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Abstract— In factories of the future, humans and robots are
expected to be co-workers and co-inhabitants in the flexible
production lines. It is important to ensure that humans and
robots do not harm each other. This paper is concerned with
functional issues to ensure safe and efficient interactions among
human workers and the next generation intelligent industrial
co-robots. The robot motion planning and control problem in a
human involved environment is posed as a constrained optimal
control problem. A modularized parallel controller structure is
proposed to solve the problem online, which includes a baseline
controller that ensures efficiency, and a safety controller that
addresses real time safety by making a safe set invariant.
Capsules are used to represent the complicated geometry of
humans and robots. The design considerations of each module
are discussed. Simulation studies which reproduce realistic
scenarios are performed on a planar robot arm and a 6 DoF
robot arm. The simulation results confirm the effectiveness of
the method.

I. INTRODUCTION

In modern factories, human workers and robots are two
major workforces. For safety concerns, the two are normally
separated with robots confined in metal cages, which limits
the productivity as well as the flexibility of production lines.
In recent years, attention has been directed to remove the
cages so that human workers and robots may collaborate to
create a human-robot co-existing factory [1]. Those robots
working in a human-involved environment are called co-
robots.

The potential benefits of co-robots are huge and extensive,
e.g. they may be placed in human-robot teams in flexible
production lines [2] as shown in Fig.1, where robot arms
and human workers cooperate in handling workpieces, and
automated guided vehicles (AGV) co-inhabit with human
workers to facilitate factory logistics [3]. Automotive man-
ufacturers Volkswagen and BMW [4] have took the lead to
introduce human-robot cooperation in final assembly lines in
2013.

In the factories of the future, more and more interactions
among humans and industrial robots are anticipated to take
place as shown in Fig.2. In such environments, safety is
one of the biggest concerns [5], which attracts attention
from standardization bodies [6], as well as from major
robot manufacturers including Kuka, Fanuc, Nachi, Yaskawa,
Adept and ABB [7]. However, most of these researches are
focused on intrinsic safety, i.e. safety in mechanical design
[8], actuation [9] and low level motion control [10]. Safety
during social interactions with humans, which are key to
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Fig. 1: Flexible production lines in the future, which involve
human robot co-operation and co-inhabitance.

Fig. 2: Human robot interactions

intelligence (including perception, cognition and high level
motion planning and control), still needs to be explored.

On the other hand, several successful implementations
of non-industrial co-robots have been reported, e.g. home
assist robots [11] and nursing robots [12]. Complex software
architectures are developed to equip the robots with various
cognition, learning and motion planning abilities. However,
those robots are mostly of human-size or smaller size with
slow motion, which may not be cost-efficient for industrial
applications. To fully realize a human-robot co-existing fac-
tory, the software design methodology for fast co-robots,
especially those that are large in size, with multiple links
and complicated dynamics, needs to be explored.

In order to make the industrial co-robots human-friendly,
they should be equipped with the abilities [13] to: (1) collect
environmental data and interpret such data, (2) adapt to
different tasks and different environments, and (3) tailor itself
to the human workers’ needs. The first ability is a perception
problem, while the second and third are control problems that
are of interest in this paper.

The challenges for control are (i) coping with complex
and time-varying human motion, and (ii) assurance of real



time safety without sacrificing efficiency. An constrained
optimal control problem is formulated to describe this prob-
lem mathematically. And a unique modularized controller
architecture will be proposed to solve the problem. The
controller architecture is based on two online algorithms
proposed by the authors: the safe set algorithm (SSA) [14]
and the safe exploration algorithm (SEA) [15], which confine
the robot motion in a safe region regarding the predicted
human motion. The modularized architecture 1) treats the
efficiency goal and the safety goal separately and allows
more freedom in designing robot behaviors, 2) is compatible
with existing robot motion control algorithms and can deal
with complicated robot dynamics, 3) guarantees real time
safety, and 4) are good for parallel computation.

The remainder of the paper is organized as follows: in
section II, the constrained optimization problem will be
described; in section III, the controller architecture in solving
the optimization problem will be proposed, together with
the design considerations of each module. Case studies with
robot arms are performed in section IV. Section V concludes
the paper.

II. ALGORITHMIC SAFETY MEASURES: THE
OPTIMIZATION PROBLEM

As shown in Fig.1, co-robots can co-operate as well as
co-inhabit with human workers. In this paper, safety in co-
inhabitance and contactless co-operation will be addressed
as they form basic interaction types during human robot
interactions. Since the interaction is contactless, robots and
humans are independent to one another in the sense that the
humans’ inputs will not affects the robots’ dynamics in the
open loop. However, humans and robots are coupled together
in the closed loop, since they will react to others’ motions
[14].

A. Problem Formulation

Denote the state of the robot of interest as zp € R™ and
the robot’s control input as ur € R™ where n,m € N .
Assume the robot dynamics is affine' , i.e.

ir = f(zr) + h(zr)ur (D

The task or the goal for the robot is denoted as Gpg,
which can be 1) a settle point in the Cartesian space (e.g.
a workpiece the robot needs to get), 2) a settle point in the
configuration space (e.g. a posture), 3) a path in the Cartesian
space or 4) a trajectory in the configuration space.

The robot should fulfill the aforementioned tasks safely.
Let zy be the state of humans and other moving robots
in the system, which are indexed as H = {1,2,--- ,N}.
Then the system state is © = [2%, 21;]7. Denote the collision

! Any system can have an affine form through dynamic extension. Suppose
#g = F(zRr,ur). Define x% = [xg, u}%}T Let the new control input be
u% = upR. Then the new system
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Fig. 3: Illustration of the safe set Xg (blue area) on the
system’s state space and the safe region on the robot’s state
space (green area) according to the human configuration.

free state space as Xg, e.g. Xg = {z : d(xy,zg) > 0}
where d measures the minimum distance among the robot,
the humans and all other moving robots. Figure 3 illustrates
X in blue, which is the off-diagonal area in the system’s
state space. Given the human configuration, the constraint on
the robot’s state space Rg(x ) is a projection from Xg, e.g.
Rs(zp) = {zg : [v%,25]T € X}, which is time varying
with z . Hence, two steps are needed to safely control the
robot motion: 1) predicting the human motion; and 2) finding
the safe region for the robot (green area in Fig.3) based on
the prediction.

B. The Optimization Problem

The requirement of the co-robot is to finish the tasks G
efficiently while staying in the safe region Rg(x ), which
leads to the following optimization problem [16]:

min J(J)R,UR,GR) (2)
s.t. UREQ,{EREF,{tR:f(.%‘R)-i-h(l‘R)uR 3)
TR € Rs(l'H) 4)

where J is a goal related cost function to ensure efficiency,
2 is the constraint on control inputs, I" is the state space con-
straint (e.g. joint limits, stationary obstacles). The problem is
hard to solve since the safety constraint Rg (2 ) is nonlinear,
non-convex and time varying with unknown dynamics.
There are numerical methods in solving non-convex op-
timizations, e.g. sequential convex optimization [17], A*
search [18] and Monte-Carlo based rapidly-exploring random
trees (RRT) method [19]. However, the computation loads
are too high for online applications on industrial co-robots.
On the other hand, analytical methods such as potential
field methods [20] and sliding mode methods [21] have
low computation loads. But they generally do not emphasize
optimality. Moreover, the motion patterns of human subjects
(or other intelligent robots) are much more complicated than
those of general obstacles due to interactions, e.g. x 7 may be
a function of x . To solve the problem, a safe set algorithm
(SSA) was proposed to identify the dependency of zy on
xr online and regulate the control input of the robot in a
supervisory loop so as for the system state to stay in the
safe set Xg [14]. A safe exploration algorithm (SEA) was
built upon SSA to reflect the uncertainties in the prediction
of xy in robot motion control [15]. These two methods
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Fig. 5: Nllustration of the controller applied on an AGV.

will be generalized and a modularized controller architecture
that can handle 3D interactions will be proposed in the next
section.

III. ALGORITHMIC SAFETY MEASURES: THE
CONTROLLER ARCHITECTURE

A. The Controller Architecture

The proposed controller will be designed as a parallel
combination of a baseline controller and a safety controller
as shown in Fig.4. The baseline controller solves (2-3),
which is time-invariant and can be solved offline. The safety
controller enforces the time varying safety constraint (4),
which computes whether the baseline control signal is safe to
execute or not (in the “Safety Constraint” and the “Criteria”
module) based on the predictions made in the human motion
predictor, and what the modification signal should be (in
the “Control Modification” module). Each module will be
elaborated below.

The expected outcome of this controller structure is shown
in Fig.5 on an AGV. In that scenario, the baseline controller
will command the AGV to go straight towards its goal. How-
ever, the human motion predictor predicts that the human will
go to the blue dot and he will be very likely to show up in
the gray area. Since the baseline trajectory is no longer in
the safe region, the safety controller generates a modified
trajectory towards the goal and avoids the human.

B. The Baseline Controller

The baseline controller solves (2-3), which is similar to
the controller in use when the robot is working in the
cage. The cost function is usually designed to be quadratic
which penalizes the error to the goal and the magnitude
of the control input, e.g. when G is a trajectory, J =
fOT[(a:R — Gr)T'P(xr — Gr) + uLRug]dt where P and

Distance between the
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(a) The human model (b) The distance between capsules

Fig. 6: The human model and the capsules

R are positive definite matrices. The control policy can
be obtained by solving the problem offline. Basic collision
avoidance algorithms [17] can be used to avoid stationary
obstacles described by the constraint zr € I'. This controller
is included to ensure that the robot can still perform the tasks
properly when the safety constraint Rg(z ) is satisfied.

C. The Human Model and the Human Motion Predictor

In different applications, human body should be repre-
sented at various levels of details. For AGVs, mobile robots
and planar arms, since the interactions with humans happen
in 2D, a human can be tracked as a rigid body in the 2D
plane with the state zz; being the position and velocity of the
center of mass and the rotation around it. For robot arms that
interact with humans in 3D, the choice of the human model
depends on his distance to the robot. When the robot arm and
the human are far apart, the human should also be treated
as one rigid body to simplify the computation. In the close
proximity, however, the human’s limb movements should be
considered. As shown in Fig.6a, the human is modeled as a
connection of ten rigid parts: part 1 is the head; part 2 is the
trunk; part 3, 4, 5 and 6 are upper limbs; and part 7, 8, 9 and
10 are lower limbs. The joint positions can be tracked using
3D sensors [22]. The human’s state xz can be described by
a combination of the states of all rigid parts.

The prediction of future human motion xy needs to be
done in two steps: inference of the human’s goal Gy and
prediction of the trajectory to the goal. Once the goal is
identified (using the method in [23]), a linearized reaction
model can be assumed for trajectory prediction [24], e.g.

iy =Azg + B1Gy + Baxr + wi )

where wpy is the noise, A, By and By are unknown matrix
parameters which encode the dependence of future human
motion on his current posture, his goal and the robot mo-
tion. Those parameters can be identified using parameter
identification algorithms [14], while the prediction can be
made using the identified parameters. Note that to account
for human’s time varying behaviors, the parameters should
be identified online. This method is based on the assumption
that human does not ‘change’ very fast. Moreover, to reduce
the number of unknown parameters, key features that affect
human motion can be identified through offline analysis of
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human behavior. Those low dimension features {f;} can be
used in the model (5) to replace the high dimension states
zg and g, e.g. &y =y ,a;f;i + Bi1Gy + wp.

D. The Safety Index

The safe set X is a collision free subspace in the system’s
state space, which depends on the relative distance among
humans and robots. Since humans and robots have compli-
cated geometric features, simple geometric representations
are needed for efficient online distance calculation. Ellipsoids
[25] were used previously. However, it’s hard to obtain
the distance between two ellipsoids analytically. To reduce
the computation load, capsules (or spherocylinders) [26],
which consists of a cylinder body and two hemisphere ends,
are introduced to bound the geometric figures as shown in
Fig.6a, Fig.9b and in Fig.12b. A sphere is considered as a
generalized capsule with the length of the cylinder being
zero. The distance between two capsules can be calculated
analytically, which equals to the distance between their
center lines minus their radiuses as shown in Fig.6b. In
the case of a sphere, the center line reduces to a point. In
this way, the relative distance among complicated geometric
objects can be calculated just using several skeletons and
points. The skeleton representation is also ideal for tracking
the human motion.

Given the capsules, the design of X g is mainly the design
of the required minimum distances among the capsules. The
design should not be too conservative, while larger buffer
volumes are needed to bound critical body parts such as the
head and the trunk, as shown in Fig.6a. The safe set in the
3D interactions can be designed as:

XS:{x:M >1LVi=1,---,10,Yj € H} (6
dijmin
where d(pi;, x r) measures the minimum distance from the
capsule of body part 7 on the human (or the robot) j to
the capsules of the robot R. d;j min € R+ is the designed
minimum safe distance. d1;min should be large since the
head is most vulnerable.

To describe the safe set Xg efficiently, a safety index ¢
is introduced, which is a Lyapunov-like function over the
system’s state space as illustrated in Fig.7. The safety index
needs to satisfy three conditions: 1) the relative degree from
¢ to the robot control up in the Lie derivative sense is one (to
ensure that the robot’s control input can drive the state to the
safe set directly); 2) ¢ is differentiable almost everywhere;

3) the control strategy that ¢ < 0if ¢ > 0 will make the
set Xg invariant, i.e. z(t) € Xg,Vt > to if z(tg) € Xs.
Such a safety index can be constructed as shown in [14].
For example, the safety index for the safe set in (6) can be
designed as:

p=1+4~—(d")° —kid* — - — k1 ()Y (7
where d* = M and the capsule i* on the human (or
the robot) j* isztﬁe’gal{f)sule that contains the closest point (the
critical point) to the robot R . [ € N is the relative degree
from the function d(-,zg) to ug in the Lie derivative sense.
In most applications, | = 2 since the robot’s control input can
affect joint acceleration. ¢ > 1 is a tunable parameter, while
larger ¢ means heavier penalties on small relative distance.
v > 0 is a safety margin that can uniformly enlarge the
capsules in Fig.6a. ky,--- , k;—; are tunable parameters that
need to satisfy the condition that all roots of 14+ kys+---+
ki_18'=Y = 0 should be on the negative real axis in the
complex plane. The higher order terms of d* are included to
make sure that the robot does not approach the boundary of
the safe set in a large velocity, so that the state can always
be maintained in the safe set even if there are constraints on
the robot control input, e.g. ur € €.

E. The Criteria

Given the safety index, the criteria module determines
whether or not a modification signal should be added to
the baseline controller. There are two kinds of criteria: (I)
o(t) > 0, or (I) ¢(t + At) > 0. The first criterion
defines a reactive safety behavior, i.e. the control signal is
modified once the safety constraint is violated. The second
criterion defines a forward-looking safety behavior, i.e. the
safety controller considers whether the safety constraint will
be violated At time ahead. The prediction in the second
criterion is made upon the estimated human dynamics and
the baseline control law. In the case when the prediction of
future xy has a distribution, the modification signal should
be added when the probability for criteria (II) to happen is
non-trivial, e.g. P({¢(t+At) > 0}) > ¢ for some € € (0,1).

FE. The Set of Safe Control and the Control Modification

The set of safe control U;g is the equivalent safety con-
straint on the control space, i.e. the set of control that can
drive the system state into the safe set as shown in Fig.7.
By construction, the robot can always drive the system state
into the safe set through the safety index, i.e. by choosing a
control such that ng < 0. Since

. 0%
¢ = @951% + e Ty
_ 99 99 99 .
= Pen (xr) + &CR}L(CCR)UR + 8xHxH ¥
then the set of safe control when ¢ > 0 is
¢ 09 0 .
S = D < —-n—— -
UR {uR axR h(scR)uR =~ n 83:R (Z‘R) 63:H x](gg)



where 7 € R is a margin and #y comes from human
motion predictor. When ¢ has a distribution, let IT be the
compact set that contains major probability mass of zf, e.g.
P({&g € II}) > 1 — € for a small e. Then the inequality in
(9) should hold for all 25 € II [15], as illustrated in Fig.3.

The non convex state space constraint Rg(zp) is then
transferred to a linear constraint on the control space in (9).
In this way, the modification signal is the optimal value to be
added to the baseline control law such that the final control
lies in the set of safe control,

: T
Aup = argmin, ,,cysnonuy @ Qu (10)

where Q € R™*™ is positive definite which determines a
metric on the robot’s control space. To obtain optimality, )
should be close enough to the metric imposed by the cost
function J in (2), e.g. Q ~ d*J/du% where J is assumed
to be convex in ug. Ur is the equivalent constraint on the
control space of the state space constraint I', which can be
constructed following the same procedure of constructing
U 1%- Equation (10) is a convex optimization problem and
is easy to solve. In the case that U 1% N QN Ur is empty, a
smaller margin 7 can be chosen so that the feasible control
set becomes nonempty.

IV. CASE STUDIES

Simulation studies are performed to evaluate the safety
measures on scenarios shown in Fig.1. The cases for AGVs
and mobile robots are studied in [23]. In this paper, the
interactions among robot arms and humans will be studied.
The architecture of the simulation system is shown in Fig.§,
which consists of the human loop, the robot loop and the
environment. The human subject is in the human loop, who
can observe the virtual environment through the screen and
whose reaction will be captured by the sensors (e.g. touchpad
or Kinect). The human animator reads the tracking data from
the sensors and sends the human figure to the environment
for display. In the robot loop, the robot animator reads the
noisy human data from the environment, computes the safe
and efficient trajectory and then sends the real time robot
figure to the environment.

A. Planar Robot Arm

The planar robot arm is shown in Fig.9a. Denote the
joint angle as 6 = [01,605]". The dynamic equation of the
robot arm is M(0)0 + N(0,0) = Tr where M(-) is the
generalized inertia matrix and N(-,-) is the Coriolis and
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Fig. 9: The planar robot arm and the simulation environment

centrifugal forces [27]. Both functions depend on the robot
state v = [07,0T]T. ug = 7R is the torque input. The state
space equation of the planar robot is affine:

0 0
oo || S ] 0

The simulation environment is shown in Fig.9b where
the robot arm is wrapped in two capsules. The vertical
displacement of the robot arm is ignored. The human is
shown as a blue circle, which is controlled in real time by
a human user through a multi-touch pad. Both the human
and the robot need to approach their respective goal points
in minimum time. New goals will be generated when the old
one is approached.

The baseline controller is designed as a computed torque
controller with settle point GG . The safety index is designed
as ¢ =D —d%— d, where d measures the minimum distance
between the human and the robot arm and D = d?,,, (1 +
). The sampling frequency is 20hz. Due to the limitation
of bandwidth, both reactive and forward-looking criteria are
used, in order not to violate the safety constraints between
two samples. The set of safe control Uy (k) at time k is
the intersection of the two sets: U; = {ug(k) : ¢(k) < n
when ¢(k) > 0} and Uz = {ugr(k) : ¢(k + 1) < 0}. The
computation of U; follows from (9). The computation of U,
is similar and is discussed in details in [15]. The metric @ is
chosen to be M (), which puts larger penalties on the torque
modification applied to heavier link, thus is energy efficient.

The simulation result is shown in Fig.10 and Fig.11. The
first plot in Fig.10 shows the critical point on the arm that is
the closest to the human capsule. The orange area represents
the first link (y = 0O is the base) and yellow area represents
the second link (y = 0.55m is the endpoint). The second plot
shows the distance from the robot endpoint to the robot’s
goal position. The third plot shows the relative distance d
between the robot capsules and the human capsule, while
the red area represents the danger zone {d < din}. The
bars in the fourth plot illustrate whether the safety controller
is active (green) or not (white) at each time step. During
the simulation, the robot was close to its goal at k = 55
and at £ = 110 before it finally approached it at k& = 220.
However, since the human was too close to the robot in that
two cases, going to the goal was dangerous. Then the safety
controller went active and the robot arm detoured to avoid

TR =
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Fig. 11: The simulated response of the planar robot

the human. This scenario is also illustrated in Fig.11(a), the
5-times down-sampled snapshots from time step 110 to 140,
denote as k = 110 : 5 : 140. Lighter color corresponds to
smaller k. Due to the safety controller, the relative distance
was always maintained above the danger zone. Figure 11(b)
shows the snapshots at £ = 160 : 5 : 220. As the human was
far from the robot arm, the safety controller was inactive and
the robot finally approached its goal.

B. Six Degree of Freedom Robot Arm

In this case study, the Fanuc M16iB robot arm is used as
shown in Fig.2 and the simulation environment is shown in
Fig.12a. Capsules are calculated for both the human and the
robot as shown in Fig.12b. The radius of the capsules are de-
signed such that one uniform minimum distance requirement
dmin = 0.2m can be used for all capsules. Denote the robot
state as 2 = [07,07)7 where 6 = [01,0y,0s,04,05,06]"
are the joint angles. up = 0 is the joint acceleration. The
control modification is done in the kinematic level. A perfect
low level tracking controller is assumed. The state space
equation of the robot arm is linear:

Tr = Axg + Bug (12)

Isxs ] and Bp — [ O6x6 }

06><6 IG><6

where Ap = [ 86X6
6x6

(a) The 3D simulation environment (b) The capsules

Fig. 12: The 3D simulation environment

G'r is to follow a path in the Cartesian space. The baseline
controller is a feedback and feedforward controller. The
human is moving around the robot arm. The safety index is
the same as in the previous case, e.g. ¢ = D — d2— d, where
d is computed analytically [28]. The sampling frequency is
20hz. The forward-looking criteria is used. The set of safe
control is Uy (k) = {ur(k) : p(k+1) <0}, and Q = I.

The simulation results are shown in Fig.13, Fig.14 and
Fig.15. The first plot in Fig.13 shows the critical capsule
ID on the robot arm that contains the closest point to the
human and the second plot shows the critical capsule ID on
the human that contains the closest point to the robot. During
interactions, those critical points changed from time to time.
The minimum distance between the human and the robot
is shown in the third figure, which was maintained above
the danger zone during the simulation. The tracking error
is shown in the fourth plot. When the human was far from
the robot, perfect tracking can be achieved from £ = 100
to £ = 200. When the human went close to the robot at
k = 230, the safety controller took over and moved the robot
arm away from the human, at the cost of large tracking error.
The snapshots at £ = 230 : 5 : 250 are shown in Fig.14.
Another human avoidance behavior at k¥ = 310 : 10 : 350
is shown in Fig.15, with the solid spheres representing the
reference path at each time step. The robot stopped tracking
the path that moved towards the human by moving backward.
In this simulation, the human subject can only control the
planar movement of the dummy. The simulation that captures
human’s whole body movement using Kinect is shown in the
video attachment.

The algorithms are run in Matlab (using .m file) on a
macbook of 2.3 GHz using Intel Core i7. The running time
of the safety controller is shown in Table I. The average
running time of the safety controller is 9.5ms, which is
dominated by the time in finding the critical points, e.g.
calculating the minimum distance between the robot and the
human. This is because finding the critical points involves
6 x 10 distance calculations between capsules. If only the
first three joints of the robot arm are considered, e.g. only
three robot capsules are used in calculation, the running time
is reduced to 5.5ms. If the number of human capsules is
reduced to two, the running time for the safety controller
is reduced to 2.7ms. Moreover, the running time of the



TABLE I: Running time of the safety controller

Robot arm: Human Running time lemningitime
degree of model of the safety in finding
freedom controller critical points

6 DoF 10 capsules 9.5ms 8.8ms
3 DoF 10 capsules 5.5ms 5.0ms
6 DoF 2 capsules 2.7ms 2.0ms
3 DoF 10 spheres 0.77ms 0.40ms
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Fig. 13: The simulation profile of the 6DoF robot arm

safety controller is only 0.77ms if the human geometry
is represented using spheres. However, the spheres cannot
describe the geometry as accurate as the capsules do and
may be too conservative. In conclusion, current algorithms
can support at least 100Hz sampling frequency and the
computation time can be further reduced if faster algorithms
are developed for distance calculation.

V. DISCUSSIONS AND CONCLUSIONS

This paper discussed the algorithmic safety measures for
industrial robots working in a human-involved environment.
The control problem was posed as a constrained optimal
control problem and a unique parallel controller structure
was proposed to solve the problem. The control problem
was separated into two parts: the efficiency goal with time-
invariant constraints and the time-varying safety constraint.
The first part was solved by the baseline controller and the
safety constraint was enforced by the safety controller. This
separation is ideal due to the following reasons:

o There is no need to solve the original problem in a
long time horizon, since the uncertainties of the hu-
man motion will accumulate. And the safety constraint
Rg(zp) is only active in a small amount of time as
evidenced in the simulations. The separation respects
different natures of the constraints, by allowing the
baseline controller to do long term planning without the
time varying constraint and letting the safety controller
to do local modification regarding the time varying
constraint.

o This separation can also be validated by analytically
solving the optimal control problem. Suppose Gr =

(a) The lateral view

(b) The top view

Fig. 14: The simulated response of the 6DoF robot arm:
scenario 1

{rr =0} and J = fOT(:rITBPxR—FuﬁRuR)dt. Let Q,T
be the whole space and Rs(zg) = {zr : ¢(zr,zH) <
0}. Assume h(zg) = B. Then the Lagrangian [29] of
the optimal control problem (2-4) is

L =ahPrg +upRug + Mf(xr) + Bug) +né (13)

where \, 7 are adjoint variables and n = 0 if ¢ < 0. The
partial derivatives from L to up is L, = 2(Rug)” +
AB + n¢s, B. Setting L, = 0, the optimal control law
becomes

up = _Llpipryr 1nR—lBTqbf

2 2 R

where the first term on the RHS is not related to the

safety constraint, which can be viewed as the baseline

control law; the second term is concerned with the

safety constraint, which is nontrivial only if ¢ > 0,

e.g. the safety constraint is violated. Nonetheless, the

optimality of this separation will be studied for more
complicated problems in the future.

(14)

Moreover, the separation offers more freedom in designing
the robot behavior and is good for parallel computation.
In conclusion, the controller design procedure is:

1) Design the baseline controller that can handle the goal
and the time invariant constraints.

2) Wrap every moving rigid body with a capsule to
simplify the geometry.

3) Design the safe set Xg which specifies the required
distance among capsules.

4) Design the safety index ¢ based on the safe set Xg
and the robot dynamics.

5) Choose the control modification criteria and design the
control modification metric Q.

6) Design the human motion predictor.

To fully realize the scenario in Fig.l, more aspects in
the controller design needs to be investigated. For example,
as the number of agents in the system increases, the non-
convexity of the problem will increase. Methods to avoid
local optima need to be developed. Moreover, the safe control
method for human robot cooperation that involves contacts
also needs to be studied.



(a) The lateral view

(b) The left view

Fig. 15: The simulated response of the 6DoF robot arm:
scenario 2

Nonetheless, the controller structure proposed is of im-
portance as it is a method to handle constraints of different
natures and to deal with multiple objectives, whose effec-
tiveness is demonstrated both in simulation and in analysis.
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