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Introduction

INTENTION AND TRAJECTORY PREDICTION

. Usuallyseparatedwould like tocombine
. Often requirenvearable deviceg’istohlet al. 2008, Wang et al. 2018)
. Computesvision-basednethods

ONLINE ADAPTATION

. RLS-PAA to adapt théast linear layer of a fully connected network
(S1, Wel, and Liu 2019)
. Adaptingnonlinearlayers in more complex networks
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1.
PIPELINE
STRUCTURE

A general overview of our framework
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Basic Robot - Problem Specification —— Human Demonstration — Automated Learning —* Adaptation to Real World

Collaboration System
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Problem
Specification

A task consisting of atomic
iIndividual actions

Must be able to be represented
using an anar graph

This step must be performed
manually at this stage
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Activity Completed

Stick Baymax On
Write “Happy Birthday!!”

9
f Form The By 11
3
8
A :

Form The Base
1. Take the Card
2. Take the Red Sharpie
3. Draw Lines

Stick Baymax On
4. Take Baymax
5. Take Scissors
6. Cut Out Baymax
7. Take Glue Stick
8. Put Glue on Baymax
9. Stick Baymax on the
Card

Write “Happy Birthday!”
10. Take the Black Sharpie
11. Write Words

12. Take Back
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Human
Demonstration

- Atomic actions must be
repeated to the system

Gathering data for the neural

network in the pipeline to learn
features of the actions
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Learning Trajectories
and Intentions

w Multi-task model

w Trajectory Prediction £ncoder-
Decoder Seq2Seq

w Intention Prediction E£ncoder-
Decoder-Attention-Classifier

* Input: X, y, z positions and velocities in X, y,
z directions for the past N time steps

* Qutput:trajectory and intention prediction
for the next M time steps
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Adapting to Real-
world Tasks

Non-linear Recursive Least Square Parameter Adaptation
Algorithm (NRLS-PAA)

Model updated every time growtdith is received
Need to walit for the new ground truth
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2.
EXPERIMENTS

Experiments we conducted to evaluate both the sragkk model and our adaptation
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Collected Data

e Collected from two Actors, A and B

* Actor A performed each of the 12 actions
50 times (80% offline training, 20% offline
validation)

* Actor B performed each action 10 times
(100% online testing)
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Using Multiple Sets of Adaptation Steps

- Implemented 3step, 2step, and Step adaptations

- As adaptation steps increase, the time it takes to perform the
adaptation increases as well
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Using Multiple Sets of Adaptation Steps

Accuracy MSE (cm?)
Without Adaptation 0.930 5.508
1-step Adaptation 0.938 4.919
2-step Adaptation 0.938 4.488

5-step Adaptation
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Using Single-task and Multi-task Models

. Singletask models for intention and trajectory predictions
- Sharing encoder weights between single and ftagkk models
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Using Single-task and Multi-task Models

Accuracy MSE (cm?)
Single-task Inte_nt!on 0.899 _
Prediction
Single-task Trajectory _ 5 909

Prediction

Multitask Simultaneous
Prediction
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Future Work



Prompts:

« Towhich extent is the human intention and
trajectory predictable

* How fast will the adaptation beonsidered fast
enough?



Questions?




References

* [Pistohlet al. 2008Pistohl T.; Ball, T.; SchulzdBonhageA.; Aertsen A.;
and Mehring, C. 2008. Prediction of arm movement trajectories écng
recordings in humans. Journal of neuroscience methods 18¥%1)14.

* [SI, Wel, and Liu 2019] Si, W.; Wel, T.; and Liu, C. 20Agen Adaptable
generative prediction networks for autonomous driving. In IEEE Intelligent
Vehicle Symposium, 2019

* [Wang et al. 2018] Wang, W.; LI, R.; Chen, Y.; and Jia, Y. 2018. Human
Intention prediction in humarobot collaborative tasks. In Companion of
the 2018 ACM/IEEE International Conference on HurRaibot Interaction,
HRI1 ' 130. N@vAX&k, NY, USA: ACM.

~

Carnegie Mellon University I INTELLIGENT
CONTROL LAB

The Robotics Institute




