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Abstract— The development of automated vehicles brings
new challenges to road safety. The behavior of the automated
vehicles should be carefully designed in order to interact
with the environment and other vehicles efficiently and safely.
This paper is focused on the learning and decision making
methods for the automated vehicles towards safe freeway
driving. Based on a multi-agent traffic model, the decision
making problem is posed as an optimal control problem,
which is solved by 1) behavior classification and trajectory
prediction of the surrounding vehicles, and 2) a unique parallel
planner architecture which addresses the efficiency goal and the
safety goal separately. The simulation results demonstrate the
effectiveness of the algorithm.

I. INTRODUCTION

Automated driving is widely viewed as a promising tech-
nology to revolutionize today’s transportation systems [1], so
as to free the human drivers, ease the road congestion and
lower the fuel consumption among other benefits. Substantial
research efforts are directed into this field from research
groups and companies [2], which are also encouraged by
policy makers [3].

When the automated vehicles drive on public roads, safety
is a big concern. While existing technologies can assure high-
fidelity sensing, real-time computation and robust control,
the challenges lie in the interactions between the automated
vehicle and the environment which includes other manually
driven vehicles [4]. For road safety, the driving behavior
for the automated vehicles should be carefully designed. In
other words, given sensory information from multiple sensors
(e.g. cameras and LIDAR), an automated vehicle should be
intelligent enough to find a safe and efficient trajectory to
its destination, which takes into account of the complex
environment with multiple surrounding vehicles.

Conservative strategies such as “braking when collision is
anticipated”, known as the Auto Brake function in existing
models [5], are not the best actions in most cases (although
they may be necessary in certain cases). Taking into account
the dynamics and future course of surrounding vehicles, the
automated vehicle has multiple choices for a safe maneuver,
i.e. i) slow down to keep a safe headway till the headway
reaches the safe limit; ii) steer to the left or right to avoid
a collision; iii) even speed up if it can get out a dangerous
zone by so doing, etc. The autonomy in driving needs high
level machine intelligence [6].

This paper proposes a framework in designing the driving
behavior for automated vehicles to prevent or minimize
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Fig. 1: Architecture for the robustly-safe automated driving
(ROAD) system

Fig. 2: Illustration of the freeway driving scenario

occurrences of collisions among vehicles and obstacles
while maintaining efficiency (e.g. maintaining high speed on
freeway). The three-layer Robustly-Safe Automated Driving
(ROAD) system is considered, as shown in Fig.1. The focus
of this paper is in layer 2: the learning and decision making
algorithm. Freeway driving will be considered as shown in
Fig.2. At each time step, the automated vehicle predicts the
future courses of all surrounding vehicles and confines its
trajectory in a safe region regarding the prediction.

The remainder of the paper is organized as follows: in
section II, a multi-agent traffic model will be introduced and
the control problem for automated driving will be formulated.
The learning and prediction algorithm will be discussed in
section III, followed by the decision making algorithm in
section IV. Simulation studies will be presented in section V.
Section VI concludes the paper.

II. THE MULTI-AGENT TRAFFIC MODEL

The scenario shown in Fig.2 will be modeled in the
framework of multi-agent systems. Moreover, it is assumed
that the lanes in the freeway are along the x-direction with
no curvature. The lanes are indexed increasing from the right
lane to the left lane.



Fig. 3: The kinematic model for vehicle i

A. The System Model

A multi-agent system (MAS) [7] is a system composed of
multiple interacting intelligent agents within an environment.
All vehicles (the automated vehicle and other manually
driven vehicles) on freeway are viewed as agents, which have
several important characteristics: 1) autonomy: the agents are
self-aware and autonomous; 2) local views: no agent has a
full global view of the system; 3) decentralization: there is
no designated controlling agent.

From a global view, there can be thousands of agents
(vehicles) in the system (e.g. on the freeway). But only
the local interactions among the vehicles are of interest.
Hence, in the controller of the automated vehicle, only the
behavior of the surrounding vehicles will be analyzed, while
surrounding vehicles refer to the vehicles that can be detected
and within certain distances to the automated vehicle.

Suppose there are N surrounding vehicles locally and are
indexed from 1 to N . Let H = {1, .., N} be the set of
indices for all surrounding vehicles. The automated vehicle
has index 0. Since the surrounding vehicles are changing
from time to time, mathematically, the topology of the MAS
is time varying [8].

For vehicle i, denote its state as xi, control input as ui.
Its dynamic equation can be written as

ẋi = fi(xi, ui, wi),∀i = 0, · · · , N (1)

where wi is the disturbance introduced by the environment,
e.g. wind. For simplicity, only the kinematic model will be
considered in layer 2. Figure 3 shows the bicycle model
used for all vehicle i, where (pxi , p

y
i ) is the position of the

center of the rear axle, vi the forward speed, θi the vehicle
heading (θi = 0 when the vehicle is following the lane),
γi the steer angle and Li the vehicle wheelbase. Assuming
no tire slip angle, the kinematics of vehicle i follow from
ṗxi = vi cos(θi), ṗ

y
i = vi sin(θi), θ̇i = vi

Li
tan γi. Since the

mapping from γi to θ̇i is homeomorphic given vi, θ̇i is
chosen as an input signal instead of γi. For vehicle i, define
xi = [pxi , p

y
i , vi, θi]

T and ui = [v̇i, θ̇i]
T . Hence (1) can be

simplified as

ẋi = f(xi) + Bui + Bwi,∀i = 0, · · · , N (2)

where

f(xi) =


vi cos θi
vi sin θi

0
0

 ,B =


0 0
0 0
1 0
0 1

 = [B1,B2] (3)

Let xe be the state of the environment, e.g. speed limit
vlim, stationary obstacles and so on. Then the system state
x is defined as x = [xT0 , x

T
1 , · · · , xTN , xTe ]T .

Fig. 4: The block diagram for local interactions

Agent i chooses the control ui based on its information
set πi and its objective Gi (which can be intended behaviors
or desired speed). The information set is a combination of
the measurements and the communicated information. In this
paper, it is assumed that there is no direct communication
among vehicles. In this way, agent i’s information set at time
T contains all the measurements up to time T , i.e. πi (T ) =
{yi (t)}t∈[0,T ] where

yi = hi (x, zi) ,∀i = 0, · · · , N (4)

and zi is the measurement noise. The controller can be
written as

ui = gi (πi, Gi) ,∀i = 0, · · · , N (5)

Based on (1), (4) and (5), the block diagram for the multi-
agent system is shown in Fig.4, where every row represents
one agent. All agents are coupled together in the closed loop
system due to measurement feedbacks.

B. The Optimal Control Problem

In layer 2 of the ROAD system, the controller for the
automated vehicle, i.e. the function g0, is to be designed,
which should be chosen by balancing the following two
factors: 1) Efficiency: The objective G0 should be achieved
in an optimal manner through minimizing a cost function
J(x0, u0, G0); 2) Safety: Efficiency requirement should be
fulfilled safely. Denote the system’s safe set as XS , which
is a closed subset of the state space X of the system state
x that is collision free. Then g0 should be chosen such that
∀t, x(t) ∈ XS . The following optimal control problem can
be formulated [9]:

minu0 E(J(x0, u0, G0)) (6)
s.t. u0 ∈ Ω, x0 ∈ Γ(xe), ẋ0 = f(x0) + Bu0 (7)

x ∈ XS (8)

where Ω is the control space constraint for vehicle stability,
which depends on model uncertainties and disturbances [10],
and Γ(xe) is the state space constraint regarding the speed
limit. The above optimization is generally hard to solve in
view of the safety constraint (8), as the dynamics of the
system state x is only partially known and the set XS is



Fig. 5: The structure of the learning and prediction center

non convex. To solve the problem, the behaviors of the
surrounding vehicles will be identified and predicted online
(section III) and a parallel structure will be introduced to
solve the non convex optimization efficiently (section IV).

III. IDENTIFICATION AND PREDICTION OF THE DRIVING
BEHAVIOR OF SURROUNDING VEHICLES

Instead of predicting other vehicles’ trajectories directly,
human drivers may classify other drivers’ intended behavior
first. If the intended driving behaviors are understood, the
future trajectories can be predicted using empirical models.
Mimicking what humans would do, the learning structure
in Fig.5 is designed for the automated vehicle to make
predictions of the surrounding vehicles, where the process
is divided into two steps: 1) the behavior classification,
where the observed trajectory of a vehicle goes through
an offline trained classifier; and 2) the trajectory prediction,
where the future trajectory is predicted based on the identi-
fied behavior, by using an empirical model which contains
adjustable parameters to accommodate the driver’s time-
varying behavior.1 The classification step is needed when
the communications among vehicles are limited. Otherwise,
vehicles can broadcast their planned behaviors.

In this section, the design of the classifier, the empirical
models and the online learning algorithm will be discussed.

A. The Driving Behaviors

Denote the intended behavior of vehicle i at time step k
as bi(k). In this paper, five behaviors are considered:
• Behavior 1 (B1): Lane following;
• Behavior 2 (B2): Lane changing to the left;
• Behavior 3 (B3): Lane changing to the right;
• Behavior 4 (B4): Lane merging;
• Behavior 5 (B5): Lane exiting;

where B1 is the steady state behavior; B2, B3 and B4 are
driving maneuvers; and B5 is the exiting behavior. It is
assumed that there must be gaps (lane following) between
two maneuvers (B2, B3 and B4). The transitions among
behaviors follow from the model shown in Fig.6a.

Let P (bi(k)|π0(k)) ∈ R5 be the probability vector that
vehicle i intends to conduct B1, · · · , B5 at time step k given

1Consider Fig.4. When Gi denotes vehicle i’s intended behavior, the
behavior classification is a backward process to identify Gi, while the
trajectory prediction is a forward process to predict vehicle i’s closed loop
behavior ẋi = f(xi) + Bgi(πi, Gi) based on identified Gi.

(a) The transition model (b) The HMM model

Fig. 6: The behavior transition model and the hidden Markov
model

information up to time step k. The relationship between
P (bi(k)|π0(k)) and P (bi(k + 1)|π0(k)) can be described
by a Markov matrix A = P (bi(k + 1)|bi(k)) ∈ R5×5, e.g.

P (bi(k + 1)|π0(k)) = A ∗ P (bi(k)|π0(k)) (9)

where A represents the transition model2 in Fig.6a.
The transition model should be invoked in calculation only

when vehicle i is following the lane and is about to conduct
a maneuver. When vehicle i is conducting a maneuver, there
is no need to calculate the probability distribution over other
behaviors. The transition model can be used again when the
maneuver is completed or aborted and vehicle i starts to
follow the lane. The intuition is that: although the intention
of a driver is unknown (thus needs to be inferred), but his
action is observable (thus when he turns his intention into
action, there is no need to guess).

B. The Classifier and the Features

The intentions of a driver at different time steps form
a Markov process, which, however, are unknown to the
automated vehicle. Hence the behavior classification problem
becomes an inference problem in the Hidden Markov Model
(HMM) [11] as shown in Fig.6b. According to Bayes’ rule,
at time step k, for j = 1, 2, · · · , 5,

P (bi(k) = Bj |π0(k)) (10)
∝ P (bi(k) = Bj , y0(0), · · · , y0(k))

∝ P (y0(k)|bi(k) = Bj)P (bi(k) = Bj |π0(k − 1))

where P (bi(k)|π0(k − 1)) encodes the temporal transitions
of the intended behaviors and can be obtained using (9).
P (y0(k)|bi(k)) is the measurement model, which can be con-
structed from data offline3. To represent the high-dimension
data efficiently, the measurement y0 is divided into several
features for each surrounding vehicle i (not limited to the
following ones):
• Feature 1: Longitudinal acceleration f1

i = v̇i.
• Feature 2: Deceleration light f2

i = (1, 0) = (on, off).
• Feature 3: Turn signal f3

i = (1, 0,−1) = (left,off,right).
• Feature 4: Speed relative to the traffic flow f4

i = vi− v̄.

2A can be trained using real world labeled data bi(k), e.g. Apq =
P (bi(k + 1) = Bp|bi(k) = Bq) :=

∑
i,k I(bi(k + 1) = Bp, bi(k) =

Bq)/
∑

i,k I(bi(k) = Bq) where I is the indicator function.
3Similar to the transition model A, the measurement model can also be

obtained by supervised training, together with necessary curve fitting.



initialization P (bi(0)) = [1, 0, 0, 0, 0]T , k = 0;
while Classifier is Active do

k = k + 1;
read current y0(k), calculate f1

i (k), · · · , f10
i (k);

if f6
i (k) == −1 then
B∗ = arg maxB=B3,B3,B4 P (bi(k − 1) = B);
P (bi(k) = B∗) = 1, P (bi(k) 6= B∗) = 0;
while f6

i (k) == −1 do
k = k + 1, read y0(k), calculate f6

i (k);
P (bi(k)) = P (bi(k − 1));

end
P (bi(k)) = [1, 0, 0, 0, 0]T ;

else
P (bi(k)|π0(k−1)) = A∗P (bi(k−1)|π0(k−1));
calculate M = P (y0(k)|bi(k));
P (bi(k)|π0(k)) = M. ∗ P (bi(k)|π0(k − 1));
normalize P (bi(k)|π0(k));

end
end

Algorithm 1: Behavior classification for vehicle i

Fig. 7: Behavior classification in a two-lane case

• Feature 5: Speed relative to the front vehicle f5
i = vi−

vfront.4

• Feature 6: Current lane Id f6
i . f6

i = −1 if the vehicle
is occupying two lanes.

• Feature 7: Current lane clearance f7
i = (1, 0,−1) =

(blocked, clear, ended).
• Feature 8: Lateral velocity, e.g. f8

i = vi sin θi.
• Feature 9: Lateral deviation from the center of its

current lane f9
i .

• Feature 10: Lateral deviation from the center of its target
lane (if in the lane changing mode) f10

i .
Algorithm 1 is designed based on the previous discussion.

The probability distributions over all possible behaviors are
calculated at each time step when the vehicle is following the
lane (not occupying two lanes). The update of the distribution
stops when the vehicle is conducting a maneuver. After the
maneuver is completed, the probabilities will be initialized.
Figure 7 illustrates the behavior classification results under
algorithm 1, where the measurement model is set empirically
as P (y0|bi = B1) ∝ exp(−(f8

i )2 − c(f9
i )2), P (y0|bi =

B3) ∝ 1 − exp(−(f8
i )2 − c(f9

i )2) and c is a constant. In
the beginning, the vehicle is following a lane. Then the
probability of lane changing rises since the lateral speed f6

i

goes up. When the vehicle crosses the boundary of two lanes,
the probability of B3 goes to 1. After lane changing, the
vehicle starts to follow the new lane.

4Feature 4 and 5 encodes the interactions among vehicles.

C. The Empirical Models for Trajectory Prediction

The future trajectory is predicted according to the most
likely predicted behavior arg maxBj

P (bi(k) = Bj). For
lane following B1, θi ≈ 0 and the lateral deviation of
the vehicle can be ignored. The vehicle i only regulates its
longitudinal speed to match the speed of the traffic flow and
the speed of its front vehicle, e.g.

ẋi = f(xi) + B1[k1f
4
i + k2f

5
i ] (11)

where k1, k2 ∈ R are online-adjustable parameters. The pa-
rameter identification method for k1 and k2 will be discussed
in the next section. For lane changing B2 and B3, the vehicle
not only regulates the longitudinal speed, but also regulates
the lateral position, hence the turning rate. The empirical
model can be described as:

ẋi = f(xi) + B1[k1f
4
i + k2f

5
i ] + B2[k3f

8
i + k4f

10
i ] (12)

where k1, k2, k3, k4 ∈ R are online-adjustable parameters.

D. Online Parameter Adaptation

The online parameter adaptation is needed to capture the
time varying behavior of drivers. For example, to identify
k1 and k2 in (11), the reduced order equation will be used:
f1
i = v̇i = k1f

4
i + k2f

5
i = βTϕ where β = [k1, k2]T and

ϕ = [f4
i , f

5
i ]T . Based on the historical data of f1

i , f
4
i and f5

i ,
k1 and k2 can be identified using the recursive least square
algorithm [12]. Let β̂(k) = [k̂1(k), k̂2(k)]T be the estimates
of [k1, k2] at time step k. Then the estimates can be updated
by the following equation,

β̂(k + 1) = β̂(k) + Fϕ(k)
(
f1
i (k + 1)− β̂(k)Tϕ(k)

)
(13)

where F is the learning gain. Although k̂1 and k̂2 are
identified using historical data, they can be used to predict
the trajectories in the near future if the vehicle’s behavior
does not change very fast compared to the sampling rate.

IV. ONLINE DECISION MAKING AND CONTROL

Based on the predictions of the surrounding vehicles, the
automated vehicle needs to find a safe and efficient trajectory
satisfying the optimal control problem (6-8). However, since
the uncertainties regarding the predictions will accumulate
in time, there is no need to solve the original problem in a
long time horizon. The decision making architecture in Fig.8
is proposed, which is designed to be a parallel combination
of a baseline planner that solves the problem in a long time
horizon without the safety constraint (8), and a safety planner
that takes care of the safety constraint in real time [13].

Fig. 8: The structure of the decision making center



A. The Baseline Planner

The baseline planner solves the optimal control problem
(6-7) to ensure efficiency, which is similar to the planner
in use when the automated vehicle is navigating in an
open environment. When the cost function and the control
constraint are designed to be convex, (6-7) become a convex
optimization problem.

Suppose the objective G0 (target behavior and target speed
vr) is specified. The baseline planner tries to plan a trajectory
to accomplish G0. When the objective is to follow the lane,
the cost function is designed as

J =

∫ ∞
0

[
(v0 − vr)2 + q(f9

0 )2 + uT0 Ru0

]
dt (14)

where q ∈ R+ and R ∈ R2×2 is positive definite. When the
objective is to change lane, the automated vehicle should
change the lane smoothly within time T . The cost function
is designed as

J =

∫ T

0

Φ(t)dt+ Γ(f10
0 (T ), θ0(T )) (15)

where Φ = (v0− vr)2 + q1(f10
0 )2 + q2(θ0)2 + uT0 Ru0 is the

cost to go; Γ = s1(f10
0 (T ))2 + s2(θ0(T ))2 is the terminal

cost; q1, q2, s1, s2 ∈ R+; and R ∈ R2×2 is positive definite.
The computation in the baseline planner can be done

offline. The resulting control policy will be stored for online
application, to ensure real-time planning.

B. The Safety Planner

The safety planner modifies the trajectory planned by the
baseline planner locally to ensure that it will lie in the safe
set XS in real time.

During lane following, the safety constraint requires the
automated vehicle to keep a safe headway. Thus XS(B1) =
{x : d1(x) ≥ dmin} where d1(x) calculates the minimum
distance between the automated vehicles and the vehicle or
obstacles in front of it. During lane changing, the safety
constraint requires the automated vehicle to keep a safe dis-
tance from vehicles on both lanes. Thus XS(B2), XS(B3) =
{x : d2(x) ≥ dmin} where d2(x) calculates the minimum
distance between the automated vehicle and all surrounding
vehicles and obstacles in the two lanes.

Mathematically, the safe set is described using a safety
index φ, which is a real-valued continuously differentiable
function on the system’s state space. The state x is considered
safe only if φ(x) ≤ 0 as shown in Fig.9. In Fig.2, the
safe region for the automated vehicle is affected by the
future trajectory of the surrounding vehicles. Based on the
prediction of other vehicles, if the baseline trajectory leads
to φ ≥ 0 now or in the near future, the safety planner will
generate a modification signal to decrease the safety index
by making φ̇ < 0.

In order for the above strategy to work, the safety index
needs to satisfy the following conditions: 1) ∂φ̇/∂u0 6= 0; 2)
the unsafe set Xc

S is not reachable given the control law φ̇ <
0 when φ ≥ 0 and the initial condition x(t0) ∈ XS . The first
condition ensures that φ can always affected by u0, while the

Fig. 9: Illustration of the safety index and the safe set

second condition ensures that the modified trajectory always
belongs to XS . It is shown in [14] that such a function φ
exists for any safe set described by XS = {x : d(x) ≥ dmin}
if the function d(·) is smooth. Moreover, it is shown in [15]
that the safety index φ = D − d2

j (x) − αḋj(x) (j = 1, 2)
has the desired performance for systems with state equation
(2), where D > d2

min, and α > 0 are constants. To ensure
safety, the control input of the automated vehicle must be
chosen from the set of safe control US(t) = {u0(t) : φ̇ ≤
−η0 when φ ≥ 0} where η0 ∈ R+ is a safety margin. By
(2), the set of safe control when φ ≥ 0 can be written as

US (t) = {u0 (t) : L (t)u0 (t) ≤ S (t)} (16)

where L (t) = ∂φ
∂x0
B, S (t) = −η0 −

∑
j∈H

∂φ
∂xj

ẋj − ∂φ
∂x0

f
and ẋj is the prediction made by the trajectory predictor.

If the baseline control input u0 (t) is anticipated to violate
the safety constraint, the safety controller will map it to the
set of safe control US (t) according to the following quadratic
cost function

u0/US = min
u∈US∩Ω

J0 (u) =
1

2
(u− u0)

T
W (u− u0) (17)

where W is a positive definite matrix and defines a metric in
the vehicle’s control space. To obtain optimality, W should
be close enough to the metric imposed by the cost function
J in (14) and (15), e.g. W ≈ d2J/du2

0 where J is convex
in u0. In the lane following mode, if the lateral deviation f9

0

is large due to obstacle avoidance and the safety controller
continues to generate turning signal θ 6= 0, the vehicle will
enter the lane changing mode.

V. SIMULATION

Simulation studies are conducted based on the algorithms
discussed above. The automated vehicle is assumed to start
with the rightmost lane with the desired longitudinal speed
vr = 30m/s ≈ 67mile/h. The sampling time in the
simulation is 0.05s. Two initial objectives are considered:
1) following the lane and 2) changing lane to the left. Under
each objective, three different cases are considered, to be
elaborated below.

A. Objective 1: Lane Following

1) Case 1 - Stationary Obstacle: Figure 10 shows the case
when the automated vehicle suddenly noticed a stationary
obstacle 40m ahead. The safety controller went active. By
mapping the baseline input u0 to US in (17), the command
for deceleration and turn was generated. Then the automated



Fig. 10: Case 1 in Objective 1: Reaction of the automated
vehicle when there is a stationary obstacle 40m ahead.

Fig. 11: Case 2 in Objective 1: Reaction of the automated
vehicle when it encountered a slow vehicle in the front.

vehicle slowed down and changed lane to the left to avoid
the obstacle. After lane changing, the vehicle accelerated to
the desired speed again.

2) Case 2 - Slow Front Vehicle: Figure 11 shows the
case when the front vehicle was too slow. To illustrate
the interaction, the trajectories of both vehicles are down
sampled and shown in the last plot in Fig.11, where circles
represent the automated vehicle and squares represent the
slow vehicle. Different colors correspond to different time
steps, the lighter the earlier. At the beginning, since it was
not possible for the automated vehicle to keep the desired
speed behind the slow car, it started to change lane to the
left. After changing the lane, it overtook the slow vehicle.

3) Case 3 - Fast Cut-in Vehicle: Figure 12 shows the
scenario when the automated vehicle was overtook by a
fast vehicle. When the automated vehicle observed large
lateral velocity from the fast vehicle, it predicted that the
fast vehicle would change lane. Under the command from
the safety controller, the automated vehicle slowed down.
After the lane changing of the fast vehicle, the automated
vehicle accelerated again to meet the desired speed and keep

Fig. 12: Case 3 in Objective 1: Reaction of the automated
vehicle when it was overtook by a fast vehicle.

Fig. 13: Case 1 in Objective 2: Behavior of the automated
vehicle when there was a vehicle next to it in the target lane.

a safe headway to the fast vehicle.

B. Objective 2: Lane Changing

In this simulation, the trajectory of the surrounding ve-
hicle is manually controlled, in order to test the real time
interactions.

1) Case 1 - A Vehicle Moving Side by Side in the Target
Lane: Figure 13 shows the case when the vehicle in the
target lane was traveling next to the automated vehicle with
approximately same speed. It was not safe to change lane
in this case. Then the automated vehicle slowed down to
create a gap between the two vehicles. When the distance
between the two vehicles was big enough, the automated
vehicle then changed to the target lane. After adjusting the
relative distance to the front vehicle, the automated vehicle
then followed the new lane at constant speed.

2) Case 2 - A Slowing Down Vehicle in the Target Lane:
Figure 14 shows the case when the vehicle in the target lane
was slowing down. At first, the automated vehicle tried to
use the strategy in case 1. However, when it noticed that the



Fig. 14: Case 2 in Objective 2: Behavior of the automated
vehicle when the vehicle in the target lane was slowing down.

Fig. 15: Case 3 in Objective 2: Behavior of the automated
vehicle when another vehicle changed to the target lane
simultaneously from the opposite direction.

yellow car also slowed down, it then sped up to overtake the
yellow car.

3) Case 3 - Simultaneous Lane Changing from Opposite
Directions: Figure 15 shows the case when another vehicle
changed to the target lane simultaneously with the automated
vehicle, but from the opposite direction. At the beginning,
the yellow car was anticipated to follow its lane. Hence it
was safe for the automated vehicle to change lane. When
the lateral velocity of the yellow car became larger, the
probability of B3 went up and a possible future collision
was anticipated. Then the safety planner went active. When
the yellow car was about to cross the lane boundary, the
automated vehicle turned back to its previous lane and
slowed down. The automated vehicle finally changed lane
using the strategy in case 1: slowing down first and changing
lane when the distance between the two vehicles was big
enough.

VI. CONCLUSION AND FUTURE WORK

In this paper, the design of layer 2 in the ROAD system
was discussed. The multi-agent traffic model was proposed
and an optimal control problem was formulated for vehicle
trajectory planning. To solve the problem, the behaviors of
surrounding vehicles was identified and their future trajec-
tories was predicted. Based on the predictions, the optimal
control problem was solved online using an unique archi-
tecture: a parallel combination of a baseline planner which
solved the problem without the safety constraint and a safety
planner which took care of the safety constraint online. The
proposed algorithms were verified in the simulations.

In the future, more real world data will be collected to
refine the classifier and empirical models. The determination
method of the objectives and its integration with the current
planner structure will be studied. The optimality of the
proposed parallel planner structure will also be investigated.
Integrated road simulation with high fidelity vehicle models
and curved roads will be conducted.
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