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bool is_a_duck() {
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}
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“A	
  program	
  for	
  performing	
  a	
  
task	
  [like	
  recognizing	
  ducks	
  ‒
Ed.]	
  has	
  been	
  acquired	
  by	
  

learning	
  if	
  it	
  has	
  been	
  
acquired	
  by	
  any	
  means	
  other	
  
than	
  explicit	
  programming.”

6



Why This Paper Matters

7



Why This Paper Matters

✦ Present	
  a	
  general	
  framework	
  for	
  reasoning	
  
about	
  what	
  is	
  learnable	
  as	
  allowed	
  by	
  
algorithmic	
  complexity.

7



Why This Paper Matters

✦ Present	
  a	
  general	
  framework	
  for	
  reasoning	
  
about	
  what	
  is	
  learnable	
  as	
  allowed	
  by	
  
algorithmic	
  complexity.

✦ Introduce	
  the	
  idea	
  of	
  Probably	
  
Approximately	
  Learnable	
  (PAL)	
  problems,	
  
or	
  problems	
  that	
  are	
  learnable	
  in	
  
polynomial	
  time,	
  with	
  high	
  correctness.

7



Why This Paper Matters

✦ Present	
  a	
  general	
  framework	
  for	
  reasoning	
  
about	
  what	
  is	
  learnable	
  as	
  allowed	
  by	
  
algorithmic	
  complexity.

✦ Introduce	
  the	
  idea	
  of	
  Probably	
  
Approximately	
  Learnable	
  (PAL)	
  problems,	
  
or	
  problems	
  that	
  are	
  learnable	
  in	
  
polynomial	
  time,	
  with	
  high	
  correctness.

✦ Prove	
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Outline

1. General	
  framework	
  for	
  defining	
  Learning	
  Machines,	
  
or	
  programs	
  that	
  can	
  learn/write/produce	
  other	
  
programs	
  of	
  a	
  particular	
  type.
• A	
  Learning	
  Machine	
  for	
  animal	
  recognition,	
  for	
  example,	
  

might	
  learn	
  to	
  write	
  a	
  program	
  that	
  recognizes	
  whether	
  a	
  
given	
  animal	
  is	
  a	
  duck.

2. Definition	
  of	
  a	
  particular	
  learning	
  protocol.
3. Definition	
  of	
  when	
  a	
  program	
  class	
  is	
  reasonably-

learnable.
4. Definition/proofs	
  of	
  reasonably-learnable	
  program	
  

classes.
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✦ Focus	
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  learning	
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  whether	
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data.
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A Restriction

✦ Focus	
  on	
  learning	
  skills	
  that	
  involve	
  
recognizing	
  whether	
  a	
  concept	
  (boolean	
  
predicate)	
  is	
  true	
  for	
  given	
  (boolean)	
  
data.

✦ Learn	
  to	
  answer	
  the	
  
question:	
  is	
  this	
  animal	
  
a	
  duck?

walks	
  like	
  a	
  duck	
  =	
  true
purple	
  =	
  false
fluffy	
  =	
  true
yellow	
  =	
  true
beak	
  =	
  true
big	
  =	
  false	
  

quacks	
  like	
  a	
  duck=true
angry	
  =	
  false

...
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 t boolean variables p1,…,pt:
 Vectors assign variables to one of {0,1,*}. 
 Concept F mapping vectors to {0,1}. 
 Probability distribution D over all true v. 

✦ Learner has access to two routines (or 
teachers):

1.EXAMPLE: takes no input, returns a vector v 
such that F(v) = 1. 
✦ Probability that EXAMPLE returns any 

particular v is D(v).
2.ORACLE: takes as input a vector v, returns 

F(v). 
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✦ L(h,S) is	
  a	
  function	
  defined	
  for	
  all	
  real	
  numbers	
  h > 
1 and	
  integers	
  S > 1.	
  

✦ Returns	
  smallest	
  integer	
  n	
  such	
  that	
  in	
  n	
  independent	
  
Bernoulli	
  trials,	
  each	
  with	
  probability	
  at	
  least	
  h-1	
  of	
  
success,	
  P(<	
  S	
  successes)	
  <	
  h-1

• Bernoulli	
  trial:	
  an	
  experiment	
  whose	
  outcomes	
  
are	
  either	
  “success”	
  or	
  “failure”;	
  randomly	
  
distributed	
  by	
  some	
  probability	
  function.
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  well-known	
  inequalities:
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3.In	
  m	
  independent	
  trials,	
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  success	
  
probability	
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  P(successes	
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  k)	
  ≤	
  

	
  

(m-mp
m-k)

m-k )kmp
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  of	
  
determined	
  variables	
  in	
  natural	
  EXAMPLEs	
  
of	
  F in	
  runtime	
  independent	
  of	
  total	
  
number	
  of	
  variables	
  in	
  the	
  world.
• Dependent	
  only	
  the	
  number	
  of	
  variables	
  

that	
  are	
  determined	
  in	
  F.
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Given	
  that	
  learning	
  
protocol,	
  what	
  classes	
  of	
  
tasks	
  are	
  learnable	
  in	
  
polynomial	
  time?	
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  form	
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(a1 ∨ a2 ∨ a3) ∧ (a4 ∨ a1) … 

✦ k-CNF	
  expression:	
  a	
  CNF	
  expression	
  where	
  
each	
  internal	
  clause	
  is	
  composed	
  of	
  ≤	
  k	
  
literals.	
  

✦ Learnable	
  with	
  an	
  algorithm	
  that	
  does	
  not	
  call	
  
ORACLE,	
  and	
  calls	
  EXAMPLE	
  ≤ L(h, 2tk+1) 
times.	
  (t	
  is	
  the	
  number	
  of	
  variables)
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✦ Disjunctive	
  Normal	
  Form	
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(a1 ∧ a2 ∧ a3) ∨ (a1 ∧ a4) …

✦ An	
  expression	
  is	
  monotone	
  if	
  it	
  contains	
  no	
  
negated	
  literals.	
  

✦ Learnable	
  with	
  an	
  algorithm	
  that	
  calls	
  
EXAMPLEs	
  L = L(h,d) times	
  and	
  ORACLEs	
  
d*t times,	
  where	
  d is	
  the	
  degree	
  of	
  the	
  
expression	
  and	
  t	
  is	
  the	
  number	
  of	
  variables.	
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✦ General	
  expression	
  over	
  {p1,…,pt} defined	
  
recursively	
  (1 ≤ i ≤ t):

f :=  pi | ~pi |f1 ∧ f2 | f1 ∨ f2      
✦ A	
  μ-expression	
  is	
  an	
  expression	
  in	
  which	
  each	
  
p	
  appears	
  at	
  most	
  once.	
  

✦ Learnable	
  with	
  an	
  exactly	
  correct	
  algorithm	
  
that	
  calls	
  two	
  slightly	
  more	
  powerful	
  ORACLE	
  
functions	
  O(t3) times	
  total.
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  should	
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  what	
  is	
  programmatically	
  

learnable	
  in	
  the	
  same	
  way	
  we	
  reason	
  about	
  what	
  is	
  
computable.

✦ A	
  class	
  of	
  programs	
  is	
  Probably	
  Approximately	
  Learnable	
  
when,	
  using	
  a	
  particular	
  type	
  of	
  teacher,	
  a	
  given	
  
algorithm	
  can	
  learn	
  a	
  program	
  that	
  can	
  recognize	
  
instances	
  of	
  that	
  class	
  with	
  a	
  certain	
  probability.
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Executive Summary
✦ Learnability	
  theory	
  is	
  concerned	
  with	
  what	
  programs	
  can	
  

be	
  learned	
  automatically.
✦ We	
  should	
  reason	
  about	
  what	
  is	
  programmatically	
  

learnable	
  in	
  the	
  same	
  way	
  we	
  reason	
  about	
  what	
  is	
  
computable.

✦ A	
  class	
  of	
  programs	
  is	
  Probably	
  Approximately	
  Learnable	
  
when,	
  using	
  a	
  particular	
  type	
  of	
  teacher,	
  a	
  given	
  
algorithm	
  can	
  learn	
  a	
  program	
  that	
  can	
  recognize	
  
instances	
  of	
  that	
  class	
  with	
  a	
  certain	
  probability.

✦ 3	
  examples	
  of	
  such	
  learnable	
  program	
  types	
  are	
  k-CNF	
  
expressions,	
  monotone	
  DNF	
  expressions,	
  and	
  μ-
expressions.
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Interesting Concluding Questions

✦ What	
  else	
  is	
  learnable	
  by	
  these	
  
definitions?

✦ Is	
  the	
  definition	
  of	
  “learnable”	
  
reasonable?
• How	
  powerful	
  should	
  the	
  teachers	
  be?
• What	
  about	
  if	
  we	
  use	
  negative	
  in	
  addition	
  

to	
  positive	
  examples?
✦ How	
  do	
  humans	
  learn?
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✦ Assume	
  we	
  have	
  urn	
  that	
  contains	
  many	
  marbles	
  of	
  S	
  
different	
  types.	
  We	
  want	
  to	
  “learn”	
  the	
  different	
  types	
  of	
  
marbles	
  by	
  taking	
  a	
  small	
  random	
  sample	
  X,	
  of	
  size	
  
sufficient	
  that,	
  with	
  high	
  probability,	
  it	
  contains	
  at	
  least	
  
99%	
  of	
  S	
  marble	
  type	
  representatives.	
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  X,	
  of	
  size	
  
sufficient	
  that,	
  with	
  high	
  probability,	
  it	
  contains	
  at	
  least	
  
99%	
  of	
  S	
  marble	
  type	
  representatives.	
  

✦ Definition	
  of	
  L(h,S) implies:
|X| = L(100,S) ⇒ P(succeeded overall) > 99%
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  with	
  high	
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  it	
  contains	
  at	
  least	
  
99%	
  of	
  S	
  marble	
  type	
  representatives.	
  

✦ Definition	
  of	
  L(h,S) implies:
|X| = L(100,S) ⇒ P(succeeded overall) > 99%

✦ “Success”	
  for	
  each	
  trial	
  is	
  defined	
  as	
  picking	
  a	
  marble	
  we	
  
havenʼ’t	
  picked	
  before.	
  Success	
  clearly	
  depends	
  on	
  
previous	
  choices,	
  but	
  the	
  probability	
  of	
  each	
  success	
  will	
  
always	
  be	
  at	
  least	
  1%,	
  independent of previous choices.
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