
A THEORY OF THE LEARNABLE
(L.G. VALIANT)

Theory	
 Lunch	
 Presentation
Claire	
 Le	
 Goues

05/20/10

1

2

HOW DO YOU KNOW THAT?

3

HOW DO YOU KNOW THAT?

bool is_a_duck() {
 return (walks_like_a_duck() &&
 quacks_like_a_duck());
}

3

HOW DO YOU KNOW THAT?

bool is_a_duck() {
 return (walks_like_a_duck() &&
 quacks_like_a_duck());
}

4

HOW DID YOU LEARN THAT?

5

“A	
 program	
 for	
 performing	
 a	

task	
 [like	
 recognizing	
 ducks	
 ‒
Ed.]	
 has	
 been	
 acquired	
 by	

learning	
 if	
 it	
 has	
 been	

acquired	
 by	
 any	
 means	
 other	

than	
 explicit	
 programming.”

6

Why This Paper Matters

7

Why This Paper Matters

✦ Present	
 a	
 general	
 framework	
 for	
 reasoning	

about	
 what	
 is	
 learnable	
 as	
 allowed	
 by	

algorithmic	
 complexity.

7

Why This Paper Matters

✦ Present	
 a	
 general	
 framework	
 for	
 reasoning	

about	
 what	
 is	
 learnable	
 as	
 allowed	
 by	

algorithmic	
 complexity.

✦ Introduce	
 the	
 idea	
 of	
 Probably	

Approximately	
 Learnable	
 (PAL)	
 problems,	

or	
 problems	
 that	
 are	
 learnable	
 in	

polynomial	
 time,	
 with	
 high	
 correctness.

7

Why This Paper Matters

✦ Present	
 a	
 general	
 framework	
 for	
 reasoning	

about	
 what	
 is	
 learnable	
 as	
 allowed	
 by	

algorithmic	
 complexity.

✦ Introduce	
 the	
 idea	
 of	
 Probably	

Approximately	
 Learnable	
 (PAL)	
 problems,	

or	
 problems	
 that	
 are	
 learnable	
 in	

polynomial	
 time,	
 with	
 high	
 correctness.

✦ Prove	
 3	
 classes	
 of	
 programs	
 to	
 be	
 PAL.	

7

Outline

1. General	
 framework	
 for	
 defining	
 Learning	
 Machines,	

or	
 programs	
 that	
 can	
 learn/write/produce	
 other	

programs	
 of	
 a	
 particular	
 type.
• A	
 Learning	
 Machine	
 for	
 animal	
 recognition,	
 for	
 example,	

might	
 learn	
 to	
 write	
 a	
 program	
 that	
 recognizes	
 whether	
 a	

given	
 animal	
 is	
 a	
 duck.

2. Definition	
 of	
 a	
 particular	
 learning	
 protocol.
3. Definition	
 of	
 when	
 a	
 program	
 class	
 is	
 reasonably-

learnable.
4. Definition/proofs	
 of	
 reasonably-learnable	
 program	

classes.

8

8

A Restriction

9

A Restriction

✦ Focus	
 on	
 learning	
 skills	
 that	
 involve	

recognizing	
 whether	
 a	
 concept	
 (boolean	

predicate)	
 is	
 true	
 for	
 given	
 (boolean)	

data.

9

A Restriction

✦ Focus	
 on	
 learning	
 skills	
 that	
 involve	

recognizing	
 whether	
 a	
 concept	
 (boolean	

predicate)	
 is	
 true	
 for	
 given	
 (boolean)	

data.

✦ Learn	
 to	
 answer	
 the	

question:	
 is	
 this	
 animal	

a	
 duck?

9

A Restriction

✦ Focus	
 on	
 learning	
 skills	
 that	
 involve	

recognizing	
 whether	
 a	
 concept	
 (boolean	

predicate)	
 is	
 true	
 for	
 given	
 (boolean)	

data.

✦ Learn	
 to	
 answer	
 the	

question:	
 is	
 this	
 animal	

a	
 duck?

walks	
 like	
 a	
 duck	
 =	
 true
purple	
 =	
 false
fluffy	
 =	
 true
yellow	
 =	
 true
beak	
 =	
 true
big	
 =	
 false	

quacks	
 like	
 a	
 duck=true
angry	
 =	
 false

...

10

Low-level Definitions

11

Low-level Definitions

✦ Given	
 t boolean	
 variables	
 p1,…,pt:

11

Low-level Definitions

✦ Given	
 t boolean	
 variables	
 p1,…,pt:
✦ A	
 vector	
 is	
 an	
 assignment	
 to	
 each	
 of	
 the	

t	
 variables	
 one	
 of	
 {0,1,*}.	

• *	
 means	
 “undetermined.”	

11

Low-level Definitions

✦ Given	
 t boolean	
 variables	
 p1,…,pt:
✦ A	
 vector	
 is	
 an	
 assignment	
 to	
 each	
 of	
 the	

t	
 variables	
 one	
 of	
 {0,1,*}.	

• *	
 means	
 “undetermined.”	

✦ Function	
 (concept)	
 F	
 maps	
 all	
 vectors	

to	
 {0,1}.	

• Learning	
 machine	
 is	
 learning	
 concepts.
• The	
 variables	
 used	
 in	
 F are	
 determined	
 in	

F.

11

Low-level Definitions

✦ Given	
 t boolean	
 variables	
 p1,…,pt:
✦ A	
 vector	
 is	
 an	
 assignment	
 to	
 each	
 of	
 the	

t	
 variables	
 one	
 of	
 {0,1,*}.	

• *	
 means	
 “undetermined.”	

✦ Function	
 (concept)	
 F	
 maps	
 all	
 vectors	

to	
 {0,1}.	

• Learning	
 machine	
 is	
 learning	
 concepts.
• The	
 variables	
 used	
 in	
 F are	
 determined	
 in	

F.

12

Low-level Definitions

✦ Given	
 t boolean	
 variables	
 p1,…,pt:
✦ A	
 vector	
 is	
 an	
 assignment	
 to	
 each	
 of	
 the	

t	
 variables	
 one	
 of	
 {0,1,*}.	

• *	
 means	
 “undetermined.”	

✦ Function	
 (concept)	
 F	
 maps	
 all	
 vectors	

to	
 {0,1}.	

• Learning	
 machine	
 is	
 learning	
 concepts.
• The	
 variables	
 used	
 in	
 F are	
 determined	
 in	

F.

12

Low-level Definitions

✦ Given	
 t boolean	
 variables	
 p1,…,pt:
✦ A	
 vector	
 is	
 an	
 assignment	
 to	
 each	
 of	
 the	

t	
 variables	
 one	
 of	
 {0,1,*}.	

• *	
 means	
 “undetermined.”	

✦ Function	
 (concept)	
 F	
 maps	
 all	
 vectors	

to	
 {0,1}.	

• Learning	
 machine	
 is	
 learning	
 concepts.
• The	
 variables	
 used	
 in	
 F are	
 determined	
 in	

F.

✦ Variables:	
 {walks	
 like	
 a	
 duck,	
 beak,	
 purple,	
 ...}
✦ Vector	
 v:	
 {walks_like_a_duck=0,	
 beak=1,	
 purple=*,	
 ...}	

✦ F(v)	
 =	
 is_a_duck(v) =	
 false

12

Low-level Definitions

✦ Given	
 t boolean	
 variables	
 p1,…,pt:
✦ A	
 vector	
 is	
 an	
 assignment	
 to	
 each	
 of	
 the	

t	
 variables	
 one	
 of	
 {0,1,*}.	

• *	
 means	
 “undetermined.”	

✦ Function	
 (concept)	
 F	
 maps	
 all	
 vectors	

to	
 {0,1}.	

• Learning	
 machine	
 is	
 learning	
 concepts.
• The	
 variables	
 used	
 in	
 F are	
 determined	
 in	

F.

✦ Variables:	
 {purple,	
 walks	
 like	
 a	
 duck,	
 beak,	
 ...}
✦ Vector	
 v:	
 {purple=*,	
 walks_like_a_duck=0,	
 beak=1	
 ...}	

✦ F(v)	
 =	
 is_a_duck(v)	
 =	
 falseVariables	
 determined	
 in	
 v:	
 {walks_like_a_duck,	
 beak}

13

Low-level Definitions

✦ Given	
 t boolean	
 variables	
 p1,…,pt:
✦ A	
 vector	
 is	
 an	
 assignment	
 to	
 each	
 of	
 the	

t	
 variables	
 one	
 of	
 {0,1,*}.	

• *	
 means	
 “undetermined.”	

✦ Function	
 (concept)	
 F	
 maps	
 all	
 vectors	

to	
 {0,1}.	

• Learning	
 machine	
 is	
 learning	
 concepts.
• The	
 variables	
 used	
 in	
 F are	
 determined	
 in	

F.

✦ Variables:	
 {purple,	
 walks	
 like	
 a	
 duck,	
 beak,	
 ...}
✦ Vector	
 v:	
 {purple=*,	
 walks_like_a_duck=0,	
 beak=1	
 ...}	

✦ F(v)	
 =	
 is_a_duck(v)	
 =	
 false

Variables	
 determined	
 in	
 is_a_duck:	
 {walks_like_a_duck,	
 quacks_like_a_duck}

14

Low-level Definitions

✦ Given	
 t boolean	
 variables	
 p1,…,pt:
✦ A	
 vector	
 is	
 an	
 assignment	
 to	
 each	
 of	
 the	

t	
 variables	
 one	
 of	
 {0,1,*}.	

• *	
 means	
 “undetermined.”	

✦ Function	
 (concept)	
 F	
 maps	
 all	
 vectors	

to	
 {0,1}.	

• Learning	
 machine	
 is	
 learning	
 concepts.
• The	
 variables	
 used	
 in	
 F are	
 determined	
 in	

F.

✦ t boolean variables p1,…,pt
✦ Vectors assign variables to one of {0,1,*}.
✦ Concept F maps vectors to {0,1}.

15

✦ t boolean variables p1,…,pt:
✦ Vectors assign variables to one of {0,1,*}.
✦ Concept F maps vectors to {0,1}.

16

✦ t boolean variables p1,…,pt:
✦ Vectors assign variables to one of {0,1,*}.
✦ Concept F maps vectors to {0,1}.

✦ Assume D, a	
 probability	
 distribution	
 over	

all	
 vectors v which F evaluates	
 to	
 1.

16

✦ t boolean variables p1,…,pt:
✦ Vectors assign variables to one of {0,1,*}.
✦ Concept F maps vectors to {0,1}.

✦ Assume D, a	
 probability	
 distribution	
 over	

all	
 vectors v which F evaluates	
 to	
 1.

✦ D is	
 meant	
 to	
 describe	
 the	
 relative	
 natural	

frequency	
 of	
 positive	
 examples	
 of	
 whatever	

weʼ’re	
 trying	
 to	
 learn.

16

✦ t boolean variables p1,…,pt:
✦ Vectors assign variables to one of {0,1,*}.
✦ Concept F maps vectors to {0,1}.

✦ Assume D, a	
 probability	
 distribution	
 over	

all	
 vectors v which F evaluates	
 to	
 1.

✦ D is	
 meant	
 to	
 describe	
 the	
 relative	
 natural	

frequency	
 of	
 positive	
 examples	
 of	
 whatever	

weʼ’re	
 trying	
 to	
 learn.

✦ If	
 we	
 have	
 a	
 vector	
 v	
 that	
 describes	
 a	

mallard,	
 then	
 D(v) = relative	
 frequency	
 of	

mallards	
 in	
 the	
 duck	
 population.	

16

✦ t boolean variables p1,…,pt:
✦ Vectors assign variables to one of {0,1,*}.
✦ Concept F maps vectors to {0,1}.

✦ Assume D, a	
 probability	
 distribution	
 over	

all	
 vectors v which F evaluates	
 to	
 1.

✦ D is	
 meant	
 to	
 describe	
 the	
 relative	
 natural	

frequency	
 of	
 positive	
 examples	
 of	
 whatever	

weʼ’re	
 trying	
 to	
 learn.

✦ If	
 we	
 have	
 a	
 vector	
 v	
 that	
 describes	
 a	

mallard,	
 then	
 D(v) = relative	
 frequency	
 of	

mallards	
 in	
 the	
 universe.	

 Probability distribution D over all true vectors v.

17

 t boolean variables p1,…,pt:
 Vectors assign variables to one of {0,1,*}.
 Concept F mapping vectors to {0,1}.
 Probability distribution D over all true v.

18

 t boolean variables p1,…,pt:
 Vectors assign variables to one of {0,1,*}.
 Concept F mapping vectors to {0,1}.
 Probability distribution D over all true v.

19

High-level Definitions.

20

High-level Definitions.

✦ A	
 learning	
 machine	
 has	
 two	

components:

20

High-level Definitions.

✦ A	
 learning	
 machine	
 has	
 two	

components:
• A	
 learning	
 protocol,	
 or	
 the	
 method	
 by	

which	
 information	
 is	
 gathered	
 from	
 the	

world.

20

High-level Definitions.

✦ A	
 learning	
 machine	
 has	
 two	

components:
• A	
 learning	
 protocol,	
 or	
 the	
 method	
 by	

which	
 information	
 is	
 gathered	
 from	
 the	

world.

• A	
 deduction	
 procedure,	
 or	
 the	

mechanism	
 for	
 learning	
 new	
 concepts	

from	
 gathered	
 information.

20

VALIANT’S LEARNING
PROTOCOL

21

VALIANT’S LEARNING
PROTOCOL

 t boolean variables p1,…,pt:
 Vectors assign variables to one of {0,1,*}.
 Concept F mapping vectors to {0,1}.
 Probability distribution D over all true v.

22

 t boolean variables p1,…,pt:
 Vectors assign variables to one of {0,1,*}.
 Concept F mapping vectors to {0,1}.
 Probability distribution D over all true v.

23

 t boolean variables p1,…,pt:
 Vectors assign variables to one of {0,1,*}.
 Concept F mapping vectors to {0,1}.
 Probability distribution D over all true v.

✦ Learner has access to two routines (or
teachers):

23

 t boolean variables p1,…,pt:
 Vectors assign variables to one of {0,1,*}.
 Concept F mapping vectors to {0,1}.
 Probability distribution D over all true v.

✦ Learner has access to two routines (or
teachers):

1.EXAMPLE: takes no input, returns a vector v
such that F(v) = 1.
✦ Probability that EXAMPLE returns any

particular v is D(v).

23

 t boolean variables p1,…,pt:
 Vectors assign variables to one of {0,1,*}.
 Concept F mapping vectors to {0,1}.
 Probability distribution D over all true v.

✦ Learner has access to two routines (or
teachers):

1.EXAMPLE: takes no input, returns a vector v
such that F(v) = 1.
✦ Probability that EXAMPLE returns any

particular v is D(v).
2.ORACLE: takes as input a vector v, returns

F(v).

23

Duck	
 Example	
 of	
 Protocol	
 Functions

24

24

Duck	
 Example	
 of	
 Protocol	
 Functions

24

F(v)	
 =	
 is_a_duck(v)

EXAMPLE()	

ORACLE(
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
)	
 	
 TRUE

ORACLE(
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
)	
 	
 FALSE

24

Duck	
 Example	
 of	
 Protocol	
 Functions

24

F(v)	
 =	
 is_a_duck(v)

EXAMPLE()	

ORACLE(
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
)	
 	
 TRUE

ORACLE(
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
)	
 	
 FALSE

24

Duck	
 Example	
 of	
 Protocol	
 Functions

24

F(v)	
 =	
 is_a_duck(v)

EXAMPLE()	

ORACLE(
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
)	
 	
 TRUE

ORACLE(
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
)	
 	
 FALSE

24

Duck	
 Example	
 of	
 Protocol	
 Functions

24

F(v)	
 =	
 is_a_duck(v)

EXAMPLE()	

ORACLE(
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
)	
 	
 TRUE

ORACLE(
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
)	
 	
 FALSE

24

Duck	
 Example	
 of	
 Protocol	
 Functions

24

F(v)	
 =	
 is_a_duck(v)

EXAMPLE()	

ORACLE(
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
)	
 	
 TRUE

ORACLE(
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
)	
 	
 FALSE

24

Duck	
 Example	
 of	
 Protocol	
 Functions

24

F(v)	
 =	
 is_a_duck(v)

EXAMPLE()	

ORACLE(
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
)	
 	
 TRUE

ORACLE(
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
)	
 	
 FALSE

24

Duck	
 Example	
 of	
 Protocol	
 Functions

24

F(v)	
 =	
 is_a_duck(v)

EXAMPLE()	

ORACLE(
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
)	
 	
 TRUE

ORACLE(
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
)	
 	
 FALSE

24

Realistic	
 Example	
 of	
 Protocol	
 Functions

25

25

Realistic	
 Example	
 of	
 Protocol	
 Functions

25

F	
 = (a1 ∨ a2) ∧ (a4 ∨ a1)	

EXAMPLE()	
 	
 {a1=1, a2=0, a3=*}

EXAMPLE()	
 {a1=0, a2=1, a3=*, a4=1}

ORACLE({a1=0,a2=0,a3=*,a4=1}) FALSE

25

Realistic	
 Example	
 of	
 Protocol	
 Functions

25

F	
 = (a1 ∨ a2) ∧ (a4 ∨ a1)	

EXAMPLE()	
 	
 {a1=1, a2=0, a3=*}

EXAMPLE()	
 {a1=0, a2=1, a3=*, a4=1}

ORACLE({a1=0,a2=0,a3=*,a4=1}) FALSE

25

Realistic	
 Example	
 of	
 Protocol	
 Functions

25

F	
 = (a1 ∨ a2) ∧ (a4 ∨ a1)	

EXAMPLE()	
 	
 {a1=1, a2=0, a3=*}

EXAMPLE()	
 {a1=0, a2=1, a3=*, a4=1}

ORACLE({a1=0,a2=0,a3=*,a4=1}) FALSE

25

Realistic	
 Example	
 of	
 Protocol	
 Functions

25

F	
 = (a1 ∨ a2) ∧ (a4 ∨ a1)	

EXAMPLE()	
 	
 {a1=1, a2=0, a3=*}

EXAMPLE()	
 {a1=0, a2=1, a3=*, a4=1}

ORACLE({a1=0,a2=0,a3=*,a4=1}) FALSE

25

Realistic	
 Example	
 of	
 Protocol	
 Functions

25

F	
 = (a1 ∨ a2) ∧ (a4 ∨ a1)	

EXAMPLE()	
 	
 {a1=1, a2=0, a3=*}

EXAMPLE()	
 {a1=0, a2=1, a3=*, a4=1}

ORACLE({a1=0,a2=0,a3=*,a4=1}) FALSE

25

Realistic	
 Example	
 of	
 Protocol	
 Functions

25

F	
 = (a1 ∨ a2) ∧ (a4 ∨ a1)	

EXAMPLE()	
 	
 {a1=1, a2=0, a3=*}

EXAMPLE()	
 {a1=0, a2=1, a3=*, a4=1}

ORACLE({a1=0,a2=0,a3=*,a4=1}) FALSE

25

Realistic	
 Example	
 of	
 Protocol	
 Functions

25

F	
 = (a1 ∨ a2) ∧ (a4 ∨ a1)	

EXAMPLE()	
 	
 {a1=1, a2=0, a3=*}

EXAMPLE()	
 {a1=0, a2=1, a3=*, a4=1}

ORACLE({a1=0,a2=0,a3=*,a4=1}) FALSE

25

Probably Approximately Learnable

26

Probably Approximately Learnable

✦ A	
 class	
 of	
 problems	
 is	
 Probably	
 Approximately	

Learnable	
 if	
 instances	
 of	
 the	
 problem	
 can	
 be	
 learned	
 by	

a	
 deduction	
 algorithm	
 that:

26

Probably Approximately Learnable

✦ A	
 class	
 of	
 problems	
 is	
 Probably	
 Approximately	

Learnable	
 if	
 instances	
 of	
 the	
 problem	
 can	
 be	
 learned	
 by	

a	
 deduction	
 algorithm	
 that:
• Uses	
 this	
 protocol.

26

Probably Approximately Learnable

✦ A	
 class	
 of	
 problems	
 is	
 Probably	
 Approximately	

Learnable	
 if	
 instances	
 of	
 the	
 problem	
 can	
 be	
 learned	
 by	

a	
 deduction	
 algorithm	
 that:
• Uses	
 this	
 protocol.
• Runs	
 in	
 reasonable	
 time:	
 polynomial	
 by	
 adjustable	

parameter	
 h,	
 size	
 of	
 learned	
 program,	
 and	
 number	
 of	

variables	
 determined	
 in	
 the	
 learned	
 formula.

26

Probably Approximately Learnable

✦ A	
 class	
 of	
 problems	
 is	
 Probably	
 Approximately	

Learnable	
 if	
 instances	
 of	
 the	
 problem	
 can	
 be	
 learned	
 by	

a	
 deduction	
 algorithm	
 that:
• Uses	
 this	
 protocol.
• Runs	
 in	
 reasonable	
 time:	
 polynomial	
 by	
 adjustable	

parameter	
 h,	
 size	
 of	
 learned	
 program,	
 and	
 number	
 of	

variables	
 determined	
 in	
 the	
 learned	
 formula.

• Produces	
 a	
 program	
 that	
 says	
 something	
 is	
 false	
 when	

itʼ’s	
 true	
 with	
 probability	
 no	
 greater	
 than	
 (1-h-1);	

never	
 says	
 that	
 	
 something	
 is	
 true	
 when	
 itʼ’s	
 false.

26

A	
 Summary,	
 in	
 English

27

27

A	
 Summary,	
 in	
 English
✦ We	
 are	
 trying	
 to	
 make	
 a	
 program	
 (learning	
 machine)	

that	
 can	
 learn,	
 in	
 polynomial	
 time,	
 another	
 program	

(the	
 learned	
 program)	
 that	
 recognizes	
 whether	
 a	

boolean	
 formula	
 (concept)	
 is	
 true	
 for	
 any	
 set	
 of	

boolean	
 data.	

27

27

A	
 Summary,	
 in	
 English
✦ We	
 are	
 trying	
 to	
 make	
 a	
 program	
 (learning	
 machine)	

that	
 can	
 learn,	
 in	
 polynomial	
 time,	
 another	
 program	

(the	
 learned	
 program)	
 that	
 recognizes	
 whether	
 a	

boolean	
 formula	
 (concept)	
 is	
 true	
 for	
 any	
 set	
 of	

boolean	
 data.	

✦ The	
 learning	
 program	
 has	
 access	
 to	
 a	
 function	
 that	

will	
 give	
 it	
 a	
 bunch	
 of	
 examples,	
 as	
 well	
 as	
 a	
 function	

that	
 will	
 check	
 its	
 work.

27

27

A	
 Summary,	
 in	
 English
✦ We	
 are	
 trying	
 to	
 make	
 a	
 program	
 (learning	
 machine)	

that	
 can	
 learn,	
 in	
 polynomial	
 time,	
 another	
 program	

(the	
 learned	
 program)	
 that	
 recognizes	
 whether	
 a	

boolean	
 formula	
 (concept)	
 is	
 true	
 for	
 any	
 set	
 of	

boolean	
 data.	

✦ The	
 learning	
 program	
 has	
 access	
 to	
 a	
 function	
 that	

will	
 give	
 it	
 a	
 bunch	
 of	
 examples,	
 as	
 well	
 as	
 a	
 function	

that	
 will	
 check	
 its	
 work.

✦ The	
 learning	
 machine	
 can	
 learn	
 a	
 program	
 that	
 is	

sometimes	
 wrong,	
 so	
 long	
 as	
 the	
 probability	
 that	
 the	

learned	
 program	
 is	
 ever	
 wrong	
 is	
 adjustable.

27

27

Outline

1. General	
 framework	
 for	
 defining	
 Learning	
 Machines,	

or	
 programs	
 that	
 can	
 learn/write/produce	
 other	

programs	
 of	
 a	
 particular	
 type.
• A	
 Learning	
 Machine	
 for	
 animal	
 recognition,	
 for	
 example,	

might	
 learn	
 to	
 write	
 a	
 program	
 that	
 recognizes	
 whether	
 a	

given	
 animal	
 is	
 a	
 duck.

2. Definition	
 of	
 a	
 particular	
 learning	
 protocol.
3. Definition	
 of	
 when	
 a	
 program	
 class	
 is	
 reasonably-

learnable.
4. Definition/proofs	
 of	
 reasonably-learnable	
 program	

classes.

28

28

Outline

1. General	
 framework	
 for	
 defining	
 Learning	
 Machines,	

or	
 programs	
 that	
 can	
 learn/write/produce	
 other	

programs	
 of	
 a	
 particular	
 type.
• A	
 Learning	
 Machine	
 for	
 animal	
 recognition,	
 for	
 example,	

might	
 learn	
 to	
 write	
 a	
 program	
 that	
 recognizes	
 whether	
 a	

given	
 animal	
 is	
 a	
 duck.

2. Definition	
 of	
 a	
 particular	
 learning	
 protocol.
3. Definition	
 of	
 when	
 a	
 program	
 class	
 is	
 reasonably-

learnable.
4. Definition/proofs	
 of	
 reasonably-learnable	
 program	

classes.

29

29

Outline

1. General	
 framework	
 for	
 defining	
 Learning	
 Machines,	

or	
 programs	
 that	
 can	
 learn/write/produce	
 other	

programs	
 of	
 a	
 particular	
 type.
• A	
 Learning	
 Machine	
 for	
 animal	
 recognition,	
 for	
 example,	

might	
 learn	
 to	
 write	
 a	
 program	
 that	
 recognizes	
 whether	
 a	

given	
 animal	
 is	
 a	
 duck.

2. Definition	
 of	
 a	
 particular	
 learning	
 protocol.
3. Definition	
 of	
 when	
 a	
 program	
 class	
 is	
 reasonably-

learnable.
4. Definition/proofs	
 of	
 reasonably-learnable	
 program	

classes.

29

✦ The	
 paper	
 proves	
 three	
 different	
 program	
 classes	

probably-approximately-learnable.

29

Outline

1. General	
 framework	
 for	
 defining	
 Learning	
 Machines,	

or	
 programs	
 that	
 can	
 learn/write/produce	
 other	

programs	
 of	
 a	
 particular	
 type.
• A	
 Learning	
 Machine	
 for	
 animal	
 recognition,	
 for	
 example,	

might	
 learn	
 to	
 write	
 a	
 program	
 that	
 recognizes	
 whether	
 a	

given	
 animal	
 is	
 a	
 duck.

2. Definition	
 of	
 a	
 particular	
 learning	
 protocol.
3. Definition	
 of	
 when	
 a	
 program	
 class	
 is	
 reasonably-

learnable.
4. Definition/proofs	
 of	
 reasonably-learnable	
 program	

classes.

29

✦ The	
 paper	
 proves	
 three	
 different	
 program	
 classes	

probably-approximately-learnable.

✦ I	
 am	
 not	
 going	
 to	
 walk	
 through	
 the	
 proofs;	
 they	
 are	

by	
 construction	
 of	
 deduction	
 algorithms	
 that	
 can	
 learn	

the	
 given	
 programs	
 and	
 proofs	
 of	
 their	
 bounds.

29

Outline

1. General	
 framework	
 for	
 defining	
 Learning	
 Machines,	

or	
 programs	
 that	
 can	
 learn/write/produce	
 other	

programs	
 of	
 a	
 particular	
 type.
• A	
 Learning	
 Machine	
 for	
 animal	
 recognition,	
 for	
 example,	

might	
 learn	
 to	
 write	
 a	
 program	
 that	
 recognizes	
 whether	
 a	

given	
 animal	
 is	
 a	
 duck.

2. Definition	
 of	
 a	
 particular	
 learning	
 protocol.
3. Definition	
 of	
 when	
 a	
 program	
 class	
 is	
 reasonably-

learnable.
4. Definition/proofs	
 of	
 reasonably-learnable	
 program	

classes.

29

✦ The	
 paper	
 proves	
 three	
 different	
 program	
 classes	

probably-approximately-learnable.

✦ I	
 am	
 not	
 going	
 to	
 walk	
 through	
 the	
 proofs;	
 they	
 are	

by	
 construction	
 of	
 deduction	
 algorithms	
 that	
 can	
 learn	

the	
 given	
 programs	
 and	
 proofs	
 of	
 their	
 bounds.

✦ I	
 am	
 going	
 to	
 give	
 the	
 upper	
 bounds	
 of	
 the	

algorithms.	
 This	
 requires	
 a	
 definition	
 of	
 a	
 function.

29

Outline

1. General	
 framework	
 for	
 defining	
 Learning	
 Machines,	

or	
 programs	
 that	
 can	
 learn/write/produce	
 other	

programs	
 of	
 a	
 particular	
 type.
• A	
 Learning	
 Machine	
 for	
 animal	
 recognition,	
 for	
 example,	

might	
 learn	
 to	
 write	
 a	
 program	
 that	
 recognizes	
 whether	
 a	

given	
 animal	
 is	
 a	
 duck.

2. Definition	
 of	
 a	
 particular	
 learning	
 protocol.
3. Definition	
 of	
 when	
 a	
 program	
 class	
 is	
 reasonably-

learnable.
4. Definition/proofs	
 of	
 reasonably-learnable	
 program	

classes.

29

✦ The	
 paper	
 proves	
 three	
 different	
 program	
 classes	

probably-approximately-learnable.

✦ I	
 am	
 not	
 going	
 to	
 walk	
 through	
 the	
 proofs;	
 they	
 are	

by	
 construction	
 of	
 deduction	
 algorithms	
 that	
 can	
 learn	

the	
 given	
 programs	
 and	
 proofs	
 of	
 their	
 bounds.

✦ I	
 am	
 going	
 to	
 give	
 the	
 upper	
 bounds	
 of	
 the	

algorithms.	
 This	
 requires	
 a	
 definition	
 of	
 a	
 function.

✦ The	
 proof	
 of	
 that	
 functionʼ’s	
 upper	
 bound	
 is	
 the	
 major	

lemma	
 in	
 all	
 three	
 proofs,	
 so	
 I	
 will	
 outline	
 it.

29

Outline

1. General	
 framework	
 for	
 defining	
 Learning	
 Machines,	

or	
 programs	
 that	
 can	
 learn/write/produce	
 other	

programs	
 of	
 a	
 particular	
 type.
• A	
 Learning	
 Machine	
 for	
 animal	
 recognition,	
 for	
 example,	

might	
 learn	
 to	
 write	
 a	
 program	
 that	
 recognizes	
 whether	
 a	

given	
 animal	
 is	
 a	
 duck.

2. Definition	
 of	
 a	
 particular	
 learning	
 protocol.
3. Definition	
 of	
 when	
 a	
 program	
 class	
 is	
 reasonably-

learnable.
4. Definition/proofs	
 of	
 reasonably-learnable	
 program	

classes.

29

✦ The	
 paper	
 proves	
 three	
 different	
 program	
 classes	

probably-approximately-learnable.

✦ I	
 am	
 not	
 going	
 to	
 walk	
 through	
 the	
 proofs;	
 they	
 are	

by	
 construction	
 of	
 deduction	
 algorithms	
 that	
 can	
 learn	

the	
 given	
 programs	
 and	
 proofs	
 of	
 their	
 bounds.

✦ I	
 am	
 going	
 to	
 give	
 the	
 upper	
 bounds	
 of	
 the	

algorithms.	
 This	
 requires	
 a	
 definition	
 of	
 a	
 function.

✦ The	
 proof	
 of	
 that	
 functionʼ’s	
 upper	
 bound	
 is	
 the	
 major	

lemma	
 in	
 all	
 three	
 proofs,	
 so	
 I	
 will	
 outline	
 it.

✦ This	
 means	
 the	
 next	
 3	
 slides	
 are	
 mathy.	

29

A Combinatorial Bound

30

A Combinatorial Bound
✦ L(h,S) is	
 a	
 function	
 defined	
 for	
 all	
 real	
 numbers	
 h >
1 and	
 integers	
 S > 1.	

30

A Combinatorial Bound
✦ L(h,S) is	
 a	
 function	
 defined	
 for	
 all	
 real	
 numbers	
 h >
1 and	
 integers	
 S > 1.	

✦ Returns	
 smallest	
 integer	
 n	
 such	
 that	
 in	
 n	
 independent	

Bernoulli	
 trials,	
 each	
 with	
 probability	
 at	
 least	
 h-1	
 of	

success,	
 P(<	
 S	
 successes)	
 <	
 h-1

• Bernoulli	
 trial:	
 an	
 experiment	
 whose	
 outcomes	

are	
 either	
 “success”	
 or	
 “failure”;	
 randomly	

distributed	
 by	
 some	
 probability	
 function.

30

Upper Bound on L(h,S)

31

Upper Bound on L(h,S)

L(h,S) ≤ 2h(S + logeh)

31

Upper Bound on L(h,S)

L(h,S) ≤ 2h(S + logeh)
Proof	
 by	
 algebraic	
 substitution	
 of	
 well-known	
 inequalities:

31

Upper Bound on L(h,S)

L(h,S) ≤ 2h(S + logeh)
Proof	
 by	
 algebraic	
 substitution	
 of	
 well-known	
 inequalities:

1.∀x > 0, (1 + x-1)x < e

31

Upper Bound on L(h,S)

L(h,S) ≤ 2h(S + logeh)
Proof	
 by	
 algebraic	
 substitution	
 of	
 well-known	
 inequalities:

1.∀x > 0, (1 + x-1)x < e
2.∀x > 0, (1 - x-1)x < e-1

31

Upper Bound on L(h,S)

L(h,S) ≤ 2h(S + logeh)
Proof	
 by	
 algebraic	
 substitution	
 of	
 well-known	
 inequalities:

1.∀x > 0, (1 + x-1)x < e
2.∀x > 0, (1 - x-1)x < e-1

3.In	
 m	
 independent	
 trials,	
 each	
 with	
 success	

probability	
 ≥	
 p:	

	
 P(successes	
 at	
 most	
 k)	
 ≤	

	

(m-mp
m-k)

m-k)kmp
k(

31

So?

32

So?

✦ L(h,S) is	
 basically	
 linear	
 in	
 both	
 h	
 and	
 S.

32

So?

✦ L(h,S) is	
 basically	
 linear	
 in	
 both	
 h	
 and	
 S.
✦ Applies	
 to	
 using	
 EXAMPLEs	
 and	
 ORACLE	
 to	

determine	
 vectors.	

32

So?

✦ L(h,S) is	
 basically	
 linear	
 in	
 both	
 h	
 and	
 S.
✦ Applies	
 to	
 using	
 EXAMPLEs	
 and	
 ORACLE	
 to	

determine	
 vectors.	

✦ An	
 algorithm	
 can	
 approximate	
 the	
 set	
 of	

determined	
 variables	
 in	
 natural	
 EXAMPLEs	

of	
 F in	
 runtime	
 independent	
 of	
 total	

number	
 of	
 variables	
 in	
 the	
 world.

32

So?

✦ L(h,S) is	
 basically	
 linear	
 in	
 both	
 h	
 and	
 S.
✦ Applies	
 to	
 using	
 EXAMPLEs	
 and	
 ORACLE	
 to	

determine	
 vectors.	

✦ An	
 algorithm	
 can	
 approximate	
 the	
 set	
 of	

determined	
 variables	
 in	
 natural	
 EXAMPLEs	

of	
 F in	
 runtime	
 independent	
 of	
 total	

number	
 of	
 variables	
 in	
 the	
 world.
• Dependent	
 only	
 the	
 number	
 of	
 variables	

that	
 are	
 determined	
 in	
 F.

32

Remaining Question

Given	
 that	
 learning	

protocol,	
 what	
 classes	
 of	

tasks	
 are	
 learnable	
 in	

polynomial	
 time?	

33

Answer: At Least 3 Classes of Programs

34

Answer: At Least 3 Classes of Programs

1. k-CNF	
 expressions

34

Answer: At Least 3 Classes of Programs

1. k-CNF	
 expressions
2.Monotone	
 DNF	
 expressions

34

Answer: At Least 3 Classes of Programs

1. k-CNF	
 expressions
2.Monotone	
 DNF	
 expressions
3. μ-expressions

34

k-CNF Expressions

35

k-CNF Expressions

✦ Conjunctive	
 Normal	
 form	
 (CNF):	

(a1 ∨ a2 ∨ a3) ∧ (a4 ∨ a1) …

35

k-CNF Expressions

✦ Conjunctive	
 Normal	
 form	
 (CNF):	

(a1 ∨ a2 ∨ a3) ∧ (a4 ∨ a1) …

✦ k-CNF	
 expression:	
 a	
 CNF	
 expression	
 where	

each	
 internal	
 clause	
 is	
 composed	
 of	
 ≤	
 k	

literals.	

35

k-CNF Expressions

✦ Conjunctive	
 Normal	
 form	
 (CNF):	

(a1 ∨ a2 ∨ a3) ∧ (a4 ∨ a1) …

✦ k-CNF	
 expression:	
 a	
 CNF	
 expression	
 where	

each	
 internal	
 clause	
 is	
 composed	
 of	
 ≤	
 k	

literals.	

✦ Learnable	
 with	
 an	
 algorithm	
 that	
 does	
 not	
 call	

ORACLE,	
 and	
 calls	
 EXAMPLE	
 ≤ L(h, 2tk+1)
times.	
 (t	
 is	
 the	
 number	
 of	
 variables)

35

Monotone DNF Expressions

36

Monotone DNF Expressions

✦ Disjunctive	
 Normal	
 Form	
 (DNF):
(a1 ∧ a2 ∧ a3) ∨ (a1 ∧ a4) …

36

Monotone DNF Expressions

✦ Disjunctive	
 Normal	
 Form	
 (DNF):
(a1 ∧ a2 ∧ a3) ∨ (a1 ∧ a4) …

✦ An	
 expression	
 is	
 monotone	
 if	
 it	
 contains	
 no	

negated	
 literals.	

36

Monotone DNF Expressions

✦ Disjunctive	
 Normal	
 Form	
 (DNF):
(a1 ∧ a2 ∧ a3) ∨ (a1 ∧ a4) …

✦ An	
 expression	
 is	
 monotone	
 if	
 it	
 contains	
 no	

negated	
 literals.	

✦ Learnable	
 with	
 an	
 algorithm	
 that	
 calls	

EXAMPLEs	
 L = L(h,d) times	
 and	
 ORACLEs	

d*t times,	
 where	
 d is	
 the	
 degree	
 of	
 the	

expression	
 and	
 t	
 is	
 the	
 number	
 of	
 variables.	

36

µ-expressions

37

µ-expressions

✦ General	
 expression	
 over	
 {p1,…,pt} defined	

recursively	
 (1 ≤ i ≤ t):

f := pi | ~pi |f1 ∧ f2 | f1 ∨ f2

37

µ-expressions

✦ General	
 expression	
 over	
 {p1,…,pt} defined	

recursively	
 (1 ≤ i ≤ t):

f := pi | ~pi |f1 ∧ f2 | f1 ∨ f2
✦ A	
 μ-expression	
 is	
 an	
 expression	
 in	
 which	
 each	

p	
 appears	
 at	
 most	
 once.	

37

µ-expressions

✦ General	
 expression	
 over	
 {p1,…,pt} defined	

recursively	
 (1 ≤ i ≤ t):

f := pi | ~pi |f1 ∧ f2 | f1 ∨ f2
✦ A	
 μ-expression	
 is	
 an	
 expression	
 in	
 which	
 each	

p	
 appears	
 at	
 most	
 once.	

✦ Learnable	
 with	
 an	
 exactly	
 correct	
 algorithm	

that	
 calls	
 two	
 slightly	
 more	
 powerful	
 ORACLE	

functions	
 O(t3) times	
 total.

37

Executive Summary

38

Executive Summary
✦ Learnability	
 theory	
 is	
 concerned	
 with	
 what	
 programs	
 can	

be	
 learned	
 automatically.

38

Executive Summary
✦ Learnability	
 theory	
 is	
 concerned	
 with	
 what	
 programs	
 can	

be	
 learned	
 automatically.
✦ We	
 should	
 reason	
 about	
 what	
 is	
 programmatically	

learnable	
 in	
 the	
 same	
 way	
 we	
 reason	
 about	
 what	
 is	

computable.

38

Executive Summary
✦ Learnability	
 theory	
 is	
 concerned	
 with	
 what	
 programs	
 can	

be	
 learned	
 automatically.
✦ We	
 should	
 reason	
 about	
 what	
 is	
 programmatically	

learnable	
 in	
 the	
 same	
 way	
 we	
 reason	
 about	
 what	
 is	

computable.

✦ A	
 class	
 of	
 programs	
 is	
 Probably	
 Approximately	
 Learnable	

when,	
 using	
 a	
 particular	
 type	
 of	
 teacher,	
 a	
 given	

algorithm	
 can	
 learn	
 a	
 program	
 that	
 can	
 recognize	

instances	
 of	
 that	
 class	
 with	
 a	
 certain	
 probability.

38

Executive Summary
✦ Learnability	
 theory	
 is	
 concerned	
 with	
 what	
 programs	
 can	

be	
 learned	
 automatically.
✦ We	
 should	
 reason	
 about	
 what	
 is	
 programmatically	

learnable	
 in	
 the	
 same	
 way	
 we	
 reason	
 about	
 what	
 is	

computable.

✦ A	
 class	
 of	
 programs	
 is	
 Probably	
 Approximately	
 Learnable	

when,	
 using	
 a	
 particular	
 type	
 of	
 teacher,	
 a	
 given	

algorithm	
 can	
 learn	
 a	
 program	
 that	
 can	
 recognize	

instances	
 of	
 that	
 class	
 with	
 a	
 certain	
 probability.

✦ 3	
 examples	
 of	
 such	
 learnable	
 program	
 types	
 are	
 k-CNF	

expressions,	
 monotone	
 DNF	
 expressions,	
 and	
 μ-
expressions.

38

Interesting Concluding Questions

✦ What	
 else	
 is	
 learnable	
 by	
 these	

definitions?

✦ Is	
 the	
 definition	
 of	
 “learnable”	

reasonable?
• How	
 powerful	
 should	
 the	
 teachers	
 be?
• What	
 about	
 if	
 we	
 use	
 negative	
 in	
 addition	

to	
 positive	
 examples?
✦ How	
 do	
 humans	
 learn?

39

40

✦ Assume	
 we	
 have	
 urn	
 that	
 contains	
 many	
 marbles	
 of	
 S	

different	
 types.	
 We	
 want	
 to	
 “learn”	
 the	
 different	
 types	
 of	

marbles	
 by	
 taking	
 a	
 small	
 random	
 sample	
 X,	
 of	
 size	

sufficient	
 that,	
 with	
 high	
 probability,	
 it	
 contains	
 at	
 least	

99%	
 of	
 S	
 marble	
 type	
 representatives.	

40

✦ Assume	
 we	
 have	
 urn	
 that	
 contains	
 many	
 marbles	
 of	
 S	

different	
 types.	
 We	
 want	
 to	
 “learn”	
 the	
 different	
 types	
 of	

marbles	
 by	
 taking	
 a	
 small	
 random	
 sample	
 X,	
 of	
 size	

sufficient	
 that,	
 with	
 high	
 probability,	
 it	
 contains	
 at	
 least	

99%	
 of	
 S	
 marble	
 type	
 representatives.	

✦ Definition	
 of	
 L(h,S) implies:
|X| = L(100,S) ⇒ P(succeeded overall) > 99%

40

✦ Assume	
 we	
 have	
 urn	
 that	
 contains	
 many	
 marbles	
 of	
 S	

different	
 types.	
 We	
 want	
 to	
 “learn”	
 the	
 different	
 types	
 of	

marbles	
 by	
 taking	
 a	
 small	
 random	
 sample	
 X,	
 of	
 size	

sufficient	
 that,	
 with	
 high	
 probability,	
 it	
 contains	
 at	
 least	

99%	
 of	
 S	
 marble	
 type	
 representatives.	

✦ Definition	
 of	
 L(h,S) implies:
|X| = L(100,S) ⇒ P(succeeded overall) > 99%

✦ “Success”	
 for	
 each	
 trial	
 is	
 defined	
 as	
 picking	
 a	
 marble	
 we	

havenʼ’t	
 picked	
 before.	
 Success	
 clearly	
 depends	
 on	

previous	
 choices,	
 but	
 the	
 probability	
 of	
 each	
 success	
 will	

always	
 be	
 at	
 least	
 1%,	
 independent of previous choices.

40

