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Overview

* Deep neural networks are widely used for nonlinear function approximation
with applications spanning from computer vision to control.

* Although these networks involve the composition of simple arithmetic
operations, it can be very challenging to verify whether a particular network
satisfies certain input-output properties.

* We survey methods that have emerged recently for soundly verifying such
properties. In this talk, we will

1. Discuss fundamental differences and connections between existing
algorithms;

2. Introduce NeuralVerification.jl toolbox which contains pedagogical
implementations of existing methods.

* C. Liu, T. Arnon, C. Lazarus, C. Barrett, and M. Kochenderfer, "Algorithms for Verifying Deep Neural Networks," arXiv:1903.06758.


https://arxiv.org/abs/1903.06758

Deep Feed Forward Neural Networks

Hidden layer i



What to Verify?

struct Problem{P, Q}
network: :Network

Vx € X,y =f(x) € ). e

end

Input-Output Relationship
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Point-wise Verification can Fail
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Result and Faillure Modes

abstract type Result end

struct BasicResult <: Result
status: :Symbol
end

struct CounterExampleResult <: Result
status: :Symbol
counter_example: :Vector{Float64}
end

struct AdversarialResult <: Result
status: :Symbol
max_disturbance::Float64

end

struct ReachabilityResult <: Result
status: :Symbol
reachable: :Vector{<:AbstractPolytope}
end



Result and Failure Modes

Counter example
x" € X, f(x*) ¢ ),

X

<\
./




Result and Failure Modes

Counter example
x" € X, f(x*) ¢ ),

Adversarial input
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Result and Failure Modes

Counter example
x" € X, f(x*) ¢ ), pY

Adversarial input / / \
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Recent Approaches

 Handles piece-wise linear activation function
* A majority of the methods only consider RelLLU activation
« Soundness, Completeness, Terminating
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Three basic methods

Reachability Optimization Search
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Reachability
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Optimization

min J(x,y,X,)),

st. xe X,y¢ )V, y =f£f(x),
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Mixed Integer Encoding
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Search

1. Search in function space 2. Search in input/hidden domain

/
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Satisfiability problem (SAT) Branch and Bound
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Overview

s

Reachability Optimization
MaxSens Primal Dual
ExactReach NSVerify Duality
Ai2 MIPVerify ~ ConvDual
ILP Certify
FastLin ReluVal Sherlock BaB
FastLip DLV Reluplex Planet

Search
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Reachability

Exact Reachability /\
! !

Keep track of all polytopes
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Split-and-Join

Reachability

Join the polytopes for each layer

17



Split-and-Join

Reachability

Join the polytopes for each layer
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Reachability

Set transformation

Interval Arithmetic

........................

Interval arithmetic

Each axis is computed independently
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Reachability

1, 10] 1 3,14]  [3, 14]

|1, 2] |3, 22] |3, 22]

Symbolic Propagation [1,10] x1+2x2  x1+2x

ReluVal [1, 2] 2x1+tx2 2x1+x2

Minimize over approximation in the hidden layers
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Reachability

* Dual network

Network Approximation
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Primal Optimization

min J(x,y,X,)),

st. xe X,y¢ )V, y=1£(x),
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Primal Optimization

A
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ReLU Mixed Integer Encoding
NSVerify MIPVerify ILP
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Dual Optimization

--------------------

Network : Objective ' Dual Network
N Three interpretations:
Zn, : v, nZn + Vn 1. Co-state or shadow price
: 2. Lagrangian multiplier
f : " 3. Back-propagation network
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Dual Optimization
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Dual Optimization

Network relaxation

Primal

U A
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Dual
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* The dual network is linear!
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Dual Optimization

Semidefinite relaxation

Certify

. "' Vo
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Only works for NN with one hidden layer
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Search + Reachability

Binary search of desired input radius
Reachability by network approximation

FastLin

FastLip FastLin + Lipchitz estimation

Search input domain by interval split

FEldEd Reachability by symbolic propagation

Search layer-by-layer in hidden layers
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FastLip

Search + Reachability

Reachability
o >

Input space Output space
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FastLin

FastLip

Search + Reachability
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Reachability

Input space
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Output space
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Search + Reachability

FastLip y
Reachability
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FastLin

FastLip

Search + Reachability

Reachability

Input space

>

Output space
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Search + Reachability

ReluVal



ReluVal

Search + Reachability

.........................................

[terative interval refinement

29



ReluVal

Search + Reachability

.........................................

[terative interval refinement
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ReluVal

Search + Reachability

.........................................

[terative interval refinement
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ReluVal

Search + Reachability

.........................................

[terative interval refinement
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Search + Reachability

Over-approximation
Finer search tree

Input Layer Layer i Layer i+1 Output Layer



Search + Reachability

Over-approximation
Finer search tree

Input Layer Layer i Layer i+1 Output Layer



Search + Reachability
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High-dimensional search Low-dimensional search

Over-approximation Complicated O(2n) Easy O(2n)

Finer search tree

Input Layer Layer i Layer i+1 Output Layer



Search + Optimization

Sherlock Search input domain
Under local constraints or global constraints

Search input domain by splitting to smaller intervals

Search for feasible activation patterns

Reluplex Search for feasible activation patterns
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Sherlock

Search + Optimization

tY

— Global search

Primal optimization
with MILP encoding

---» Local search

Primal optimization
with LP encoding
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Sherlock

Search + Optimization
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Sherlock

Search + Optimization
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Sherlock

Search + Optimization
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— Global search

Primal optimization
with MILP encoding

---» Local search

Primal optimization
with LP encoding
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Search + Optimization

J* 4

J* = maxJ

For every domain
e Compute upper bound by optimization
using network relaxation

® Compute lower bound by sampling
Input space




Search + Optimization

:

J* = maxJ

For every domain
e Compute upper bound by optimization
using network relaxation

® Compute lower bound by sampling
Input space

/
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Search + Optimization
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Search + Optimization

J* 4

J* = maxJ

For every domain
e Compute upper bound by optimization ‘
using network relaxation

® Compute lower bound by sampling / /
/nput space /
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Search + Optlmlzatlon
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Summary

Method Name Activation Approach Input/Output Completeness
ExactReach [46] ReLU Exact Reachability HP/HP (bounded)! v
Al2 [14] Piecewise Linear Split and Join HP/HP (bounded)! X
MaxSens [44] Any Interval Arithmatic HP/HP (bounded)! X
NSVerify [23] ReL.U Naive MILP HR/PC? v
MIPVerity [38] ReLU and Max MILP with bounds HR/PC? v
ILP [4] ReL.U Iterative LP HR/PC? X
Duality [12] Any Lagrangian Relaxation HR (uniform) /HS X
ConvDual [43] ReLU Convex Relaxation HR (uniform)/HS X
Certify [31] Differentiable Semidefinite Relaxation HR/HS X
Fast-Lin [41] RelLU Network Relaxation HR/HS X
Fast-Lip [41] ReLU Lipschitz Estimation HR/HS X
ReluVal [ 40] ReLU Symbolic Interval HR/HR v
DLV [18] Any Search in Hidden Layers HR/HR(1-D)3 v
Sherlock [10] ReLU Local and Global Search HR/HR(1-D)3 X
BaB [7] Piecewise Linear Branch and Bound HR/HR(1-D)3 X
Planet [13] Piecewise Linear Satisfiability (SAT) HR/PC? v
Reluplex [20] ReLU Simplex HR/PC? v
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NeuralVerification.|l

github.com/sisl/NeuralVerification.|l

Testing Coverage Documentation

build passing 88% docs latest

NeuralVerification.jl

This library contains implementations of various methods to soundly verify deep neural networks. In general, we verify
whether a neural network satisfies certain input-output constraints. The verification methods are divided into five
categories:

e Reachability methods: ExactReach, MaxSens, Ai2,

Primal optimization methods: NSVerify, MIPVerify, ILP

Dual optimization methods: Duality, ConvDual, Certify

Search and reachability methods: ReluVal, DLV, FastLin, FastLip

Search and optimization methods: Sherlock, BaB, Planet, Reluplex
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http://github.com/sisl/NeuralVerification.jl

NeuralVerification.|l

Choose a solver

using NeuralVerification

solver = BaB()

Set up the problem

nnet = read_nnet("examples/networks/small nnet.nnet")
input_set = Hyperrectangle(low = [-1.0], high = [1.0])
output_set = Hyperrectangle(low = [-1.0], high = [70.0])
problem = Problem(nnet, input_set, output_set)

Solve

julia> result = solve(solver, problem)
CounterExampleResult(:violated, [1.0])

julia> result.status
:violated
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Comparison

Algorithm small nnet mnist1 mnist2 mnist3 mnist4 acas
NSVerity 0.000437805 0.561558217 1.23185184 0.234906589 - -

MIPVerity 0.422803839 0.236930468 1.055669556 46.36556919 - -

ILP 0.423599637 0.374052375 0.65545287 0.951015935" 4.866014534* 0.108586473"
convDual 0.001725546 0.374052375 0.02184014 0.001638679 0.005836024 0.002674586
Duality 0.001336414" 21.60260384* 130.714967 4% 37.3058392% 52.87126159* 0.020148564*
FastLin 2.088460281 0.477470278 0.002369427 0.007551539 0.01564011 0.166508046**
FastLip 9.179938173 0.130989072 0.059900531 0.051348471** 0.091895366** 0.001703324**
MIPVerify 9.940695891 0.256747563 1.23054911 46.77128226 - -

ILP 0.347950783 0.367925285 0.665364297 0.890090777* 4.664959506™ 0.00834114*
Planet 0.000247003 0.211006714 0.301637916 0.186482861 - -

Reluplex 0.012245108 125.0347088 62582.48883 - - 2952.784643
Reluval 0.000031296 0.646829741 0.008979679 0.008030365 0.824760803* 0.196084517*
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Conclusion

* A unified mathematical framework was introduced to verify satisfiability
of a neural network given certain input and output constraints.

* Three basic verification methods were identified: reachability,
optimization, and search.

 Trade-off between completeness of a verification algorithm and its
scalability.

* Pedagogical implementations of all these methods were provided Iin
Julia.
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Future Directions

 Beyond piece-wise linear activations
 Beyond feedforward structures - RNNs
o Completeness vs. scalability

e Beyond universal approximation theorem (what is exactly the function
space for a given network topology?)
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