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Abstract Recent advances in robotics suggest that human robot interaction (HRI)
is no longer a fantasy, but is happening in various fields such as industrial robots,
autonomous vehicles and medical robots. Human safety is one of the biggest con-
cerns in HRI. As humans will respond to the robot’s movement, interactions need
to be considered explicitly by the robot. A systematic approach to design the robot
behavior towards safe HRI is discussed in this chapter. By modeling the interac-
tions in a multi-agent framework, the safety issues are understood as conflicts in the
multi-agent system. By mimicking human’s social behavior, the robot’s behavior
is constrained by the ‘no-collision’ social norm and the uncertainties it perceives
for human motions. An efficient action is then found within the constraints. Both
analysis and human-involved simulation verify the effectiveness of the method.

Key words: Human Robot Interactions (HRI), Robot Safety, Motion Planning,
Human-in-the-Loop Control, Multi-Agent System

1 Introduction

Recent advances in robotics suggest that human robot interaction (HRI) is no
longer a fantasy, but is happening in various fields. In factories, robots are leaving
their cages and starting to work cooperatively with human workers [16]. The manu-
facturers are interested in combining human’s flexibility and robot’s productivity in
flexible production lines [15, 18]. On the other hand, as automated driving is widely
viewed as a promising technology to revolutionize today’s transportation system [5],
substantial research efforts are directed into the field from research groups and com-
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panies [1]. As a consequence, human drivers and autonomous vehicles will interact
on the road, which poses new challenges in road safety [25]. Another example is in
the field of rehabilitation. In order to rebuild the sensory connection of a patient after
a stroke, robots or exoskeletons are needed to guide and assist the patient in walk-
ing. There are close physical interactions between the patient and the robot [14].
Others like nursing robots [27] or robot guide dogs [31] are also in great demand
and involve HRI.

1.1 The Safety Issues and Existing Solutions

Human safety is one of the biggest concerns in HRI [32]. Two different ap-
proaches can be used to address the safety issues. One way is to increase the intrinsic
safety level of the robot through hardware design, so that even if collision happens,
the impact on the human is minimized [11]. The other way is to let the robot behave
safely, which is called ‘interactive safety’ as opposed to the intrinsic safety [33]. In
this chapter, interactive safety will be addressed in the context of decision making,
motion planning and control of the robot during HRI.

Conventional approach to address the interactive safety is conservative, which
slows down the robot when human is nearby, hence sacrifices productivity for the
sake of safety. However, to make the interaction desirable both safety and efficiency
need to be considered in designing the robot behavior.

Less conservative methods in the context of obstacle avoidance in robot motion
planning have also been used to address safety in HRI. Some authors use potential
field methods, e.g. introducing a virtual force which pushes the robot away from the
obstacles [26, 13]. Some use sliding mode methods to locally modify the reference
trajectory in the presence of obstacles [10]. These two methods result in closed-
form analytical control laws; but they do not emphasize optimality (or efficiency).
Some authors formulate the problem as an optimization or optimal control problem
with hard constraints to represent the safety requirements [7]. Unfortunately, these
non-convex optimization problems are generally hard to solve analytically [12] and
different approximations and numerical methods are used [29, 30].

However, as humans will respond to the robot’s movement, interactions need
to be considered explicitly in the design of the robot behavior, which implies that
humans cannot be simply treated as obstacles. Moreover, the algorithms must be
designed such that it can be executed fast enough for timely responses in emergency
situations, which implies that those numerical methods may not be desirable for
online applications.

These requirements are pushing for new perspectives in understanding and deal-
ing with HRI. The robot should be designed intelligent enough to conduct social
behavior [34] to interact with humans safely and efficiently even in emergency situ-
ations.
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1.2 Safety Problems in HRI: Conflicts in Multi-Agent Systems

By designing the robot behavior, the safety issues need to be understood in the
human robot systems. Since the intelligent robots are sharing the space with hu-
mans, the system can be viewed as a multi-agent system (MAS), where all humans
and robots in the environment are regarded as agents [28]. This multi-agent situa-
tion complicates the interactions as the individual optima usually does not coincide
with the system optima [23]. An agent’s interest is to be efficient, i.e. finish the task
as soon as possible, while staying safe. For example, an automated vehicle’s inter-
est is to go to the destination in minimum time without colliding with surrounding
vehicles. The safety is the mutual interests for all agents in the system, while the ef-
ficiency goals may conflict with one another, as the individual tasks are not identical
and the resources are limited. Figure 1 shows the conflict between two vehicles dur-
ing lane merging. The two vehicles cannot pass the conflict zone at the same time
(since the road resources are limited), which implies that one of the vehicle must
yield (i.e. sacrifice efficiency) to ensure safety. Figure 2 shows the conflict between
an autonomous guided vehicle (AGV) and a human worker as their future trajecto-
ries intersect. The intersection point is a potential conflict zone if neither the AGV
or the human detours.

There are plenty of methods to make a robot efficient [6]. However, literature
is limited on solving the conflicts among agents when there is no designated con-
trolling agent. In the real world, conflicts of interests can be solved by active com-
munication and negotiation [24], whereas in a human-robot co-existing environ-
ment, communications are limited. Classic game theory [3] offers reasoning strate-
gies for cooperation to evolve in limited communications when the behavioral rules

Fig. 1: Conflict between two vehicles during lane merging.

Fig. 2: Conflict between a human worker and an autonomous guided vehicle (AGV)
in a factory floor.
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of the agents are known. However, in the real world, agents are “strangers” to each
other. This situation runs into the bayesian game regime [2]. To ensure safety, the
robot should actively learn the human behavior and only seek to maximize its utility
within a set of actions that is safe with respect to what human would do and how
human would react to the robot motion.

1.3 Safe Control and Exploration

Take human’s social behavior as an example, to avoid conflicts of interests, a
human’s behavior is usually constrained. The constraint comes from at least two
factors: the social norm and the uncertainties that he perceives for other people.
The social norm guides behavior in a certain situation or environment as ‘mental
representations of appropriate behavior’. For example, in the AGV case, the social
norm will suggest the AGV to keep a safe distance from human and detour if neces-
sary. In practice, the perceived uncertainties also affect human’s decision. Similarly,
whether the AGV needs to detour and how much the AGV should detour highly
depends on how certain the AGV is about its prediction of the human’s trajectory.
Moreover, the uncertainties can be attenuated through active learning (refer to uncer-
tainty reduction theory [4]). A common experience is: a newcomer tends to behave
conservatively in a new environment due to large uncertainties. But through observ-
ing and learning his peers, he will gradually behave freely due to the reduction of
uncertainties.

Based on these observations, a safety oriented method is introduced to design the
robot controller. The HRI is modeled in the MAS framework. A safe set is defined
in the system state space (which contains both the robot state and the human state)
to represent the social norm. The safe set algorithm (SSA) [17] enforces invariance
in the safe set according to the predicted human behavior. The safe exploration algo-
rithm (SEA) further constrains the robot motion by uncertainties in the predictions
[19]. By actively learning human behaviors, the robot will be more ‘confident’ about
its prediction of human motion. The robot can access a larger subset of the safe set
when the uncertainty is smaller.

The remainder of the chapter is organized as follows: in section 2, a multi-agent
interaction model will be introduced, followed by the discussion of the safety ori-
ented design methodology in section 3. The safe set algorithm (SSA) and the safe
exploration algorithm (SEA) will be discussed in section 4 and section 5 respec-
tively. A method to combine SSA and SEA will be discussed in section 6. Section 7
points out directions for future works. Section 8 concludes the chapter.
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2 Modeling the Human Robot Interactions

2.1 The Agent Model

Suppose there are N agents in the system and are indexed from 1 to N. R denotes
the set of all indices for the robots, and H for the humans. Denote agent i’s state as
xi, its control input as ui, its information set as πi and its goal as Gi for i = 1, ...,N.
For simplicity, write xR as the union of the states of all robots and xH as the union
of the states of all humans. Denote the system state as x = [xT

R ,x
T
H ]

T ∈ X where X is
the state space of the system. The open loop system dynamics can be written as

ẋ = f (x,u1,u2, . . . ,uN ,w) (1)

where w is a Gaussian noise term.
In the case that there is no physical contact among humans and robots as shown

in Fig.1 and Fig.2, the system is decomposable1, i.e.

ẋi = fi (xi,ui,wi) ,∀i = 1, ...,N (2)

Moreover, it is assumed that the dynamics of all robots are affine in the control
term, i.e.

ẋi = f ∗ix (xi,wi)+ f ∗iu (xi)ui,∀i ∈ R (3)

Agent i chooses the control ui based on the information set πi and its goal Gi.
The information set is a combination of the measured data and the communicated
information. In this chapter, it is assumed that there is no direct communication
among the defined agents. If a group of agents do communicate with each other,
then they can be coordinated and will be treated as one agent. In this way, agent i’s
information set at time T contains all the measurements up to time T , i.e. πi (T ) =
{yi (t)}t∈[t0,T ] where

yi = hi (x,vi) ,∀i = 1, ...,N (4)

and vi is the measurement noise. The controller can be written as

ui = gi (πi,Gi) ,∀i = 1, ...,N (5)

2.2 The Closed Loop System

Using (4) (5) in the open loop dynamics (1) or (2), the closed loop dynamic
equation becomes

1 In certain cases, the open loop system may not be decoupled. For example, in the case of rehabil-
itation, the robot can affect the human’s dynamics directly by assisting the human to accomplish
special tasks, such as walking. When the robot’s input enters the human’s dynamic equation, (2)
does not hold.
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ẋ = f cl (x,G,v1, ...,vN ,w1, ...wN) (6)

where G =
[
GT

1 , ...,G
T
N
]T ∈ X is the system goal. The system block diagram for the

general multi-agent system is shown in Fig.3 based on (1), (4) and (5). The block
diagram for the decomposable system is shown in Fig.4 based on (2), (4) and (5).
Due to measurement feedbacks, all agents are coupled together in the closed loop
system no matter it is decomposable or not in the open loop. The difference is that
in the decomposable system, interaction happens only in the measurement and con-
troller side instead of in the open loop dynamics. In this chapter, the decomposable
system will be studied.

2.3 Information Structure

In a multi-agent system, an agent should be considerate to other agents. Before
choosing the control ui, agent i needs to consider the ‘strategies’ that others will
play (the control signal u j’s that others would choose).

Fig. 3: Multi-Agent System Block Diagram

Fig. 4: Decomposable Multi-Agent System Block Diagram
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Information structure [3] specifies what information is available to which agent
when the agents are deciding on their control strategies. When all agents are operat-
ing on the same information set but independently before they take the next move,
this is a simultaneous game and the optimal solution of this system defines a Nash
Equilibrium (or a Bayesian Nash Equilibrium if the utilities of the agents are not
publicly known). When some agents know the others’ u j (by observing x j) before
deciding on their own controls, this is a sequential game and the optimal solution
defines a Stackelberg equilibrium (or a Perfect Bayesian Equilibrium if the utilities
of the agents are not publicly known). The agents being observed are considered as
leaders and the agents that take the observation are considered as followers.

It is assumed that safety-oriented HRI can be modeled as a sequential game and
the robot being controlled is always a follower [17]. There are several advantages
in doing so. First, it is a conservative strategy, thus good from the safety point of
view. Second, it is assumed that robots have a smaller reaction time than humans.
Thus they can quickly adapt to human motion, which qualifies them as followers.
Moreover, to analyze a human’s control strategy, the robot needs to know the hu-
man’s cost function, which, however, is hard to obtain. So it is better to assume all
humans’ strategies are revealed in their past moves before the robot takes the move.
Then the robot must be a follower, which plays a reactive strategy.

3 The Safety-Oriented Behavior Design

The robot behavior is determined by the robot controller gi for i ∈ R. The goal in
designing gi is 1) to find the bounds on robot actions which are safe with respect to
what human would do and how human would react; and 2) to maximize the robot’s
utility or minimize the robot’s cost within the bounds.

When there are more than one robot in the system, they can be coordinated by
a central controller. In this way, all robots can be treated as one agent. If it is not
possible to design a coordinator as in the case of autonomous vehicles, those robots
that cannot be coordinated are simply regarded as human agents. Then the number
of effective robots in the system is reduced to one, denoted by R.

3.1 The Safety Principle

Denote the system’s safe set as XS, which is a closed subset of the state space
X that is safe, e.g. collision free. Then the state space constraint RS for the robot
depends on humans’ states, e.g. RS(xH) = {xR : [xT

R ,x
T
H ]

T ∈ XS}. If humans are fol-
lowers and will take care about the safety, then the safe set for the robot is

R1
S = {xR : xR ∈ RS(xH) for some xH} (7)
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However, based on the discussion in section 2.3, humans are assumed to be the
leaders, so the safety problem should be taken care of by the robot. In the case that
the robot knows human’s next move x̂H , the safety bound for the robot becomes

R2
S = {xR : xR ∈ RS(x̂H)} (8)

However, due to noises and uncertainties, the estimate x̂H may not be accurate.
The human state xH may lie in a set ΓH containing x̂H . Then the robot motion should
be constrained in a smaller set

R3
S = {xR : xR ∈ RS(xH),∀xH ∈ ΓH} (9)

Figure 5 illustrates the safe set XS and the state space constraints R1
S, R2

S and R3
S.

It is clear that R3
S ⊂ R2

S ⊂ R1
S.

The Safety Principle: the function gi(., .), i ∈ R should be chosen such that XS
is invariant, i.e. x(t) ∈ XS for all t, or equivalently, xR(t) ∈ R3

S(t) for ΓH(t) which
accounts for almost all possible noises v1, ...vN ,w1, ...,wN and human decisions
gi(., .), i ∈ H (those with negligible probabilities will be ignored).

Figure 6 illustrates the expected outcome of the robot behavior under the safety
principle. In view of the potential conflict, the robot re-plans a trajectory in the safe
region R3

S.

3.2 The Safety Index

The safety principle requires the designed control law to make the safe set in-
variant with respect to time. In addition to constraining the motion in the safe region
R3

S, the robot should also be able to cope with any unsafe human movement. Given
the current configuration in Fig.5, if the human is anticipated to move downwards,
the robot should go left in order for the combined trajectory to stay in the safe set.

Fig. 5: The State Space Safety Constraints XS, R1
S, R2

S and R3
S
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Fig. 6: Solving the conflict by re-planning in the safe region R3
S.

To make the robot better understand the dynamics, a safety index is introduced as
shown in Fig.7. The safety index φ : X → R is a function on the system state space
such that

1. φ is differentiable with respect to t, i.e. φ̇ = (∂φ/∂x)ẋ exists everywhere;
2. ∂ φ̇/∂uR 6= 0;
3. The unsafe set X \XS is not reachable given the control law φ̇ < 0 when φ ≥ 0

and the initial condition x(t0) ∈ XS.

The first condition is to ensure that φ is smooth. The second condition is to ensure
that the robot input can always affect the safety index. The third condition presents a
quick criteria to determine whether a control input is safe or not, e.g. all the control
inputs that drive the state below the level set 0 are safe and unsafe otherwise.

Lemma: (Existence of the Safety Index) The function φ satisfying all three
conditions exists for any XS = {x : φ0(x)≤ 0}, where φ0(x) is a smooth function on
the state space.2

To ensure safety, the robot’s control must be chosen from the set of safe control
US(t) = {uR(t) : φ̇ ≤−ηR when φ ≥ 0} where ηR ∈ R+ is a safety margin. By (3),
the derivative of the safety index can be written as

φ̇ =
∂φ

∂xR
f ∗RuuR +

∂φ

∂xR
f ∗Rx + ∑

j∈H

∂φ

∂x j
ẋ j (10)

Then the set of safe control is

US (t) = {uR (t) : L(t)uR (t)≤ S (t, ẋH)} (11)

where

2 The Lemma is proved in [17]. φ can be constructed in the following procedure: first, check the
order from φ0 to uR in the Lie derivative sense, denote it by n; then define φ as φ0 + k1φ̇0 + ...+

kn−1φ
(n−1)
0 . The coefficients k1, ...,kn are chosen such that the roots of 1+k1s+ ...+kn−1sn−1 = 0

all lie on the negative real line.
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L(t) =
∂φ

∂xR
f ∗Ru (12)

S (t, ẋH) =

{
−ηR−∑ j∈H

∂φ

∂x j
ẋ j− ∂φ

∂xR
f ∗Rx

∞

φ ≥ 0
φ < 0

(13)

L(t) is a vector at the ‘safe’ direction, while S(t, ẋH) is a scalar indicating how
much control effort is needed to be safe, which can be broken down into three parts:
the margin, the term to compensate human motion and the term to compensate the
inertia of the robot itself. In the following arguments when there is no ambigu-
ity, S(t, ẋH) denotes the value in the case φ ≥ 0 only. As could be expected, under
different assumptions of the human behavior, S(t) varies. The sets of safe control
correspond to R1

S, R2
S and R3

S are

U1
S (t) = {uR (t) : L(t)uR (t)≤ S (t, ẋH) for some ẋH} (14)

U2
S (t) =

{
uR (t) : L(t)uR (t)≤ S

(
t, ˆ̇xH

)}
(15)

U3
S (t) =

{
uR (t) : L(t)uR (t)≤ S (t, ẋH) for all ẋH ∈ Γ̇H

}
(16)

where ˆ̇xH is the velocity vector that moves the current configuration xH of human
to x̂H and Γ̇H is the set of velocity vectors that move xH to ΓH . Computationally,
ˆ̇xH = x̂H−xH

Ts
where Ts is the sampling time. Obviously U3

S ⊂ U2
S ⊂ U1

S . When the
uncertainties in the estimation of ˆ̇xH reduces, U3

S converges to U2
S .

The difference between RS and US is that RS is static as it is on the state space,
while US is dynamic as it concerns with the ‘movements’. Due to the safety index,
the non convex state space constraints RS are transformed to convex state space
constraints US. For example, in Fig.6, the safe region R3

S for the AGV is the space
outside the uncertainty range. But the set U3

S according to (16) is a half space.
According to the safety principle, the robot control should be restricted to the

set U3
S . However, the choice of the uncertainty bound Γ̇H differs. One way is to

use a constant bound based on the mean prediction error. Another way is to let the
uncertainty bound depend on the level of uncertainties in real time. The first way

Fig. 7: The Safety Index
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corresponds to the safe set algorithm (SSA) [17] while the second one corresponds
to the safe exploration algorithm (SEA) [19], which will be discussed in the follow-
ing two sections.

4 The Safe Set Algorithm (SSA)

The safe set algorithm offers a fast online solution concerning the safety princi-
ple. In this section, the control algorithm and the learning algorithm in SSA will be
discussed, followed by an application on a robot arm.

4.1 The Control Algorithm

In SSA, a constant λ SSA
R ∈R+ is introduced to bound the noises and uncertainties

in the estimation, i.e.

SSSA (t, ˆ̇xH
)
= S(t, ˆ̇xH)−λ

SSA
R =−ηR−λ

SSA
R − ∑

j∈H

∂φ

∂x j
ˆ̇x j−

∂φ

∂xR
f ∗Rx (17)

where ˆ̇x j =
x̂ j(k+1|k)−x̂ j(k|k)

Ts
for all j ∈ H. k represents the time step of the last mea-

surement before t, while k+1 is the time step for the next anticipated measurement.
Ts is the sampling time. x̂ j(p|k) is the estimate of x j(p) given information up to
time step k. L(t) and S(t) will also be written as L(k) and S(k) to denote that the last
measurement is taken at k-th time step. The control algorithm can also be designed
in discrete time as discussed in [17] which is more conservative.

The optimal control problem for robot motion planning can be posed as [18]:

min E(J(xR,uR,GR)) (18)
s.t. uR ∈USSA

S ,uR ∈Ω ,xR ∈ ΓR (19)

where USSA
S (t) = {uR : L(t)uR≤ SSSA(t, ˆ̇xH)}. J is the cost function that evaluates the

efficiency of the robot motion. Ω is the control saturation and ΓR is the state space
constraint such as joint limits and speed limits. Ω and ΓR is usually convex, while
J can be designed to be convex. Then (18-19) is a convex optimization problem,
which is easy to solve online.

An analytic control law that solves the optimization approximately can be ob-
tained by breaking down the problem (18-19). Assume the state space constraint ΓR
is considered in the safe set XS. Suppose uo

R (t) is the solution of the optimal control
problem without the safety constraint uR ∈USSA

S (which can be solved offline). Then
the safe control law u∗R(t) can be found by mapping uo

R (t) to the set of safe control
USSA

S (t) according to the following cost function
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u∗R = min
uR∈USSA

S ∩Ω

1
2
(uR−uo

R)
T Q(uR−uo

R) (20)

where Q is a positive definite matrix. Let c = minu∈USSA
S (t) |L(t)(u−uo

R (t))|. By
(20), the safe control law u∗R (t) when Ω is not tight is [17]:

u∗R (t) = uo
R (t)− c

Q−1L(t)T

L(t)Q−1L(t)T (21)

4.2 Online Learning and Prediction of Humans’ Dynamics

Since only one effective robot is considered, the system in Fig.4 can be reduced to
the system in Fig.8 by combining all the blocks for human agents to the closed loop
block ẋH = f

′
H(xH ,xR,GH ,vH ,wH). The objective is to find the estimate x̂H(k+ i|k)

to minimize the expected prediction error, e.g.

x̂H(k+ i|k) = argmin
a

ExH (k+i)(‖xH(k+ i)−a‖2) (22)

The human’s closed loop dynamics f
′
H need to be estimated for state prediction.

The nonlinear continuous time dynamic function ẋH = f ′H (.) can be linearized and
discretized as

xH(k+1) = AH(k)xH(k)+BH(k)uc
H(k)+w∗H(k) (23)

where uc
H(k) =

[
x̂R(k|k)T ,GT

H (k)
]T 3. x̂R is the estimate of the robot state from a

state estimator (e.g. Kalman Filter). AH(k) and BH(k) are time varying parameters.
w∗H(k) is a noise term assumed to be zero-mean Gaussian and white. Assume the
robot’s measurement of the human is:

yH
R (k) = xH (k)+ vH

R (k) (24)

Fig. 8: Simplified System Model

3 Methods for inferring GH(k) are discussed in [18]. In this chapter, it is assumed to be known.
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Equations (23) and (24) form a linear time varying (LTV) Gaussian system
with unknown parameters. A recursive least square parameter adaptation algorithm
(RLS-PAA) [9] is developed to identify the system online such that the prediction
x̂H(k+1|k) minimizes the expected prediction error (22). Define ÂH (k) and B̂H (k)
to be the estimates of the matrices given the information up to the k-th time step.

• State Estimation
At k+ 1-th time step, x̂H is first updated according to the closed loop dynamics
in (25). Then the measurement information is incorporated in the a posteriori
estimate in (26). A constant update gain α ∈ (0,1) is chosen to ensure that the
measurement information is always incorporated.

x̂H (k+1|k) = ÂH (k) x̂H (k|k)+ B̂H (k)uc
H(k) (25)

x̂H (k+1|k+1) = (1−α) x̂H (k+1|k)+αyH
R (k+1) (26)

• Parameter Estimation
The closed loop matrices are estimated using RLS-PAA:[

ÂH (k+1) , B̂H (k+1)
]
=
[
ÂH (k) , B̂H (k)

]
+(x̂H (k+1|k+1)− x̂H (k+1|k))ϕ(k)T F (k+1)

(27)

where ϕ(k) =
[

x̂H (k|k)T uc
H(k)

T
]T

. F is the learning gain such that

F (k+1) =
1
λ

[
F (k)− F (k)ϕ(k)ϕT (k)F (k)

λ +ϕT (k)F(k)ϕ (k)

]
(28)

where λ ∈ (0,1) is a forgetting factor.

4.3 Applications

Fig. 9: The Interaction between a Robot Arm and a Human
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In the factories of the future, there will be close interactions among human work-
ers and robot arms [20]. In this section, the SSA is applied to a planar robot arm to
demonstrate the effectiveness of the algorithm.

The environment is shown in Fig.9 where both the robot arm and the human
need to approach their respective goals in minimum time without colliding with
each other. The robot arm has two links with joint positions θ1 and θ2 and the joint
velocities θ̇1 and θ̇2. Let θ = [θ1,θ2]

T . Considering the kinematics of the robot arm,
the control input is defined to be the joint accelerations, i.e. uR =

[
θ̈1, θ̈2

]T . The end
point position of the robot is denoted as p = (px, py). The optimal control law is
designed to be

uo
R = J−1

p

{
Kp

[
px−gx
py−gy

]
+Kv

[
ṗx
ṗy

]
−Hp

}
(29)

where Jp is the Jacobian matrix at p and Hp = J̇pθ̇ . (gx,gy) is the goal point in the
work space. Kp ∈ R2×2 and Kv ∈ R2×2 are the control gain.

The closest point to the human is m = (mx,my). Define the robot state as xR =
[mx,my, ṁx, ṁy]

T . The state space equation is

ẋR = ARxR +BRJmuR +BRHm (30)

where

AR =

[
0 I2
0 0

]
,BR =

[
0
I2

]
and Jm is the Jacobian matrix at m with Hm = J̇mθ̇ .

The human is simplified as a circle, whose state is taken as xH = [hx,hy, ḣx, ḣy]
where hx and hy is the position and ḣx and ḣy is the velocity. Define the safe set
as XS = {x : d ≥ dmin} where d measures the smallest distance between the human
and the robot arm and dmin is a constant. Based on the discussion in section 3.2, the
safety index is designed as φ = D−d2− kφ ḋ where D = d2

min +ηRTs +λ SSA
R Ts and

kφ > 0 are constants [17]. Let the relative distance, velocity and acceleration vectors
be d=

[
I2 0

]
(xR−xH),v=

[
0 I2

]
(xR−xH) and a=

[
0 I2

]
(ẋR− ẋH). Then d = |d|

and

φ̇ = −2dḋ− kφ d̈ =−2dT v− kφ

dT a+vT v− ḋ2

d

= −2dT v− kφ

dT (JmuR +Hm)−dT
[

0 I2
]

ẋH +vT v
d

+ kφ

(dT v)2

d3 (31)

Hence

L(t) = −kφ

dT

d
Jm (32)

S(t, ẋH) = −ηR +2dT v+ kφ

dT Hm−dT
[

0 I2
]

ẋH +v ·v
d

− kφ

(dT v)2

d3 (33)
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(a) Scenario 1

(b) Scenario 2

Fig. 10: Two scenarios in the simulation of SSA on a planar robot arm. The objec-
tive: the human and the robot arm should approach their respective goals in mini-
mum time. Safety requirement: the minimum distance between the human and the
robot arm should be greater than a threshold.

In the simulation, several goals were assigned for the human. Before parameter
adaptation, the robot inferred on the human’s current goal first [18]. Sampling time
Ts = 0.1s. Figure 10a shows the human avoidance behavior of the robot. In (1),
the human and the robot were both near their respective goals. However, since the
human was heading towards the robot in high speed, the robot went backward in (2)
and (3). Figure 10b shows the robot behavior under unexpected human behavior. In
(1), the human suddenly changed his course. Although all of his goal points were
in the lower part of the graph, the human started to go up. By observing that, the
robot went away from the human in (2) and (3). The simulation results confirms the
effectiveness of the algorithm.

5 The Safe Exploration Algorithm (SEA)

One of the limitation of SSA is that the bound for the uncertainties (i.e. λ SSA
R ) is a

constant. However, the mean squared estimation error (MSEE) of the human’s state
is changing from time to time. A larger bound is needed if the MSEE is larger. To
capture this property, the safe exploration algorithm (SEA) is introduced, where the
control strategy changes for different levels of uncertainties.
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Table 1: Definitions of Notations in State Estimation

State Estimate Estimation Error MSEE

a posteriori x̂ j (k|k) x̃ j (k|k) X j (k|k)
a priori x̂ j (k+1|k) x̃ j (k+1|k) X j (k+1|k)

5.1 The Safe Set in the Belief Space

In a belief space [7], the state estimate of x j for j ∈ H is no longer a point but
a distribution, i.e. N (x̂ j,X j) where X j is the covariance which represents the level
of uncertainties in the estimation. All the distributions are assumed to be Gaussian.
Since x j ∼N (x̂ j,X j), the covariance can be written as X j =E

[
(x j− x̂ j)(x j− x̂ j)

T
]
,

which is the mean squared estimation error (MSEE).
The definition of the a priori and a posteriori estimates, estimation errors and

MSEEs are shown in Table 1, where x̃ j(k|k) = x j(k)− x̂ j (k|k) and x̃ j(k + 1|k) =
x j (k+1)− x̂ j (k+1|k). At the k-th time step, the best prediction for x j (k+1) has
the following distribution

N (x̂ j (k+1|k) ,X j (k+1|k)) (34)

In the belief space, since the distribution of x j (k+1) is unbounded, the inequal-
ity in (16) is ill-defined. Indeed, uR needs to satisfy a probability constraint

P
({

x j (k+1) : L(k)uR ≤ S(k,xH)
})
≥ 1− ε,∀ j ∈ H (35)

where ε > 0 is a small number. A bounded set Γj(k) can be defined for j ∈ H such
that the probability density of x j /∈ Γj(k) is small and P(x j ∈ Γj (k)) ≥ 1− ε . For a
Gaussian distribution, the probability mass lying within the 3σ deviation is 0.997.
Set ε = 0.003 and let ∆x j = x j− x̂ j (k+1|k), then the set Γj can be defined as

Γj (k) =
{

x j : ∆xT
j X j (k+1|k)−1

∆x j ≤ 9
}

(36)

Fig. 11: The Constraint in the Belief Space
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By (16) and (35), the constraint in U3
R is equivalent to the following optimization

problem,
L(k)uR ≤ SSEA(k) = min

x j(k+1)∈Γj(k),∀ j∈H
{S(k)} (37)

By (13), the RHS of (37) can be decoupled as a sequence of optimization prob-
lems, i.e. for all j ∈ H,

minx j(k+1)∈Γj(k)
∂φ

∂x j
x j(k+1) (38)

By Lagrangian method4, the optimal solution x∗j (k+1) for all j ∈ H is

x∗j(k+1) = x̂ j (k+1|k)+
3X j (k+1|k)

(
∂φ

∂x j

)T

[(
∂φ

∂x j

)
X j (k+1|k)

(
∂φ

∂x j

)T
] 1

2
(40)

Using (40), SSEA(k) can be expressed as

SSEA(k) = S(k, ˆ̇xH)−λ
SEA
R (k) =−ηR−λ

SEA
R (k)− ∑

j∈H

∂φ

∂x j
ˆ̇x j−

∂φ

∂xR
f ∗Rx (41)

where

λ
SEA
R (k) =

3
Ts

∑
j∈H

[(
∂φ

∂x j

)
X j (k+1|k)

(
∂φ

∂x j

)T
] 1

2

+λ
o
R (42)

and λ o
R ∈R+ is the bound for other uncertainties. All other equations follow from the

safe set algorithm except for the learning and prediction part, where new methods
are needed to estimate X j(k+1|k) online.

5.2 Learning in the Belief Space

In this section, the MSEE propagation algorithm in parameter adaptation will be
discussed, followed by the discussion of its application to human motion prediction.
To simplify the notation, the LTV system is assumed to be

4 The objective function is linear while the constraint function defines an ellipsoid as shown in
Fig.11. The optimal solution must lie on the boundary of the ellipsoid. Let γ be a Lagrange multi-
plier. Define the new cost function as:

J∗j =
∂φ

∂x j
x j(k+1)+ γ

[
9−∆xT

j X j (k+1|k)−1
∆x j

]
(39)

The optimal solution satisfies
∂J∗j

∂x j(k+1) =
∂J∗j
∂γ

= 0, i.e. ( ∂φ

∂x j
)T − 2γX j (k+1|k)−1

∆x j = 0 and

9−∆xT
j X j (k+1|k)−1

∆x j = 0. Then (40) follows.
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Fig. 12: Simulation Result of the MSEE Propagation Algorithm

x(k+1) = A(k)x(k)+B(k)u(k)+w(k) (43)

where x(k) ∈ Rn, u(k) ∈ Rm and w(k) is the dynamic noise assumed to be zero-
mean, Gaussian and white with covariance W . It is assumed that the state x(k) is
fully known. A(k) and B(k) are the unknown parameters that need to be estimated
online. Define the parameter matrix C (k) = [A(k) ,B(k)] ∈ Rn×(n+m) and the data
vector ϕ (k) =

[
xT (k) ,uT (k)

]T ∈ Rn+m. Since random matrices are hard to deal
with, transform matrix C (k) to a vector ϑ (k). Suppose the row vectors in C (k) are
C1 (k) ,C2 (k) , . . . ,Cn (k) ∈ R1×(n+m). Define

ϑ (k) = [C1 (k) ,C2 (k) , ...,Cd (k)]
T ∈ Rn(n+m)×1 (44)

Define a new data matrix Φ (k) as

Φ (k) =


ϕT (k) 0 · · · 0

0 ϕT (k) · · · 0
...

...
. . .

...
0 0 . . . ϕT (k)

 ∈ Rn×n(n+m) (45)

Using Φ(k),ϑ(k), the system dynamics can be written as

x(k+1) = Φ (k)ϑ (k)+w(k) (46)

Let ϑ̂ (k) be the estimate of ϑ (k) and ϑ̃ (k) = ϑ (k)− ϑ̂ (k) be the estimation
error.

• State estimation
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The a priori estimate of the state and the estimation error is

x̂(k+1|k) = Φ (k) ϑ̂ (k) (47)
x̃(k+1|k) = Φ (k) ϑ̃ (k)+w(k) (48)

Since ϑ̂ (k) only contains information up to the (k−1)-th time step, ϑ̃ (k) is
independent of w(k). Thus the a priori MSEE is

Xx̃x̃ (k+1|k) = E
[
x̃(k+1|k) x̃(k+1|k)T

]
= Φ (k)X

ϑ̃ ϑ̃
(k)Φ

T (k)+W (49)

where X
ϑ̃ ϑ̃

(k) = E
[
ϑ̃ (k) ϑ̃ (k)T

]
is the mean squared error of the parameter

estimation.
• Parameter estimation

In the standard PAA, the parameter is estimated as

ϑ̂ (k+1) = ϑ̂ (k)+F (k+1)Φ
T (k) x̃(k+1|k) (50)

where F (k+1) is the learning gain in (28) with ϕ (k) replaced by ΦT (k). The
parameter estimation error is

ϑ̃ (k+1) = ϑ̃ (k)−F (k+1)Φ
T (k) x̃(k+1|k)+∆ϑ (k) (51)

where ∆ϑ (k)=ϑ (k+1)−ϑ (k). Since the system is time varying, the estimated
parameter is biased and the expectation of the error can be expressed as

E
(
ϑ̃ (k+1)

)
=
[
I−F (k+1)Φ

T (k)Φ (k)
]

E
(
ϑ̃ (k)

)
+∆ϑ (k)

=
k

∑
n=0

k

∏
i=n+1

[
I−F (i+1)Φ

T (i)Φ (i)
]

∆ϑ (n) (52)

The mean squared error of parameter estimation follows from (51) and (52):

X
ϑ̃ ϑ̃

(k+1) (53)

= F (k+1)Φ
T (k)Xx̃x̃ (k+1|k)Φ (k)F (k+1)

−X
ϑ̃ ϑ̃

(k)Φ
T (k)Φ (k)F (k+1)−F (k+1)Φ

T (k)Φ (k)X
ϑ̃ ϑ̃

(k)

+E
[
ϑ̃ (k+1)

]
∆ϑ

T (k)+∆ϑ (k)E
[
ϑ̃ (k+1)

]T −∆ϑ (k)∆ϑ (k)T +X
ϑ̃ ϑ̃

(k)

Since ∆ϑ (k) is unknown in (52) and (53), it is set to an average time varying
rate dϑ in the implementation.

Fig.12 shows the simulation result of the proposed learning algorithm on a first
order system with a noise covariance W = 0.0052. A forgetting factor λ = 0.98 is
used. The solid and dashed blue lines in the upper figure are Â(k) and A(k), while
the solid and dashed green lines are B̂(k) and the constant parameter B respec-
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tively. As shown in the figure, the time varying parameter A(k) is well approx-
imated by Â(k), while B̂(k) converges to B. In the lower figure, the blue curve
is the one step prediction error x̃(k|k−1). The green curves are the 3σ bound
(σ =

√
Xx̃x̃(k|k−1)). The black dashed line is the statistical standard deviation (Std)

of the data x̃(k|k−1) from k = 1 to k = 1000. As shown in the figure, the 3σ value
offers a good bound for the prediction errors as all measured errors lie between the
green curves. Moreover, the MSEE is larger when the parameter is changing faster,
which captures the time varying property of the system. On the other hand, the sta-
tistical standard deviation does not give a good description of the data in real time.

In section 4.2, a RLS-PAA algorithm is adopted in identifying the closed loop be-
havior of the humans. In the safe exploration algorithm, the MSEE of x̂ j (k+1|k) for
all j ∈ H also needs to be estimated. The system follows from (23) and (24), which
is different from (43) in that the state is not exactly known. But it is assumed that the
measurement noise is small, thus can be neglected. So the system is approximated
by

yR
H(k+1) = AH(k)yR

H(k)+BH(k)uc
H (k)+w∗H(k) (54)

This is equivalent to setting α = 1 in (26). The prediction algorithm then follows
from (47-53). In the implementation, the covariance of the noise W , the time varying
rate dϑ and the initial values are hand-tuned.

5.3 A comparative Study between SSA and SEA

In this section, a comparative study between SSA and SEA is performed on
an autonomous vehicle model shown in Fig.13. The vehicle’s state is denoted by
xR = [Rx,Ry,vR,θR]

T where Rx is the x-position of the vehicle, Ry the y-position,
vR the speed and θR the direction. The control input of the vehicle is uR = [v̇R, θ̇R]

T

(saturations apply: |v̇R| ≤ amax and |θ̇R| ≤ ωmax, where amax,ωmax are positive con-
stants). The state equation is

Fig. 13: The Interaction between an AGV and a Human Worker
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ẋR = f ∗Rx(xR)+BuR (55)

where f ∗Rx(xR) =
[

vR cosθR vR sinθR 0 0
]T , B =

[
0 I2

]T .
The vehicle can measure its own state directly. It can also measure the relative

distance d and the relative direction θr towards the nearby human as illustrated
in Fig.13. The human’s state is xH = [hx,hy, ḣx, ḣy]

T , which is calculated based on
the measurements and the robot state. Suppose that the goal point of the robot is
[Gx,Gy]. The baseline control law is designed as [19]:

v̇R = − [(Rx−Gx)cosθR +(Ry−Gy)sinθR]− kvvR (56)

θ̇R = kθ

[
arctan

Ry−Gy

Rx−Gx
−θR

]
(57)

where kv,kθ ∈ R+ are constants.
The safety index φ =D−d2−kφ ḋ is chosen as the same as in section 4.3. In SSA,

D is set to be d2
min +ηRTs +λ SSA

R Ts. In SEA, D is set to be d2
min +ηRTs +λ SEA

R (k)Ts.
The relative distance, velocity and acceleration vectors are

d = [d cos(θr +θR),d sin(θr +θR)]
T

v = [vcos(θR)− ḣx,vsin(θR)− ḣy]
T

a =

[
cosθR −vR sinθR
sinθR vR cosθR

]
uR−

[
0 I2

]
ẋH

Similar to (31), the time derivative of the safety index is

φ̇ = −2dT v− kφ

dT a+vT v− ḋ2

d

= −2dT v− kφ

[d cosθr,−dvR sinθr]uR−dT
[

0 I2
]

ẋH +vT v
d

+ kφ

(dT v)2

d3 (58)

which implies

L(t) = kφ [cosθr,−vR sinθr] (59)

S(t, ẋH) = −ηR +2dT v+ kφ

vT v−dT
[

0 I2
]

ẋH

d
− kφ

(dT v)2

d3 (60)

Then SSSA and SSEA follow from (17) and (41) respectively, and the final control
follows from (21).

Figure 14 shows the vehicle trajectories under SSA and SEA. The vehicle needed
to approach (0,5) from (-5,-5) while the human went from (0,-3) to (-5,5). Five time
steps are shown in the plots: k = 3,52,102,206,302 from the lightest to the darkest.
The solid circles represent the human, which was controlled by a human subject
through a multi-touch trackpad in real time (notice there was overshoot as the con-
trol was not perfect). The triangles represent the vehicle. The transparent circles in
Fig.14a represent the set ΓH(k) in (36) mapped into 2D, which is shrinking grad-
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(a) Simulation with SEA (b) Simulation with SSA

Fig. 14: Simulation of Human Vehicle Interaction under SEA and SSA

ually due to the reduction of uncertainties as an effect of learning. In Fig.14b, the
transparent circles represent the equivalent uncertainty levels introduced by λ SSA

R ,
thus the radius remain constant throughout the time.

Figure 15 shows the distance profiles and the vehicle velocity profiles under SSA
and SEA. Due to large initial uncertainties, the vehicle only started to accelerate af-
ter k = 50 (when the relative distance is large) in SEA. However, in SSA, the vehicle
tried to accelerate in the very beginning, then decelerated when the relative distance
to the human decreased. The velocity profile in SSA was serrated, while the one in
SEA was much smoother. Meanwhile, in both algorithms, the relative distance was
always greater than dmin = 3. However, before k = 150, the relative distance was
kept larger in SEA than in SSA, since the vehicle was more conservative in SEA
due to large uncertainty. Fig.16 shows that the a priori MSEE provides a perfect
bound for the prediction error, while the prediction error reduces gradually which
validates the learning algorithms.

In conclusion, the behavior in SSA is: move and modify; while in SEA, it is:
move only if confident. The behavior under SEA is better for a new comer, while
the behavior under SSA is better if the robot is already very familiar with the envi-
ronment, i.e. with low uncertainty levels.

6 Combining SSA and SEA in Time Varying MAS Topology

In real world applications, the system topology is usually time varying, e.g. the
robot will encounter different agents at different time in different locations [8].
Mathematically, that means some agents will be decoupled from the system block
diagram in Fig.4 and others will join from time to time. The robot is not faced with
the ‘same’ system throughout the time. This scenario is common for mobile robots
and automated vehicles [21].



Designing the Robot Behavior for Safe HRI 23

(a) The relative distance profiles in SEA and SSA

(b) The velocity profiles of the vehicle in SEA and SSA

Fig. 15: Comparison between SEA and SSA

Fig. 16: Performance of the a priori MSEE as a Bound of the State Prediction Error

As the robot needs to deal with new agents, SEA is more appropriate than SSA.
However, when the number of agents increase, the computation complexity with
SEA increases dramatically. In this section, a method to combine SSA and SEA is
discussed in order to balance the performance and the computation complexity.

6.1 The Control Algorithm

Due to limited sensing capability, the robot can only track humans that are within
certain distance. Every agent within this range will be assigned a special identifica-
tion number. Let H(k) denotes the collection of those identification numbers at time
step k. A safety index φ j is designed for each agent j ∈ H(k), as it is hard to design
one analytical safety index that satisfies all the requirements for time varying H(k).
In this way, uR needs to be constrained by

U3
R =

⋂
j∈H(k)

U3
R, j = {uR : L j(k)uR(k) ≤ S j(t, ẋ j) for all ẋ j ∈ Γ̇j} (61)
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where L j and S j are calculated with respect to φ j. The uncertainty bound Γj is chosen
according to SEA only for new agents. Once the MSEE converges, the algorithm is
switched to SSA for that agent. The idea is illustrated in the following algorithm,
where Π is a set that records the identification numbers of the agents who are no
longer considered as new agents.

Initialize Π = /0, k = 0;
while Controller is Active do

k = k+1;
Read current H(k) and y j

R(k) for j ∈ H(k);
for j ∈ H(k) do

calculate the estimate x̂ j(k+1|k) based on measurements y j
R(k);

if j /∈Π then
calculate the MSEE X j(k+1|k);
if X j converges then

Π = Π ∪{ j};
end

end
end
for j ∈ H(k) do

if j ∈Π then
U3

R, j =USSA
R, j = {uR : L j(k)≤ SSSA

j (k)} (Apply SSA to φ j);
else

U3
R, j =USEA

R, j = {uR : L j(k)≤ SSEA
j (k)} (Apply SEA to φ j);

end
end
U3

R =
⋂

j∈H(k)U3
R, j;

Choose control u∗R by optimizing over U3
R ;

end
Algorithm 1: The Algorithm Combining SSA and SEA

6.2 The Learning Algorithm

When the system topology is time varying, it is hard to learn humans’ closed loop
dynamics in (23). When the number of agents increases, the computation complex-
ity regarding (23) increases exponentially. That is because the correlation among
agents are over estimated, e.g. an agent’s motion may only be affect by several sur-
rounding agents instead of by all agents. When the system topology is time varying,
it is more appropriate to learn agents’ dynamics separately and use low dimension
features to represent the correlations among agents. It is assumed that an agent j’s
motion will be affected by several features f p

j for p = 1,2, · · · , e.g. the distance to
the nearest agent and distance to the goal point. Then the linearized closed loop
dynamics of agent j can be written as
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x j (k+1) = A j (k)x j (k)+∑
p

Bp
j (k) f p

j (k)+w∗j (k) (62)

where w∗j (k) is the noise. Then the parameters A j (k) and Bp
j (k) can be identified as

discussed in section 4.2 and section 5.2.

6.3 Performance

The strategy is tested on robot navigation in a crowded environment with multiple
humans as shown in Fig.17. The robot is modeled as a double integrator whose input
is the acceleration in x and y directions. The position of the humans are controlled
in real time by several human subjects who observe the virtual environment though
a screen. The humans do not have specific tasks and are just ‘wandering’ in the
environment. The robot is required to approach its goal while avoiding humans. The
safety index is the same as in section 5.3. The features in (62) are chosen to be the
distance to the closest human and the distance to the robot.

The simulation result is shown in Fig.18, Fig.19 and Fig.20. Before the 50-th
time step, the robot was trying to approach its goal. It detoured when the blue agent
came close. At the same time, the green agent which was previously hidden by the
blue agent showed up in the robot’s view. The new agent surprised the robot, as there
was a large peak in the robot velocity profile in Fig.19. Algorithm-wise, it was the
large uncertainty of the green agent that ‘pushed’ the robot away. The constraint U3

R
was effective after the 50-th time step as evidenced in Fig.19. The relative distance
between the robot and every human agent was always maintained greater than dmin
as shown in Fig.20.

Fig. 17: The Simulation Environment for Robot Navigation.
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Fig. 18 Multi-human simu-
lation results. Objective: the
robot needs to navigate to
its goal point in a crowded
environment. Safety require-
ment: all relative distances are
greater than dmin.

Fig. 19 The robot velocity
profile in the multi-human
simulation. After k = 50, the
curves are no longer smooth
due to the enforcement of the
safety constraints.

Fig. 20 The relative distance
profile in the multi-human
simulation. d1,d2,d3 are the
distance between the robot
and the respective human. d4
is the threshold dmin.

7 Discussions

Although derived from multi-agent interaction point of view, the safety-oriented
behavior design method can be viewed as an energy based method, which is closely
related to other energy based methods such as the potential field method and the
Lyapunov method. In section 7.1, these methods will be compared. Moreover, al-
though the proposed algorithms can handle a range of typical interactions such as
robot navigation in a crowded environment and space sharing interactions among
robot arms and human workers, there are certain limitations which will be discussed
in section 7.2.

7.1 The Energy Based Methods

In an energy based method, a scalar energy function is usually defined such that
the control objective (e.g. safety) is with low energy. So the desired control should
drive the energy function in the negative direction. The potential function, the Lya-
punov function and the safety index discussed in section 3.2 can all be regarded as
energy functions. For a rough comparison, the emphasis in the potential field is the
‘virtual repulsive force’; the emphasis in the Lyapunov theory is asymptotic conver-
gence to the control objective; while the emphasis in the safe set algorithm is the
time invariance regarding the control objective. To some extent, the potential field
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method can be regarded as a ‘force’ control, while the safe set method is a ‘position’
control. The safety index is even closely related to the Lyapunov function, as the in-
dex can be transformed to an Lyapunov function by setting all negative values to be
zero. The novel part of the proposed method is the introduction of multi objectives,
e.g. the efficiency objective versus the safety objective. There are various ways to
be safe, the robot needs to find the best one.

The multiple objectives is handled in the framework of constrained optimal con-
trol. Nonetheless, due to the introduction of the energy method (e.g. the safety in-
dex), the non-convex state space safety constraint is transformed to a convex control
space constraint, which reduces the computation complexity comparing to other op-
timization methods. Thus the safe set method takes the advantage of both the energy
method and the optimal control method.

7.2 Limitations and Future Work

Long Term Behavior versus Short Term Behavior

Both SSA and SEA are concerned with short term reactive behavior. It is possible
that the robot get stuck in local optima. Long term planning is needed for the robot to
get out of local optima. However, the uncertainties in the predictions of other agents
will accumulate in the long term, which makes such predictions unreliable. In order
to make the interactions smoother, the design method of the long term behavior will
be studied in the future.

Structured Environment versus Unstructured Environment

Unstructured environments are also known as free spaces, while certain rules ap-
ply for structure environments. A typical structure environment is the traffic lanes
shown in Fig.1. Both SSA and SEA work well in unstructured environment. In
structured environment, since the environment is discretized, it is important to in-
clude discrete choices in the robot control and planning, such as the choice for lane
changing or lane following for an automated vehicle [21].

Cooperation versus Coexistence

Cooperation usually involves physical contacts among agents, which is funda-
mentally different from coexistence. HRI which involves contacts can only be mod-
eled by the indecomposable model in Fig.3. Then the human dynamics can not be
separated from the robot dynamics as in Fig.8, which makes the learning and pre-
diction even harder. Moreover, the safety issues in cooperation no longer come from
conflicts as the objectives of the agents are identical, but from mis-interpretation or
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mis-understandings instead [22]. For example, it is dangerous when the robot mo-
tion is unexpected by the human. Cooperation will be analyzed in the future for a
better understanding of interactions.

8 Conclusion

This chapter discussed the general methodology in designing the robot controller
for safe HRI. By modeling the system in a multi-agent framework, the safety is-
sues were understood as conflicts in the multi-agent system. To solve the conflicts,
the robot’s behavior was constrained according to the ‘social norm’ and the uncer-
tainties it perceived for the other agents (including humans and other robots). Two
algorithms were discussed under the framework: the safe set algorithm (SSA) and
the safe exploration algorithm (SEA). In both algorithms, the robot calculated the
optimal action to finish the task while staying safe with respect to the predicted hu-
man motion. The difference was that SEA actively tracked the uncertainty levels
in the prediction and incorporate that information in robot control, while SSA did
not. As shown in the human-involved simulations, SEA was better when the un-
certainty levels change from time to time, especially in the early stages of human
robot interactions. On the other hand, SSA was better when the predictions were
more accurate, e.g. when the robot was ‘familiar’ with the human, as SSA was more
computationally efficient than SEA. Finally, a method to combine both algorithms
was proposed to take the advantage of both algorithms. Several case studies were
presented and demonstrated the effectiveness of the method.

In the future, the long term behavior, the safety issues in structure environments
and the safety issues in human robot cooperation will be studied.
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