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Abstract—To generate safe and efficient trajectories for an
automated vehicle in dynamic environments, a layered approach
is usually considered, which separates path planning and speed
profile planning. This paper is focused on speed profile planning
for a given path that is represented by a set of waypoints. The
speed profile will be generated using temporal optimization
which optimizes the time stamps for all waypoints along the
given path. The formulation of the problem under urban
driving scenarios is discussed. To speed up the computation,
the non-convex temporal optimization is approximated by a set
of quadratic programs which are solved iteratively using the
slack convex feasible set (SCFS) algorithm. The simulations in
various urban driving scenarios validate the effectiveness of the
method.

I. INTRODUCTION

Autonomous driving is widely viewed as a promising
technology to revolutionize today’s transportation system.
However, it is still challenging to plan collision-free, time-
efficient and comfortable trajectories for an automated vehi-
cle in dynamic environments such as urban roads, since the
vehicle needs to interact with other road participants. For
example, how to overtake a slow front vehicle safely using
the opposite lane as shown in Fig.1a and how to turn safely
at an intersection when pedestrians are crossing and vehicles
in the opposite lane are turning left as shown in Fig.1b.

To respond to other road participants, the automated
vehicle can resort to either spatial maneuvers such as detours
or temporal maneuvers such as slowing down or speeding up.
Regarding these two kinds of maneuvers, there are two plan-
ning frameworks in literature, e.g. the integrated framework
and the layered framework. The integrated framework relies
on spatiotemporal planning, which considers the spatial and
temporal maneuvers simultaneously. Typical spatiotemporal
planning methods include: 1) search-based methods which
rely on spatiotemporal lattice as discussed in [1] and [2];
and 2) optimization-based methods which comprehensively
consider driving quality as well as feasibility and safety
constraints as discussed in [3]. However, the computational
complexity for these methods is comparatively high [4].
On the other hand, the layered framework separates the
considerations on the spatial and temporal maneuvers by
planning a path first and then generating a speed profile along
the path. Computational complexity can be greatly reduced
by employing the layered framework as discussed in [4], [5],
[6], [7], and [8]. Moreover, in the cases when there is not
much freedom for an automated vehicle to choose alternative
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(a) Case 1: Overtake a slow front vehicle using the opposite lane.
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(b) Case 2: Right turn at an intersection.

Fig. 1: Urban Driving Scenarios.

paths, nudging the speed profile is the only choice to respond
to other road participants.

In literature, speed profiles for a smooth path can be
obtained in the following ways: 1) by selection from a pool
of diverse speed profile candidates as discussed in [4], [5]
and [6]; 2) by A* search [9]; 3) by quintic Bézier curves [10];
or 4) by direct optimization [7]. The discrete nature of the
candidate pool and the state lattice may affect the optimality
of trajectories. Meanwhile, it is hard to consider collision
avoidance using the quintic Bézier curves. This paper will
focus on direct optimization to obtain safe, time-efficient,
smooth and comfortable speed profiles.

A speed profile is a one-to-one mapping between the time
domain and the distance domain of the path. Optimization
can be performed either over station as shown in Fig.2a or
over time as shown in Fig.2b. Optimization over station re-
quires an analytical parameterization of the path as discussed
in [4], [5], [6], [7] and [8]. However, globally continuous
analytical parameterization of a complicated path is difficult,
which usually requires approximation. For a curvy path,
the approximation may introduce infeasibility, e.g. curva-
ture exceeding the vehicle’s kinematic limits. Moreover, the
complexity of the optimization problem may increase when
complicated expressions of the parameterization enter the
objective function. On the other hand, if we optimize over
time as discussed in [11], only a sequence of way points are
needed instead of a continuous parameterization of the path.
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Fig. 2: Two optimization schemes to obtain the speed profile.

Therefore, this paper will focus on speed profile planning
via temporal optimization which optimizes the time stamps
for all waypoints along a given path.

Nonetheless, since the velocity, acceleration and jerk of a
vehicle depend nonlinearly on the time stamps, the temporal
optimization problem is still nonlinear and non-convex. To
speed up the computation, we approximate the problem by
a sequence of quadratic programs using the slack convex
feasible set (SCFS) algorithm [12].

The contributions of the paper lie in: 1) novel formulation
of the speed profile planning problem in urban environments
by temporal optimization; 2) introduction of an efficient
algorithm to obtain speed profiles in real-time by quadratic
approximation of the non-convex temporal optimization. The
remainder of the paper is organized as follows: nomenclature
is presented in Section II; Section III formulates the temporal
optimization problem for speed profile planning; Section
IV discusses the quadratic approximation of the temporal
optimization problem; Section V illustrates the performance
of the proposed method through several case studies; and
Section VI concludes the paper.

II. NOMENCLATURE

position of the center of the rear axis € R?;
station along a path € R;
velocity € R?;

acceleration € R?;

jerk € R?;

vehicle heading € [0, 27);
longitudinal direction € RZ;
lateral direction € R?;
relative time interval € R;
absolute time stamp € R;
horizon of the problem € N.
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III. PROBLEM FORMULATION

To generate a desired speed profile, the vehicle needs
to consider driving quality (such as time-efficiency, speed
limit, longitudinal and lateral comfort), feasibility (such
as longitudinal and lateral acceleration limits) and safety
(collision avoidance). All these factors will be evaluated in
the optimization. In this section, the mathematical problem
underlying speed profile planning will be discussed first by
introducing the s — 7" graph. Then the temporal optimization
problem for speed profile generation will be formulated.

A. Representing Speed Profile Using the s —T' graph

Denote the path of the center of the rear axis of a vehicle
as p C R2, which is a one dimensional manifold that
can be parameterized using only one parameter. Denote the
parameter as s, e.g. p(s) € R2. The parameter s is also called
the station along the path. One intuitive parameterization is
the distance along the path. In this case, the path starts at
p(0); the tangent vector p(s) := dp/Js has unit length; and
the norm of p(s) := 9*p/ds? represents the curvature of
the path. In urban environment, another parameterization is
the distance along the lane.

Path p does not contain any speed information. In order
to determine the speed at each station, a time axis needs to
be introduced. The s — T graph is shown in Fig.3a where
the vertical axis is the one dimensional parameterization of
the path and the horizontal axis is the time axis. A speed
profile V is equivalent to a monotone curve on the s — T
graph. Since the curve is monotone, there are two ways to
obtain the speed profile. The first way is to find a mapping
from the 7' axis to the s axis, e.g. fix a sequence of time
steps {7} } and choose the desired s; for each T; as shown in
Fig.2a. The second way is to find a mapping from the s axis
to the 7' axis, e.g. fix a sequence of sampled stations {s;}
and choose the desired 7; for each s; as shown in Fig.2b.
The first way is the optimization over station as s;’s are the
decision variables, while the second way is the optimization
over time as 7T;’s are the decision variables. In either case,
the speed profile is represented by the curve V = {(T;, s;) };
in the s — 1" graph.

B. Computing Speed, Acceleration and Jerk

Consider the speed profile V = {(T;,s;)}:. Let p; =
p(si). Denote the time interval between p; and p; 4 as t; =
T;1+1—T;. When the time interval ¢; and the distance between
p; and p;11 are not too large, the velocity, acceleration and
jerk at p; can be approximated by
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Denote the heading of the vehicle at point p; as 6; :=
arctan(p(s;)). The longitudinal and lateral directions at
p; are denoted as 7(6;) := [cosf;,sinf;] and n(6;) =
[sin 6;, — cos 6;] respectively. Define the longitudinal velocity
as v] = v; - 7(0;), the lateral velocity as v] = v; - n(6;),
the longitudinal acceleration as a] = a; - 7(0;), the lateral
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Fig. 3: Illustration of the constraints and the topological
trajectories on the s — T graph. (a) Multiple topological tra-
jectories (or homotopy classes) given the original constraint.
(b) The new constraint for the chosen homotopy class.

acceleration as a = a; - n(6;), the longitudinal jerk as

JT = ji - 7(0;) and the lateral jerk as j;' = j; - n(6;).

Note that both p; and 6; depend on station s;. If we
optimize over station, an analytical expression of p(s) is
indispensable. Then the drawbacks discussed in the intro-
duction section will make the problem hard to solve. On the
other hand, if we optimize over time, s; is predefined and p;
and 0, are fixed for all . The analytical expression of p(s)
is not necessary. Moreover, in a lot of cases, the paths are
represented by a sequence of points instead of an analytical
expression. Hence temporal optimization is desired.

C. Speed Profile Planning via Temporal Optimization

As discussed earlier, given a path that is represented by
a list of points {p; 'f“, we need to plan a speed profile
along the path such that potential collision with other road
participants is avoided and the driving quality is optimized.
We do so by optimizing over the time interval ¢;’s between
any two consecutive points of the path, which is equivalent
to optimize over the time stamps T;’s for points along the
path.

The safety constraint for the optimization problem is illus-
trated in the s—7" graph in Fig.3a. The shaded area represents
moments that another road participant is occupying part of
the path (e.g. the conflict zone) so that the ego vehicle cannot
enter. The constraints in Fig.3a are generated regarding the
case shown in Fig.1a where the slow front vehicle is denoted
as V1 and the vehicle in the opposite lane is denoted as
V2. As the ego vehicle can choose to enter the conflict
zone before or after another road participant, there are more
than one topological trajectory (or homotopy class), hence
more than one local optimum as shown in Fig.3a. The
red trajectory corresponds to the case that the ego vehicle
overtakes V1 before V2 passes by, while the green trajectory
corresponds to the case that the ego vehicle overtakes V1
after V2 goes away. It is assumed that which homotopy class
to choose is determined by a high level planner [13]. In
temporal optimization, the speed profile planner only tries
to find the local optimum inside the chosen homotopy class
as shown in Fig.3b. This implies that the high level planner

would specify a constraint [T, T!™®] for each absolute
time stamp T;.

Regarding the driving quality, ™ and j7 should be min-
imized for longitudinal comfort, while a” and ;" should
be minimized for lateral comfort. Moreover, a reference
longitudinal speed v" should be tracked for time efficiency.
Hence, the following optimization problem can be posed.

Problem 1 (The Temporal Optimization Problem).

min  w; Z laT|? + wo Z |a” + ws Z 157 2

ti,th

+w4Z|jZ]|2+w5 Z(’UT —v])? (2a)
s.t. T; € [T, T (2b)
a; € Q, (2¢)

where (2a) is the cost function that considers driving quality.
wy, W, W3, wy and ws are positive weights. Equation
(2D) is the safety constraint. Equation (2c) is the feasibility
constraint where §) represents acceleration limits.

In this paper, considering the passenger comfort, we set the
acceleration limits to be |a”| < a and |a"| < @ where a :=
2.5m/ s2. Note that as a;, v; and j; all depend nonlinearly
on t;, Problem 1 is highly nonlinear and non-convex.

IV. QUADRATIC APPROXIMATION OF THE TEMPORAL
OPTIMIZATION

To solve Problem 1 efficiently, we transform it into a
sequence of quadratic programs in the framework of the
SCFS algorithm [12].

A. Rearranging the Problem

Define t := [t1, -+ ,tn], wy == [a],a],j7, 5] v" — v]]

and u := [uy, - - - ,uy). For simplicity, let u] € R be the j-th
entry in u;. Then Problem 1 can be rewritten as

mtin u’ Ru (3a)
st. At <b,—a <ul <a,Vi,Vj=1,2 (3b)
() + b (b)u] = 0,94, j, (3c)
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(a) The original constraint in (3c). (b) The relaxed constraint in (4c).

Fig. 4: The relaxation of the optimization problem.

Moreover, from (1), we have

fl) = 2[tdpl, —ti_1dp]]
hi(t) = titia(ti+ti1)
2(t) = 2 [tidp] | — t;—1dp]"]
hi(t) = titia(ti +ti1)
(t) = 6[(tim1 +timo)tioiti—adp] — (t; 4 2t

+tio)titi—odplt | + (t +tic1)titi—1dp]’ )]
titiatio(t; +ti1)(ti + i1 +1i2)
6[(ti—1 + ti—a)ti—1ti—odp]’ — (t; + 2t;—1
+timo)titi—odpl” | + (i 4+ tim1)titi—1dp) ]

hf(t) = titi—ati—o(t; +ti1)(ti +tic1 +ti2)
fz5 (t) = v"t;—dp]*
R(t) = ti

where dp; = pit1 — pi, dp;’ = dp; - 7(6;), and dp)’ =
dp;-n(0;). By definition, h] > 0 for all i and j. This property
will be exploited to relax the problem. In order to compute
the acceleration and jerk at ¢ = 1,2, constants py, p_1, to
and t_; are pre-defined according to the initial velocity vy

and the initial acceleration ag = 0.

B. Quadratic Approximation Using the SCFS Algorithm

The SCFS algorithm is designed for problems with convex
costs and nonlinear equality constraints. The idea is to 1)
relax the nonlinear equality constraints to a set of non
degenerating nonlinear inequality constraints using slack
variables by exploiting symmetry of the problem, and 2)
approximate the relaxed problem using quadratic programs.
A set of nonlinear inequality constraints are non degenerating
if they do not imply any nonlinear equality constraint.

Since Problem 1 is symmetric with respect to u in the
cost function (3a) and in the feasibility constraints (3b), we
define y > |u| to be the slack variable. Then the relaxed
problem is formulated below.

Problem 2 (The Relaxed Problem).

min y? Ry (4a)
ty

st At < byl <a,vi,¥j=1,2 (4b)

F(6) +h(t)y! >0, f1(t) = hl(t)y! <0.  (4o)

Geometrically, the nonlinear equality constraint shown as
the nonlinear curve in Fig.4a is relaxed to two inequality
constraints shown as the shaded area in Fig.4b. Problem 2

is equivalent to Problem 1 in the sense that: if (t°,y°) is
a local optimum of Problem 2, then t° is a local optimum
of Problem 1; and if t° is a local optimum of Problem 1,
then (t°,y°) is a local optimum of Problem 2 with (y7 ) :=
|2 (£2)] 1 (8°).

The relaxed problem is solved iteratively. Suppose at the
k-th iteration, we have a solution t(*) and y(*). Then at the
(k + 1)-th iteration, (4c) is convexified with respect to t(*)
and y*®) [12]. In this paper, we simply linearize (4c) and
obtain the following approximated quadratic program.

Problem 3 (The Approximated Quadratic Program).

min y’ Ry (5a)
ty
st At < byl <a,Vi,Vj=1,2 (5b)

Vel (60 + Vel (60 ) (£~ 1)
+ R 6@yl + f (") > 0
Vel (69) = Vel (60 ) | (6~ 1)
=Wyl + £ W) <o.

(5¢)

(5d)

Solving the above quadratic program, we obtain t° and y°.
Define t*+1) := t° and (y/)F Y = |[A)(t°)] "1 f] (£°)].
Then we iterate until the solution converges, e.g. ||t(k+1) —
t®)|| < ¢ for e small. t(©) and y(© is initialized as

10 = PO = RO G ED), ©
where v* can be the reference v” or the initial speed vg.

It is shown in [12] that if (5¢) and (5d) are subsets of
(4c), then the iteration described above will converge to
a local optimum of Problem 1. In practice, the iteration
converges even if the condition does not hold, which requires
further analysis in the future. Note that the idea of iteratively
solving a quadratic subproblem is similar to that of the
sequential quadratic programming (SQP). However, if we
directly apply SQP on Problem 1 (directly linearizing the
equality constraint (3c)) instead of relaxing Problem 1 to
Problem 2, we may not approach a local optimum of Problem
1 without line search in each iteration. The key advantage
of the SCFS algorithm is that no line search is needed. Thus
the computational complexity is lowered and the computation
time is reduced.

V. PERFORMANCE

In this section, the performance of the proposed algorithm
will be illustrated in several scenarios including the two
cases in Fig.1. The parameters in Problem 1 were chosen
to be wy = 1 and wy = w3 = wy = ws = 10. The
simulations were run in Matlab on a Macbook of 2.3 GHz
using Intel Core i7. In the SCFS algorithm, Problem 3 for
each iteration was solved using the quadprog function.
For comparison, Problem 1 was also solved using the SQP
in the fmincon function. The SCFS algorithm and the SQP
algorithm terminated if the step size (difference between the
two consecutive solutions) was less than 1076, Note that the
computation time of the algorithms shown in this paper is
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Fig. 5: The scenario and the result in case 0.

just for comparison. The computation time may be greatly
reduced if we run the algorithm in more efficient languages
such as C++, which will be pursued in the future. In this
paper, the efficiency of the proposed algorithm can also
be demonstrated though the reduced number of iterations
required for convergence. For better illustration, the speed
profiles after every iteration are shown in grayscale (the later
in the iteration, the darker) together with the optimal speed
profile in all three cases.

A. Case 0: Speed Profile for a Curvy Road

In this scenario, the automated vehicle needs to pass a
curvy road shown in Fig.5. The reference speed is v, =
11m/s. The vehicle’s initial speed is v] = 1lm/s and
vl = O0m/s. The path is sampled every 2m and 35 points are
chosen. The SCFS algorithm (iteratively solving Problem 3)
converges after 5 steps with total computation time 0.185s.
The optimal speed, acceleration and jerk profiles are shown
in Fig.5. The horizontal axes in the plots represents the
traveling distance along the path. The vehicle decelerated
first in order to meet the acceleration constraint in the lateral
direction. It then accelerated after the maximum curvature
was reached. The SQP algorithm converges to the same
speed profile after 80 iterations with total computation time
54.479s.

B. Case 1: Speed Profile for Overtake

The scenario is shown in Fig.la where the automated
vehicle wants to overtake the slow front vehicle using the
opposite lane. The reference speed is v, = 11m/s. The
vehicle’s initial speed is v] = 10m/s and v] = Om/s.
t(9) is initialized using vj. The path is sampled every 2m
and 34 points are chosen. The SCFS algorithm converges
at iteration 5 with computation time (0.308s. The optimal
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Fig. 6: The scenario and the result in case 1.

speed, acceleration and jerk profiles are shown in Fig.6.
The horizontal axis in the plots represents the traveling
distance along the lane. The corresponding time stamps for
all stations are shown in Fig.7. Snapshots are also shown
in Fig.7 where the gray rectangle represents the ego vehicle
and the yellow rectangles are the surrounding vehicles. The
ego vehicle slowed down first to keep a safe headway from
the front vehicle V1. When it changed to the adjacent lane,
it speeded up to overtake V1. Before the vehicle V2 in the
opposite direction came, the ego vehicle went back to its
lane. The optimal speed profile is on the boundary of the
safety constraint as shown in Fig.7 and on the boundary of
the feasibility constraint as shown in the acceleration profile
in Fig.6. For comparison, SQP method converges to the same
optimum after 48 iterations with computation time 28.513s.

C. Case 2: Speed Profile for Right Turn

The scenario is illustrated in Fig.1b where the automated
vehicle tries to turn right in green light when a vehicle in the
opposite direction turns left and a pedestrian is crossing the
street. The reference speed is v, = 5m/s. The vehicle’s
initial speed is v] = 2.5m/s and v] = Om/s. t(© is
initialized using vj. The path is sampled every 0.5m and
36 points are chosen. The strategy determined by the high
level planner for the ego vehicle is to pass the conflict zone
after the pedestrian at 7' = bs and before the left-turn
vehicle at 7' = 6s. To meet the safety constraint, the ego
vehicle slowed down to yield the pedestrian and speeded up
to pass the conflict zone before the left-turn vehicle, as shown
in the speed profile in Fig.8. For comparison, the optimal
speed profile without the safety constraint is shown in Fig.9
where the ego vehicle turned smoothly. The SCFS algorithm
converges after 8 iterations with computation time 0.522s.
The SQP algorithm does not converge before the maximum
number of iterations 100 is reached.
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case 2.

VI. CONCLUSION

In this paper, the one dimensional speed profile planning
problem is considered. A temporal optimization framework
is proposed which comprehensively evaluates driving quality
such as time-efficiency and comfort, feasibility such as
acceleration limits, as well as safety during interactions with
other road participants. To speed up computation, the non-
convex temporal optimization problem is approximated by a
sequence of quadratic programs and then solved iteratively
using the slack convex feasible set algorithm. Several case
studies are provided to illustrate the effectiveness of the
method. In the future, the proposed method for speed profile
planning will be integrated into a layered trajectory planning
framework.
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