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HOW DID YOU LEARN THAT?




“A program for performing a
task [like recognizing ducks -
Ed.] has been acquired by
learning if it has been
acquired by any means other
than explicit programming.”
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+ Present a general framework for reasoning
about what is learnable as allowed by
algorithmic complexity.

+ Introduce the idea of Probably
Approximately Learnable (PAL) problems,
or problems that are learnable in
polynomial time, with high correctness.

+ Prove 3 classes of programs to be PAL.




1. General framework for defining Learning Machines,
or programs that can learn/write/produce other
programs of a particular type.

e A Learning Machine for animal recognition, for example,
might learn to write a program that recognizes whether a
given animal is a duck.

2. Definition of a particular learning protocaol.

3. Definition of when a program class is reasonably-
earnable.

4. Definition/proofs of reasonably-learnable program
classes.
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t + Variables: {walks like a duck, beak, purple, ...}

® |+ Vector v: {walks_like_a_duck=0, beak=1, purple=*, ...}

+ Fl. + Hv) = is_a duck(v) = false S
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t + Variables: {purple, walks like a duck, beak, ...}

® |+ Vector v: {purple=*, walks_like_a_ duck=0, beak=1 ...}

Variables determined in v: {walks_like_a_duck, beak}

(0 v iy
 Learning machine is learning concepts.
« The variables used in F are determined in

T
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+ A vector is an assignment to each of the

, Pt

t ‘]¢ Variables: {purple, walks like a duck, beak, ...}

Variables determined in is_a_duck: {walks_like_a_duck, quacks_like_a_ duck}

+ FU° 7 =is_a_duck(v) = false

S
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+ t boolean variables p,, ..., p;:
+ Vectors assign variables to one of {0,1, *}.

+ Concept F maps vectors to {0,1}.

+ Assume D, a probability distribution over
all vectors v which F evaluates to 1.

+ D is meant to de_s_cribe the relative natural

f er
+ Probability distribution D over all true vectors v.
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+ If we have a vector v that describes a

mallard, then D(v) = relative frequency of
mallards in the universe.
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+ A learning machine has two
components:
« A learning protocol, or the method by

which information is gathered from the
world.

» A deduction procedure, or the
mechanism for learning new concepts
from gathered information.




VALIANT'S LEARNING
PROTOCOL
T
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t boolean variables p,, .., p,:

+ Vectors assign variables to one of {0,1, *}.
¢+ Concept F mapping vectors to {0,1}.

+ Probability distribution D over all true v.

+ Learner has access to two routines (or
teachers):

1 .EXAMPLE: takes no input, returns a vector v
such that F(v) = 1.

+ Probability that EXAMPLE returns any
particular v is D(v).

2.ORACLE: takes as input a vector v, returns

Fv).
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EXAMPLE()

{al=0, a2=1,

a3=*, ad=l}

ORACLE({al=0,a2=0,a3=*,a4=1})




T= (al v a2) A (a4 Vv al)

EXAMPLE() {al=1, a2=0, a3=*}

EXAMPLE() {al=0, a2=1, a3=*, ad=1l}

ORACLE({al=0,a2=0,a3=*,a4=1}) FALSE
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+ A class of problems is Probably Approximately
Learnable if instances of the problem can be learned by
a deduction algorithm that:

e Uses this protocol.

« Runs in reasonable time: polynomial by adjustable
parameter h, size of learned program, and number of
variables determined in the learned formula.

« Produces a program that says something is false when
it’s true with probability no greater than (1-h-1);
never says that something is true when it’s false.
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+ We are trying to make a program (learning machine)
that can learn, in polynomial time, another program
(the learned program) that recognizes whether a
boolean formula (concept) is true for any set of
boolean data.

+ The learning program has access to a function that
will give it a bunch of examples, as well as a function
that will check its work.

+ The learning machine can learn a program that is
sometimes wrong, so long as the probability that the
learned program is ever wrong is adjustable.




4. Definition/proofs of reasonably-learnable program
classes.




4. Definition/proofs of reasonably-learnable program
classes.




+ The paper proves three different program classes
probably-approximately-learnable.




+ The paper proves three different program classes
probably-approximately-learnable.

+ I am not going to walk through the proofs; they are
by construction of deduction algorithms that can learn
the given programs and proofs of their bounds.




+ The paper proves three different program classes
probably-approximately-learnable.

+ I am not going to walk through the proofs; they are
by construction of deduction algorithms that can learn
the given programs and proofs of their bounds.

2 1|+ I am going to give the upper bounds of the
algorithms. This requires a definition of a function.




+ The paper proves three different program classes
probably-approximately-learnable.

+ I am not going to walk through the proofs; they are
by construction of deduction algorithms that can learn
the given programs and proofs of their bounds.

2 1|+ I am going to give the upper bounds of the
algorithms. This requires a definition of a function.

S, The proof of that function’s upper bound is the major
lemma in all three proofs, so I will outline it.




+ The paper proves three different program classes
probably-approximately-learnable.

+ I am not going to walk through the proofs; they are
by construction of deduction algorithms that can learn
the given programs and proofs of their bounds.

2 1|+ I am going to give the upper bounds of the
algorithms. This requires a definition of a function.

S, The proof of that function’s upper bound is the major
lemma in all three proofs, so I will outline it.

4. [1+ This means the next 3 slides are mathy. |
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+ L(h,S) is a function defined for all real numbers h >
1 and integers s > 1.

+ Returns smallest integer n such that in n independent
Bernoulli trials, each with probability at least A1 of
success, P(< S successes) < h-!

 Bernoulli trial: an experiment whose outcomes
are either “success” or “failure”; randomly

distributed by some probability function.
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L(h,S) £ 2h(S + log,h)

Proof by algebraic substitution of well-known inequalities:
1.vx > 0, (1 + x1H)x < e
2.Vx > 0, (1 - x1)yx < g1

3.In m independent trials, each with success
probability > p:

m-mp Y'~X /mp\X

P(successes at most k) < ( ) (_)

m—k k
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+ L(h,S) is basically linear in both h and s.

+ Applies to using EXAMPLEs and ORACLE to
determine vectors.

+ An algorithm can approximate the set of
determined variables in natural EXAMPLEs
of Fin runtime independent of total
number of variables in the world.

« Dependent only the number of variables
that are determined in F.
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+ Conjunctive Normal form (CNF):
(a;, V.a, VvV a;) AN (a, V a;) ..

+ k-CNF expression: a CNF expression where

each internal clause is composed of < k
literals.

+ Learnable with an algorithm that does not call
ORACLE, and calls EXAMPLE < L (h, 2tktl)

times. (t is the number of variables)







+ Disjunctive Normal Form (DNF):
(a; A a, A a3) V (a; A a;) ..




+ Disjunctive Normal Form (DNF):
(a;, AN a, A a;) V (a; A a))

+ An expression is monotone if it contains no
negated literals.




+ Disjunctive Normal Form (DNF):
(a; A a, A a3) V (a; A a;) ..

+ An expression is monotone if it contains no
negated literals.

+ Learnable with an algorithm that calls
EXAMPLEs . = L (h,d) times and ORACLEs
d*t times, where d is the degree of the
expression and t is the number of variables.
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+ General expression over {p,,..,p.} defined
recursively (1 £ i < t):
£f := p,| ~p, I£, AN £, | £, V £,
+ A U-expression is an expression in which each
p appears at most once.

+ Learnable with an exactly correct algorithm
that calls two slightly more powerful ORACLE
functions o (t3) times total.
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Learnability theory is concerned with what programs can
be learned automatically.

We should reason about what is programmatically
learnable in the same way we reason about what is
computable.

A class of programs is Probably Approximately Learnable
when, using a particular type of teacher, a given
algorithm can learn a program that can recognize
instances of that class with a certain probability.

3 examples of such learnable program types are k-CNF
expressions, monotone DNF expressions, and [-
expressions.




+ What else is learnable by these
definitions?

+ Is the definition of “learnable”
reasonable?

How powerful should the teachers be?

- What about if we use negative in addition
to positive examples?

+ How do humans learn?
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sufficient that, with high probability, it contains at least
99% of s marble type representatives.
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+ Assume we have urn that contains many marbles of s
different types. We want to “learn” the different types of
marbles by taking a small random sample X, of size
sufficient that, with high probability, it contains at least
99% of s marble type representatives.

+ Definition of L (h,S) implies:
|X| = L(100,S) = P(succeeded overall) > 99%

+ "“Success” for each trial is defined as picking a marble we
haven’t picked before. Success clearly depends on
previous choices, but the probability of each success will
always be at least 1%, independent of previous choices.




