Convex Feasible Set Algorithm for Constrained Trajectory Smoothing

Changliu Liu, Chung-Yen Lin, Yizhou Wang and Masayoshi Tomizuka

Abstract— Trajectory smoothing is an important step in
robot motion planning, where optimization methods are usually
employed. However, the optimization problem for trajectory
smoothing in a clustered environment is highly non-convex,
and is hard to solve in real time using conventional non-convex
optimization solvers. This paper discusses a fast online opti-
mization algorithm for trajectory smoothing, which transforms
the original non-convex problem to a convex problem so that
it can be solved efficiently online. The performance of the
algorithm is illustrated in various cases, and is compared to
that of conventional sequential quadratic programming (SQP).
It is shown that the computation time is greatly reduced using
the proposed algorithm.

I. INTRODUCTION

Trajectory or motion planning is one of the key challenges
in robotics. Robots need to find motion trajectories to accom-
plish certain tasks in constrained environments in real time.
The scenarios include but are not limited to navigation of
unmanned areal or ground vehicles in civil tasks such as
search and rescue, surveillance and inspection; or navigation
of autonomous or driverless vehicles in future transportation
systems.

The existing motion planning methods go into two cate-
gories: planning by construction or planning by modification
as shown in Fig.1. Planning by construction refers to the
method which extends a trajectory by attaching new points
to it until the target point is reached. Search-based methods
such as A* or D* search [1] and sampling-based methods
such as rapidly-exploring random tree (RRT) [2] are typical
planning-by-construction methods. Planning by modification
refers to the method that perturbs an existing trajectory such
that the desired property is obtained. Optimization-based
motion planning methods belong to this category, where the
perturbation can be understood as gradient descent in solving
the optimization [3]. Each type of methods has pros and
cons. The trajectories planned by construction are easier to be
feasible. However, as the search space is usually discretized
during trajectory construction, the constructed trajectories are
not as smooth as the trajectories planned by modification.

Typical practice is to combine the two kinds of meth-
ods on motion planning to get better performance, e.g.
getting a feasible trajectory first by construction and then
smoothing the trajectory by modification [4]. This paper
will focus on trajectory smoothing via optimization methods
while assuming that a nearly feasible reference trajectory for

C. Liu, C. Lin and M. Tomizuka are with the Department of Me-
chanical Engineering, University of California, Berkeley, CA 94720 USA
changliuliu, chung.yen, tomizuka@berkeley.edu

Y. Wang is with Faraday & Future Inc, Gardena, CA 90248 USA
yizhou.wang@faradayfuture.com

Target
Start obstacle -
(a) By Construction
Target

Start

obstacle
\
__JJ

(b) By Modification

Fig. 1: Typical Motion Planning Methods

optimization is obtained by construction. It is worth noting
that in addition to its application in robot motion planning,
trajectory smoothing is important by itself as it can be widely
applied to areas such as GPS data smoothing [5], human
motion analysis [6] and video stabilization [7].

The challenges for optimization-based trajectory smooth-
ing lie in real time computation. The optimization problem
for trajectory smoothing in a clustered environment is highly
non-convex, which is hard to solve online using conventional
non-convex optimization solvers such as sequential quadratic
programming (SQP) [8]. In our previous work [9], we
developed the convex feasible set (CFS) algorithm for non-
convex and non-differentiable optimization problems that
have convex cost functions and non-convex constraints. It
is shown in [9] that the CFS algorithm is able to find local
optima faster than the SQP method. In this paper, the CFS
algorithm will be applied to trajectory smoothing problems
to speed up online computation. The key idea is to transform
the non-convex problem into a convex problem by finding
a convex feasible set around the reference trajectory and
solving the optimization problem in the convex feasible set.
The geometric interpretation of this method will be illustrated
in the paper.

The remainder of the paper is organized as follows: In
Section II, the optimization problem for trajectory smoothing
will be formulated; in Section III, the convex feasible set
algorithm will be reviewed, followed by the discussion of its
application on trajectory smoothing in Section IV; in Section
V, the performance of the algorithm will be illustrated using
several examples and will be compared against conventional
methods; Section VI concludes the paper.

II. PROBLEM FORMULATION
A. Notations

Denote the state of the robot as x € X C R"™ where X
is the state space and n is its dimension. In this paper, we
identify the state space with the configuration space of the
robot. For a mobile robot, x is the position of the robot in the
plane; for an aerial robot, x is the position of the robot in the
space; for a robot arm, x is the joint position of the robot.
Suppose the robot needs to travel from z°/*"* to 2:9°*. The
robot’s trajectory is denoted as x = [z8, 27, ... ,2T]T €
X"+ where x4 denotes the robot state at time step q and A is
the planning horizon. The sampling time is defined as 5. The
reference trajectory is denoted as x” € X"*! which consists
of a sequence of reference states xj € X for different time
step q.

The area in the Cartesian space that is occupied by the
robot with state z, is denoted as C(z,) € R¥ where k = 2 or
3 is the dimension of the Cartesian space. The area occupied
by the obstacles in the environment at time step ¢ is denoted
as O, € R*. Let dg : R*¥ x R* — R be the Euclidean
distance function in the Cartesian space. The distance from
the robot to the obstacles in the Cartesian space is computed
as d(wq, Oy) = minyeco(z,),2co0, A (Y, 2).

Define the finite difference operators V : R*xn(h+1) and
A Rn(h—l)xn(h+1) as

[In —In 0 0
1 0 I, —In - 0
vV = — . . .
ts -
L 0 0 In —In
(1, -2I, I, 0 0
11 o 5, -2, 1, 0
A = =
tg : : . t. . .
0 0 eI =20, I

Note that Vx is the velocity vector and Ax is the acceleration
vector of the trajectory x.
B. The Optimization Problem

The optimization problem for trajectory smoothing is
formulated as

m)in J(x;x") :w1||x—xr||é —|—w2||x||23 (1a)
st xg = 2%t xp, = x9°U (1b)
Umin < VX < Umaz, Gmin < AX < @z (10)
d(xq, Oy) > dmin,Yg=1,--- ,h— 1. (1d)

The cost function is designed to be quadratic where
wy,wy € RY. [[x —x"[|3) == (x —x")"Q(x — x") penalizes
the distance from the target trajectory to the reference
trajectory. ||x||% := xTSx penalizes the properties of the
target trajectory itself, e.g. length of the trajectory and
magnitude of acceleration. The positive definite matrices
Q,S € Rh+)xn(ht1) can be constructed from the fol-
lowing components: 1) matrix for position Q1 := I(n+1);
2) matrix for velocity Qo = VTV and 3) matrix for

acceleration (3 := AT A. Then Q := Z?:l clQ; and S :=
Zle c$@Q; where ¢] and ¢ are positive constants. Constraint
(1b) is the boundary condition. Constraint (1c) is the linear
constraint which represents velocity and acceleration limits
where Vpmin, Vmaz € R" and amin, Gmaez € R* 1. Constraint

(1d) is for collision avoidance where d,,;, € RT is constant.

III. THE CONVEX FEASIBLE SET ALGORITHM

The convex feasible set algorithm was proposed by the
authors to solve non-convex and non-differentiable optimiza-
tion problems which have convex cost functions and non-
convex constraints [9]. The assumptions, algorithms and
theoretical results will be briefly reviewed in this session.

A. The Assumptions

The optimization problem under consideration has the
following form

min J(x). (2)
The cost function J is assumed to be smooth, strictly
convex and non negative. The constraint I' is assumed to
be the intersection of N supersets I';, e.g. I' = N;I';. I'; can
be represented by a continuous, semi-convex and piecewise
smooth function ¢;, e.g. I'; := {x : ¢;(x) > 0}. The semi-
convexity of ¢; implies that there exists a positive semi-
definite matrix H such that for any x and v, ¢;(x + v) —
2¢;(x) + ¢i(x — v) > —vTHv. Moreover, it is assumed
that I does not include any nonlinear equality constraint. The
method to deal with nonlinear equality constraint is discussed
in [10].

B. The Algorithm

A convex feasible set F for the set I'" is a convex set
such that 7 C T'. It is easier to find a minimum of J in
the convex feasible set than to find a minimum of J in
the non-convex set I'. Moreover, as I' can be covered by
several (may be infinitely many) convex feasible sets, we
can efficiently search the non-convex space I' for solutions
by solving a sequence of convex optimizations constrained
in convex feasible sets.

The idea is implemented iteratively. At iteration k, given
a reference point x*), a convex feasible set F*) .=
F(x®) c T is computed around x(*). Then a new reference
point x**+1) will be obtained by solving the following
convex optimization problem

E+1) _ .
x(k+1) — arg Join J(x). (3)

The iteration will terminate if either the solution converges
or the descent in cost is small.

It is important to notice that the convex feasible set for a
reference point is not unique. The desired F(x") should be
computed using the following rules, where we try to find a
convex feasible set F;(x") for each constraint I'; such that
]:(XT) = ﬂi]-'i(xT).

Case 1: T'; is convex: The F; =T;.

Case 2: the complement of T'; is convex: In this case,
¢; can be designed to be convex. Then ¢;(x) > ¢;(x") +
V¢i(x")(x —x"), where V is the gradient operator. At the
point where ¢; is not differentiable, V¢, is a sub-gradient,
which should be chosen such that the steepest descent of J
in the set I' is always included in the convex feasible set F.
The convex feasible set F; with respect to a reference point
x" is defined as

Fi(x") i={x: ¢i(x") + Vi(x

Case 3: neither T'; nor its complement is convex: In this
case, ¢; is neither convex nor concave. Then we deﬁne
a new convex function ¢; as (;51() = ¢i(x) + 3(x —

X)L H (x—x"). Then ¢(x) = i (x")+Vy(x") (x—x") =
(bi(xr) + V¢;(x")(x —x") where V¢; is identified with the
sub-gradient of o; at points that are not differentiable. The
convex feasible set with respect to reference point x" is then
defined to be

Fi(x") =

x—-x") =0} @)

{x:¢i(x

1
> ~(x—
2

")+ Vi (x")(x — x")
XT)THi*(x —x")}. 5)
C. The Theoretical Results

The feasibility and convergence of the CFS algorithm is
summarized in the following theorem which is proved in [9].

Theorem 1 (Convergence of CFS Algorithm). The sequence
{x(k)} generated by the iteration (3) with the convex feasible
sets F%) chosen according to the three cases will converge
to a local optimum x* € T' of (2) for any nearly feasible

initial value x(0).

We call x" nearly feasible if x” € T" or F(x") is nonempty.
It is shown in [9] that one sufficient condition for F(x") to be
nonempty is that for each entry of x”, at most one constraint
is violated, e.g. when both ¢; and ¢; depend on a certain
entry of x”, either ¢;(x") > 0 or ¢;(x") > 0.

IV. CFS-BASED TRAJECTORY SMOOTHING

The CFS algorithm will be applied to the optimization
problem (1). In order to motivate the introduction of the CFS
algorithm, the geometry of the problem (1) will be illustrated.
Then the pre-processing before applying the CFS algorithm
will be discussed, followed by the mathematical formulation
of the CFS-based trajectory smoothing.

A. The Geometry of the Problem

The geometry of the problem (1) is illustrated in Fig.2.
The plane represents the space of all decision variables
X"+l where the shaded area represents the infeasible sets
corresponding to the constraints (1b-1d) and the contour
represents the cost function (la). The free space of the
problem is highly non-convex. However, due to the unique
structure of the problem, the optimal value is close to the
reference trajectory x”. We only need to search around x”
for solution. An intuitive way to do that is to search over a
convex feasible set around x" as introduced in Section III
and transform the original problem to a convex problem.

Convex
Feas1ble Set

- i Infeasible
\ Sets

Fig. 2: Geometry of the Trajectory Smoothing Problem

A

(a) A Non-Convex Obstacle (b) Convex Obstacles

Fig. 3: Representing Non-Convex Obstacles

B. Pre-Processing

To apply the CFS algorithm to the optimization problem
(1), the assumptions discussed in Section III.A should be
checked. The cost function (la) satisfies the convexity as-
sumption. The equality constraint (1b) can be transformed
to the following linear inequality constraints xzg > z5%"t,
o < a9t gy > 29°¢0 and x;, < x9°%, thus satisfy the
assumptions on constraints. The linear inequality constraint
(1c) also satisfies the assumptions on constraints. Moreover,
as those constraints are convex, they are the convex feasible
sets for themselves according to Case 1. The nonlinear
constraint (1d) is more intricate, where the semi-convexity
assumption is not always held. For example, in X = R2,
when the obstacles have concave corners, the distance func-
tion cannot be semi-convex as its hessian is unbounded at
the concave corner as shown in Fig.3a. In such cases, pre-
processing are needed in order to apply the CFS algorithm.

For each time step ¢, denote the infeasible set in the
state space {zq : d(xzq,Of) < dmin} as Bg. Let dj, :
R™ x R® — R be the Euclidean distance function in
the Configuration space. Then constraint (1d) is equivalent
to x, ¢ B, which is then equivalent to d*(x4,By) >
0. d*(zq,B,) computes the signed distance to B, such
that d*(zq,By) := min.cop, di(2q,2) for x4 ¢ B, and
d*(zq,By) = —min.cop, di(zq,2) for x, € B, where
0B, is the boundary of B,. Note that 3, can be regarded
as the projection of the Cartesian space obstacles to the
configuration space. Figure 4 illustrates O, (shaded part) in
the Cartesian space and the corresponding B, (shaded part)
in the configuration space for a planar robot arm.

As the distance function to a convex object is also convex,
we then break B, into several simple convex objects Bé such
as circles or spheres, polygons or polytopes. Note that 5
need not to be disjoint. In Fig.3b, the non-convex object is

T
@ace
0,
2

0,

\ —T
- 01 ™

(a) The Cartesian Space

(b) The Configuration Space
Fig. 4: The Constraints for A Planar Robot Arm

broken into two overlapping polygons. Then constraint (1d)
becomes

d*(xq,BL) > 0,Vq,i. (6)

d*(-,B}) is the convex cone of the set B} as shown in
Fig.5a. The convexity of 3; implies that d*(-, B;) is convex,
continuous and piecewise smooth. Replacing (1d) with (6),
the new optimization problem satisfies all the assumptions
discussed in Section III-A. Hence the CFS algorithm can be
applied.

C. The Convex Optimization Problem

As discussed in Section III, the convex feasible set for
constraint (6) around reference x” follows from (4). Then
the new optimization problem becomes

m)zn J(x;x") :w1||x—x"HZQ+w2HxH% (7a)
st xo = 2%t gy = 290 (7b)
Umin S Vx S Umazx, Omin S Ax S Amax (70)

d*(x), BY) + Vd*(x), BL)(xq — x) > 0,Yq,i. (7d)

The constraint (7d) is a linear constraint and the non-
convex problem (1) reduces to a quadratic problem (7) which
can be solved efficiently using quadratic programming.

For iterative implementation, we can set x© to be x”
and substitute xy in (7d) with xgk) at each iteration k. By
Theorem 1, the sequence x(¥) generated by the iterations
will converge to a local optimum of the original problem
(1). It will be shown in Section V that the trajectory after
one iteration is good enough in the sense of feasibility
and optimality. Thus we can safely work with the non-
iterative version if strict optimality is not required and the
computation time is limited.

D. Visualization of the Convex Feasible Set

The convex feasible set in (7d) is illustrated in Fig.5a
for certain ¢ and ¢ when X C R2. The left hand side of
(7d) represents the tangent plane of the distance function d*
at the reference point . Due to the cone structure of d*,
the tangent plane touches the boundary of the obstacle. The
convex feasible set is the projection of positive portion of the
tangent plane onto R?, which is a half space. The half space
is maximal in the sense that the distance from the reference
point to the boundary of the half space is maximized,

The Distance Function
Tangent Plane at the
Reference Point

S

Convex
Feasible Set

Y

(a) Illustration of the Convex Feasible Set

-

(b) The Geometric Interpretation

Fig. 5: The Convex Feasible Set and Geometric Interpretation

which is equal to the distance from the reference point to
the obstacle. With this observation, we can construct the
convex feasible set using purely geometric method without
differentiation. For any reference point 2" and any convex
obstacle B, denote the closest point on B to " as b*. The
convex feasible set for 2" with respect to B is just the half
space which goes through b* and whose normal direction is
along b* — 2" as shown in Fig.5b.

At each time step ¢, the convex feasible set with respect
to all obstacles is a polygon that is the intersection of
all feasible half spaces. The polygon is always nonempty
since the reference point is nearly feasible. Thus the convex
feasible set for the whole planning horizon is a “tube”
around the reference trajectory whose cross sections are
those polygons. Similar idea of using a “tube” constraint to
simplify the trajectory smoothing problem can be founded
in [11]. The advantages of our method over the existing
methods are that 1) the “tube” is maximized and 2) the
feasibility and convergence of the algorithm is guaranteed
theoretically.

V. THE PERFORMANCE

In this section, trajectory smoothing problems for various
robots are considered, including a mobile robot, a planar
robot arm and an areal robot. Both the CFS algorithm and the
SQP algorithm are used to solve the problem. The algorithms
are run in Matlab (using matlab script) on a macbook of 2.3
GHz using Intel Core i7. The SQP algorithm solves the prob-
lem (1) directly using matlab fmincon function. The CFS
algorithm transforms the problem to (7) and solves it using
matlab quadprog function iteratively till convergence. The
termination conditions for the two algorithms are set to be the
same. For the CFS algorithm, we record both the processing
time for transforming the problem from (1) to (7) as well as
the computation time for the resulting quadratic problem.

A. Trajectory Smoothing for a Mobile Vehicle

Consider navigation of mobile vehicles in indoor envi-
ronments or autonomous driving in parking lots as shown in
Fig.6a. In this case, X = R? and O, is a static maze for all g.
We identify the configuration space with the Cartesian space
and assume that the nonlinear constraint on vehicle dynamics
is considered in the reference trajectory and will not be
violated if the reference trajectory is slightly modified. The
point cloud model of O, is shown in Fig.6a. It is first parti-
tioned into five polygons as shown in Fig.6b. The reference
trajectory (shown as the solid line in Fig.6b) is computed
using Lattice A* search [12]. Since the possible turning
directions are discretized, there are undesirable oscillatory
waves in the reference trajectory. In the optimization problem
for trajectory smoothing, large penalty on acceleration is
applied in order to git rid of the oscillatory waves. The
convex feasible set in (7d) is illustrated in a time-augmented
state space in Fig.6c where the z-axis represents the time
step. At each time step, the convex feasible set is just a
polygon around the reference point. All those polygons form
a “tube” around the reference trajectory.

The horizon of the problem is h = 116. Hence the
dimension of the problem is 234. A safety margin is added
to system by setting d,,;, = 3. Thus the reference trajectory
is infeasible in the optimization problem as it is very close
to the boundary of the maze at some points. However, it is
nearly feasible since for any point on the reference trajectory,
at most one distance constraint is violated. Then the convex
feasible set is still nonempty and Theorem 1 still holds as
discussed in Section III-C.

The CFS algorithm converges after 5 iterations, with total
computation time 0.9935s. The smoothed trajectories for
each iteration are shown in Fig.6b. The average time for
transforming the problem from (1) to (7) during each itera-
tion is 0.1632s. The average time for solving the optimization
problem (1) is 0.0355s. The cost profile is J(x") = 423.7,
J(xM) = 584.3, J(x®) = 455.0, J(x®)) = 407.6,
J(x®) = 403.7, J(x®)) = 403.6. However, it is worth
noting that although the cost changes quite a lot from the
first iteration, the resulting paths are similar to each other as
shown in Fig.6b. The descent in cost is due to the adjustment
of the velocity and acceleration profiles, e.g. redistributing
sample points on the path.

The SQP algorithm does not converge or even find a
feasible solution within the max function evaluation limit
(which is set to be 5000), with computation time 387.2s. The
SQP algorithm undergoes 20 iterations. When terminated, the
cost is drops from 423.7 to 287.2, but the feasibility of the
trajectory, i.e. — ming ; d* (24, B}) OF dyin—ming d(x4, Oy),
only goes from 3.1 to 2.3.

B. Trajectory Smoothing for a Planar Robot Arm

In this case, a three-link planar robot arm is considered
as shown in Fig.7 with X = T3. The infeasible area in the
Cartesian space is wrapped by a capsule, which characterizes
O, for all g. The reference trajectory is generated by linear

(a) The Environment

T 1
— —— Reference
m ws m SMoOOthed - Iter 1
= e SMOOthEd - Iter 2
Smoothed - Iter 3
== = == Smoothed - Iter 4
“ s s e Sm00thed - Iter 5
\
b— l
¥
”/
i i

(b) The Trajectories

(c) The Convex Feasible Set in Time-Augmented State Space

Fig. 6: Trajectory Smoothing for a Mobile Vehicle

interpolation between 2°'%"* and x9°*, which violated the
constraint. The horizon is A = 15.

The CFS algorithm converges after 2 iterations, with
total computation time 2.4512s. The smoothed trajectory
is shown in Fig.7b which is feasible. The average time
for transforming the problem from (1) to (7) during each
iteration is 1.2213s while the average time for solving the
optimization problem is 0.0043s. The pre-processing time
is much longer than that for the mobile vehicle due to the
nonlinearity of the robot arm. Moreover, the solution in the
first iteration is already good enough and the second iteration
is just for verification that a local optimum has been found.

In comparison, the SQP algorithm converges after 41
iterations, with total computation time 5.34s. Both the CFS
algorithm and the SQP algorithm converge to the local
optima at J = 616.7. The run time statistics under the SQP

(a) Reference Trajectory (b) Smoothed Trajectory

Fig. 7: Trajectory Smoothing for a Robot Arm

618 Cost
T T T T T T T
617 L — ﬁl
616 L 1 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40
Feasibility
0.4 I I I T T T T T
0.2 <|
H) o~ . . .
0 5 10 15 20 25 30 35 40
Step Length
0.5 | T T T T T T T T
0 . .
0 5 10 15 20 25 30 35 40
First Order Optimality
2000 — T T T T T T T T
1000
oL —
0 5 10 15 20 25 30 35 40

Iteration

Fig. 8: The Run Time Statistics for the SQP Algorithm in
the Arm Case

algorithm is shown in Fig.8. The definitions of feasibility,
step length and first order optimality can be found in Matlab
manual. It is shown that the SQP algorithm has small initial
steps and takes most of the time trying to be feasible. After
being feasible, it then converges rapidly. These characteris-
tics are different from that of the CFS algorithm, which has
large initial steps and becomes feasible in just one iteration
since (7d) is a subset of the origin constraint (1d).

C. Trajectory Smoothing for an Areal Vehicle

In this case, an areal vehicle needs to fly over an uneven
terrain. Thus X = R3 and O, is the uneven terrain for
all g, which is segmented into three cones. The reference
trajectory is demonstrated by human, which is very coarse.
The planning horizon is h = 30. The margin is d,,, = 1.

CFS algorithm converges after two iterations with total
time 0.1931s. The average time for pre-processing is 0.0730s
and the average time for solving the optimization is 0.0235s.
On the other hand, SQP converges to the same trajectory
after 10 iterations with total time 1.5329s.

VI. CONCLUSION

This paper discussed optimization-based trajectory
smoothing methods for robot motion planning. The convex
feasible set algorithm was discussed in order to solve
the non-convex optimization problem efficiently. The
geometric interpretation of the convex feasible set was
illustrated, which was a convex “tube” around the reference
trajectory. By replacing the non-convex constraint with
the “tube” constraint, we transformed the original problem

‘e Sm00thed Trajectory
=@ Reference Trajectory

%
2%
9%
I
208K ‘Zzzﬁ'z{‘:‘::f;"”:"
XXX KSR 270000
:,’?o % AKX

($50020,06% 0% 2244
S SIS
0% %20, %
GZKEK0 S RREIXKIN KA
LRI o‘:‘é/’.’oﬁ"i’oﬁ' ootse

%
R IRKNIILELACAN
6 \,‘o,o,o‘o“n::;,:‘ LS
%
&

G %
-4 QRSB

to a quadratic programming problem, whose solution was
guaranteed to converge to local optima of the original
problem. The performance of the algorithm was illustrated
on a mobile robot, a planar robot arm and an areal robot.
It was verified that the algorithm is more efficient than
sequential quadratic programming, a representative of
conventional optimization methods.

REFERENCES

[11 E. A. Sisbot, L. F. Marin-Urias, X. Broquere, D. Sidobre, and
R. Alami, “Synthesizing robot motions adapted to human presence,”
International Journal of Social Robotics, vol. 2, no. 3, pp. 329-343,
2010.

[2] J.J. Kuffner and S. M. LaValle, “RRT-connect: An efficient approach
to single-query path planning,” in Robotics and Automation (ICRA),
2000 IEEE International Conference on, vol. 2. IEEE, 2000, pp.
995-1001.

[3] T. M. Howard, C. J. Green, and A. Kelly, “Receding horizon model-
predictive control for mobile robot navigation of intricate paths,” in
Field and Service Robotics. Springer, 2010, pp. 69-78.

[4] C. Goerzen, Z. Kong, and B. Mettler, “A survey of motion planning
algorithms from the perspective of autonomous UAV guidance,” Jour-
nal of Intelligent and Robotic Systems, vol. 57, no. 1-4, pp. 65-100,
2010.

[5] F. Chazal, D. Chen, L. Guibas, X. Jiang, and C. Sommer, “Data-driven
trajectory smoothing,” in Proceedings of the 19th ACM SIGSPATIAL
International Conference on Advances in Geographic Information
Systems. ACM, 2011, pp. 251-260.

[6] J. Pers, M. Bon, S. Kovaci¢, M. Sibila, and B. DeZman, “Observation
and analysis of large-scale human motion,” Human Movement Science,
vol. 21, no. 2, pp. 295-311, 2002.

[7]1 Y. G. Ryu, H. C. Roh, and M. J. Chung, “Long-time video stabilization
using point-feature trajectory smoothing,” in Consumer Electronics
(ICCE), 2011 IEEE International Conference on. IEEE, 2011, pp.
189-190.

[8] P. T. Boggs and J. W. Tolle, “Sequential quadratic programming,” Acta
numerica, vol. 4, pp. 1-51, 1995.

[9] C. Liu, C.-Y. Lin, and M. Tomizuka, “The convex feasible set algo-
rithm for real time optimization in motion planning,” SIAM Journal
on Control and Optimization, p. in review, 2016.

[10] C. Liu and M. Tomizuka, “Geometric considerations on real time
trajectory optimization for nonlinear systems,” System & Control
Letters, p. in review, 2016.

[11] Z. Zhu, E. Schmerling, and M. Pavone, “A convex optimization
approach to smooth trajectories for motion planning with car-like
robots,” in Decision and Control (CDC), 2015 IEEE Conference on.
IEEE, 2015, pp. 835-842.

[12] M. McNaughton, C. Urmson, J. M. Dolan, and J.-W. Lee, “Motion
planning for autonomous driving with a conformal spatiotemporal
lattice,” in Robotics and Automation (ICRA), 2011 IEEE International
Conference on. 1EEE, 2011, pp. 4889-4895.

