10; //for configuring blue
 bMax = 50;

 //turn on tracking
 CImage = new CameraImage (160, 144, cWindow.get.Port());
 CImage track;

 //variable for delay
 int y=0;

////////////////////////MAIN FUNCTION//////////////////////////////////
 while(1)
 {
 //if after 2 sec of projection it doesn't detect color
 if(!Detect() && y != 10000) //if it doesn't detect and it hasn't been given
 //ample time for the ball to get hit back
 {
 y++; //increment y
 }
 else if(!Detect() && y==10000) //checks cmucam for track
 //if it hasn't been detected after
some time
 {
 then

 115

 set score lower for player
 gus hitting a serve from a random side Right/middle/left
 project from the corresponding side
 }
 else //if all the if's are not true
 //so if it is detected
 {
 call calculations();
 for(int x=0; x<10000; x++); //delay for a sec
 }

 }
 }

/////////////////////TRACKING COLOR/////////////////////////////////
 public int trackColor(int mode)
 {
 int data;
 if(start==1)
 {

 if(mode==0)
 {
 if(!sendCommand(myTrack.sendString()))return 0;
 }
 else
 {
 if(!sendCommand("tw" + "\r")) return 0;
 }
 }
 try{
 //data=sPortIn.read();
 data=mySerial.readChar();
 if(data==0xFE) // Ignore a line mode mean packet
 {
 data=mySerial.readChar();
 while(data!=0xFD) data=mySerial.readChar();
 }
 if(data=='C' || data=='M' || data==0xAA)
 {
 tc=1;

 if(data==0xAA)
 lm=1;
 else
 lm=0;
 lmIndex=0;
 if(lm==1) // Read in the bitmap for lm
 {
 try{
 data=0;
 int index=0;
 Date time = new Date();
 wdTimer=time.getTime();
 while(data!=0xAA)

 116

 {
 data=mySerial.readByte(); //(char)sPortIn.read();
 bmask[index][lmIndex]=(char)data;
 index++;
 if(index==10)
 {
 index=0;
 lmIndex++;
 }
 Date time2 = new Date();
 if(time2.getTime()-wdTimer>1000)
{System.out.println("<Track> time out"); return 0; }
 }

 data=mySerial.readByte();//(char)sPortIn.read();
 if(data!=0xAA)
 {
 System.out.println("Line Mode Termination
Error");
 }
 } catch(Exception e) {}
 data=mySerial.readChar();
 data=mySerial.readChar();
 if(data=='S')
 return 2;

 }
 if(data=='M') // If middle mass is on
 mm=1;
 else
 mm=0;
 data=mySerial.readChar();
 if(mm==1)
 {
 mmx=readNum();
 mmy=readNum();
 }
 xcoord=readNum();
 ycoord=readNum();
 x2coord=readNum();
 y2coord=readNum();
 zcoord=readNum();
 conf=readNum();
 frames++;
 Date time = new Date();
 if(time.getTime()-startTime>1000)
 {
 fps = frames;
 frames=0;
 startTime=time.getTime();
 }

 /*if(lm==0)*/ outWin.append("x1="+ (new Integer(xcoord)).toString()+" y1="+
 (new Integer(ycoord)).toString()+" x2="+
 (new Integer(x2coord)).toString()+" y2="+
 (new Integer(y2coord)).toString()+" size="+

 117

 (new Integer(zcoord)).toString() + " fps="+
 (new Integer(fps)).toString()+" conf="+
 (new Integer(conf)).toString());

 //xcoord*=4.4;
 xcoord*=2;
 xcoord=160-xcoord;
 //x2coord*=4.4;
 x2coord*=2;
 x2coord=160-x2coord;
 ycoord=144-ycoord;
 y2coord=144-y2coord;
 repaint();
 }
 }catch(Exception e) { System.out.println(e);}

 return 2;
 }

///////////////////////////CALCULATIONS////////////////////////////////
 // calculations for the prediction line
 if((conf > 40) && (size < 100)) //if confidence of tracking is good and size of square
tracked is small
 {
 position=0; //initializing final position to 0
 Y = (ycoord + y2coord) / 2 / 80 * .853; // find centroid of object
 X = (xcoord + x2coord) / 2 / 143 * 1.525;

 //prediction pt
 if(Launcher == 1) // if launcher is at position 1
 {
 if(y + 7.096 * x) < 12.172)
 {position = 1;}
 else if((y + 8.513 * x) > 9.42)
 {position = 3;}
 else
 {position = 2;}
 }
 else if(Launcher == 2)
 {
 if((y - 63.95 * x) < - 35.39)
 {position = 1;}
 else if((y + 33.343 * x) > 35.39)
 {position = 3;}
 else
 {position = 2;}
 }
 else
 {
 if((y - 18.533 * x) < - .42)
 {position = 1;}
 else if((y - 22.83 * x) > 25.2585)
 {position = 3;}

 118

 else
 {position = 2;}
 }
 if(position1)
 gus hitting back on the left side
 project from left side
 if(position2)
 gus hitting back on the middle side
 project from the middle side
 if(position3)
 gus hitting back on the right side
 project from the right side
 after video is completed, gus in the middle again
 }
}

 119

 120

Drawing Tree

Table 5.1
Dominic Lin

1) Team Concept Design

A1) Metal Support Structure
 A1a) Bottom Strut
 A1b) Sidewalls
 A1c) Support Beam
 A1d) Gusset
 A1e) Leg

A2) Cart Assembly (Exploded View)
 A2a) Cart Body
 A2b) Cart Wheel
 A2c) Cart Pin
 A2d) Cart Retainer Extender
 A2e) Cart Retainer

A3) Pulley Assembly (Exploded)
 A3a) Pulley Wheel Assembly (Exploded)
 A3ai) Pulley Face
 A3aii) Pully Wheel

B1) Firing System Assembly (Collapsed)
B2) Firing System Assembly (Exploded)
B3) <Firing Subcomponent>*

B3a) Firing Unit Assembly Exploded
 B3b) Firing Wheel Assembly (Exploded)
 B3bi) Firing Wheel Bracket
 B3c) <Barrel Drawings>*
 B3ci) Barrel
 B3cii) Barrel 2
 B3d) End Cap
 B3e) Shooter Base

B4) <Manifold Subcomponent>*
 B4a) Manifold Assembly (Exploded)
 B4b) Manifold Part
 B5) <Ball Feed Subcomponent)*
 B5a) Ball Feed Assembly (Collapsed)
 B5b) Ball Feed Assembly (Exploded)
 B5c) Loader Shield
 B5d) Hopper Holder
 B5e) Ball Hopper
 B5f) Piston Assembly (Exploded)
 B5fi) Piston End
 B5g) Poston Bracket
 B5h) Hopper Stabilizer

 121

 B5i) Lexan Hopper Top Stabilizer
 B6) <Serving Subcomponent>*
 B6a) Serving Unit Assembly (Collapsed)
 B6b) Serving Unit Assembly (Exploded)
 B6c) Hinge Mechanism Assembly (Exploded)
 C1) Screen Structure Assembly (Collapsed & Exploded)
 C1a) <Ball Head Unit>*
 C1ai) Ball Head Assembly (Collapsed)
 C1aii) Ball Head Assembly (Exploded)
 C1b) CMU CAM Arm
 C1c) Copper Screen Support Pipe
 C1d) Vertical Pipe
 C1e) Vertical Pipe Support
 C1d) Vertical Pipe Support Clamp

*Not actual Drawings. It is indicating a categ

