
Boundary Layer Heuristic for Search-Based Nonholonomic Path
Planning in Maze-Like Environments

Changliu Liu, Yizhou Wang and Masayoshi Tomizuka

Abstract— Automatic valet parking is widely viewed as a
milestone towards fully autonomous driving. One of the key
problems is nonholonomic path planning in maze-like environ-
ments (e.g. parking lots). To balance efficiency and passenger
comfort, the planner needs to minimize the length of the path
as well as the number of gear shifts. Lattice A* search is
widely adopted for optimal path planning. However, existing
heuristics do not evaluate the nonholonomic dynamic constraint
and the collision avoidance constraint simultaneously, which
may mislead the search. To efficiently search the environment,
the boundary layer heuristic is proposed which puts large cost
in the area that the vehicle must shift gear to escape. Such area
is called the boundary layer. A simple and efficient geometric
method to compute the boundary layer is proposed. The
admissibility and consistency of the additive combination of the
boundary layer heuristic and existing heuristics are proved in
the paper. The simulation results verify that the introduction of
the boundary layer heuristic improves the search performance
by reducing the computation time by 56.1%.

I. INTRODUCTION

Autonomous driving is a promising technology to revolu-
tionize today’s transportation system. Among many applica-
tions of this technology, automatic valet parking [1] is widely
regarded as a milestone towards fully autonomous driving.
However, path planning in parking lots is challenging due to
(i) the complication of the nonholonomic vehicle dynamics,
and (ii) the constraint imposed by the tight, cluttered and
maze-like environment. To balance efficiency and passenger
comfort, the objective of path planning in such environment
is to find an optimal, safe and feasible path that minimizes
the travel distance as well as the number of gear shifts.

Existing path planning methods include search-based
methods such as A* or D* search [2], sampling-based
methods such as rapidly-exploring random tree (RRT) [3],
and dynamic programming [4]. A detailed survey can be
found in [5]. This paper focuses on search-based methods,
especially the lattice A* method [6] which directly encodes
the nonholonomic vehicle dynamics and the geometry of the
environment in the search graph.

A search graph contains nodes and links. Each node is
a discrete vehicle state including vehicle position, heading
and moving direction. Two nodes are directly connected
by a link only if all constraints are satisfied. Starting from
the initial node, the graph will be traversed until the goal
node is reached. The order to traverse the graph depends

C. Liu and M. Tomizuka are with the Department of Mechanical
Engineering, University of California, Berkeley, CA 94720 USA (e-mail:
changliuliu, tomizuka@berkeley.edu).

Y. Wang is with Faraday & Future Inc, Gardena, CA 90248 USA
yizhou.wang@faradayfuture.com

Fig. 1: The path planning problem in a maze-like environment.

on the objective of the path planning problem. To efficiently
guide the search, two types of heuristics have been devel-
oped as discussed in [2] and [7]: non-holonomic-without-
obstacles and holonomic-with-obstacles. As their names im-
ply, the non-holonomic-without-obstacles heuristic evaluates
the objective considering only the nonholonomic dynamic
constraint, while the holonomic-with-obstacles heuristic eval-
uates the objective considering only the collision avoidance
constraint. However, these heuristics ignore the cost on gear
shifts induced by the interaction between the nonholonomic
dynamic constraints and the collision avoidance constraint.
They may be bad guides in certain cases. Recently, meth-
ods to simultaneously evaluate the nonholonomic constraint
and the collision avoidance constraint have been proposed
in [8] and [9]. However, these heuristics do not directly
approximate the cost on gear shifts, which may limit their
capabilities to address diverse planning objectives.

In this paper, the boundary layer heuristic is proposed to
estimate the cost on gear shifts induced by the interaction
between the nonholonomic dynamic constraints and the col-
lision avoidance constraint. Borrowed from fluid dynamics,
the concept of boundary layer is defined as the area in
the proximity of obstacles such that once a nonholonomic
vehicle enters, it must shift gear to escape. Informed with
the position of the boundary layers, the vehicle can better
evaluate the consequences of getting into those areas, and
hence reach the goal node faster. It will be shown that (i) the
computation of the boundary layers is purely geometric, and
(ii) the additive combination of the boundary layer heuristic
and existing heuristics are admissible and consistent.

The remainder of the paper is organized as follows: the
optimal path planning problem is formulated in Section II;
Section III describes the lattice A* method and existing
heuristics; Section IV introduces the boundary layer heuristic
and proves the admissibility and consistency of this heuristic;
Section V illustrates the performance of different heuristics;
Section VI concludes the paper.

II. PROBLEM FORMULATION

A. The Problem
Denote the pose of a vehicle as (x, y, θ) where x and

y denote the planar position of the vehicle and θ is the
vehicle heading. The path planning problem in a maze-like
environment illustrated in Fig.1 is formulated below.

Problem: Given the start pose A = (xA, yA, θA), the end
pose B = (xB , yB , θB), we need to find a shortest vehicle
path connecting A and B which avoids all obstacles and
satisfies the nonholonomic constraint with minimum length
of backward driving and minimum number of gear shifts.

B. The Path and the Constraints
Let p : [0, s∗]→ R2 denotes a path which is parameterized

by length s. The total length of the path is s∗. p(s) ∈ R2

is a point on the path p which has distance s to the starting
point p(0). ṗ := ∂p/∂s and p̈ := ∂2p/∂s2 denote the
tangent vector and the normal vector of the path respectively.
Since the path p is parameterized by length, the length of
its normal vector represents the curvature of the path. The
nonholonomic dynamic constraint requires that the curvature
of the path be bounded by maximum curvature κmax.

Let d : [0, s∗] → {−1, 1} be the indicator of driving
direction along the path p. At p(s), d(s) = 1 means
forward driving and d(s) = −1 means backward driving.
The discontinuous points on d represent gear shifts. Define
δ(d) be the function that counts the number of gear shifts.

Let Ta→b be a trajectory [p,d] connecting a and b. The
states a and b specify boundary conditions for the trajectory.

The area occupied by obstacles in the environment is
denoted by O ⊂ R2. Define Oθ ⊂ R2 to be the obstacle
in the configuration space [10] given vehicle heading θ. Oθ
is an enlarged set of O. Since the vehicle is not a point mass
but occupies a finite area, (x, y) /∈ Oθ ensures that any part
of the vehicle is outside of O. For simplicity, we identify Oθ
with O in this paper. Refer to [11] for shape-aware planning.

C. Mathematical Formulation of the Path Planning Problem
The cost related to a trajectory is defined as

J(TA→B) :=

∫ s∗

0

cs(d(s))ds+ cgδ(d). (1)

The first term J1(TA→B) :=
∫ s∗
0
cs(d(s))ds penalizes the

weighted traveling distance where cs : {1,−1} → R+ is
the unit cost for forward or backward driving. Typically
cs(−1) > cs(1). The second term J2(TA→B) := cgδ(d)
penalizes the number gear shifts with unit cost cg ∈ R+.
Based on the previous discussion, the following optimization
is formulated for the path planning problem,

minTA→B J(TA→B) (2)
‖p̈(s)‖ ≤ κmax (3)
p(s) /∈ Oθ(s). (4)

Equation (2) is the cost function. Equation (3) is the con-
straint on the curvature of the path regarding the nonholo-
nomic vehicle dynamics. Equation (4) is the constraint for
obstacle avoidance where θ(s) = arctan(ṗ(s)).

Fig. 2: Illustration of the lattice in 2D. The links from the red node
are shown in black and other links are shown in gray (not all links
are shown). The red curve represent a feasible trajectory starting
from the red node.

As implied by the cost function J(TA→B), in a tight
environment, the forward driving distance, the backward
driving distance, and the number of gear shifts should be
balanced. However, the problem (2-4) is in general hard
to solve as it is nonlinear and non-convex which contains
both continuous and discrete decision variables. Search-
based methods such as lattice A* search are usually adopted
to solves (2-4) approximately, which will be briefly reviewed
in the following section.

III. LATTICE A* SEARCH

A. The Lattice and The Search Algorithm

The state space for problem (2-4) has four dimensions
(x, y, θ, d). A lattice [6] contains a set of discretized states
(e.g. nodes) and a set of links connecting the nodes where
every link represents a feasible path regarding constraints
(3) and (4). The planning problem (2-4) can be solved
approximately using graph search on the lattice as shown
in Fig.2. The task is to traverse the graph from the starting
nodes (xA, yA, θA,±1) using A* algorithm until either of the
goal nodes (xB , yB , θB ,±1) is found. The notations used in
the graph search are defined below:
• Node Ni is a discretized state (xi, yi, θi, di) for index i.
• Link Li,j is a spiral curve connecting node Ni and Nj

which does not intersect with any obstacles and satisfies
the maximum curvature constraint as shown in Fig.2. The
cost associated with a link is cs(dj)‖Li,j‖ + cg

|di−dj |
2

where ‖Li,j‖ computes the length of the link.
• Successor S(Ni) of node Ni is a set of nodes such that

there is a link between Ni and any Nj ∈ S(Ni).
• Forward cost F (Ni) is a summation of all link costs from

the start node to Ni.
• Heuristic cost H(Ni) is the estimation of the minimum

cost from Ni to the goal nodes.
• Total cost T (Ni) = F (Ni) +H(Ni).
• Fringe of the search problem contains a list of nodes that

has not been expanded.
• Closed set V (Ni) of the search problem indicates whether

node Ni has been expanded before.

initialize V (N) as zero for all nodes N ;
insert (xA, yA, θA, 1) and (xA, yA, θA,−1) to fringe;
while True do

if fringe is empty then
return failure;

end
Pop node N ∗ from fringe with smallest T (N ∗);
if N ∗ is the goal then

return N ∗;
end
if V (N ∗) = 0 then

V (N ∗) := 1;
for child-node in S(N ∗) do

insert child-node to fringe;
end

end
end

Algorithm 1: Lattice A* Search.

The pseudo code is shown in Algorithm 1.

B. The Heuristics

Heuristics are approximations of the cost-to-go function,
which are needed to guide the search as the search space is
very large. The cost-to-go function with respect to (2-4) is

J∗(Ni,Nj) := min
TNi→Nj ,‖p̈‖≤κmax,p/∈Oθ

J(TNi→Nj). (5)

In order for the A* search to find the optimal path, the
heuristic needs to be admissible, e.g. H(N) ≤ J∗(N , B),
and consistent, e.g. H(Ni)−H(Nj) ≤ J∗(Ni,Nj) [12].

In literature, there are two types of heuristics as dis-
cussed in Section I: non-holonomic-without-obstacles heuris-
tic hf and holonomic-with-obstacles heuristic hD. The non-
holonomic-without-obstacles heuristic hf (N) equals to the
minimized J(TN→B) subject to constraint (3), which is also
called the free-space heuristic. The holonomic-with-obstacles
heuristic hD(N) equals to the minimized J(TN→B) subject
to constraint (4). As the vehicle is holonomic, there is no
backward driving and gear shifts. J(TN→B) reduces to the
length of path p, i.e. the dijkstra distance from (x, y) to
(xB , yB) given obstacles O. Hence hD is also called the D*
heuristic.

Typically, the heuristic for A* search is chosen as
H(N) = max(hf (N), hD(N)). As both hf and hD are
admissible and consistent, H is admissible and consistent.
Hence the search is optimal. However, as the free-space
heuristic hf is inefficient to compute online and it requires
large memory space to store if computed offline, we only
consider the D* heuristic hD in this paper. hD can be
computed both online and offline very efficiently and do not
require much memory to store the result.

Nonetheless, gear shifts are sometimes inevitable for non-
holonomic vehicles in a tight environment, which is not
captured by the existing heuristics. A non-holonomic-with-
obstacles heuristic is needed.

(a) The minimum tangent circles.

(b) The boundary layer for a line segment.

(c) The boundary layer for a concave corner.

Fig. 3: Computing the boundary layer for a fixed heading θ.

IV. BOUNDARY LAYER HEURISTIC

A. Defining the Boundary Layer

The definition of the boundary layer concerns with the
moving direction of the vehicle instead of the vehicle head-
ing. Given state (x, y, θ, d), without loss of generality, we
assume d = 1. If d = −1, the following analysis is equivalent
to (x, y, θ+π, 1). Define the boundary layer B ⊂ R2×[0, 2π)
to be a collection of poses (x, y, θ) such that there does not
exist a path from the pose to the goal pose B that satisfies
constraints (3) and (4) and does not contain any gear shift,
e.g.

B(O) := {(x, y, θ) ∈ R2 × [0, 2π)|@T(x,y,θ)→B ,

s.t.‖p̈(s)‖ ≤ κmax,p(s) /∈ Oθ(s), δ(d) = 0}. (6)

B. Computing the Boundary Layer

For an arbitrary environment, it is in general hard to
fully determine the boundary layer without solving the path
planning problem. In this paper, it is assumed that O is a
collection of polygons. With this assumption, we only ex-
plore the expression of the boundary layer for line segments
l and concave corners c as these two geometric objects can
fully represent ∂O. In the following analysis, we fix θ and
computes

Bθ(O) := {(x, y) ∈ R2|(x, y, θ) ∈ B(O)}, (7)

as B(O) = ∪θ(Bθ(O), θ).

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

(a) The occupancy grid map. (b) The extracted geometric objects. (c) The computed boundary layer Bθ .

Fig. 4: Computing the boundary layer in mixed environment.

Define a minimum tangent circle as a circle of radius
R := 1/κmax that passes (x, y) with tangent direction
v(θ) := [cos θ, sin θ] as shown in Fig.3a. Considering the
direction v(θ), the left circle centered at O1 := (x −
R sin θ, y + R cos θ) is denoted as C1 and the right circle
centered at O2 := (x+R sin θ, y−R cos θ) is denoted as C2.
In the following discussion, the boundary layer is computed
assuming the goal point is far from the identified geometric
objects.

1) Boundary Layer for Line Segments: Suppose the two
end points of a line segment l is p1 = (x1, y1) and p2 =
(x2, y2), with outward normal direction ~n. p1 is on the left
of p2 regarding the normal direction ~n. If ~n · v(θ) < 0, the
boundary layer is nonempty, e.g. Bθ(l) 6= ∅ where ∅ denotes
an empty set, and is enclosed by the line segment l and the
following three curves: (i) the contour Z1 of (x, y) such that
C1 passes p2; (ii) the contour Z2 of (x, y) such that C2 passes
p1; (iii) the contour Z3 of (x, y) such that C1 or C2 is tangent
to l, whichever is closer to l. The three curves are illustrated
in Fig.3b. Note that it is possible that Z1 and Z2 intersects.

As C2 or C1 is tangent to l, the distance from Z3 to l is
d = R−R|~v(θ − π

2) · ~n|. Hence the area enclosed by l and
Z3 satisfies

0 ≤ (x− x1, y − y1) · ~n ≤ d. (8)

For Z1, ‖O1p2‖ = R. The area enclosed by Z1 satisfies
that

−−→p2p1 ·
−−−→
p2O1 ≥ 0 or ‖

−−−→
p2O1‖ ≤ R. (9)

For Z2, ‖O2p2‖ = R. The area enclosed by Z2 satisfies
that

−−→p1p2 ·
−−−→
p1O2 ≥ 0 or ‖

−−−→
p1O2‖ ≤ R. (10)

Then Bθ(l) is defined by (8), (9) and (10).
2) Boundary Layer for Concave Corners: Consider a

corner point is p0 = (x0, y0), the line on the left is denoted as
l1 with outward normal vector ~n1, and the line on the right is
denoted as l2 with outward normal vector ~n2. As illustrated
in Fig.3c, the boundary layer for the corner, e.g. Bθ(c), is
enclosed by the lines l1 and l2 and the following two curves:
(i) the contour Z1 of (x, y) such that C1 is tangent to l2; (ii)

the contour Z2 of (x, y) such that C2 is tangent to l1. As C2
is tangent to l1, the distance from Z1 to l1 is

d1 = R−R~v(θ − π

2
) · ~n1. (11)

As C1 is tangent to l2, the distance from Z2 to l2 is

d2 = R−R~v(θ + π

2
) · ~n2. (12)

Then Bθ(c) = {(x, y)|(x− x0, y − y0) · ~n1 ∈ [0, d1], (x−
x0, y − y0) · ~n2 ∈ [0, d2]}.

3) Boundary Layer for Mixed Environments: In a mixed
environment, suppose the information of the obstacles is
stored in an occupancy grid map. The first step is to find
all line segments from the occupancy grid map together
with their outward normal vectors. The second step is to
find all concave corners from the set of line segments. Then
we compute the boundary layer for each line segment and
each concave corner. The process is illustrated in Fig.4. This
method gives a good approximation of the true boundary
layer defined in (6) if the goal point B is not in the
computed B(O), which is assumed in this paper. Moreover,
the computation is purely geometric.

C. The Boundary Layer Heuristic

Given the boundary layer B(O), the boundary layer heuris-
tic is defined as

hBL(N) =

 cg (x, y, θ) ∈ B(O), d = 1
cg (x, y, θ + π) ∈ B(O), d = −1
0 else

. (13)

In the following discussion, we show the admissibility and
consistency of hBL and hBL+hD. Since consistency implies
admissibility, we will be focused on consistency.

1) Consistency of hBL: For any two nodes Ni and Nj ,
we need to show hBL(Ni) − hBL(Nj) ≤ J∗(Ni,Nj). By
definition (13), hBL(Ni) − hBL(Nj) can only be ±cg or
0. Since J∗(Ni,Nj) ≥ 0, we only need to consider the
case hBL(Ni) = cg and hBL(Nj) = 0, i.e. Ni is in the
boundary layer but Nj is not. By definition of B(O) in (6),
the vehicle needs to shift gear to get out of boundary layer.
Then J∗(Ni,Nj) ≥ cg = hBL(Ni) − hBL(Nj). Hence the
heuristic hBL is consistent.

Fig. 5: Illustration of the boundary layer in 3D.

2) Consistency of H∗ := hBL + hD: Consider any
TNi→Nj that satisfies constraints (3) and (4). By previous
discussion, hBL(Ni)−hBL(Nj) ≤ cgδ(d) = J2(TNi→Nj).
Moreover, by triangular inequality, hD(Ni) − hD(Nj) is
smaller than or equal to cs(1) times the dijkstra distance
between Ni and Nj , hence is smaller than J1(TNi→Nj). As
J = J1+J2, then H∗(Ni)−H∗(Nj) ≤ J(TNi→Nj). Since
TNi→Nj is arbitrary, then H∗(Ni)−H∗(Nj) ≤ J∗(Ni,Nj).
So H∗ is consistent.

Consistency of H∗ implies that lattice A* search algorithm
with heuristic hBL + hD is optimal.

V. PERFORMANCE

In this section, we illustrate the performance of the A*
search using different heuristics. The test scenario is a closed
20m× 40m ground with several obstacles, which is the test
ground for the unmanned vehicle contest in World Robotics
Conference (WRC) 2016 in Beijing, China. The computed
boundary layer for the test environment is shown in 3D in
Fig.5. The resolution of the lattice is 0.5m for the xy plane.
16 discrete headings are chosen. The primitive set is shown
in Fig.2.

In this paper, the start pose and the ending pose are chosen
as A = (22.5m, 15m, 0deg) and B = (8m, 5m, 0deg). To
illustrate the performance of hBL, two sets of optimization
parameters are chosen. In case 1, the parameters are chosen
to be cs(1) = cs(−1) = 1 and cg = 15. In case 2, the gear
cost is cg = 50 while other parameters remain the same.
For both cases, the path planning problem is solved using
(i) uniform cost search (which is equivalent to A* search
with zero heuristic); (ii) A* search with hD; and (iii) A*
search with hD + hBL. Algorithm 1 was run in C++ on a
virtual machine on Macbook of 2.3 GHz using Intel Core i7.
The performance (e.g. optimal cost, maximum size of fringe,
number of iterations and computation time) of the A* search
using different heuristics in the two cases is shown in Table
I. The optimal paths (which are not unique) and the nodes
that were expanded during the search are shown in Fig.6. In

TABLE I: The performance of different heuristics.

Heuristic Cost Max Fringe
Size

Iterations Time
(ms)

Case 1
0 35.6421 23066 25089 2418
hD 35.6421 892 402 10
hD+hBL 35.6421 783 330 8

Case 2
0 62.6127 30725 28387 2341
hD 62.6127 22778 19114 1309
hD+hBL 62.6127 17632 11421 574

those figures, the color of a 2D point represents the number
of times that a node associated with that point is expanded.
Regarding the results from the tables and the figures, we
conclude that,
• The heuristic hD+hBL is admissible and consistent since

A* search with hD + hBL finds the same optimal cost as
uniform cost search does.

• The heuristic hD + hBL has more advantage over the
heuristic hD when the gear cost is larger. In case 1 when
the gear cost is relatively small, the maximum size of the
fringe, the number of iterations and the computation time
reduce 12.2%, 17.9% and 20.0% respectively by adding
the BL heuristic. In case 2 when the gear cost is relatively
big, the number is 22.6%, 40.2% and 56.1% respectively.

• The improved performance of the heuristic hD + hBL is
due to the fact that the A* solver visits the points in the
boundary layer less frequently as shown in Fig.6d and
Fig.6f.

• The optimal path changes a lot when the optimization
parameters changes. When the cost for gear shift is small,
the optimal trajectory is to move forward a little bit and
then drive backward to the destination as shown in Fig.6a.
When the cost for gear shift is large, the optimal trajectory
is to detour and drive forward to the destination as shown
in Fig.6a.
Note that due to discretization, the path has some unneces-

sary oscillations. Trajectory smoothing [13] is needed before
sending the path to low level controller for execution.

VI. CONCLUSION

In this paper, the optimization problem for nonholonomic
path planning in a maze-like environment is formulated. To
find a safe, feasible and comfortable path to the destination,
the vehicle needs to minimize the travel distance and the
number of gear shifts. Lattice A* search is used to solve
the problem. However, existing heuristics may provide bad
guides to the search as the interaction between the non-
holonomic dynamic constraint and the collision avoidance
constraint is ignored. The boundary layer heuristic is pro-
posed in this paper, which assigns a large cost to the nodes
in the boundary layer, e.g. area that the vehicle must shift
gear to escape. The computation of the boundary layer is
purely geometric. It is proved in the paper that the additive
combination of the boundary layer heuristic and the D*
heuristic is consistent, hence optimal. By introducing the
boundary layer heuristic, the total computation time can
reduce 56.1% when the cost of gear shift is relatively large.

(a) Uniform cost search in case 1. (b) Uniform cost search in case 2.

(c) A* search with D* heuristic in case 1. (d) A* search with D* heuristic in case 2.

(e) A* search with D* and BL heuristics in case 1. (f) A* search with D* and BL heuristics in case 2.

Fig. 6: Illustration of the results in the two cases.

REFERENCES

[1] C. Löper, C. Brunken, G. Thomaidis, S. Lapoehn, P. P. Fouopi,
H. Mosebach, and F. Köster, “Automated valet parking as part of
an integrated travel assistance,” in IEEE International Conference on
Intelligent Transportation Systems (ITSC), 2013, pp. 2341–2348.

[2] D. Dolgov, S. Thrun, M. Montemerlo, and J. Diebel, “Path planning
for autonomous vehicles in unknown semi-structured environments,”
The International Journal of Robotics Research, vol. 29, no. 5, pp.
485–501, 2010.

[3] L. Han, Q. H. Do, and S. Mita, “Unified path planner for parking an
autonomous vehicle based on RRT,” in IEEE International Conference
on Robotics and Automation (ICRA), 2011, pp. 5622–5627.

[4] G. Schildbach and F. Borrelli, “A dynamic programming approach for
nonholonomic vehicle maneuvering in tight environments,” in IEEE
Intelligent Vehicles Symposium (IV), 2016, pp. 151–156.

[5] D. González, J. Pérez, V. Milanés, and F. Nashashibi, “A review of mo-
tion planning techniques for automated vehicles,” IEEE Transactions
on Intelligent Transportation Systems, vol. 17, no. 4, pp. 1135–1145,
2016.

[6] M. Pivtoraiko and A. Kelly, “Generating near minimal spanning con-
trol sets for constrained motion planning in discrete state spaces,” in

IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 2005, pp. 3231–3237.

[7] M. Likhachev and D. Ferguson, “Planning long dynamically feasible
maneuvers for autonomous vehicles,” The International Journal of
Robotics Research, vol. 28, no. 8, pp. 933–945, 2009.

[8] S. Yoon, S. E. Yoon, U. Lee, and D. H. Shim, “Recursive path
planning using reduced states for car-like vehicles on grid maps,” IEEE
Transactions on Intelligent Transportation Systems, vol. 16, no. 5, pp.
2797–2813, 2015.

[9] C. Chen, M. Rickert, and A. Knoll, “Path planning with orientation-
aware space exploration guided heuristic search for autonomous park-
ing and maneuvering,” in IEEE Intelligent Vehicles Symposium (IV),
2015, pp. 1148–1153.

[10] T. Lozano-Pérez, Spatial Planning: A Configuration Space Approach.
Springer New York, 1990, pp. 259–271.

[11] S. Yoon and D. H. Shim, “SLPA∗: Shape-aware lifelong planning A∗

for differential wheeled vehicles,” IEEE Transactions on Intelligent
Transportation Systems, vol. 16, no. 2, pp. 730–740, 2015.

[12] S. Russell and P. Norvig, “Artificial intelligence: A modern approach,”
Prentice Hall, vol. 25, p. 27, 1995.

[13] C. Liu, C.-Y. Lin, Y. Wang, and M. Tomizuka, “Convex feasible set
algorithm for constrained trajectory smoothing,” in American Control
Conference (ACC), 2017, p. to appear.

