AGen: Adaptable Generative Prediction Networks for Autonomous Driving

Wenwen Si, Tianhao Wei, and Changliu Liu

Abstract—In highly interactive driving scenarios, accurate
prediction of other road participants is critical for safe and ef-
ficient navigation of autonomous cars. Prediction is challenging
due to the difficulty in modeling various driving behavior, or
learning such a model. The model should be interactive and
reflect individual differences. Imitation learning methods, such
as parameter sharing generative adversarial imitation learning
(PS-GAIL), are able to learn interactive models. However, the
learned models average out individual differences. When used
to predict trajectories of individual vehicles, these models are
biased. This paper introduces an adaptable generative predic-
tion framework (AGen), which performs online adaptation of
the offline learned models to recover individual differences for
better prediction. In particular, we combine the recursive least
square parameter adaptation algorithm (RLS-PAA) with the
offline learned model from PS-GAIL. RLS-PAA has analytical
solutions and is able to adapt the model for every single vehicle
efficiently online. The proposed method is able to reduce the
root mean squared prediction error in a 2.5s time window by
60%, compared with PS-GAIL.

I. INTRODUCTION

In order to achieve safe and high-quality decision making
and motion planning, autonomous vehicles should be able
to generate accurate probabilistic predictions for uncertain
behavior of other road users. Prediction is challenging due
to the difficulty in modeling various driving behavior, or
learning such a model from data. The model should be
interactive to consider interactions among road users, and
heterogeneous to reflect individual differences.

Generative adversarial imitation learning (GAIL) [1]], as
a direct extension of generative adversarial network (GAN)
[2]], has been successfully applied to obtain vehicle policies
in car-following and highway-driving [3]]. A driving policy
is a model that inputs the current world state and outputs the
next action (e.g., longitudinal acceleration and turning rate).
Such a model is generative in the sense that we can simulate
future vehicle trajectories using the learned driving policy to
make predictions. The simulation process is called roll-out.
In addition to the generative model (e.g., the policy), GAIL
has an adversarial component, called a critic, to compute
the difference between the roll-out trajectories and true
trajectories. During training, the algorithm iteratively updates
the policy to minimize the difference, and updates the critic
to maximize the difference. When the algorithm converges,
the critic cannot distinguish between the true trajectory and
the roll-out trajectory, which implies point-wise convergence
of the policy (i.e., the model). However, when evaluated in

*This project is supported by Holomatic.

W. Si, T. Wei, and C. Liu are with the Robotics Institute, Carnegie
Mellon University, Pittsburgh, PA, USA (e-mail: wenwens, twei2,
cliu6@andrew.cmu.edu) .

Occupancy Measure

(x,u)
0

Fig. 1: The averaging effect of parameter sharing. When the policy
network is parameterized by shared parameters, e.g., in PS-GAIL,
the distributions of occupancy measures of different drivers pr,
and pr, is averaged to be pr,. Our proposed method will learn to
fit individual distributions pr, and pr ., as they are. An occupancy
measure captures the probability for a vehicle to take certain actions
u in certain states x.

a multi-agent setting, the policies learned through single-
agent imitation learning fail to make accurate predictions
due to covariate shift [4]. Covariate shift is a situation
when the distribution of scenarios for testing does not match
the distribution of scenarios for training. Intuitively, single
agent GAIL does not consider others’ responses during
interactions, hence results in errors when evaluated in multi-
agent scenarios.

Multi-agent GAIL (MA-GAIL) [5]] is needed to build
reliable models that consider multi-vehicle interaction. As
it is computationally intractable to learn a specific model for
every vehicle, parameter sharing GAIL (PS-GAIL) [3], as a
special case of (MA-GAIL), is introduced. PS-GAIL assumes
that all vehicles are homogenous. It learns an interactive
model in multi-agent environments. PS-GAIL achieves a
notable improvement on multi-agent trajectory prediction
compared to single agent GAIL. However, homogeneity
among vehicle behavior does not hold for real world driving.
The model learned by PS-GAIL effectively averages out
various driving behavior as shown in Fig. |1} It fails to capture
individual differences and creates bias in the prediction.
Moreover, as PS-GAIL learns a constant model, it also
cannot capture time-varying behavior, e.g., change of mind.
These problems are not unique to models produced by GAIL
families. All constant and homogeneous models suffer from
these problems:

1) A constant model fails to capture the time varying
behavior of vehicles;

2) A homogeneous model fails to consider individual
differences among various vehicles (drivers).

To solve these problems, this paper introduces an online
adaptation framework for heterogeneous prediction, which

leads to an adaptable generative prediction model (AGen).
We combine the state-of-the-art multi-agent generative model
learned by PS-GAIL with recursive least square parameter
adaptation algorithms (RLS-PAA) [[6] to recover individual
differences for better prediction. An earlier work that applies
RLS-PAA on learning-based human motion prediction is
discussed in [7]. RLS-PAA has analytical solutions and is
able to adapt the model for every vehicle efficiently online.
The proposed method is able to reduce the root mean
squared prediction error in a 2.5s time window by 60%.
Our code is publicly available at https://github.com/
intelligent-control-lab/AGen.

The remainder of the paper is organized as follows.
Section [[I] formulates the prediction problem. Section [II|
proposes our methodology. Section shows the perfor-
mance of the proposed method and comparison with other
methods. Section [V] discusses limitations and extensions of
the proposed method. Section |VI]| concludes the paper.

II. PROBLEM FORMULATION

We call the vehicle making the prediction as the ego
vehicle, the vehicle to be predicted as the target vehicle. For
a target vehicle, denote its state space as X, its observation
space as O, and its action space as I/ C R?. The observation
space includes the state of the target vehicle x € X (e.g.,
location, velocity, and acceleration) as well as the world state
(e.g., lane position, state of other road participants) The
action space is for longitudinal acceleration and turning rate.

To make reliable predictions, a vehicle behavior model is
needed. We choose to use a vehicle policy as our model. A
vehicle policy « : O — Lfﬂ maps an observation o(k) €
O at time k to an action u(k + 1) € Z/{E] Trajectory can
be predicted by forward simulation using the policy. The
simulator has a dynamic function s : &/ — O that maps an
action u(k+1) € U to the observation o(k+1) € O at time
k + 1. Through forward simulation at time k£, we obtain a
sequence of action and observation pairs in the future

o(k) »ru(k+1) »s0k+1) wpulk+2)---. (1)

Since the observation o contains the state of the target vehicle
x, the future trajectory x(k+1) for ¢ > 0 of the target vehicle
can be predicted. This process is called roll-out. The vehicle
policy 7 is essential for accurate predictions. This paper
adopts imitation learning to identify 7. Refer to appendix
for preliminaries on imitation learning.

IThe observation space of the target vehicle may be only partially
known to the ego vehicle. This paper assumes full observability from the
ego vehicle. The influence of partial observability will be studied in the
future.

2In stochastic scenarios, 7 maps an observation o to a distribution over
the action space. As such a distribution is assumed to be Gaussian and we
always consider the most likely action in the prediction, we simplify the
notation to the non-stochastic version. The policy always map to the most
likely action, which is the mean value in the Gaussian distribution.

3We shift the time indices for control input one step ahead compared to
conventional dynamic system definition. The control input applied at time
k is denoted u(k + 1), since it affects the state and observation at time
k4 1.

Algorithm 1: AGen Algorithm

input : History trajectories and actions,
pretrained policy network in (3)
output : Predicted trajectories and actions,
heterogenous models in (2)
parameter : length of history [V, forgetting factor
A, prediction horizon [
Initialization:

1 while True do

k=k+1,

for all vehicles i do

Obtain new observation o;(k);

Construct N-step regressor ®;(k) in (TID);

Compute prediction error €(k)in given
observed action u;(k);

7 Adapt the parameter W, (k) «

RLS-PAA (®,;(k —1),e(k), W;(k - 1))

using (O) and (10);
8 end

9 Trajectory roll-out in simulation ;
10 end

A AR W N

There are mainly two reasons why we do not use a
fixed-horizon trajectory as direct output. First, a generative
model can predict trajectories of arbitrary length. Second,
the learned policy or the generative model can be directly
used by the ego vehicle to plan and control its motion for
autonomous driving.

In a multi-vehicle scenario, we would like to simulta-
neously predict several vehicles. Denote the parameters of
different target vehicles using subscript ¢ € N. Vehicles are
heterogeneous. Instead of fitting an average policy model 7
for all vehicles, we need to specify a policy model 7; for
every target vehicle to account for individual differences.

To obtain a prediction model that is both interactive
and heterogeneous, and to explicitly incorporate historical
information, we will identify a function f : O x H x N — U,
which outputs the action u;(k+1) € U of individual vehicle
1 given current observation o;(k) € O and truncated history
®,(k) e H,

uw;(k+1) =f(o;(k), ®;(k),1). 2)

The function f is our behavior model which varies for
different vehicles. For vehicle 4, f(-, -,) is different from the
policy 7r;, in that f directly involves the history ®;(k). The
history ®;(k) corresponds to the hidden state in our policy
network and is explicitly used in the online adaptation, to be
discussed in detail in section [IIl

III. METHODOLOGY

Heterogeneity among drivers needs to be explicitly ac-
counted to improve prediction accuracy in real world sce-
narios. As mentioned earlier, it is intractable to fit a policy
network for every individual vehicle. To make heterogeneous
prediction scalable, we combine offline model learning with

https://github.com/intelligent-control-lab/AGen
https://github.com/intelligent-control-lab/AGen

gradient

Critic Dy

observations

(a) Offline training using PS-GAIL. Critic computes the difference between
the expert trajectory and the roll-out trajectory from the policy network.
PS-GAIL iteratively updates the policy to minimize the difference and the
critic to maximize the difference.

| RLS-PAA
Critic: 2 norm
A }
u(k + 1) -step u(k+2) 2-step
A
! /\/‘
A A
R(k) h(k) ok+1) h(k+1)
expert
w w
h(k T h(k+1))
policy
GRU GRU
Tu(k) To(}c) ﬁ(m l)To(kJr 1)
time ste’p

(b) Online adaptation using RLS-PAA. The critic computes the 2-norm
difference between the the expert trajectory and the roll-out trajectory
from the policy network. RLS-PAA updates the policy network (only
the last layer) to minimize the difference. We can either do 1-step or
2-step adaptation.

Fig. 2: Illustration of offline training of the policy model using PS-
GAIL and online adaptation of the policy model using RLS-PAA.
The policy model contains GRU modules and a fully connected last
layer parameterized by W.

online model adaptation. Offline model learning extracts
features for average driving behavior. Online model adap-
tation can perturb the average model to fit the behavior
of a specific driver at a specific time. In particular, we
take the offline pretrained policy network of PS-GAIL as
the feature extractor for averaged driving behavior, while
adapting individual vehicle behavior using RLS-PAA online.
The online adaptation algorithm is shown in algorithm

A. Offline Feature Extraction using PS-GAIL

Offline training using PS-GAIL is illustrated in Fig. [2a]
It consists of a basic GAN structure. A discriminator Dy,
acts as the critic that surrogates a reward function in the
environment. The policy network f : R™ + R? takes in

observations of the environmen{'] and synthesizes action se-

quences that emulate the behavior of expert distribution. We

model the policy network using a recurrent neural network

(RNN), which further takes in the hidden vector h € R™ and
previous input u € R2, i.e.,E]

w;(k + 1) = £0i(k), hi(k — 1), i (k)),

= Wg(o;(k), hi(k — 1), u;(k)),

h; (k)

(3a)
(3b)

where g : R™ — R"™ can be regarded as a feature extractor
that computes the hidden vector. W is the parameter of the
last layer that maps the hidden vector to the output. The
model f is equivalent to except that it remains the same
for all vehicles (due to parameter sharing).

At each iteration of the algorithm, the policy with shared
parameters is used by each agent to generate trajectories.
Rewards are then assigned to each state-action pair in these
trajectories by the critic. Subsequently observed trajectories
are used to perform a TRPO [8]] update of the policy, and
an Adam [9] update of the critic.

Due to parameter sharing, f is an average model. Nonethe-
less, the hidden layers of f can extract useful features for
different driving behavior.

B. Online Adaptation Using Recursive Least Square

We use RLS-PAA to adapt parameters for individual
vehicles. RLS-PAA is efficient for identification of time-
varying systems. Specifically, the system to be adapted online
is the function from the hidden layer h; (k) to the output layer
u;(k+1) for every i. It is a linear system in the open loop as
shown in @ However, due to nonlinearity of function g, the
closed loop system is nonlinear. In the following discussion,
we first discuss how RLS-PAA can be applied to a linear
system as shown in Fig. 3] In sections and [IT-D] we
provide two approaches to handle the nonlinearity.

h(k) u(k+1)

———» Discrete Linear System ——

Fig. 3: Benchmark problem for online adaptation using RLS-PAA.

1) Benchmark problem for RLS-PAA: Suppose the trans-
fer function of the discrete linear system shown in Fig. [3]can
be parameterized as

4 biz7d
u(k +1) = —=25-~

TS5 a0 (4)

where a; and b; are unknown parameters for all j, which
may be time varying. And z~! represents one step lag, i.e.,
u(k) = z7tu(k + 1). To identify the unknown parameters,
(@) is transformed to the following representation,

u(k +1) = 0" ¢(k), (5)

4The dimension of the observation space is chosen to be m = 66 in
the experiment. Refer to [3|] for details on the selection of the features.

5The dimension of the hidden space is chosen to be m = 64 in the
experiment.

where 6 is the parameter vector and ¢ is the regressor vector.
They are defined as

0:[al,ag,...,ap,bo,bl,...,bq]T, (63)
¢(k) = [~u(k),...,—u(k +1—p),h(k),....h(k - q)".
(6b)

Equation (3) is the benchmark problem of RLS-PAA,
which can be regarded as a linearization of (3).
2) Solving the benchmark problem: At time k, the fol-
lowing least square problem is formulated to estimate 6,
k
0(k) := in Y NIu() -0 - 1|2, (7
(k) argmeln; lu() = 0o - DI, (D
=
where A € (0,1] is a forgetting factor. Analytically, the
estimate 6(k) can be computed as,

71]@

Z N5 —1)u(y).

®)
To get rid of the matrix inversion, 6(k) can be obtained
recursively [6]],

O(k+1) =0(k) + F(k)p(k)e(k + 1),)

Ok) = |2 Ao - 1" - 1)

where F (k) is the learning gain and €(k+1) is the prediction
error with

AF(k)p(k)p(k)TF(k
P+ = v TSR
ek +1)=uk+1)— 0 (&)p(k). (10b)

Compared with other online adaptation algorithm, such as
stochastic gradient descent [10]], RLS-PAA is able to get an
analytical solution that locally fits the data. This local fitting
is beneficial for a predictor to emulate the sudden change of
drivers’ mind or driving environment.

C. AGen: Adaptable Generative Model

AGen applies RLS-PAA-based online adaptation to an
offline learned model to emulate individual differences. For
online adaptation, AGen takes in the hidden vector extracted
by the policy network of PS-GAIL and outputs the actions
and the roll-out trajectory, as shown in algorithm [I] It
adapts the mapping from the hidden vector h (i.e., offline
extracted features) to the predicted action u. As discussed
in section the closed loop system between the hidden
vector h and u is nonlinear. To apply RLS-PAA, we simply
linearize () and (3) and obtain

u;(k+1) = W;(k)®;(k), (11a)
(11b)

where ®, (k) is the concatenate of current observations o; (k)
and the hidden vectors in previous N steps. The hidden
vector h; (k) is defined in (). The matrix W corresponds
to 0 in (§), which is to be identified online to account for the
unique behavior of vehicle 7. The matrix W can be regarded

as the last layer of the policy network f, though its column
dimension may not match W in (3).

As a special case, we consider ®;(k) = h;(k). It is called
1-step adaptation since N = 1. The observation o, (k) is not
considered. As a result, W in (TT) corresponds to W in (3)).
The offline learned policy f in (3) is an average of individual
policies in 1-step AGen as shown in Fig.[l] i.e.,

Wg =f=Wg, (12)

where W denotes the average over all W;. Due to adap-
tation of the last layer’s weights, the prediction in 1-step
AGen creates a bias through W to account for heterogeneity
of individual vehicles. Hence the prediction through 1-step
AGen is more accurate than the prediction directly obtained
from the offline model, which will be shown in section
Though oversimplified, 1-step AGen is computationally effi-
cient, while still be able to capture individual differences.

D. RLS-PAA on Feedback Recurrent Neural Network

In the general formulation of the feature vector ® in (I1D)),
we include observation o. In the open loop, the observation
o only affects the output u through the hidden vector h.
However, to linearize the closed loop system and apply multi-
step RLS-PAA, we need to include both o and h, which will
be explained in detail below.

For multi-step RLS-PAA, due to the feedback structure
of RNN, the output action is getting back into the RNN as
part of the new observation. In particular, the structure of the
policy network that uses Gated Recurrent Units (GRUs) is
shown in Fig.

GRU
h(k — 1) z,=043(W;0r,+U;hr_1+Db.)
ry=04(Wror+U;hi_1+b,) AW

u(k+1)

hy=zrohy_1+ (1-2zx) o
on(Whop + Up(rrohg_1) +bp)

Fig. 4: Flow chart of the system with a feedback GRU-based RNN
as input features extractor.

Due to the complex structure of the GRU cell, the feedback
action u(k+ 1) and the hidden vector h(k) are coupled in a
twisted nonlinear function, with no explicit decomposition.
Hence, it is difficult to put the system in the form of the
benchmark RLS-PAA problem (3)). In order to make better
use of truncated history with longer window, we introduce
a blocking technique to approximately tackle this dilemma.
Under the blocking mechanism, the history of u(j) for j < k
is lumped to the observation o(k). Hence the regressor ¢ (k)
in (6b) is approximated by the regressor ®(k) in (I1D).

For the feedback action, we use the action in the ground
truth trajectory to block the backward arrow when updating
the adaptive parameters. The procedure of the general multi-
step AGen is shown in Fig. [2b] The blocking technique for
multi-step AGen is inspired by [11]], which applies RLS-
PAA on RNNs without output-to-input feedbacks and results
in promising training performance. It is worth noting that
1-step AGen discussed earlier corresponds to an open-loop

approximation of (3, while multi-step AGen concerns with
a closed-loop approximation.

IV. EXPERIMENTAL RESULTS
A. Experimental Setup

AGen is validated on US 101 human driving data from
the Next Generation SIMulation (NGSIM) dataset [12]. It
is a widely used benchmark dataset for autonomous driving
problem. The vehicle trajectories are captured by cameras
mounted on top of surrounding buildings.

The feature extractor g in (3) is obtained from PS-GAIL.
It is an RNN consists of 64 GRUs. The observation is
passed directly into the RNN without any initial reduction
in dimensionality. The critic is implemented as a feed-
forward neural network consisting of (128,128,64) ReLU
units implemented as a Wasserstein GAN with gradient
penalty (WGAN-GP) with a gradient penalty of 2.

For online adaptation, we compare the performance of
1-step AGen discussed in section and 2-step AGen
discussed in section The prediction horizon is [=
25. The sampling time is 0.1s. Our algorithm predicts a
trajectory of 25 points in a 2.5s window. For the 25 steps
in the prediction, only the first observation is obtained from
the ground truth data, while consequent inputs to the feature
extractor g are all generated from the simulator during
trajectory roll-out based on the predicted actions by AGen.
The simulator simply considers kinematics of the vehicles.
The forgetting factor is chosen to be A = 0.99.

B. Evaluation Metrics

The predicted roll-out trajectories are compared to ground
truth trajectories. We evaluate the performance of the predic-
tion using root mean squared error (RMSE) of the predicted
variable v,

RMSE — | — i (v - @t(“)Q (13)
m i=1

where U,E” is the true value in the ¢th trajectory at time ¢
and @gl)is the simulated roll-out value for the ith trajectory
at time t. m is the total number of trajectories. We extract
the RMSE in predictions of global position, lane offset, and
speed over time horizons up to 2.5s.

We also evaluate the longitude and lateral RMSE sepa-
rately, with statistics including standard deviation and top

5% and top 10% error.

C. Prediction Results

1) Computation time: All experiments are performed with
single thread on 3.1 GHz Intel Core i7 Processor. We perform
both single agent tests and multi-agent tests. In single agent
tests, only one vehicle is predicted while other vehicles’
trajectories are assumed to be known. In multi-agent tests,
the trajectories of all vehicles are predicted simultaneously.
The average computation time for AGen in one time step is
0.083 s in single agent tests, and 0.79s in multi-agent tests
with 22 agents. The computation time grows nonlinearly with

TABLE I: Average Position RMSE on a 2.5s Time Span.

Average 1 Agent 22 Agents
RMSE (m) Longititude Lateral Longititude Lateral
PS-GAIL 1.13 038 1.33 0.44
1-step AGen 0.42 0.19 043 0.18
2-step AGen 0.56 026 0.56 0.26

TABLE II: Top Position RMSE on a 2.5s Time Span.

Average 1 Agent 22 Agents
RMSE (m) top 5% top 10% top 5% top 10%
PS-GAIL 5.03 4.29 5.68 4.96
1-step AGen 2.36 1.92 235 191

respect to the number of agents, due to the coupling effects
in multi-agent scenarios.

2) RMSE: The average position RMSE over a 2.5s time
span is shown in table|ll The top error statistics are shown in
table [l The entry with “PS-GAIL” refers to the prediction
results by directly using the offline trained model from
PS-GAIL without any online adaptation. As shown in the
tables, AGen significantly reduces the prediction error. The
predicted trajectories for the 22-agent scenario is shown in
Fig. 5] Fig. [6] shows the growth of RMSE with respect to
time.

V. DISCUSSION

The major limitation of the proposed method is that
it requires omniscient perspective. However, in real world
driving, the ego vehicle j cannot fully obtain the observation
o; of the target vehicle 7. This partial observability may cause
instability in online adaptation. Methods to deal with partial
observability will be explored in the future.

Another limitation of the proposed method is that RLS-
PAA takes time to converge to true values. However, in
real world driving situations, the interactions between two
vehicles may not last long, which may finish before the con-

60

AGen
PS-GAIL
Ground Truth

50

o | | | L |
0 10 20 30 40 50 60

Fig. 5: Predicted 2 s trajectories for 22 agents after 3 s adaptions.

4
- —— AGen
g 3|
= —— PS-GAIL
m 2
2]
0 ///
0 5 10 15 20
Time Step

Fig. 6: Average position RMSE over time in the 22-agent scenario
in Fig. 5} The shaded areas indicate the standard deviation of the
prediction error.

vergence of the algorithm. Methods to analyze and improve
the convergence of the algorithm will be studied in the future.

Another approach to account for heterogeneity in predic-
tion is to add more prior knowledge through conditional
probability, e.g., infoGAN [[13]] and infoGAIL [14]. These
methods are able to distinguish individual differences dur-
ing offline training. Using these models, we will be able
to maximize the information for online adaptation, which
could provide better initial approximation than homogeneous
models. Nonetheless, infoGAIL still takes time average.
We can leverage the advantages of infoGAIL and online
adaptation by combining the two, in order to account for
time-varying behavior and to make the online adaptation
algorithms converge faster.

VI. CONCLUSION

This paper proposed an adaptive generative method
(AGen) for vehicle trajectory prediction. AGen combined
RLS-PAA-based online adaptation with pretrained policy
network from PS-GAIL to account for individual differences
and time-varying behavior. The design considerations for
both single-step and multi-step adaptation systems were elab-
orated. Experiments on real world driving dataset verified the
effectiveness of the method.

REFERENCES

[1] J. Ho and S. Ermon, “Generative adversarial imitation learn-
ing,” in Advances in Neural Information Processing Systems,
2016, pp. 4565-4573.

[2] I Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D.
Warde-Farley, S. Ozair, A. Courville, and Y. Bengio, “Gen-
erative adversarial nets,” in Advances in neural information
processing systems, 2014, pp. 2672-2680.

[3]1 R. P. Bhattacharyya, D. J. Phillips, B. Wulfe, J. Morton,
A. Kuefler, and M. J. Kochenderfer, “Multi-agent imitation
learning for driving simulation,” in International Conference
on Intelligent Robots and Systems, IEEE, 2018, pp. 1534—
1539.

[4] H. Shimodaira, “Improving predictive inference under co-
variate shift by weighting the log-likelihood function,” Jour-
nal of statistical planning and inference, vol. 90, no. 2,
pp. 227-244, 2000.

[5] J. Song, H. Ren, D. Sadigh, and S. Ermon, “Multi-agent
generative adversarial imitation learning,” in Advances in
Neural Information Processing Systems, 2018, pp. 7461—
7472.

[6] V Panuska, “An adaptive recursive-least-squares identifica-
tion algorithm,” in Symposium on Adaptive Processes (8th)
Decision and Control, IEEE, 1969, pp. 65-65.

[71 Y. Cheng, W. Zhao, C. Liu, and M. Tomizuka, “Human
motion prediction using semi-adaptable neural networks,”
in American Control Conference, 2019, arXiv:1810.00781.

[8] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P.
Moritz, “Trust region policy optimization,” in International
Conference on Machine Learning, 2015, pp. 1889-1897.

[9] D. P. Kingma and J. Ba, “Adam: A method for stochastic
optimization,” arXiv:1412.6980, 2014.

[10] H. Robbins and S. Monro, “A stochastic approximation
method,” The annals of mathematical statistics, pp. 400—
407, 1951.

[11] Q. Song, X. Zhao, Z. Feng, and B. Song, “Recursive
least squares algorithm with adaptive forgetting factor based
on echo state network,” in World Congress on Intelligent
Control and Automation, IEEE, 2011, pp. 295-298.

[12] J. Colyar and J. Halkias, “US highway 101 dataset,” Federal
Highway Administration (FHWA), Tech. Rep. FHWA-HRT-
07-030, 2007.

[13] X. Chen, Y. Duan, R. Houthooft, J. Schulman, I. Sutskever,
and P. Abbeel, “InfoGAN: Interpretable representation learn-
ing by information maximizing generative adversarial nets,”
in Advances in neural information processing systems, 2016,
pp- 2172-2180.

[14] Y. Li, J. Song, and S. Ermon, “InfoGAIL: Interpretable
imitation learning from visual demonstrations,” in Advances
in Neural Information Processing Systems, 2017, pp. 3812—
3822.

[15] M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein
GAN,” arXiv:1701.07875, 2017.

APPENDIX
PRELIMINARIES ON IMITATION LEARNING

Imitation learning is to learn a policy 7r that imitates
an expert policy g given demonstrations generated by the
expert policy. A demonstration is a sequence of state-action
pairs (x,u) that result from a policy interacting with the
environment.

Generative adversarial imitation learning (GAIL) [1]] for-
mulates imitation learning as a problem to match the state-
action occupancy distribution of the expert policy. For a
policy m, its occupancy measure p, : X X U — R is
defined as pr(x,u) = Pr(u | x) > 1o, V*Pr(x(k) = x)
where Pr(u | x) is the probability of taking action u at
state x given the policy 7, P (x(k) = x) is the probability
of landing in state x at time k under policy 7, v is the
discount factor. The occupancy measure can be interpreted as
the distribution of state-action pairs that an agent encounters
when navigating the environment with policy 7r. There is a
one-by-one correspondence between the occupancy measure
pr and the policy 7 [1].

GAIL tries to match p,, with generative adversarial
networks. A discriminator (or critic) D, parametrized by
1 learns to distinguish expert behavior from non-expert’s,
while a policy 7y parameterized by € attempts to emulate
the expert. The GAIL objective is given by [15],

mein meIEﬂ.E log Dy (x,u)+Er, log(1—Dy(x,u)) (14)

where E. denotes the expectation over policy 7, i.e., the
state-action samples (x, u) are taken from the distribution of
occupancy measure p,. This paper deals with observation-
action pair (o, u) instead of state-action pair to avoid state
estimation.

	Introduction
	Problem Formulation
	Methodology
	Offline Feature Extraction using PS-GAIL
	Online Adaptation Using Recursive Least Square
	Benchmark problem for RLS-PAA
	Solving the benchmark problem

	AGen: Adaptable Generative Model
	RLS-PAA on Feedback Recurrent Neural Network

	Experimental Results
	Experimental Setup
	Evaluation Metrics
	Prediction Results
	Computation time
	RMSE

	Discussion
	Conclusion
	Appendix: Preliminaries on Imitation Learning

