Appendix A

CLF Semantics

In this appendix, we briefly discuss CLF/Celf’s proof-theoretic basis for stratifying for-
ward and backward chaining search.

Recall from Chapter 2: I'; A — I"; A’ is a permissible program step whenever it is
the case that

I A"y
ARy
is a permissible inference for an arbitrary conclusion 7.

We can rewrite the left sequent rules for connectives as transition rules in this fash-
ion, as shown in prior work [DSC12]:

®KL:
(IAJA® B) — (I A A, B)
IL:
(T;ANA) — (T, A A)
copy:
(I, 4;A) — (T, A A A)
—o L

A'EA
(I AA' A — B) — (I'; A, B)

Note that this last rule appeals to the standard judgment I'; A - A to solve for the
antecedent of the rule, which might be immediately available in I'; A, or it might require
backward-chaining search.

In a purely forward chaining system, we would require that all atoms in A appear al-
ready in the context at the time of selecting the rule; that is, we can rewrite the transition

—o [

(A ay, ..y ap, 01 ® ... ®a, — B) = (I'; A, B)

If we further restrict the logic program so that rules A — B only appear in the
program signature Y, never the context, then we may understand rules of the form

195

ai...a, —o by...b, (Where, again, atoms a; . . . a, only arise as the consequents of forward-
chaining rules) as inducing a corresponding transition

A,al,...,an%A,bl,...,bm

forany A. !

If, further, no quantification over terms is permitted, then what we have produced is
a fragment of the logic corresponding exactly to multiset rewriting [CS09]: a program is
simply a set of rewrite rules and an initial multiset, and executions of the program corre-
spond to ways that the initial multiset may be rewritten into stable (quiescent) multisets.
Note that such a rewrite system is still nondeterministic in that multiple rules may apply;
so too, then, is the semantics of the program: the same program and initial configura-
tion may result in distinct states during distinct runs. For this reason, multiset rewriting
systems have sometimes been considered a good basis for modeling concurrent and dis-
tributed computation [Mes90]. In the narrative generation setting, the nondeterminism
of program semantics is what gives rise to variable story generation from a given story
world.

In Celf, the semantics are slightly more complicated than this multiset rewriting de-
piction, because forward and backward chaining may be used in combination. CLF,
Celf’s theoretical basis, introduces a connective {A} to specify forward chaining. We
next give the concrete syntax of Celf and overview its semantics on an intuitive level.

Anidealized version of Celf stratifies propositions into two categories, positive propo-
sitions .S and negative propositions A, B, based on a theory called focusing [And92]. Us-
ing this stratification together with the connective {5} for casting a positive proposition
as a negative one, it effectively permits two kinds of rules, one each corresponding to
forward and backward chaining: rules A — B are available in backward- or forward-
chaining phases of the program, and rules A — {S} are available only in forward-
chaining phases.

As an example, consider a program with the rules r; : @ — b, 75 : b —o {c}. Given the
goal sequent -; a I ¢, proof search will not succeed: since c is not of the form { A}, proof
search will use backward chaining, and backward chaining on the goal ¢ does not turn
up any rules it can use (because 75 is only available in forward-chaining).

If, however, we initialize the program with the sequent -;a F {c}, the proof will
succeed: we will enter forward chaining, notice that a forward chaining rule (r;) is
available if only we can prove its antecedent b, which then initiates a backward chaining
phase of search for the goal b. The rule r, is available in backward chaining, so we will
try it (since its head matches the goal b), recursively solving for the goal a, which is
available in the context, so search succeeds. Now we can use the rule r, to evolve the
context to ¢, which is quiescent. At that point, we check whether the context matches
the goal: in this case, the goal is ¢, which does indeed match.

! Note that parametricity over the context A, representing the ambient state that is irrelevant to the
specific rule r, stays the same across the transition. This fact evades the frame problem present in other
settings, such as event and situation calculi [Hay71].

196

Appendix B
Ceptre Typing and Kinding Rules

This appendix contains typing rules for terms and kinding rules for predicate construc-
tors. They say what it means for a Ceptre program to be well formed at the syntactic
level. Most of these rules implicitly carry a signature >, which is not mentioned unless
the rule refers to it.

Y+ K wf
ST ypewf /P ST predwr VPl S padwr VP/bwd
YET:itype X F Pwf wf /arr

YFE17— Pwf

(Note: this last rule refers to P rather than K because type cannot be indexed by type
arguments in Ceptre.)

'k A K

aKeY YFKwf
I'kFya: K

'ra:7T— K T'Ht:7
I'kFat: K ofk/app

ofk/const
'E71:type T'E7y:

type
I'=m — 19t type oft/are

I'x:m = M : bwd I'p:bwd I'F B: bwd

TF a7 37 - bwd O/P FFpo B bwd O/
I'bkxt:T
- oft/const i oft/var

197

'c:7 =7 T'Ht: 7

I'ket:7 oft/app

198

Appendix C

Code Listings

C.1 First Past the Post Voting Protocol

nat : type.
Z : nat.
s nat : nat.

candidate : type.

elected candidate : pred.
defeated candidate : pred.
ballot candidate : pred.
hopeful candidate nat : pred.

stage count = {
count_ballot : ballot C * hopeful C N -o hopeful C (s N).
b

- : qui * stage count -o stage pick * max z.

1t nat nat : bwd.

1t/z : 1t z (s N).

1t/s : 1t (s N) (s M)
<- 1t N M.

max nat : pred.

stage pick = {
increase : max N * hopeful C N’ * 1t N N’
-0 hopeful C N’ * max N’.
eliminate : max N * hopeful C N’ * 1t N’ N
-o max N * !defeated C.

199

- : qui * stage pick * hopeful C N -o stage done * !elected C.

stage done = {
cleanup : max _ -o ().

}

% domain instantiation
alice : candidate.

bob : candidate.
charlie : candidate.

context init =

{ballot alice, ballot alice, ballot charlie, ballot bob,
ballot bob, ballot alice,

hopeful alice z,

hopeful bob z,

hopeful charlie z }.

#trace count init.

C.2 Sokoban

layer : type.
location : type.
entity : type.
direction : type.
intention : type.

% Instantiations that exist for every game
player : entity.

go direction : intention.
X : intention.
stationary : intention.

right : direction.
left : direction.
up : direction.

down : direction.

available intention : bwd.
available/left : available (go left).
available/right : available (go right).
available/down : available (go down).
available/up : available (go up).

200

available/x : available x.

% Persistent facts
adjacent location direction location : bwd.

% Game state that exists for every game
at layer location entity intention : pred.
empty layer location : pred.

turn : pred.

% Game-specific terms and state
crate : entity.

stage impartIntentions = {
press_arrow
turn
* available Intent
* at Layer Loc player _
-o at Layer Loc player Intent.
b
#interactive impartIntentionms.
qui * stage impartIntentions -o stage processIntentions * turn.

% this is the part written by the game author in PuzzleScript
stage processIntentions = {
% propagate player intention to crate
push_crate
turn *
$at Layer Loc player (go Dir) * adjacent Loc Dir Loc’
* at Layer Loc’ crate _
-0 at Layer Loc’ crate (go Dir).
X

qui * stage processIntentions -o stage carryOutIntentions.

% resolve intentions in a nondeterministic order.
stage carryOutIntentions = {
move
at Layer L Ent (go Dir) * adjacent L Dir L’
* empty Layer L’ -o at Layer L’ Ent stationary * empty Layer L.
}

qui * stage carryOutIntentions -o stage cleanup.

% friction! otherwise stuff w/intent to move would keep moving...
stage cleanup = {

spare_turns : turn -o ().

friction : at Layer L Ent (go Dir) -o at Layer L Ent stationary.

201

}

qui * stage cleanup -o stage impartIntentions * turn.

% layer/level definitions
bg : layer.
fg : layer.

cellO0 : location.
cellOl : location.
cell02 : location.
celll0 : location.
cellll : location.
celll2 : location.
cell20 : location.
cell21l : location.
cell22 : location.

% 00 01 02

adjacent cellOO right cellO1l.
adjacent cellO1l left cellOO.
adjacent cellOl right cellO2.
adjacent cellO2 left cellO1l.
adjacent cellOO down celllO.

% 10 11 12

adjacent celll0 up cell0O.
adjacent celllO right cellll.
adjacent cellll left celllO.
adjacent cellll up cellO1l.
adjacent cellO1 down cellll.
adjacent cellll right celll2.
adjacent celll2 left cellll.
adjacent celll2 up cellO2.
adjacent cell02 down celll2.

% 20 21 22

adjacent celll0 down cell20.
adjacent cell20 up celllO.
adjacent cell20 right cell2l.
adjacent cell2l left cell20.
adjacent cell2l up cellll.
adjacent cellll down cell2l.
adjacent cell2l right cell22.
adjacent cell22 left cell2l.
adjacent cell22 up celll2.
adjacent celll2 down cell22.

202

context init =
{ turn,
at fg cell00 player statiomary,
at fg cell0l crate statiomary,
empty fg cellO2,
empty fg celllO,
empty fg cellll,
empty fg celll2,
empty fg cell20,
empty fg cell2l,
empty fg cell22}.

#trace impartIntentions init.

C.3 Tower of Hanoi

ring : type.
smaller ring ring : bwd.

place : type.
post : type.
top_of ring : place.
bottom post : place.
post : place.

on ring place : pred.
clear place : pred.
arm_free : pred.
arm_holding ring : pred.

stage do = {
pickup
clear (top_of R) * on R P * arm_free -o arm_holding R * clear P.

putdown_on_ring
arm_holding R
-0 arm_free

*

clear (top_of R’) * smaller R R’
on R (top_of R’) * clear (top_of R).

*

putdown_on_post
arm_holding R

*

clear (bottom P)
on R (bottom P) * clear (top_of R).

*

-0 arm_free

}

#interactive do.

203

% domain instantiation

pl : post.
p2 : post.
p3 : post.

rl : ring.
r2 : ring.
r3 : ring.

smaller rl1 r2.
smaller rl1 r3.

smaller r2 r3.

context init =

{clear (bottom p2), clear (bottom p3),

on r3 (bottom pl),
on r2 (top_of r3),
on rl (top_of r2),
clear (top_of ri1),
arm_free}.

#trace _ do init.

204

