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Abstract— To address the safety issues in human robot
interactions (HRI), a safe set algorithm (SSA) was developed
previously. However, during HRI, the uncertainty levels are
changing in different phases of the interaction, which is not
captured by SSA. A safe exploration algorithm (SEA) is
proposed in this paper to address the uncertainty levels in
the robot control. To estimate the uncertainty levels online, a
learning method in the belief space is developed. A comparative
study between SSA and SEA is conducted. The simulation
results confirm that SEA can capture the uncertainty reduction
behavior which is observed in human-human interactions.

I. INTRODUCTION

Recent advances in robotics suggest that human robot
interaction (HRI) is no longer a fantasy, but is happening
in various fields, such as industrial cooperative robots, au-
tonomous cars and medical robots.

Human safety is one of the biggest concerns in HRI.
Various robot control methods have been developed to ensure
a collision free HRI, such as potential field methods [1],
numerical optimization approaches [2], receding horizon
control (RHC) methods [3] and sliding mode methods [4].
However, as humans will respond to the robot’s movement,
interactions need to be considered explicitly in the design
of the robot controller. In other words, the robot should be
equipped with the ability to conduct social behavior.

As the study of human brains inspires modern AI, a close
look at the interactions among humans may also offer new
ideas in dealing with HRI. The social behavior of a person is
usually constrained by the social norm and the uncertainties
that he perceives for other people. The social norm can be
viewed as a hard constraint which cannot be bypassed. But
the uncertainties can be attenuated through active learning
(refer to uncertainty reduction theory [5]). A common ex-
perience is: a newcomer tends to behave conservatively in
a new environment, due to large uncertainties. But through
observing and learning his peers, he will gradually behave
freely, due to the reduction of uncertainties.

In the previous work [6], the authors introduced a safe set
algorithm (SSA) in designing the robot controller for safe
HRI. In this method, a safe set is constructed and the control
law is selected such that the safe set is time-invariant. This set
can be viewed as a ”social norm”, which is a hard constraint
on the robot’s behavior.

One of the limitation of SSA is that the robot control
is independent of the perceived uncertainties of humans’
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behavior, which are essential for a smooth and efficient HRI
(regarding the effect of uncertainty reduction by active robot
learning). It is noted that some researchers incorporated the
information on uncertainties in solving HRI problems, e.g.
in the framework of partially observable Markov decision
process (POMDP) [7]. In this paper, SSA is extended to
a safe exploration algorithm (SEA), where the levels of
uncertainties are considered explicitly in the control strategy.

The remainder of the paper is organized as follows: in
section II, a multi-agent interaction model will be introduced,
followed by the discussion of the safe set algorithm (SSA)
in section III. The safe exploration algorithm (SEA) will be
proposed in section IV, followed by a new learning algorithm
in section V. Finally, a comparative study between SSA and
SEA will be conducted in section VI. Section VII concludes
the paper.

II. MODELING THE HUMAN ROBOT INTERACTIONS

The HRI is modeled in a multi-agent framework, where
robots and humans are regarded as agents. In this section, an
agent model will be introduced first, followed by the system
model (refer to [6] for more detailed discussions).

A. The Agent Model

Suppose there are N agents in the system and are indexed
from 1 to N . R denotes the set of all indices for the robots,
and H for the humans. Denote agent i’s state as xi, its control
input as ui, its information set as πi and its goal as Gi, for
i = 1, ..., N . For simplicity, write xR as the union of the
states of all robots and xH as the union of the states of all
humans. Denote the system state as x = [xTR, x

T
H ]T ∈ X

where X is the state space of the system.
Assume that agents are independent to each other. Thus

the open loop dynamics of xi will not be affected by other
agents, but be determined by xi, ui and the noise wi, i.e.

ẋi = fi (xi, ui, wi) ,∀i = 1, ..., N (1)

Moreover, it is assumed that the dynamics of all robots
are affine in the control term, i.e.

ẋi = f∗ix (xi, wi) + f∗iu (xi)ui,∀i ∈ R (2)

Agent i chooses the control ui based on the information
set πi and its goal Gi. The information set is a combination
of the measured data and the communicated information. In
this paper, it is assumed that there is no direct communi-
cation among the defined agents. If a group of agents do
communicate with each other, it is assumed that they can
be coordinated and will be treated as one agent. In this



Fig. 1: A Multi-Agent System Block Diagram

way, agent i’s information set at time T contains all the
measurements up to time T , i.e. πi (T ) = {yi (t)}t∈[t0,T ]

where
yi = hi (x, vi) ,∀i = 1, ..., N (3)

and vi is the measurement noise. The controller can be
written as

ui = gi (yi, Gi) ,∀i = 1, ..., N (4)

B. The Closed Loop System

Based on (1) (3) (4), the system block diagram for the
multi-agent system can be plotted as in Fig.1, where every
row represents one agent. Using (3) (4) in (1) and using the
system state x to represent the combination of all agents’
states, the closed loop dynamic equation can be written as

ẋ = f cl (x,G, v1, ..., vN , w1, ...wN ) (5)

where G =
[
GT1 , ..., G

T
N

]T ∈ X is the system goal. Notice
that due to measurement feedbacks in control, all agents are
coupled together in the closed loop system.

C. The Safety Oriented Design

The design method for the robot controller needs to be
studied. Denote the system’s safe set as XS , which is a closed
subset of the state space X that is collision free.

The Safety Principle: the function gi(., .), i ∈ R should
be chosen such that ∀t, x(t) ∈ XS , 1) for all possible noises
v1, ...vN , w1, ..., wN and human decisions gi(., .), i ∈ H if
they are bounded, or 2) for almost all possible noises and
human decisions if they are unbounded (those with negligible
probabilities will be ignored).

III. THE SAFE SET ALGORITHM (SSA)

The safe set algorithm offers a fast online solution con-
cerning the safety principle. In this method, the interaction
is regarded as a sequential game, where robots are followers
who play reactive strategies [8]. The system in Fig.1 can be
reduced to the system in Fig.2, by 1) considering one effec-
tive robot and 2) combining all the blocks for human agents
to be the closed loop block ẋH = f

′

H(xH , xR, GH , vH , wH).
Then the multi-agent system is simplified as a two agent
system with one effective robot and one effective human. The
human’s closed loop dynamics are estimated online using a
parameter adaptation algorithm, to be discussed in section
III-B. The control law of the robot is calculated with respect

Fig. 2: Simplified System Model

to an invariant subset of the safe set XS , to be discussed in
section III-A.

A. The Set of Safe Control

To guarantee safety, the designed control law should make
the safe set invariant. A safety index is introduced as φ :
X → R, a function on the state space such that 1) φ is
differentiable with respect to t, i.e. φ̇ = (∂φ/∂x)ẋ exists
everywhere; 2) ∂φ̇/∂uR 6= 0; 3) the unsafe set Xc

S is not
reachable given the control law φ̇ < 0 when φ ≥ 0 and the
initial condition x(t0) ∈ XS .

Existence Lemma of the Safety Index: The function φ
satisfying all three conditions exists for any XS = {x :
d(x) ≥ dmin}, where d(x) is a function on the state space
that calculates the minimum distance among all agents and
dmin ∈ R+ is the threshold.1

To ensure safety, the robot’s control must be chosen
from the set of safe control URS (t) = {uR(t) : φ̇ ≤
−ηR when φ ≥ 0} where ηR ∈ R+ is a safety margin.
By Eq.(2), the set of safe control can be written as

URS (t) = {uR (t) : L (t)uR (t) ≤ S (t)} (6)

where

L (t) =
∂φ

∂xR
f∗Ru (7)

S (t) =

{
−ηR −

∑
j∈H

∂φ
∂xj

ẋj − ∂φ
∂xR

f∗Rx

∞
φ ≥ 0

φ < 0
(8)

In the following arguments, when there is no ambiguity,
S(t) denotes the value in the case φ ≥ 0 only. Since the
dynamics of ẋH is not known, estimation is needed in S(t).
Meanwhile, a constant λSSAR ∈ R+ is introduced to bound
the noises and uncertainties in the estimation, i.e.

SSSA (t) = −ηR − λSSAR −
∑
j∈H

∂φ0

∂xj
ˆ̇xj −

∂φ0

∂xR
f∗Rx (9)

where ˆ̇xj =
x̂j(k+1|k)−x̂j(k|k)

Ts
,∀j ∈ H and x̂j(k +

1|k), x̂j(k|k) are defined in Table I. k represents the time
step of the last measurement before t, while k + 1 is the
time step for the next anticipated measurement. Ts is the
sampling time. L(t), S(t) will also be written as L(k), S(k)
to denote that the last measurement is taken at k-th time step.

1The Lemma is proved in [6]. φ can be constructed in the following
procedure: first, define φ0(x) = dmin − d(x); then check the order from
φ0 to uR in the lie derivative sense, denote it by n; then define φ as
φ0 + k1φ̇0 + ... + kn−1φ

(n−1)
0 . The coefficients k1, ..., kn are chosen

such that the roots of 1+k1s+ ...+kn−1sn−1 = 0 all lie on the negative
real line.



B. Online Learning and Prediction of Humans’ Dynamics

In order to learn human behavior and make predictions, the
nonlinear continuous time dynamic equation of the human
agent ẋH = f ′H (.) is linearized and discretized:

xH(k + 1) = AH(k)xH(k) +BH(k)uclH(k) +w∗H(k) (10)

where uclH(k) =
[
x̂R(k|k)T , GTH (k)

]T 2. x̂R is the estimate
of the robot state from a state estimator (i.e. Kalman Filter).
AH(k), BH(k) are time varying parameters. w∗H(k) is a
noise term assumed to be zero-mean Gaussian and white.
Assume that the robot’s measurement of the human is:

yHR (k) = xH (k) + vHR (k) (11)

Equations (10) and (11) form a linear time varying (LTV)
Gaussian system with unknown parameters. A parameter
adaptation algorithm (PAA) is developed to identify the
system online. The notations for the PAA is shown in Table
I. Define ÂH (k) , B̂H (k) to be the estimates of the matrices
given the information up to the k-th time step.

1) State Estimation: At k + 1-th time step, x̂H is first
updated according to the closed loop dynamics in (12).
Then the measurement information is incorporated in the a
posteriori estimate in (13). A constant update gain α ∈ (0, 1)
is chosen to ensure that the measurement information is
always incorporated.

x̂H (k + 1|k) = ÂH (k) x̂H (k|k) + B̂H (k)uclH(k) (12)

x̂H (k + 1|k + 1) = (1− α) x̂H (k + 1|k) + αyHR (k + 1)
(13)

2) Parameter Estimation: The closed loop matrices are
estimated using recursive least square (RLS) PAA as shown
in (14):[

ÂH (k + 1) , B̂H (k + 1)
]

=
[
ÂH (k) , B̂H (k)

]
+ (x̂H (k + 1|k + 1)− x̂H (k + 1|k))ϕ(k)TF (k + 1)

(14)

where ϕ(k) =
[
x̂H (k|k)

T
uclH(k)T

]T
. F is the learning

gain with the update equation:

F (k + 1) =
1

λ

[
F (k)− F (k)ϕ(k)ϕT (k)F (k)

λ+ ϕT (k)F (k)ϕ (k)

]
(15)

where λ ∈ (0, 1) is a forgetting factor.

C. A Projection to the Set of Safe Control

Suppose there is a baseline control law uoR (t) for the
robot R, which drives the robot to its goal without safety
considerations. Then uoR (t) is mapped to the set of safe
control URS (t) according to the following cost function

u∗R = min
uR∈UR

S

JR (uR) =
1

2
(uR − uoR)

T
Q (uR − uoR) (16)

2Methods for inferring GH(k) are discussed in [9]. In this paper, we
assume it is known.

where Q is positive definite. Solving (16), the safe control
law u∗R (t) is in the following form

u∗R (t) = uoR (t)− c Q−1L (t)
T

L (t)Q−1L (t)
T

(17)

where c = minu∈UR
S (t) |L (t) (u− uoR (t))| [6].

IV. THE SAFE EXPLORATION ALGORITHM (SEA)

One of the limitation of SSA is that the bound for the
uncertainties (i.e. λSSAR ) is a constant. However, the mean
squared estimation error (MSEE) of the human’s state is
changing from time to time. A larger bound is needed if the
MSEE is larger. To capture this property, the safe exploration
algorithm (SEA) is introduced, where the control strategy
changes for different levels of uncertainties.

A. The Belief Space

A belief space [3] is introduced in the safe exploration
algorithm, where ∀j ∈ H , the state estimate of xj is no
longer a point in the Euclidean space, but a distribution, i.e.
N (x̂j , Xj), where Xj is the covariance. All the distributions
are assumed to be Gaussian. Since xj ∼ N (x̂j , Xj), the
covariance can be written as

Xj = E
[
(xj − x̂j) (xj − x̂j)T

]
(18)

which is the mean squared estimation error (MSEE).
The definition of the a priori and a posteriori estimates,

estimation errors and MSEEs are shown in Table I, where
x̃j(k|k) = xj(k)− x̂j (k|k) and x̃j(k+ 1|k) = xj (k + 1)−
x̂j (k + 1|k). At the k-th time step, the best prediction for
xj (k + 1) has the following distribution

N (x̂j (k + 1|k) , Xj (k + 1|k)) (19)

B. The Safe Set in the Belief Space

As discussed in section III-A, the safe control at time
step t = kTs needs to satisfy (6-8) where

∑
j∈H

∂φ
∂xj

ẋj ≈
1
Ts

∑
j∈H

∂φ
∂xj

[xj (k + 1)− xj (k)]. In the belief space,
since the prediction of xj (k + 1) is unbounded, the inequal-
ity in (6) is ill-defined. Indeed, a probability constraint is
needed, i.e.

P ({xj (k + 1) : L(k)uR ≤ S(k)}) ≥ 1− ε,∀j ∈ H (20)

where ε > 0 is a small number. When (20) holds, (6)
is satisfied almost surely (ε cannot be 0 since the noises
are unbounded in Gaussian distributions). Moreover, (20) is
equivalent to the following optimization problem

L(k)uR ≤ SSEA(k) = min
xj(k+1)∈Γj(k),∀j∈H

{S(k)} (21)

TABLE I: Definitions of Notations in State Estimation

State Estimate Estimation Error MSEE
a posteriori x̂j (k|k) x̃j (k|k) Xj (k|k)

a priori x̂j (k + 1|k) x̃j (k + 1|k) Xj (k + 1|k)



where Γj (k) is a set of possible xj such that the probability
density of xj /∈ Γj(k) is small and P (Γj (k)) ≥ 1− ε.

For a Gaussian distribution, the probability mass lying
within the 3σ deviation is 0.997. Set ε = 0.003, and define

Γj (k) =
{
xj : ∆xTj Xj (k + 1|k)

−1
∆xj ≤ 9

}
(22)

where ∆xj = xj − x̂j (k + 1|k). By (8), the RHS of (21)
can be decoupled as a sequence of optimization problems,
i.e. ∀j ∈ H ,

minxj(k+1)
∂φ
∂xj

xj(k + 1)

s.t. xj(k + 1) ∈ Γj(k) (23)

By Lagrangian method3, the optimal solution x∗j (k + 1),
∀j ∈ H is obtained as

x∗j (k+1) = x̂j (k + 1|k)+
3Xj (k + 1|k)

(
∂φ
∂xj

)T
[(

∂φ
∂xj

)
Xj (k + 1|k)

(
∂φ
∂xj

)T] 1
2

(27)
Using (27), SSEA(k) can be expressed as

SSEA(k) = −ηR−λSEAR (k)−
∑
j∈H

∂φ

∂xj
ˆ̇xj−

∂φ

∂xR
f∗Rx (28)

λSEAR (k) =
3

Ts

∑
j∈H

[(
∂φ

∂xj

)
Xj (k + 1|k)

(
∂φ

∂xj

)T] 1
2

+λoR

(29)
where ˆ̇xj =

x̂j(k+1|k)−x̂j(k|k)
Ts

,∀j ∈ H , and λoR ∈ R+ is
the bound for other uncertainties. All other equations follow
from the safe set algorithm except for the learning and
prediction part, where new methods are needed to estimate
Xj(k + 1|k) online.

V. LEARNING IN THE BELIEF SPACE

In this section, the MSEE propagation algorithm in param-
eter adaptation will be proposed, followed by the discussion
of its application to human motion prediction.

A. Propagation of a priori MSEE in PAA

Suppose the LTV system is

x (k + 1) = A (k)x (k) +B (k)u (k) + w (k) (30)

where x (k) ∈ Rn, u (k) ∈ Rm and w (k) is the dy-
namic noise assumed to be zero-mean, Gaussian and white

3The objective function is linear while the constraint function defines an
ellipsoid. The optimal solution must lie on the boundary of the ellipsoid.
Let γ be a Lagrange multiplier. Define the new cost function as:

J∗
j =

∂φ

∂xj
xj(k + 1) + γ

[
9−∆xTj Xj (k + 1|k)−1 ∆xj

]
(24)

The optimal solution satisfies
∂J∗j

∂xj(k+1)
=

∂J∗j
∂γ

= 0, i.e.

(
∂φ

∂xj
)T − 2γXj (k + 1|k)−1 ∆xj = 0 (25)

9−∆xTj Xj (k + 1|k)−1 ∆xj = 0 (26)

Then (27) follows from (25-26).

Fig. 3: Simulation of the MSEE Propagation Algorithm

with covariance W . It is assumed that the state x (k)
is fully known. A(k), B(k) are the unknown parameters
that need to be estimated online. Define the parameter
matrix C (k) = [A (k) , B (k)] ∈ Rn×(n+m), the data
vector ϕ (k) =

[
xT (k) , uT (k)

]T ∈ Rn+m. Since random
matrices are hard to deal with, transform matrix C (k)
to a vector θ (k). Suppose the row vectors in C (k) are
C1 (k) , C2 (k) , . . . , Cn (k) ∈ R1×(n+m). Define

θ (k) = [C1 (k) , C2 (k) , ..., Cd (k)]
T ∈ Rn(n+m)×1 (31)

Define a new data matrix Φ (k) as

Φ (k) =


ϕT (k) 0 · · · 0

0 ϕT (k) · · · 0
...

...
. . .

...
0 0 . . . ϕT (k)

 ∈ Rn×n(n+m)

(32)
Using Φ(k), θ(k), the system dynamics can be written as

x (k + 1) = Φ (k) θ (k) + w (k) (33)

Let θ̂ (k) be the estimate of θ (k) and θ̃ (k) = θ (k)− θ̂ (k)
be the estimation error.

1) State estimation: The a priori estimate of the state and
the estimation error is

x̂ (k + 1|k) = Φ (k) θ̂ (k) (34)
x̃ (k + 1|k) = Φ (k) θ̃ (k) + w (k) (35)

Since θ̂ (k) only contains information up to the (k − 1)-th
time step, θ̃ (k) is independent of w (k). Thus the a priori
MSEE Xx̃x̃ (k + 1|k) = E

[
x̃ (k + 1|k) x̃ (k + 1|k)

T
]

is

Xx̃x̃ (k + 1|k) = Φ (k)Xθ̃θ̃ (k) ΦT (k) +W (36)

where Xθ̃θ̃ (k) = E
[
θ̃ (k) θ̃ (k)

T
]

is the mean squared error
of the parameter estimation.

2) Parameter estimation: In the standard PAA, the pa-
rameter is estimated as

θ̂ (k + 1) = θ̂ (k) + F (k + 1) ΦT (k) x̃ (k + 1|k) (37)

where F (k + 1) is the learning gain in (15) with ϕ (k)
replaced by ΦT (k). The parameter estimation error is

θ̃ (k + 1) = θ̃ (k)− F (k + 1) ΦT (k) x̃ (k + 1|k) + ∆θ (k)
(38)



where ∆θ (k) = θ (k + 1) − θ (k). Since the system is
time varying, the estimated parameter is biased and the
expectation of the error can be expressed as

E
(
θ̃ (k + 1)

)
=

[
I − F (k + 1) ΦT (k) Φ (k)

]
E
(
θ̃ (k)

)
+ ∆θ (k)

=

k∑
n=0

k∏
i=n+1

[
I − F (i+ 1) ΦT (i) Φ (i)

]
∆θ (n) (39)

The mean squared error of parameter estimation follows
from (38) and (39):

Xθ̃θ̃ (k + 1)

= F (k + 1) ΦT (k)Xx̃x̃ (k + 1|k) Φ (k)F (k + 1)

−Xθ̃θ̃ (k) ΦT (k) Φ (k)F (k + 1)

−F (k + 1) ΦT (k) Φ (k)Xθ̃θ̃ (k)

+E
[
θ̃ (k + 1)

]
∆θT (k) + ∆θ (k)E

[
θ̃ (k + 1)

]T
−∆θ (k) ∆θ (k)

T
+Xθ̃θ̃ (k) (40)

Since ∆θ (k) is unknown in (39) and (40), it is set to an
average time varying rate dθ.

Fig.3 shows the simulation result of a first order system
with a noise covariance W = 0.0052. A forgetting factor
λ = 0.98 is used. The solid and dashed blue lines in
the upper figure are Â (k) and A (k), while the solid and
dashed green lines are B̂ (k) and the constant parameter
B respectively. As observed in the figure, the time varying
parameter A(k) is well approximated by Â(k), while B̂(k)
converges to B. In the lower figure, the blue curve is the
one step prediction error x (k) − x̂ (k|k − 1). The green
curves are the 3σ bound (σ =

√
Xx̃x̃(k|k − 1)). The black

dashed line is the statistical standard deviation of the data
x (k) − x̂ (k|k − 1) from k = 1 to k = 1000. As shown
in the figure, the 3σ value offers a good bound for the
prediction errors as all measured errors lie between the green
curves. Moreover, the MSEE is larger when the parameter
is changing faster, which captures the time varying property
of the system. On the other hand, the statistical standard
deviation of the data x (k) − x̂ (k|k − 1) does not give a
good description of the data in real time.

B. Estimation of Human Behavior
In section III-B, a RLS-PAA algorithm is adopted in

learning the closed loop behavior of the humans. In the safe
exploration algorithm, the MSEE of x̂j(k + 1|k), ∀j ∈ H
also needs to be estimated. The system follows from (10)
and (11), which is different from (30) in that the state is
not exactly known. But it is assumed that the measurement
noise is small, thus can be neglected. So the system is
approximated by

yRH(k + 1) = AH(k)yRH(k) +BH(k)ucH (k) +w∗H(k) (41)

This is equivalent to setting α = 1 in (13). The prediction
algorithm then follows from (34-40). In the implementation,
the covariance of the noise W , the time varying rate dθ and
the initial values are hand-tuned.

(a) The Vehicle Model (b) The Measurement

Fig. 4: Model of the Autonomous Vehicle

VI. A COMPARATIVE STUDY BETWEEN SSA AND SEA

In this section, a comparative study between SSA and
SEA is performed on an autonomous vehicle model shown
in Fig.4a. The vehicle’s state is denoted by xR =
[Rx, Ry, vR, θR]T where Rx is the x-position of the vehicle,
Ry the y-position, vR the speed and θR the direction. The
control input of the vehicle is uR = [v̇R, θ̇R]T (saturations
apply: |v̇R| ≤ amax and |θ̇R| ≤ ωmax, where amax, ωmax
are positive constants). The state equation is

ẋR = f∗Rx(xR) +BuR (42)

where f∗Rx(xR) =


vR cos θR
vR sin θR

0
0

, B =


0 0
0 0
1 0
0 1

.

The vehicle can measure its own state directly. It can also
measure the relative distance drel and the relative direction
θrel towards the nearby human as illustrated in Fig.4b. The
human’s state is defined as xH = [Hx, Hy, Ḣx, Ḣy]T where
Hx, Hy are the x, y positions and Ḣx, Ḣy are the x, y
velocities. The human’s states are calculated based on the
measurements and the robot state.

A. The Baseline Control

Suppose that the goal point of the robot is [Gx, Gy]. The
baseline control law is designed as:

v̇R = − [(Rx −Gx) cos θR + (Ry −Gy) sin θR]− kvvR
(43)

θ̇R = kθ

[
arctan

Ry −Gy
Rx −Gx

− θR
]

(44)

where kv, kθ ∈ R+ are constants4.

B. The Safe Control

The safety index is designed as φ = D∗−d2−kφḋ [6], [9]
where D∗ ∈ R+, d = drel is the relative distance between
the human and the vehicle and kφ ∈ R+ is a constant
coefficient. SSSA and SSEA follows from (9) and (28), and

L(t) =
∂φ

∂xR
B = kφ [cos θrel,−vR sin θrel] (45)

In SSA, D∗ is chosen as d2
min+ηRTs+λSSAR Ts; In SEA,

D∗ is chosen as d2
min+ηRTs+λSEAR (k)Ts. The final control

follows from (17).

4This control law is designed according to the Lyapunov function V =
(Rx−Gx)2+(Ry−Gy)2+v2R. The designed control law implies V̇ ≤ 0.
Since {V̇ ≡ 0} does not contain any trajectory of the system, the vehicle’s
state will converge to the goal point asymptotically.



(a) Simulation with SEA (b) Simulation with SSA

Fig. 5: Simulation of Human Vehicle Interaction under SEA
and SSA

C. Simulation Results

Figure 5 shows the vehicle trajectory under SSA and SEA.
The vehicle needed to approach (0,5) from (-5,-5) while the
human went from (0,-3) to (-5,5). Five time steps are shown
in the plots: k = 3, 52, 102, 206, 302 from the lightest to
the darkest. The solid circles represent the human, which
was controlled by a human subject through a multi-touch
trackpad in real time (notice there was overshoot as the
control was not perfect). The triangles represent the vehicle.
The transparent circles in Fig.5a represent the set Γ(k) in
(22) mapped in 2D, which is shrinking gradually due to the
reduction of uncertainties as an effect of learning. In Fig.5b,
the transparent circles represent the equivalent uncertainty
levels introduced by λSSAR , thus the radius remain constant
throughout the time.

Figure 6 shows the distance profiles and the vehicle
velocity profiles under SSA and SEA. Due to large initial
uncertainties, the vehicle only started to accelerate after
k = 50 (when the relative distance is large) in SEA.
However, in SSA, the vehicle tried to accelerate in the very
beginning, then decelerated when the relative distance to the
human decreased. The velocity profile in SSA is serrated,
while the one in SEA is much smoother. Meanwhile, in
both algorithms, the relative distance is always greater than
dmin = 3. However, before k = 150, the relative distance is
kept larger in SEA than in SSA, since the vehicle was more
conservative in SEA due to large uncertainty.

Fig.7 shows that the a priori MSEE provides a perfect
bound for the prediction error.

In conclusion, the behavior in SSA is: move and modify;
while in SEA, it is: move only if confident. The behavior
under SEA is better for a new comer, while the behavior
under SSA is better if the robot is already very familiar with
the environment, i.e. with low uncertainty levels.

VII. CONCLUSION

Inspired by human’s uncertainty reduction behavior during
social interactions, the paper presented a control strategy that
can handle different uncertainty levels during HRI. Based on
the safe set algorithm (SSA), the safe exploration algorithm
(SEA) was proposed. The constant uncertainty bound in SSA
was replaced with a dynamic uncertainty bound in SEA.
The learning and prediction method in the belief space was

(a) The relative distance profiles in SEA and SSA

(b) The velocity profiles of the vehicle in SEA and SSA

Fig. 6: Comparison between SEA and SSA

Fig. 7: Performance of the a priori MSEE as a Bound of the
State Prediction Error

discussed. The simulation results confirmed the effectiveness
of the algorithm. In particular, SEA is better than SSA when
the uncertainty levels change from time to time, especially
in the early stages of human robot interactions.

In the future, experiments with mobile robots will be
conducted to further validate the algorithm.
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