Emerging Algorithms for
Verifying Deep Neural Networks

Changliu Liu', Tomer Arnon2, Chris Lazarus?, Clark Barrett2, and Mykel Kochenderfer?

1 Carnegie Mellon University
2 Stanford University

Overview

* Deep neural networks are widely used for nonlinear function approximation
with applications spanning from computer vision to control.

* Although these networks involve the composition of simple arithmetic
operations, it can be very challenging to verify whether a particular network
satisfies certain input-output properties.

* We survey methods that have emerged recently for soundly verifying such
properties. In this talk, we will

1. Discuss fundamental differences and connections between existing
algorithms;

2. Introduce NeuralVerification.jl toolbox which contains pedagogical
implementations of existing methods.

* C. Liu, T. Arnon, C. Lazarus, C. Barrett, and M. Kochenderfer, "Algorithms for Verifying Deep Neural Networks," arXiv:1903.06758.

https://arxiv.org/abs/1903.06758

Deep Feed Forward Neural Networks

Hidden layer i

What to Verify?

struct Problem{P, Q}
network: :Network

Vx € X,y =f(x) €). e

end

Input-Output Relationship

Robustness Problem Safety Problem

Original Table Neural Network
10 10
g . < <
o
) 0 | -
i
L .-y -
O
A _ ~10
AR A 10 0 10 20 30 0 10 20 30
“panda” “nematode” “gibbon”
pan Downrange (kft) Downrange (kft)

57.7% confidence 8.2% confidence 99.3 % confidence
’ ’ ’ Advisories: DCOC .—3.0°/s I:I—l.5°/s .1.5°/s .3.0°/s

Point-wise Verification can Fail

|

yl |) h

Result and Faillure Modes

abstract type Result end

struct BasicResult <: Result
status: :Symbol
end

struct CounterExampleResult <: Result
status: :Symbol
counter_example: :Vector{Float64}
end

struct AdversarialResult <: Result
status: :Symbol
max_disturbance::Float64

end

struct ReachabilityResult <: Result
status: :Symbol
reachable: :Vector{<:AbstractPolytope}
end

Result and Failure Modes

Counter example
x" € X, f(x*) ¢),

X

<\
./

Result and Failure Modes

Counter example
x" € X, f(x*) ¢),

Adversarial input

€ := min ||x —xgl|, < radius(X),

f(x)¢Y \ \ /I

Y

Result and Failure Modes

Counter example
x" € X, f(x*) ¢), pY

Adversarial input / / \

€ := min ||x —xgl|, < radius(X),

f(x)¢Y LI

Output Reachable set \
R(X,f) ={y:y=1£f(x),Vxe X} £). Y

Recent Approaches

 Handles piece-wise linear activation function
* A majority of the methods only consider RelLLU activation
« Soundness, Completeness, Terminating

s A Sound s A

The property | The solver
holds » | returns hold

L y Complete _ y

Three basic methods

Reachability Optimization Search

11

Reachability

12

Optimization

min J(x,y,X,)),

st. xe X,y¢)V, y =f£f(x),

A A 4
e e —_— — S
ReLU Triangle Relaxation Parallel Relaxation

— L

/56{0,1}

Mixed Integer Encoding

13

Search

1. Search in function space 2. Search in input/hidden domain

/
L

Satisfiability problem (SAT) Branch and Bound

14

Overview

s

Reachability Optimization
MaxSens Primal Dual
ExactReach NSVerify Duality
Ai2 MIPVerify ~ ConvDual
ILP Certify
FastLin ReluVal Sherlock BaB
FastLip DLV Reluplex Planet

Search

15

Reachability

Exact Reachability /\
! !

Keep track of all polytopes

16

Split-and-Join

Reachability

Join the polytopes for each layer

17

Split-and-Join

Reachability

Join the polytopes for each layer

17

Reachability

Set transformation

Interval Arithmetic

........................

Interval arithmetic

Each axis is computed independently
18

Reachability

1, 10] 1 3,14] [3, 14]

|1, 2] |3, 22] |3, 22]

Symbolic Propagation [1,10] x1+2x2 x1+2x

ReluVal [1, 2] 2x1+tx2 2x1+x2

Minimize over approximation in the hidden layers
19

Reachability

* Dual network

Network Approximation

20

Primal Optimization

min J(x,y,X,)),

st. xe X,y¢)V, y=1£(x),

A A
— S — /I_ —_
/5 € {0,1}
ReLU Mixed Integer Encoding

21

Primal Optimization

A

n)f(liyn J(x,y,X,)), i

st. xe X,y¢)V, y=1£(x),

5 € {0,1}
ReLU Mixed Integer Encoding
NSVerify MIPVerify ILP
zij > Zi zZij > Zj
;i >0 z:: >0 A
oy o Zij = 0i 5%
zjj < Zjj+mdj zjj < 1j0;
zij < m(l—6jj) zij < 2 —I;j(1— &)

22

~

g EEEE S S -y

Dual Optimization

Network : Objective ' Dual Network
N Three interpretations:
Zn, : v, nZn + Vn 1. Co-state or shadow price
: 2. Lagrangian multiplier
f : " 3. Back-propagation network
E : v
Zjt1 P Vip1Zit1 T Vil Vit E
: : T
Wz—}—l ? bz—l—l : : } Wi-l—l :
Z; E [: V,; . - -
o; *t : . : v o 07 (V)2 =95 04(2)
Z; vV, iz + Vi V; , need to find minimum dual function
"""" A
: E : v
7 ; AT A : ~
0 : VyZo + Y0 : Vo o3

,,,,,,,,,,,,,,,,,,,,

Dual Optimization

Z;411 Viii
Wi b v. Wi
- 2] Zi IA/Z * \'. *
Lagrangian relaxation o 4 Voof b oi(3)'2 = 9] 0y(2:)
| . Z; Vi K find minimum dual
""""""""""""""""" function
A A T/\

min ~ max V,;0;(%;) —V,;Z;
Duality Vi,vi 1;<z;<q,

24

Dual Optimization

Network relaxation

Primal

U A

/

Dual

»>
vV

* The dual network is linear!

25

Dual Optimization

Semidefinite relaxation

Certify

. "' Vo
N + Lipschitz

\ ¢ constant

max
[x—x0 || o <€ 4 p-o0,P;<1

J(x) < J(xo) + ¢ max

» X

(M(c, W), P)

Only works for NN with one hidden layer

26

Search + Reachability

Binary search of desired input radius
Reachability by network approximation

FastLin

FastLip FastLin + Lipchitz estimation

Search input domain by interval split

FEldEd Reachability by symbolic propagation

Search layer-by-layer in hidden layers

27

FastLip

Search + Reachability

Reachability
o >

Input space Output space

28

FastLin

FastLip

Search + Reachability

. ~

~~~~~~

Reachability

Input space

>

Output space

28



Search + Reachability

FastLip y
Reachability

o >

Input space Output space



FastLin

FastLip

Search + Reachability

Reachability

Input space

>

Output space

28



Search + Reachability

ReluVal



ReluVal

Search + Reachability

.........................................

[terative interval refinement

29



ReluVal

Search + Reachability

.........................................

[terative interval refinement

29



ReluVal

Search + Reachability

.........................................

[terative interval refinement

29



ReluVal

Search + Reachability

.........................................

[terative interval refinement

29



Search + Reachability

Over-approximation
Finer search tree

Input Layer Layer i Layer i+1 Output Layer



Search + Reachability

Over-approximation
Finer search tree

Input Layer Layer i Layer i+1 Output Layer



Search + Reachability

N ®

N

T

High-dimensional search Low-dimensional search

Over-approximation Complicated O(2n) Easy O(2n)

Finer search tree

Input Layer Layer i Layer i+1 Output Layer



Search + Optimization

Sherlock Search input domain
Under local constraints or global constraints

Search input domain by splitting to smaller intervals

Search for feasible activation patterns

Reluplex Search for feasible activation patterns

31



Sherlock

Search + Optimization

tY

— Global search

Primal optimization
with MILP encoding

---» Local search

Primal optimization
with LP encoding

32



Sherlock

Search + Optimization

tY

— Global search

Primal optimization
with MILP encoding

---» Local search

Primal optimization
with LP encoding

32



Sherlock

Search + Optimization

tY

— Global search

Primal optimization
with MILP encoding

---» Local search

Primal optimization
with LP encoding

32



Sherlock

Search + Optimization

tY

— Global search

Primal optimization
with MILP encoding

---» Local search

Primal optimization
with LP encoding

32



Sherlock

Search + Optimization

tY

»

[ ]
/—*
.
.
1
1
1
[ ]
‘\
4

— Global search

Primal optimization
with MILP encoding

---» Local search

Primal optimization
with LP encoding

32



Search + Optimization

J* 4

J* = maxJ

For every domain
e Compute upper bound by optimization
using network relaxation

® Compute lower bound by sampling
Input space




Search + Optimization

:

J* = maxJ

For every domain
e Compute upper bound by optimization
using network relaxation

® Compute lower bound by sampling
Input space

/

33



Search + Optimization

J* = maxJ

For every domain

e Compute upper bound by optimization
using network relaxation

® Compute lower bound by sampling

J* 4

Input space / /

33



Search + Optimization

J* 4

J* = maxJ

For every domain
e Compute upper bound by optimization
using network relaxation

® Compute lower bound by sampling
Input space

33



Search + Optimization

J* 4

J* = maxJ

For every domain
e Compute upper bound by optimization
using network relaxation

® Compute lower bound by sampling
Input space

33



Search + Optimization

J* 4

J* = maxJ

For every domain
e Compute upper bound by optimization ‘
using network relaxation

® Compute lower bound by sampling / /
/nput space /

33



Search + Optlmlzatlon

.>.(. Zl 511 _Z_% 5271 y
Planet ] N0/ ¢ Y 3

Reluplex

51,1
0 1,2
Pruning by
optimization-based 0o 1
feasibility check |

34



Summary

Method Name Activation Approach Input/Output Completeness
ExactReach [46] ReLU Exact Reachability HP/HP (bounded)! v
Al2 [14] Piecewise Linear Split and Join HP/HP (bounded)! X
MaxSens [44] Any Interval Arithmatic HP/HP (bounded)! X
NSVerify [23] ReL.U Naive MILP HR/PC? v
MIPVerity [38] ReLU and Max MILP with bounds HR/PC? v
ILP [4] ReL.U Iterative LP HR/PC? X
Duality [12] Any Lagrangian Relaxation HR (uniform) /HS X
ConvDual [43] ReLU Convex Relaxation HR (uniform)/HS X
Certify [31] Differentiable Semidefinite Relaxation HR/HS X
Fast-Lin [41] RelLU Network Relaxation HR/HS X
Fast-Lip [41] ReLU Lipschitz Estimation HR/HS X
ReluVal [ 40] ReLU Symbolic Interval HR/HR v
DLV [18] Any Search in Hidden Layers HR/HR(1-D)3 v
Sherlock [10] ReLU Local and Global Search HR/HR(1-D)3 X
BaB [7] Piecewise Linear Branch and Bound HR/HR(1-D)3 X
Planet [13] Piecewise Linear Satisfiability (SAT) HR/PC? v
Reluplex [20] ReLU Simplex HR/PC? v

35



NeuralVerification.|l

github.com/sisl/NeuralVerification.|l

Testing Coverage Documentation

build passing 88% docs latest

NeuralVerification.jl

This library contains implementations of various methods to soundly verify deep neural networks. In general, we verify
whether a neural network satisfies certain input-output constraints. The verification methods are divided into five
categories:

e Reachability methods: ExactReach, MaxSens, Ai2,

Primal optimization methods: NSVerify, MIPVerify, ILP

Dual optimization methods: Duality, ConvDual, Certify

Search and reachability methods: ReluVal, DLV, FastLin, FastLip

Search and optimization methods: Sherlock, BaB, Planet, Reluplex

36


http://github.com/sisl/NeuralVerification.jl

NeuralVerification.|l

Choose a solver

using NeuralVerification

solver = BaB()

Set up the problem

nnet = read_nnet("examples/networks/small nnet.nnet")
input_set = Hyperrectangle(low = [-1.0], high = [1.0])
output_set = Hyperrectangle(low = [-1.0], high = [70.0])
problem = Problem(nnet, input_set, output_set)

Solve

julia> result = solve(solver, problem)
CounterExampleResult(:violated, [1.0])

julia> result.status
:violated

37



Comparison

Algorithm small nnet mnist1 mnist2 mnist3 mnist4 acas
NSVerity 0.000437805 0.561558217 1.23185184 0.234906589 - -

MIPVerity 0.422803839 0.236930468 1.055669556 46.36556919 - -

ILP 0.423599637 0.374052375 0.65545287 0.951015935" 4.866014534* 0.108586473"
convDual 0.001725546 0.374052375 0.02184014 0.001638679 0.005836024 0.002674586
Duality 0.001336414" 21.60260384* 130.714967 4% 37.3058392% 52.87126159* 0.020148564*
FastLin 2.088460281 0.477470278 0.002369427 0.007551539 0.01564011 0.166508046**
FastLip 9.179938173 0.130989072 0.059900531 0.051348471** 0.091895366** 0.001703324**
MIPVerify 9.940695891 0.256747563 1.23054911 46.77128226 - -

ILP 0.347950783 0.367925285 0.665364297 0.890090777* 4.664959506™ 0.00834114*
Planet 0.000247003 0.211006714 0.301637916 0.186482861 - -

Reluplex 0.012245108 125.0347088 62582.48883 - - 2952.784643
Reluval 0.000031296 0.646829741 0.008979679 0.008030365 0.824760803* 0.196084517*

38



Conclusion

* A unified mathematical framework was introduced to verify satisfiability
of a neural network given certain input and output constraints.

* Three basic verification methods were identified: reachability,
optimization, and search.

 Trade-off between completeness of a verification algorithm and its
scalability.

* Pedagogical implementations of all these methods were provided Iin
Julia.

39



Future Directions

 Beyond piece-wise linear activations
 Beyond feedforward structures - RNNs
o Completeness vs. scalability

e Beyond universal approximation theorem (what is exactly the function
space for a given network topology?)

40



Acknowledgement

» This work is partially supported by the Center for Automotive Research at
Stanford (CARS).

« We would like to thank many of the authors of the referenced papers for
their help in clarifying their algorithms and reviewing early drafts of this
survey: Weiming Xiang, Taylor Johnson, Hoang-Dung Tran, Martin Vechey,
Gagandeep Singh, Alessio Lomuscio, Michael Akintunde, Osbert Bastani,
Zico Kolter, Shigi Wang, Huan Zhang, Xiaowei Huang, Rudy Bunel,
Reudiger Ehlers, and Guy Katz.

« We would also like to thank Christian Schilling and Marcelo Forets, the
authors of LazySets.jl, for their implementation support.



