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Abstract— From the driving strategy point of view, a major
challenge for autonomous vehicles in urban environment is to
behave defensively to potential dangers, yet to not overreact to
threats with low probability. As it is overwhelming to program
the action rules case-by-case, a unified planning framework
under uncertainty is proposed in this paper, which achieves a
non-conservatively defensive strategy (NCDS) in various kinds
of scenarios for urban autonomous driving. First, uncertainties
in urban scenarios are simplified to two probabilistic cases,
namely passing and yielding. Two-way-stop intersection is
used as an exemplar scenario to illustrate the derivation of
probabilities for different intentions of others via a logistic
regression model. Then a deterministic planner is designed as
the baseline. Also, a safe set is defined, which considers both
current and preview safety. The planning framework under
uncertainty is then proposed, in which safety is guaranteed
and overcautious behavior is prevented. Finally, the proposed
planning framework is tested by simulation in the exemplar
scenario, which demonstrates that an NCDS can be realistically
achieved by employing the proposed framework.

I. INTRODUCTION

Urban autonomous driving is very challenging since the
host vehicle has to handle various kinds of scenarios and the
behaviors of other road participants are highly unpredictable.
Variations in intentions of others [1][2] and uncertainties in
subsequent motions [3] may lead to different decisions and
resultant motions taken by the host autonomous vehicles.
Typically, the relationship between decision-making and mo-
tion planning is hierachical [4]. However, for autonomous
vehicles in dynamic environment, taking an immediate action
does not mean that it has to immediately make a final
decision among possible future actions. Tentative actions are
commonly seen in human driving, which is ambiguous and
allows the diversification of possible subsequent actions that
can be transitioned smoothly in the future. The following
challenging urban driving scenarios are provided to illustrate
why decision-making for ambiguous intentions of others
can be incorporated in motion planning by taking actions
tentatively, which enables a non-conservatively defensive
strategy (NCDS).

Scenario 1: Avoiding violation vehicles at intersections.
Careless drivers may violate stop signs or red lights and
cause fatal accidents [5]. In order to be defensive to red
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light runners, Google programmed a short pause after light
turning green before its car proceeds into the intersection [6].
Also, stop sign violation is not an extremely rare behavior in
real world traffic. Google self-driving car was crashed by a
car violating stop sign in February 2015 [7]. When observing
a vehicle that may run the stop sign or red light with high
speed and low deceleration, an autonomous vehicle should be
prepared to avoid a possible crash. However, it does not mean
that the autonomous vehicle should slow down prematurely
to make a yielding decision. If the violation probability is
relatively low, it can maintain its speed as long as its braking
capability can allow it to stop timely before reaching the
conflict region.

Scenario 2: Roundabout entering. When an autonomous
vehicle is entering a roundabout, some vehicles in the round-
about may act aggressively to deter the host vehicle from
merging but other non-aggressive vehicles may slow down
and yield to the host vehicle [8]. It was observed in the test
in Parma [9] that the VisLab autonomous car, when entering
a roundabout, acted conservatively so that there were long
pauses and unnecessary stops before proceeding even though
the other vehicle in the roundabout had already started to turn
into other road branches. Therefore, in planning to enter the
roundabout given the uncertainties above, an autonomous
vehicle does not have to decide immediately whether to
merge before or after the other vehicle in the roundabout
coming to its entrance point. It can just keep a proper
speed and further observe the motion of the vehicle in the
roundabout, and make final decisions when it has to.

Scenario 3: Four-way-stop intersection entering. At a
busy four-way-stop intersection, an autonomous vehicle can
hardly move forward if it strictly obeys the rule and behave
cautiously, waiting behind the stop bar for its turn. This case
was observed in a demonstrated situation that the Google
self-driving car faced. Google decided to enable the car to
move forward a little to show its determination to go. In
fact, the principle behind such human-like behavior can be
explained as follows. It is possible that all vehicles from
other approaches of the intersection may yield. Hence the
host vehicle can start to accelerate and show its intention to
go first. However, to stop again and yield to others is still
possible in case any of them shows stronger determination
so that the host vehicle has to yield.

Scenario 4: Lane change. When an autonomous vehicle
is changing lane, other vehicle may speed up to prevent
it from cutting in. Drivers of large vehicles on the target
lane tend to assume that the autonomous vehicle would not
risk to cut in closely, so that they just maintain the speed
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anyway. That was how the accident happened on the Google
car on February 2016 [10]. Moreover, another vehicle may
be merging into the same lane from the other side at the
same time [11]. Therefore, an autonomous vehicle should
be prepared to change back to its original lane when such
threats appear. Starting the movement to change lane is also
a tentative motion and the final decision does not need to be
made at that point.

In all the aforementioned scenarios, autonomous vehicles
should execute a defensive driving strategy to avoid possible
collisions when potential threats exist. However, the current
demonstrated design of autonomous vehicles is often overly
cautious and sometimes behaves unhuman-like in real world
scenarios in order to guarantee safety. Such conservative
behaviors will degrade the driving quality and may still
jeopardize safety when the behaviors are not expected by
other road participants. To address this problem, we propose
that autonomous vehicles need a unified planning framework
to handle uncertainties in various kinds of urban driving
scenarios when the decision and action are tentative, so that
the driving strategy is defensive enough to guarantee safety
even when others are violating traffic rules, and yet not too
conservative to degrade driving quality.

In literature, partially observable Markov decision process
(POMDP) was used extensively in autonomous driving for
decision making and planning under uncertainty [12][13].
However, there is no guarantee for the planned trajectories to
be collision-free within a specific preview horizon regarding
each possible intention of the others. In this paper, we
emphasize on the guarantees of the safety of the autonomous
vehicle even when the others choose the worst case behavior.

The rest of this paper is organized as follows. Section
II models the behavior of others via simplifying the uncer-
tainty quantification and providing the model in an exemplar
scenario. A non-conservatively defensive strategy (NCDS) is
detailed in Section III. A deterministic planner is designed as
a baseline. Then a safe set is defined, and a unified planning
framework under uncertainty is proposed. Then Section IV
gives illustrative examples, and Section V concludes the
paper.

II. BEHAVIORAL MODELLING

In this section, we model the behavior of other road
participants via calculating the probabilities of the cases that
lead to passing and yielding decision of the host autonomous
vehicle. A logistic regression model is then provided for an
exemplar scenario to get the probabilities of other vehicles
to violate the stop sign or not.

A. Simplified uncertainty quantification

In order to define the boundary for moving obstacles at
each future time step, the behaviors of other road participants
within the preview horizon should be predicted, which are
full of uncertainties in urban driving scenarios. In fact, it is
beyond the scope of this paper to model all uncertainties in
object detection, intention recognition and motion prediction
in various kinds of urban driving scenarios. In the following

we will discuss how the uncertainty quantification can be
simplified to facilitate decision-making and motion planning.

Although a road participant may exhibit varying intentions
and there can be uncertainties in recognizing the object,
an autonomous vehicle typically has just two choices in
the current preview horizon – passing or yielding. This
simplified description is applicable to various kinds of ur-
ban driving scenarios, such as merging into a roundabout,
passing through an intersection, changing into another lane,
or yielding to crossing pedestrians. 1

Uncertainties originating from different causes can be
combined. For instance, uncertainties from both perception
and intention recognition systems may co-exist on whether
an object is a pedestrian and whether the pedestrian intends
to cross the street. For the yielding case, the motion planner
only considers the probability of the event that the object is
a pedestrian and the intention of the pedestrian is to cross
the street. The passing case then encompasses the remaining
possibilities.

For the potential threats beyond the field of view, prior
knowledge is used to obtain the probabilities. The proba-
bilities are constant over time until the view reveals the
suspected region. When more information becomes available,
then the probability assessment is updated.

In summary, by observing the motions of other road
participants with contextual information, the probabilities for
an autonomous vehicle to pass and yield are obtained, which
are denoted as P (pass) and P (yield), respectively. Then
under each case, the worst possible boundaries generated by
the motion are constructed as the predicted motion. Although
it is possible for weird behaviors to happen, the bounds
we introduced are meaningful as 1) they are reasonable
assumptions anticipated by human drivers; and 2) they cover
cases with low probability.

Specific models and learning methods based on different
approaches can be adopted to quantify the uncertainties and
create constraint boundaries for different road participants
under various conditions. In the next subsection, a possible
method to model the uncertainties in an exemplar scenario
is shown as an example.

B. An exemplar scenario

The exemplar scenario we use is a two-way-stop inter-
section, which is shown in Fig.1. The autonomous vehicle
V1 (red car) holds the right of way, and the other vehicle
V2 approaching the stop sign (orange car) is expected to
stop. We model the behavior of V2 to calculate the violation
probability.

We carried out a field observation effort at a real-world
intersection to collect motion data of vehicles approaching

1The significance of solving the problem with two cases is not reduced by
the fact that multiple moving objects may exist and possible decisions may
not be limited to just two cases. Usually, they can be clustered and two best
decisions can be created for the proposed framework to plan motions. Also,
the accidents and overly conservative behaviors of autonomous vehicles
mentioned in Section I were all caused by inappropriate motions with
two ambiguous decisions. Moreover, the framework has the potential to
be extended to handle more than two cases.
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STOP

STOP

Fig. 1. A two-way-stop intersection

stop bars. Features including distance to the stop bar dstop,
velocity ḋstop and acceleration d̈stop are chosen to represent
the motions. Sample data is illustrated in Fig.2.
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Fig. 2. Visualized 3D taining data

Among the V2 motions observed from the field data,
slight rolling stop motions are frequently observed, which
are labeled and grouped together with the full-stop motions
as ”stop cases” in Fig.2. The reason we regard slight rollings
as cases that V1 can pass is that drivers of those slight rolling
vehicles are likely paying attention to the cross traffic and
are ready to stop if a vehicle holding the right of way appears
[14].

A logistic regression model is employed to obtain the
probabilities to quantify the uncertainty based on the motion
features of V2, which can be written as

P (pass|z) =
e−βT z

1 + e−βT z
,

P (yield|z) = 1− P (pass|z) ,

where

z =
[

dstop ḋstop d̈stop 1
]T

,

the passing case corresponds to stop of V2 and yielding case
corresponds to violation of V2. The vector β is obtained by
maximizing the log likelihood based on the Newton-Raphson
method.

For the passing case, no blocking line is created. For the
yielding case, blocking lines are created for V1 in a time

period from the earliest possible time for V2 to enter the
conflict region to the latest possible time for V2 to leave the
conflict region.

III. NON-CONSERVATIVELY DEFENSIVE STRATEGY

In this section, a non-conservatively defensive driving
strategy (NCDS) is proposed for urban autonomous driving
scenarios, which is defensive to deal with potential threats
to guarantee safety, but not overly conservative to degrade
driving quality.

A. Deterministic planner

In this section, a spatiotemporal trajectory planner in
deterministic environments is designed by adopting a modi-
fied receding horizon optimization framework [15], which is
solved by sequential quadratic programming. qi = [xi yi]

T

is the position vector of the autonomous vehicle at time
step i, where xi and yi depicts the position of the center
of the vehicle rear axle. Suppose Tp is the whole planning
time horizon, t is the current time step. Typically, the
planner optimizes the motion within the whole time horizon

qt+1:t+Tp
=

[

qTt+1, q
T
t+2, . . . , q

T
t+Tp

]T

.
Note that the position vector qt is not the full state of the

vehicle at time step t. The full state st of the vehicle should
contain at least two more position vectors backward, that is
st =

[

qTt−2, q
T
t−1, q

T
t

]T
. Then velocity and acceleration can

be obtained via backward differences. For the optimization
at each time step t, st is used as the initial value so that the
velocity, acceleration, yaw angle, as well as jerk and yaw
rate at t+ 1 can be calculated.

The objectives contain five aspects to enhance driving
quality and follow traffic rules. Taking into account factors
such as comfort, smoothness and fuel consumption, we
penalize accelerations, jerks, and yaw rates in J1, J2, and J3,
respectively. The expressions can be found in [15]. Position
errors relative to the desirable traffic-free reference path are
penalized as

J4
[

qt+1:t+Tp

]

=

t+Tp
∑

i=t+1

d (qi)
2
,

where d (qi) is the distance from the position at the ith time
step to the desirable traffic-free reference path. In order to
enhance time efficiency and avoid overspeed, velocity errors
relative to the desirable traffic-free reference velocity are
penalized as

J5
[

qt+1:t+Tp

]

=

t+Tp
∑

i=t+1

‖vlimitV (qi)− q̇i‖
2
,

where V (qi) is the unit tangent vector of the reference path
for qi. After defining the five aspects above, we can express
the cost function of the optimization as a weighted sum, that
is,

J
[

qt+1:t+Tp

]

=
5

∑

j=1

wjJj
[

qt+1:t+Tp

]

.
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In order to guarantee the feasibility of the planned trajec-
tory according to the vehicle kinematics and dynamics, we
constrain curvatures and accelerations of the vehicle. The
curvature constraints can be written as

|κi| ≤ κmax, i = t+ 1, ..., t+ Tp. (1)

For dynamics constraints, [15] used a tire friction circle
as the acceleration constraints, which is shown in Fig.3(a).
Such constraints miss a key element of vehicle dynamics,
which is the limitation of engine traction when accelerating
the vehicle. In fact, maximum traction acceleration a+max is
much smaller than the absolute value of maximum brake
deceleration a−max typically. Therefore, a better approxima-
tion of the vehicle dynamics constraints is proposed in
this paper, which is shown in Fig.3(b). In the forward-
rearward direction, the maximum acceleration is a+max, and
the maximum deceleration is a−max. Therefore, the radius
of the acceleration circle is ra = (a+max + a−max) /2, and
the distance from the origin to the center of the circle is
ca = (a−max − a+max) /2. Then the acceleration constraint
circles can be written as

‖q̈i + caV (qi)‖
2
≤ r2a, i = t+ 1, ..., t+ Tp. (2)

a
x

a
y

a
x

a
y

a
max

+

a
max

−

V q
i( )

(a) (b)

Fig. 3. Acceleration circles

Collision avoidance for moving and static obstacles is
another aspect of hard constraints to consider in order to
guarantee driving safety and traffic rule adherence. We will
not dive into the details since it is not the core scope of
this paper. Instead, we will only give a brief description
here. We use the bounds of moving obstacles obtained in the
Section II, as well as information on road structure and static
obstacles to create lines for collision avoidance checking. A
vehicle body can be represented into several circles, and the
created lines are used to bound the centers of the circles.
Therefore, the constraints can be expressed as

gk [cj (qi)] ≤ 0, i = t+ 1, ..., t+ Tp, j = 1, ..., ncir, (3)

where cj (qi) =
[

xcj(qi) ycj(qi)
]T

is the center of the jth
circle at the ith time step, and gk [c] is a linear combination
of xc and yc with bias representing the kth line created.

After defining all constraints and objectives, the planning
problem in deterministic environments can be written as

min
q

J
[

qt+1:t+Tp

]

,

s.t. Constraints (1)-(3).

B. Safety assessment under uncertainty

Safety is the top priority in autonomous driving, which
should be guaranteed. However, conservative definitions of
safety may lead to overcautious behaviors. In this paper, we
exploit the feasibility of vehicle kinematics and dynamics to
extend the safe set of an autonomous vehicle, so that NCDS
can be achieved.

The definition of safety should contain current safety and
preview safety. Current safety means that the current state
is collision-free. Preview safety means that given the current
state as the initial state, a sequence of motion exists, which
is feasible and collision-free for a specific length of preview
horizon T .

Suppose st is the current state of the autonomous vehicle,
and E ∈ {pass, yield} represents the case. We first define
current safe set under each case, that is,

Scurr
E = {st| qt satisfies (3)E} ,

where Constraints (3)E are the collision avoidance con-
straints constructed under the passing or yielding case. Next
the preview safe set under each case is defined in terms of
preview horizon T , that is,

Sprev
E (T ) = {st|∃ qt+1:t+T s.t. (1), (2), and (3)E} .

Since the collision avoidance constraints do not need to
be considered when the probability of the case goes to zero,
the overall safe set in terms of T under each case can be
written as

SE (T ) =

{

Scurr
E ∩ Sprev

E (T ) , P (E) > 0

U , P (E) = 0

where U is the whole state space.
Finally, the overall safe set (zone) of the autonomous

vehicle in terms of T can be defined as

S (T ) = Spass (T ) ∩ Syield (T ) .

Then st ∈ S (T ) can be interpreted as that safety is
guaranteed within the preview horizon T with state st.

C. Planning framework under uncertainty

Next we will illustrate how the probability of each case,
namely P (pass) and P (yield), can be utilized in a unified
trajectory planning framework under uncertainty so that
NCDS can be achieved. In the receding horizon optimization
framework, although the vehicle trajectory is planned in a
relatively long preview horizon, the autonomous vehicle only
executes the first (few) motion(s) planned. To be ready to
deal with varying cases in the future, different long-term
motions should be planned, but the short-term motion should
be consistent for different future cases since the motion
executed at the next time step should be determined.

Therefore, the following position vector is created, which
contains short-term motion with horizon T1, as well as long-
term motions for each case with preview horizon Tp. The
vector can be expressed as

q =

[

qTt+1:t+T1
,
(

qpass
t+T1+1:t+Tp

)T

,
(

qyield
t+T1+1:t+Tp

)T
]T

,
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which is the position vector to be optimized in our planning
framework under uncertainty. Then for each case the position
vector for the whole preview horizon is

qEt+1:t+Tp
=

[

qTt+1:t+T1
,
(

qEt+T1+1:t+Tp

)T
]T

,

in which E ∈ {pass, yield}.
Then the optimization problem can be formulated as

min
q

∑

E∈{pass, yield}

P (E) J
[

qEt+1:t+Tp

]

s.t.
(1) and (2) for qEt+1:t+Tp

, ∀E ∈ {pass, yield} ,

(3)E for qEt+1:t+Tp
, ∀E ∈ {pass, yield} .

to minimize the expected cost. The position vector for each
case should satisfy feasibility constraints, as well as the
collision avoidance constraints for each case, respectively.

It can be easily proved that with preview horizon Tp, by
executing the next position vector qt+1 obtained, the state of
next time step is in the safe set with Tp−1 preview horizon,
that is,

st+1 ∈ S (Tp − 1) .

Therefore, the driving strategy based on the proposed plan-
ning framework is defensive if potential threats exist.

Moreover, the driving strategy will not overreact to poten-
tial threats with low probability since the cost for yielding
case J

[

qyield
t+1:t+Tp

]

only minimally influence the total cost.
In fact, the long-term motions under each case are voting as
part of the cost function to decide the short-term motion to
execute at the next time step. The voting outcome depends on
the probability of each case. Decision-making is incorporated
in the planning framework, and the final decision is not made
immediately until it needs to be. This is the reason why the
strategy is not conservative.

IV. ILLUSTRATIVE EXAMPLES

In this section, examples are shown to illustrate the capa-
bility of the proposed planning framework to achieve NCDS.
We used the two-way-stop scenario in Fig.1 to show how the
probabilistic threats were handled. The logistic regression
model described in Section II B and trained by the empirical
data was used to obtain P (pass) and P (yield), which was
updated at every time step. We also created static obstacles
invading the travel lane of the host vehicle to test the collision
avoidance capability and smoothness with lateral motions.

The sampling time of the receding horizon optimization is
h = 0.25 s. The horizon of planning at each time step is Tp =
4 s. The short-term horizon is T1 = 0.5 s. Rectangle was used
to represent the vehicle body. vlimit = 10 m/s, κmax = 0.2
m−1, a+max = 4 m/s2 and a−max = 8 m/s2.

First a sequence of violation motions in our dataset
was used to test the defensive capability of the plan-
ning framework and corresponding results are shown
in Fig.4. When the violating vehicle was relatively far
away from the stop bar, P (pass) was still as high as
0.9806. However, as the distance becomes smaller but

the velocity was still high and there was hardly any
deceleration, P (pass) went down rapidly at each sam-
ple point as [0.8496, 0.3801, 0.0594, 0.0049, 0.0003, 0, 0, ...].
The planned motions and velocity profiles at the first four
time steps are shown in Fig.4 with corresponding timestamps
and probabilities. The final executed motions and velocity
profiles are shown in Fig.6(a).

(a) t=0, P(pass)=0.9806

(b) t=0.25 s, P(pass)=0.8496

(c) t=0.5 s, P(pass)=0.3801

(d) t=0.75 s, P(pass)=0.0594

Fig. 4. Planned motions and velocity profiles at the first four time steps
under yield case

The results proved several aspects of capabilities of the
planning framework. First, the trajectory was very smooth
even with lateral motions, and the speed did not exceed the
speed limit. Also, collision avoidance and feasibility were
guaranteed within the preview horizon. Moreover, the vehicle
tried to keep at the center of its lane.

By comparing the planning results with different probabili-

463



ties, we can explain the principle of our planning framework
intuitively. In the velocity profiles, the black lines are the
short-term motions which will be executed for the next time
step. The blue line represents the long-term motion under
the passing case and the red line corresponds to the yielding
case. When P (pass) is close to 1, the planner tends to keep
the current speed which increases the cost under the yielding
case. When P (pass) becomes smaller, the planner tends to
slow down and the deceleration is higher which increases the
cost under the passing case.

t=0.5 s, P(pass)=0.9992

Fig. 5. Planned motions and velocity profiles at one step under pass case

Next a sequence of stop motions in our dataset was
used to test the non-conservative capability of the plan-
ning framework. The probabilities at sample points were
[0.9696, 0.9992, 0.9999, 0.9998, 1, 1, ...]. When the vehicle
was relatively far away from the stop bar, the high speed
made P (pass) a little smaller than 1, which imitated the
threat with low probability. As it started to decelerate, the
probability went to 1. The planned motions and velocity
profiles at one step are shown in Fig.5. with corresponding
timestamp and probability. The final executed motions and
velocity profiles are shown in Fig.6(b). In the results we can
see that the potential threat with very low probabilities does
not influence the speed of the vehicle meaningfully, which
makes the strategy non-conservative. However, safety is
always guaranteed since the long-term motion under yielding
case ensures safety at each time step.

(a) Yielding case (b) Passing case

Fig. 6. Executed motions under each case

V. CONCLUSION

A unified planning framework under uncertainty was pro-
posed in this paper for urban autonomous driving, which
can achieve NCDS for various kinds of scenarios. Based on
the deterministic planner designed, as well as the probability
under each possible case obtained by behavioral modelling,
trajectories were planned to avoid overcautious behavior
and to guarantee safety via defensive behavior. Two-way-
stop intersection was used as an exemplar scenario to show
the capabilities of the proposed planning framework. The
results demonstrated that based on the proposed planner,
the autonomous vehicle can guarantee safety even when
others are violating traffic rules, and the host vehicle does
not overreact to threats with low probabilities. For future
studies, various urban driving scenarios will be used to
test the capabilities of the proposed planning framework to
achieve a driving strategy which is defensive, but not overly
conservative.
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