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ABSTRACT

Human-robot interactions (HRI) happen in a wide range of
situations. Safety is one of the biggest concerns in HRI. This pa-
per proposes a safe set method for designing the robot controller
and offers theoretical guarantees of safety. The interactions are
modeled in a multi-agent system framework. To deal with hu-
mans in the loop, we design a parameter adaptation algorithm
(PAA) to learn the closed loop behavior of humans online. Then
a safe set (a subset of the state space) is constructed and the op-
timal control law is mapped to the set of control which can make
the safe set invariant. This algorithm is applied with different
safety constraints to both mobile robots and robot arms. The
simulation results confirm the effectiveness of the algorithm.

INTRODUCTION

Human robot interactions (HRI) have been a topic of both
science fiction and academic speculation for a long time [1];
however, it is the development of modern robotics and artificial
intelligence that constitutes a solid ground for the analysis and
applications of HRI.

Nowadays, physical human-robot interactions take place in
great abundance. In factories, robots are leaving their cages
and starting to work cooperatively with human workers. Car
giants, such as Volkswagen and BMW, have launched cooper-
ative robots in their factories in 2013 [2]. These manufacturers
employ cooperative robots to take the advantage of both the hu-
man’s flexibility and the robot’s productivity, to meet the needs
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of flexible production [3]. Additionally, in view of the success of
Google’s autonomous cars, many car makers have been investing
in driverless vehicles recently. Human drivers and autonomous
cars will interact on the road, which poses new challenges in road
safety [4]. Another example is in the field of rehabilitation. In
order to rebuild the sensory connection of a patient after a stroke,
robots or exoskeletons are needed to guide and assist the patient
in walking. There are very close physical interactions between
the patient and the robot [5]. Others like nursing robots [6] or
robot guide dogs [7] are in great demand and involve HRI.

Safety is one of the biggest concerns in HRI. The difficulty
of designing a safe robot controller comes from (i) sophistica-
tion of human motion and (ii) real time implementation of the
algorithm. Control theory offers plenty of methods to deal with
disturbances. However, when humans are in the loop, the dis-
turbances introduced by human motions are much more compli-
cated. They are time varying with unknown models. Moreover, it
seems counterproductive to view human motions as disturbances
in the robot control, as the system should be human-oriented.
Deep learning of human behaviors is needed to make robots com-
pliant. Even with robots learning human behaviors, another con-
cern is that a complex control algorithm may not be executed fast
enough to ensure quick responses of robots in emergencies.

To address safety, some authors use potential field methods,
e.g. introducing a virtual force that is generated by an obsta-
cle [8]. Some use numerical optimization methods which put
the safety requirements in hard constraints [9, 10]. Others use
sliding mode methods to locally modify the reference trajectory
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in the presence of obstacles [11]. However, the motion patterns
of human subjects are much more complicated than that of gen-
eral obstacles, as humans make decisions and react to the robots.
To account for human decisions, a method is proposed in [12],
which uses a joint probability distribution to describe the inter-
action between a group of people and a robot. However, the prob-
ability distribution for human motions is generally very hard to
construct.

A safe set method is proposed in this paper to address the
real time safety in HRI. All humans and robots in the system are
regarded as agents. This method consists of two steps. Firstly,
the closed loop dynamics of all human agents are estimated on-
line to account for human decisions and to avoid the difficulty in
getting the exact model of human motions. Secondly, control is
applied in a safe set to account for various constraints and to en-
able fast online computation. The safe set is a subset of the state
space that is constructed to be invariant under a feedback-like
control law.

The remainder of this paper is organized as follows: firstly,
a multi-agent interaction model will be introduced. Based on
that model, the safe set method will be proposed with theoretical
guarantees that the system will always stay in the safe region. Fi-
nally, the safe set method will be applied in three different cases
to validate the effectiveness of the algorithm.

INTERACTION MODEL

There are two types of interactions, space sharing and time
sharing. In space sharing interactions, humans and robots are do-
ing their respective works in a shared workspace. In time sharing
interactions, humans and robots are jointly finishing one task. In
this paper, only space sharing interactions are studied.

State Space Model

To describe human robot interactions, a multi-agent model
is needed. Robots and humans are all regarded as agents in this
model. Suppose there are N agents in the system and are indexed
from 1 to N. Let R be the set of indices for the robots, and H
be the set of indices for the humans. We denote each agent’s
state by x; € R™i for i = 1,...,N, where nx; is the dimension of
x;. The control input of each agent is u; € R™i fori =1,...,N,
where nu; is the dimension of u;. Then the state of the system
is the union of all agents’ states, i.e. x = [x] ,xI,... . x}]T € R™,
where nx = YN | nx;. For simplicity, we write xg as the union
of the states of all robots and xy as the union of the states of
all humans. Let X € R™ be the set of all possible values in the
system’s state space. The open loop system dynamics can be
written as

x:f(xaulau27'“auN;W) (D

where w is a Gaussian noise term.

If the agents are independent with respect to each other, the
open loop dynamics of x; is solely determined by x;, #; and the
noise w;. Then the open loop system can be decoupled as

X = fi(xi,up,wi) ,Vi=1,..,N ©))

This case arises in human-robot cooperative manufacturing
[13], since the dynamics of either the human or the robot does not
depend on the other. However, in general, the open loop system
cannot be decoupled. For example, in the case of rehabilitation,
the robot can affect the human’s dynamics directly by assisting
the human to accomplish special tasks, such as walking. Then
the robot’s input enters the human’s dynamic equation, which
renders the open loop system indecomposable. In this paper, only
decomposable systems are studied.

Every agent has its measurement of the system

yi:hi(xavi)3Vi:1a"'7N 3

where v; is the measurement noise. Assume there is no direct
communication among the agents. Then for any agent 7, he can
only choose his control u; based on the measurement y; and his
reference goal G; € R™ i.e.

ui = g (vi,Gi) = &i (hi (x,vi) ,G;) ,Vi=1,...,.N (€]

Since we assume that the system is space sharing but not
time sharing, G; specifies space relations instead of time rela-
tions. Denote the system goal as G = [GT, ...,GK,]T € X. Then
the closed loop system is

¥ = f(x’gl (h] (X,V]),Gl)r"agN (hN (X,VN)aGN) aW) (5)
= f’ ()C’G7V17...7VN7W)

Since the agents will react to all system state variables that
they observe, the closed loop system is no longer decomposable.
The system block diagram for the general multi-agent system is
shown in Fig.1. The block diagram for the decomposable system
is shown in Fig.2. The interaction in the decomposable system is
easier to deal with as the interaction happens only in the measure-
ment and controller side, instead of in the open loop dynamics.

Information Structure
In a multi-agent system, information structure is important
as it determines the system’s type [14]. Suppose every agent
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FIGURE 1: Multi-Agent System Block Diagram
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FIGURE 2: Decomposable Multi-Agent System Block Diagram

i is trying to minimize a cost function J;(x). Since J; depends
on the system state x, all agents can affect J; through their con-
trols. Thus the control u; that minimizes J; is actually a function
of all other u;’s for j # i. Before choosing the control u;, ev-
ery agent i needs to ’guess’ or observe the ’strategies’ the others
will play (i.e. the control signal u;’s that others would choose).
When all agents are operating on the same information set (i.e.
no one knows the others’ strategies for the next move) before
they take the next move, this is a simultaneous game and the op-
timal solution of this system defines a Nash equilibrium. When
some agents know the others’ u; (by observing x;) before de-
ciding on their own controls, this is a sequential game and the
optimal solution defines a Stackelberg equilibrium. The agents
being observed are considered as leaders and the agents that take
the observation are considered as followers.

We assume that safety-oriented HRI can be modeled as a
sequential game and the robot being controlled is always a fol-
lower. There are several advantages in doing so. First, it is a
conservative strategy to play, thus good from the safety point of
view. Second, we assume that robots have a smaller reaction
time than humans, thus they can adapt very fast to human mo-
tion. In this way, robots are qualified as followers. Last but not
least, to analyze a human’s control strategy, we need to know his
cost function, which, however, is hard to obtain. So it is better
to assume all humans’ strategies are revealed in their past moves

—_— —
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FIGURE 3: Invariant Safe Set

before the robot takes the move. Then the robot must be a fol-
lower, which plays a reactive strategy.

SAFE SET APPROACH

During human-robot interactions, the system needs to be
safe, e.g. no collisions. In this section, the safe set approach
to ensure safety is discussed. A general framework is set up
first with a naive safe set approach. Then three modifications are
made to make the algorithm realizable and to account for humans
in the loop and uncertainties. In the last, the discrete time imple-
mentation are discussed and two examples of designing safety
indices are given.

Naive Safe Set Approach

Let X be a subset of the state space X that is collision free.
X represents the safe set. A safety index ¢y : X — R is defined
to be a functional on the state space such that ¢(x) < 0 if and
only if x € Xs5. To be safe, the set Xg¢ must be invariant with
respect to time, i.e. ¢o(x(r)) <0, V¢ > 1y, where 1y denotes the
start time. One way to enforce invariance is by making Xs the
region of attraction (ROA) of the whole space, i.e.

do < 0 when ¢ >0 (6)

where ¢y is the derivative of ¢ with respect to time #!. The
intuition behind this control law is that once the system deviates
from the safe set, the control flow will pull it back as illustrated
in Fig.3. By Lyapunov’s theorem, the system will asymptotically
converge to the safe set Xy under this control law. Moreover, once
the system enters the safe set, it will never go out. Let Ui () be
the set of the control u; for agent i at time ¢ that is consistent with
the control law in Eq.(6), i.e.

Us(1) = {ui(?) : goz(90) < —miz (o) } (N

where z(9o) = 1 (sgn(¢o) +1), z(0) = L. 1; € R is a safety
margin. To make the system safe, all robots should choose their
control inputs from Ug. For i € R, when the dynamic equation is

!¢ may not be everywhere differentiable. But we do not need to worry about
this situation since we can always convolve ¢y with a smooth function to make it
differentiable. This property enables us to deal with complicated constraints.
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affine, i.e. &; = fi (x;,wi) + fi (xi)u;, U (t) is a closed convex

set for all ¢, since Eq.(7) can be written as

Us (1) = {ui (1) : L()ui(1) < S(1)} ®)

where (1) = | <11~ . 52 — 52 £ (i, wi) | (d0). L(r) =

%—i’f_’ *2(¢0). Thus Ui(t) is either a half space or the whole space.

Suppose we have an optimal control law u (¢) for the robot i,
which drives the robot to its goal. Then we map { () to the set
of safe control Ug (t) according to the following cost function

(i —uf)" Q (u; —uf) ©)

where Q € R™i*"i ig positive definite. Thus the final control
satisfies u; (#) = argmin,, cui(n i (4;). To solve the optimization
problem, we need to consider the following two cases:

uf € Ui: then uf (1) = u¢ (1).

uf ¢ Ug: we need to invoke the Lagrange method. Since
U (t) is a half space, the optimal solution should be on the
boundary Lu; = S. Let A be the Lagrange multiplier. The new
cost function is J;' = J; + A (Lu; — S). The optimal solution sat-
isfies 3{5 = %JA’* =0,ie. Qui—uf) +ALT =0and Ly; — S =0.
By solving these two constraints, we have u} = u? — AQ'LT

LS
and A = LQMLILT' |
Define ¢ = infueUé(t) IL(u—uf)]. When uf € Ug(t), c =0,

otherwise, c = ALQ~'LT. Thus for any u?, we have

1T
Ll (10)
LO~LT

However, there are three problems in this naive safe set ap-
proach. First, u;(t) may not enter the expression oz () ex-
plicitly if the relative degree from ¢y to u; in the sense of lie
= 0. Then Ui (2) is
either an empty set or the whole space, which is not desirable for
safe control. The second problem is that U; may depend on u;
for j # i since Ug depends on x;. This is a common situation in
multi-agent systems. To solve this problem, we need to incorpo-
rate the information structure of the system. Thirdly, there are
noise terms in Ug.

To address these problems, a new way in designing the
safety index, which ensures that the safety index has relative de-
gree one to the robot’s input, will be introduced. Then we con-
sider the closed loop behavior of all human agents to avoid the
difficulty in reasoning about ug. This can be justified when we
assume that humans are leaders in the game. Robots are just

T ) 5
derivative is greater than one, i.e. H —3‘1’9 iy
x; 7

1% 1%, 19,

o8 8 o8

(@) X (o) (b) X (¢n) © X (97)

FIGURE 4: Relationship between X (¢o),X (¢,),X (¢,)

playing a reactive strategy. For uncertainties, an upper bound
will be added.

When there are more than one robot in the system, they can
be coordinated by a central controller. In this way, we can regard
all robots as one agent. If it is not possible to design a coordi-
nator, as in the case of autonomous vehicles, we simply regard
those robots that cannot be coordinated as human agents. Then
the number of effective robots in the system is reduced to one,
denoted by R.

Designing a Safety Index

The problem is that we want to enforce invariance in the set
Xs = {x: ¢o < 0}, but the relative degree from ¢y to u; may not
be one. Then we can try the following safety index where the

relative degree from ¢(§") to u; is one:

On = B0+ k160 + ... +kn” (11)

where ki, ...,k, are real-valued coefficients. Define X (¢) to
be the set of all reachable states under the control law ¢ <
0 when ¢ > 0 and with the initial condition x (fp) = xp € X;. Ob-
viously, X (¢9) = Xs. We say ¢ defines an invariant set in Xg if
and only if X (¢) C Xs. For simplicity, denote ¢ (x(¢)) by ¢ (7).

Theorem 1. ¢, in Eq.(11) defines an invariant set in Xs, if (i)
all roots of 1 + ks +hos?+ ... +k,s" = 0 are on the negative real
line; (ii) ¢o are n-th order differentiable. Moreover, suppose @
defines the same set as ¢ does, i.e. {x S 0} = Xy, then

Gy = O — P+ ¢ 12)

also defines an invariant set in Xg.

The relationship between X (¢o), X (¢,) and X (¢,) in the
two dimensional case is illustrated in Fig.4. In (a), the shaded
area is the set Xg = X (¢p). In (b), the area below the line
is the set defined by ¢, < 0. But all the flows on the set
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{(90,90) : ¢ < 0,99 =0} are pointing to the left, i.e. making
@o smaller. Since the initial condition states that ¢y (zp) < 0, the
triangle area defined by {¢, <0, ¢y > 0} can never be reached.
Thus the shaded area represents X (¢,), which is an invariant sub-
set in Xg. In (c), we introduce nonlinearity to the safety index
by substituting ¢o with ¢;. Since ¢y and ¢; defines the same
set, only the shape of the boundary is changed. The shaded area
X (¢;) is still an invariant subset in Xg. Rigorous proofs are as
follows.

Proof. (i) ¢, defines an invariant set in Xy.

n =1: Since 1+ ks = 0 has a negative root, then k; > 0.
Suppose X (¢,) is not a subset of Xg, i.e. I, s.t. @) <
0,¢0(f2) > 0. Then ¢o(t2) +k1do(t2) < 0 < ¢o(t2), which im-
plies @o(2) < 0. Since @y (¢) is differentiable, ¢ (¢) is continuous.
Thus A = ¢ ' ([0,0]) N [tg, 2] is a closed set. Pick the largest
connected set in A containing f, and denote it by [t,f2]. Thus
do(t1) = 0 and @y(t) > 0, Vt € [t1,12). Then ¢y(t) <0Vt € [t1,12]
since ¢ (t) < 0. So Po(t2) = do(11) + J2 Po(t)dr < ¢o(11) = 0.
However, this contradicts with @o(z2) > 0. Thus we can conclude
X ((14k1s) ¢o) C Xs.

n>1: Decompose ¢, as ¢, = ¢o + kjdo + ... +
k,,q)én) = (1 +a1s)(1 + azs)...(1 + a,s)@o. Then we can con-
clude, X (¢0) D X (1 +ans) do) D X (1 +ay—15) (1 +ays) ¢o) D
X ((1+a1s)...(1+ans)¢o). So X (¢,) C X (¢0) = Xs. >

(ii) ¢, defines an invariant set in Xg.

If the statement is not true, then 3, > 79 s.t. ¢, () <0,
@o(r2) > 0. For the same reason in (i), there exists #; € [fg,#] s.t.
¢o(t1) =0 and ¢o(tr) > 0 for t € [t1,1,]. Since ¢y and ¢; defines
the same set, ¢;(f1) = ¢o(f1) = 0. Thus ¢,(t1) = ¢, (1) < 0 by
definition. As proved in (i), when ¢o(¢;) = 0 and ¢,,(r;) <0, it
must follow that @ (¢;) < 0 (otherwise, it will contradict with the
fact that ¢, defines an invariant set in Xs). Thus it is impossible
for @y to go beyond 0, contradicts with ¢g(#2) > 0. Indeed, ¢,
also defines an invariant set in Xg.

From now on, we will denote the index that is properly de-
signed simply as ¢.

Closed Loop Human Behavior
To address the problem mentioned in the naive safe set ap-
proach, we need to study the closed loop behavior of the humans.

ZNotice that if 14 ks + kos® + ... + k,s" = 0 has roots outside the negative
real line, the statement above is generally not true (even if the roots are all sta-
ble). Consider the boundary defined by the index ¢, i.e. ¢, = ¢+ ki do + ... +
knd)on) = 0. If there are unstable roots, then ¢y — oo as t — oo, which is not de-
sired. Suppose all roots are stable, ¢g — 0 as r — co. Since ¢o(fo) < 0, this is
like a step response from @ (7p) to 0. If the damping ratio of the characteristic
equation is less than one, then there will be overshoots, i.e. 3 > 19 s.t. ¢o(z) > 0.
Thus ¢, no longer defines an invariant set in Xg.

YR

_,xH =fu (xH’ Xz> Gys Vs WH)
Gy

Ug
8r(yr.Gr)
G,

R

FIGURE 5: Block Diagram with Closed Loop Human Behavior

The closed loop dynamic equation for the humans is:

i = fu (xu un) = fu (xu,8u (hy (x,ve) ,Gu) ,wn)
= f1 (Xt,%r, GH, v, Wi (13)

Since all humans are coupled together, we can take xy as
the state for a single human agent. In this way, the system in
Fig.2 reduces to Fig.5. Notice that yg = hg (x,vg), suppose the
measurement can be decoupled as

7 (xu,vR) (14)
R
R

(xg,VR) (15)

where y# is the robot’s measurement of the human, y& is the
robot’s measurement of itself. v and V& are the corresponding
measurement noises. Equations (13) and (14) form a nonlinear
Gaussian system with unknown parameters. Then we can do on-
line parameter adaptation to learn the system properties. Unfor-
tunately, nonlinear systems are hard to deal with in general, so an
alternative choice is to discretize and linearize the model and run
parameter adaptation algorithm (PAA) to estimate the linearized
closed loop parameters online. This method can be justified if
we assume that a human does not change very fast with respect
to the sampling rate. By linearizing and discretizing Eq.(13) and
substituting xz with the robot’s state estimate £z from a state es-
timator (i.e. Kalman Filter), we have

xp (k4 1) = Ag (k)xg (k) + By (k)ust (k) +wiy (k) (16)

where ut (k) = [f(k|K)T , ... 2r(k — m|k)T,G% (k)] and m rep-
resents the delay in the human reaction. wj,; (k) is a noise term
assumed to be zero-mean Gaussian and white. We explicitly con-
sider the human’s reaction to the robot’s state in Eq.(16). Meth-
ods for inferring Gy (k) are discussed in [13]. In this paper, we
assume it is known. Assume that Eq.(14) can be written as

i (k) = xp (k) +vg (k) (17)
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Equations (16) and (17) then form a linear time vary-
ing (LTI) Gaussian system with unknown parameters. Let
Xy (k|k — 1) be the a priori estimate of the human’s state at time
k, £y (k|k) the a posteriori estimate of the human’s state at time
k and Ay (k), By (k) the estimates of the matrices given the in-
formation up to the k-th time step. At k+ 1-th time step, we first
update the estimate of £y according to the closed loop dynamics
in Eq.(18), then incorporating the measurement information to
get the a posteriori estimate in Eq.(19). Since the system is time
varying, a constant update gain o € (0, 1) is chosen to ensure that
the measurement information is always incorporated.

S (k+11k) = Ay (k) 2y (k|k) + By (k) ull (k) (18)
S (k+1lk+1) = (1—a)iy (k+1]k) +ayf (k+1) (19)

Then the closed loop matrices are estimated using recursive
least square (RLS) PAA as shown in Eq.(20):

[Ap (k+1),By ( (k+1 )] = [Anu (k) , By (k)]

(ke 1+ D) =20 e+ 10) o(K)TF (k1) PO

where (k) = [ (k)" ush(k)7]"
the update equation:

. F is the learning gain with

1 FReMTMF K],

Pl =7 PO T T W F R ®)

A > 01is a forgetting factor. We choose A < 1 to make sure that
the parameter adaptation algorithm is always active [15]. Since
RLS algorithm minimizes the prediction error, the prediction per-
formance from this algorithm is good as shown later.

Bounding Uncertainties

By redesigning the safety index, we can make H

for i € R. Then, by estimating the closed loop behav1or of the
humans, we can obtain the estimate £; for j € H. For the robot,
we estimate Xg. In this way, Eq.(8) can be written as

Us' (1) { Za fiu (&) uiz(9) (22)
i€R
2
e E 504 2 e o}
jEH icR !

where Az € R* is introduced to bound the uncertainties
in PAA and state estimation. )?j is approximated by
(Xj(k+ 1|k) — x;(k|k)) /T;. Equation (22) is a realizable version
of Eq.(8). The set UX (¢) is also a closed convex set. The final
control law is calculated by Eq.(10).

Discrete Time Implementation
In the discrete time, the set of safe control is only calculated
at each time step k. Suppose the sampling time is 7;. Denote

¢ (x(k)) by ¢ (k). Then

(oK) < (nRxR>z<¢<k>>}

Dz(¢ (k) < (¢ (k) = nrTs — ArT5) 2 (¢ (k) }
1) < =nrTs — AT} (23)

Let ¢¢ = ¢ + NrTy + AgT;. The safety index ¢¢ takes into
account the uncertainties and have a safety margin ng7;. Define
the set of safe control in the discrete time as

UR (k) = {uR (k) : 09 (k+1) < o} cUR(t=kT,)  (24)

It is shown in Eq.(24) that the set of safe control UK (k) in
the discrete case is a subset of the safe control U _5 (t = kT;) in the
continuous case. The convexity of UX (k) follows from U (t)
when 7y — 0. Thus Eq.(10) still applies.

Safety Indices for Typical Safety Constraints

Safety constraints are usually dependent on the smallest rel-
ative distance d between the human H and the robot R. One
typical constraint is d > d,i,, Where dy,;, is the minimum ac-
ceptable distance between the human and the robot. An intu-
itive safety index for this constraint is @9 = d,;, —d < 0. Since
the robot plant usually includes a double integrator, the rela-
tive degree from d to u is two. So n = 1 and ¢y needs to be
included. Define ¢, = ¢ + k1Po = dpin —d — kid. A heavier
punishment on the relative velocity is desired when the relative
distance is small Thus we introduce a nonlinear term. Notice
that ¢ = d2,, — d* deﬁnes the same safe set as ¢o does. Let
0; = P — 90+ ¢f = d>;, —d* — kid. By taking into account the
safety margin and let k; = 1, we have

0'=D—-d*—d (25)

where D = d,%”-n + NrTs + ART.

Another typical safety constraint is dpi, < d < djyaxe When
the robot is required to stay close to the human but not collide
with the human. d,, is the maximum acceptable distance be-
tween the human and the robot. An intuitive safety index is
00 = (d — dmin) (d — dypay). By introducing ¢, and considering
the safety margin, we have the safety index as

09 = 0o+ @0 + MR Ty + ART, = Dy +d* — Dad +2dd — Dad (26)
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where D1 = dyindmax + NMrTs + ArT;s, Dy = dpin + diax. The per-
formance of the two safety indices will be shown in the case
study.

CASE STUDY

In this section, simulation studies are conducted in three
cases involving both mobile robots and robot arms. We consider
two agents in the system, a robot and a human. The simula-
tion environment (20 x 20) for mobile robots is shown in Fig.6a.
Both the human and the robot are represented by circles of ra-
dius 1, while the robot is in red and the human in blue. The
thin blue and the thin red circles are the goals for the human and
the robot respectively. The simulation environment for the robot
arm is shown in Fig.6b. The two-link robot arm is represented
as the thick red broken line. A human subject can control the
thick blue circle using a multi-touch pad during the simulation.
Define xy = [hy, Ay, hy, )T, where hy is the human’s x position,
I the human’s x velocity, &, the human’s y position and A, the
human’s y velocity. The estimation of the human’s closed loop
dynamics follows from Eq.(18)-(21). The state prediction error
|lxer (k4 1) — g (k+ 1]k)|| is shown in Fig.7. The error converges
quickly with the PAA algorithm as shown in the figure. The pa-
rameter estimation performance is shown in [13].

Case 1: Mobile Cooperative Robot
The interaction between humans and a 2D robot will arise in
factories as described in [13]. For simplicity, we only model the
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FIGURE 8: Simulation of the Mobile Cooperative Robot
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FIGURE 9: Velocity Profile of the Mobile Cooperative Robot

robot’s kinematics. Let xg = [ry, F, Iy, i’y]T where r, is the robot’s
x position, 7, the robot’s x velocity, ry the robot’s y position and
7y the robot’s y velocity. Let ug = [i', #,]" . The kinematics of the
robot is

xg (k+1) = Agxg (k) + Brug (k) + wg (k) (27)
VR (k) = xg (k) + Vg (K) (28)
17,00 T2 0
0100 T, O .
where Ag = ,Br = 5 Wg,Vg are inde-
0017 | "k 0 ir? ok
0001 0 T,

pendent zero mean white Gaussian noises. The robot’s state
is estimated by a Kalman Filter. The safety requirement is
dpin —d < 0. Thus the safety index in Eq.(25) is adopted.

Safe Control The safety index is defined over the rela-
tive distance, which is dependent on the relative state between
the human and the robot, i.e. dx(k) = xg (k) —xp (k). The rela-
tive distance can be calculated as in Eq.(29); the product of the
relative distance and the relative velocity can be calculated as in
Eq.(30).

d? (k) = (re—hy)* + (ry — hy)* = dx (k)T Pdx (k) (29)

Copyright © 2014 by ASME



d(k)d (k) = (ry —hy) (Fx — ) 4 (ry — hy) (7y — hy)

= dx (k)" Pydx (k) (30)
1000 0050 0
0000 050 0 0
where Pi=15610022=10 0 0 05
0000 0 0050

Due to noises, we must estimate the relative state, i.e.

dx (k+1|k) = &g (k+ 1k) — %g (k+ 1K)
= I(k) + Brug (k) 31)

where I (k) = Apig (k|k) — £ (k+ 1]k).
Notice that as Ty — 0, PiBg — 0 and BgP>,Br — 0. Using
the estimate (31) in Eq.(29) and (30), we obtain

d*(k+1]k) ~ IT (k)PyI(k) (32)

dd (k+ 1|k) =~ IT (k)P I (k) + 21" (k)PyBrug(k)  (33)

Solving ¢¥(k+ 1) < 0 (where ¢¢ is defined in Eq.(25)) by
Eq.(32) and (33), we have:

217 (k)P,Brug (k) > D+/I7 (k)P (k)

3

— (" (k)P (K))> 1" (k)L (k) (34)

The set of safe control UK (k) is still a half plane. Sup-

pose the optimal control is u$ = —K (xg — Gg), where K =
{(1) g (1) (2)] is the control gain. The final control at time k is

obtained from Eq.(10) where L(k) = —2I7 (k)P,Bg and S(k) =
—D\/TT (k)P I(k) + (I" (k)Pi1(k)) 2 + 17 (k)P>I (k).

Safety Performance A simulation study was conducted
for the environment shown in Fig.6a with 7y = 0.1s. A human
subject controlled the blue circle through a multi-tough pad. As
shown in Fig.8 and Fig.9, the robot successfully avoided the hu-
man under the safe set algorithm. In phase 1, the robot was exe-
cuting the optimal control since it was far away from the human.
In phase 2, the robot observed that the human was approaching,
so it slowed down to meet the safety constraints. In phase 3, the
human approached his goal and stayed there. The robot learned
that the human would stay there for sometime through PAA. So
it detoured to avoid hitting the human. In phase 4, the robot ap-
proached its goal successfully.
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FIGURE 10: Simulation of the Robot Assistant
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FIGURE 11: Velocity Profile and Relative Distance Profile of the
Robot Assistant

Case 2: Mobile Robot Assistant

As we are gradually stepping into an aging society, more
and more robot assistants are needed to assist the aged people.
The requirement for robot assistants is that they should stay close
to the human in order to take orders, while far enough to avoid
collision. The system model and simulation environment in this
case is the same as in case 1. The only difference is that there is
no specific goal for the robot and the human. The safety index
defined by Eq.(26) is adopted.

Safe Control Solving ¢¢(k+1) <0 (where ¢ is defined
in Eq.(26)) by Eq.(32) and (33), we have

2 {Dg — 23 /1T (k) Py 1 (k)} 1T (k)P,Brug(k) > H (k) (35)
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FIGURE 14: Simulation of the Robot Arm, Scenario 2

3

where H (k) = D\/IT(k)PI(k) + (IT (k)PI(k))2 —
D17 (k) PiI (k) — [Dg —2/IT K Pl (k)] 17 (k)P ().

The optimal control law is designed as u% = —Kxp where
K= 8 (1) 8(1) . This is a stabilizing control law which will

slow down the robot. Then the final control law follows from

Eq.(10) where L(k) = 2 [2\/1T &) P1 (k) —Dg] 17 (k)PBg and
S(k) = —H(k).

Safety Performance In the simulation, d,,in = 3, diyaxr =
7. Figure 10 shows the simulation result and Fig.11 shows the
velocity profile of the robot and the relative distance profile be-
tween the robot and the human. From the beginning of the sim-
ulation, the robot and the human were at two opposite corners.

Then the robot moved towards the human, while the human also
moved towards the robot. When the robot was very close to
the human, it slowed down and turned to the up-left direction
to avoid collision. Meanwhile, the human moved to the bottom-
right corner. When detecting this, the robot changed its direction
to follow human (at k = 73). Then the human started to go up.
The robot followed the human closely from time step k = 173
to k = 383. At around 400-th time step, the human suddenly
changed direction to move towards the robot. Then the robot
gave way to the human by turning to the right. As shown in
Fig.11, the distance is always in the safety range except in the
beginning.

Case 3: Cooperative Robot Arm

The interaction between humans and a robot arm often arises
in factories. Both the cooperative robots from Volkswagen and
BMW are robot arms. The safety index in Eq.(25) is used with d
being the smallest distance from the robot arm to the human.

The robot arm has two joints. Let 0; be the angular position
of the first joint, 8; the angular velocity of the first joint, 6, the
angular position of the second joint and @, the angular velocity
of the second joint. The control input is the angular accelerations
of the two joints, i.e. ug = [6;,6,] T The end point position of
the robot is (py, py). The closest point to the human is (., m,).
The optimal control law is designed to be

0 - Px — 8x Dx
iy ([ b ] -n) co

where J,, is the Jacobian matrix of p and H, = J, {21 } . (8x:8y)
b

is the goal point in the work space. K, € R**? and K, € R**?
is the control gain. Equation (36) is valid when J,, is invertible.
When J,, is not invertible, we perturb the system out of the sin-
gularity.

Safe Control Define the robot arm’s state to be xg =
[ my s, my 1y | with the state equation:

xg (k+ 1) = Agxg(k) + BrJyug (k) + BrH,, (k) (37)

6

is the same as in case 1. The prediction for the relative state is

where J,,, is the Jacobian matrix of m and H,, = J,,

dx(k+ 1|k) = I(k) + BrJmug (k) (38)
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where I (k) = Ag&g (k|k) 4+ BrH,, (k|k) — % (k+ 1|k). The set of
safe control satisfies

217 (k)P,BrJyug (k) > DA/IT (k)P I(k)

— (I" (k)P 1(K)) i 17 (k)P>1(k) (39)

The final control follows from Eq.(10) where
L(k) = 21" (k)P,BgJ,, and S(k) = —D\/IT (k)PI(k) +

(1" (k)Pll(k))% +1T (k) PoI (k).

Safety performance In this simulation, we assign sev-
eral goals for the human. Before doing parameter adaptation,
the robot performs inference on the human’s current goal [13].
T, = 0.1s. Figure 12 shows the velocity profile of the robot arm in
one simulation. The robot tried to avoid human in parts I, II, III,
and IV in the figure and executed the optimal control in the other
parts. The human avoidance behavior of part I is shown in Fig.13.
In (a), the human and the robot were both near their goals. But
since the human had a large velocity towards the robot, the robot
went backward in (b) and (c). Figure 14 shows the robot be-
havior under miscellaneous human behavior. In (a), the human
suddenly changed his course. Although all of his goal points are
in the lower part of the graph, the human started to go up. By
observing that, robot went away from the human in (b) and (c).

Conclusion

In this paper, a multi-agent model in describing human-robot
interactions was proposed. Based on that model, we discussed
the safe set method to address the safety in physical HRI. By
assuming that humans were always leaders in the system, we es-
timated the closed loop behavior of all human agents using PAA
online. Then a safe set was constructed in the state space, which
was defined by a safety index. The design method of the safety
index was discussed. By mapping the optimal control to the set
of control that made the safe set invariant, we got a feedback-
like control law to guarantee the real time safety of the system.
The case studies confirmed the effectiveness and efficiency of the
algorithm.

The advantage of the proposed algorithm is that it is (1)
faster than a numerical optimization approach (2) more flexible
than an potential field method for its ability to deal with various
constraints. In the future, this algorithm is to be implemented on
real robots, and more agents are to be introduced in the study.
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