A THEORY OF THE LEARNABLE
(L.G. VALIANT)

Theory Lunch Presentation

Claire Le Goues
05/20/10

HOW DO YOU KNOW THAT?

HOW DO YOU KNOW THAT?

bool 1s a duck() {
return (walks like a duck() &&
quacks like a duck());

bool 1s a duck() {
return (walks like a duck() &&

quacks like a duck());

HOW DID YOU LEARN THAT?

“A program for performing a
task [like recognizing ducks -
Ed.] has been acquired by
learning if it has been
acquired by any means other
than explicit programming.”

+ Present a general framework for reasoning
about what is learnable as allowed by
algorithmic complexity.

+ Present a general framework for reasoning
about what is learnable as allowed by
algorithmic complexity.

+ Introduce the idea of Probably
Approximately Learnable (PAL) problems,
or problems that are learnable In
polynomial time, with high correctness.

+ Present a general framework for reasoning
about what is learnable as allowed by
algorithmic complexity.

+ Introduce the idea of Probably
Approximately Learnable (PAL) problems,
or problems that are learnable in
polynomial time, with high correctness.

+ Prove 3 classes of programs to be PAL.

1. General framework for defining Learning Machines,
or programs that can learn/write/produce other
programs of a particular type.

e A Learning Machine for animal recognition, for example,
might learn to write a program that recognizes whether a
given animal is a duck.

2. Definition of a particular learning protocaol.

3. Definition of when a program class is reasonably-
earnable.

4. Definition/proofs of reasonably-learnable program
classes.

+ Focus on learning skills that involve
recognizing whether a concept (boolean
predicate) is true for given (boolean)
data. R

+ Focus on learning skills that involve
recognizing whether a concept (boolean
predicate) is true for given (boolean)
data. o

+ Learn to answer the

question: is this animal
a duck?

+ Focus on learning skills that involve
recognizing whether a concept (boolean
predicate) is true for given (boolean)
data.

+ Learn to answer the

question: is this animal
a duck?

+ Given t boolean variables p,,...,p;:

+ Given t boolean variables p,,...,p;:

+ A vector is an assignment to each of the
t variables one of {0, 1, *}.

e * means “undetermined.”

+ Given t boolean variables p,,...,p;:

+ A vector is an assignment to each of the
t variables one of {0, 1, *}.

e * means “undetermined.”

+ Function (concept) F maps all vectors
to {0,1}.
« Learning machine is learning concepts.
« The variables used in F are determined in

o

+ Given t boolean variables p,,...,p;:

+ A vector is an assignment to each of the
t variables one of {0,1, *}.

e * means “undetermined.”

+ Function (concept) F maps all vectors
to {0,1}.
 Learning machine is learning concepts.
« The variables used in F are determined in

a2

+ Given t bo(_ NG

+ A vector is ¢ ==S""mmea=n cqch of the
t variables one of {@ 1,*},
e * means “undetermined.”

+ Function (concept) F maps all vectors
to {0,1}.
 Learning machine is learning concepts.
« The variables used in F are determined in

T

+ Given t boc |
+ A vector is e ===""Smmea*-) cach of the

[o~ A Jde 3

\
t + Variables: {walks like a duck, beak, purple, ...}

® |+ Vector v: {walks_like_a_duck=0, beak=1, purple=*, ...}

+ Fl. + Hv) = is_a duck(v) = false S

(0 VA g
 Learning machine is learning concepts.
« The variables used in F are determined in

T

+ Given t boolean variables p,,...,p;:
+ A vector is an assignment to each of the

t + Variables: {purple, walks like a duck, beak, ...}

® |+ Vector v: {purple=*, walks_like_a_ duck=0, beak=1 ...}

Variables determined in v: {walks_like_a_duck, beak}

(0 v iy
 Learning machine is learning concepts.
« The variables used in F are determined in

T

+ Given t boolean variables p,, ..
+ A vector is an assignment to each of the

, Pt

t ‘]¢ Variables: {purple, walks like a duck, beak, ...}

Variables determined in is_a_duck: {walks_like_a_duck, quacks_like_a_ duck}

+ FU° 7 =is_a_duck(v) = false

S

(0 v iy
 Learning machine is learning concepts.
« The variables used in F are determined in

T

+ Given t boolean variables p,,...,p;:

+ A vector is an assignment to each of the
t Y = L1 r P~ A ale N

+ t boolean variables p,,..,p,

+ Vectors assign variables to one of {0,1, *}.

+ Fl.+ Concept F maps vectors to {0,1}.
tox9, 17
 Learning machine is learning concepts.
« The variables used in F are determined in

T

+ t boolean variables p,,..,p,:

+ Vectors assign variables to one of {0,1, *}.

+ Concept F maps vectors to {0,1}.

+ t boolean variables p,,..,p,:

+ Vectors assign variables to one of {0,1, *}.

+ Concept F maps vectors to {0,1}.

+ Assume D, a probability distribution over
all vectors v which F evaluates to 1.

+ t boolean variables p,,..,p,:
+ Vectors assign variables to one of {0,1, *}.

+ Concept F maps vectors to {0,1}.

+ Assume D, a probability distribution over
all vectors v which F evaluates to 1.

+ D is meant to describe the relative natural
frequency of positive examples of whatever

we're trying to learn.

+ t boolean variables p,,..,p,:

+ Vectors assign variables to one of {0,1, *}.

+ Concept F maps vectors to {0,1}.

+ Assume D, a probability distribution over
all vectors v which F evaluates to 1.

+ D is meant to describe the relative natural
frequency of positive examples of whatever
we're trying to learn.

+ If we have a vector v that describes a
mallard, then D(v) = relative frequency of
mallards in the duck population.

+ t boolean variables p,, ..., p;:
+ Vectors assign variables to one of {0,1, *}.

+ Concept F maps vectors to {0,1}.

+ Assume D, a probability distribution over
all vectors v which F evaluates to 1.

+ D is meant to de_s_cribe the relative natural

f er
+ Probability distribution D over all true vectors v.

- 1 < hl’llly CO TCUT T T

+ If we have a vector v that describes a

mallard, then D(v) = relative frequency of
mallards in the universe.

t boolean variables p,, .., p,:

Vectors assign variables to one of {0,1, *}.
Concept F mapping vectors to {0,1}.

Probability distribution D over all true v.

t boolean variables p,,..,p,:

Vectors assign variables to one of {0,1, *}.
Concept F mapping vectors to {0,1}.

Probability distribution D over all true v.

+ A learning machine has two
components:

+ A learning machine has two
components:
« A learning protocol, or the method by

which information is gathered from the
world.

+ A learning machine has two
components:
« A learning protocol, or the method by

which information is gathered from the
world.

» A deduction procedure, or the
mechanism for learning new concepts
from gathered information.

VALIANT'S LEARNING
PROTOCOL
T

t boolean variables p,, .., p,:

Vectors assign variables to one of {0,1, *}.
Concept F mapping vectors to {0,1}.

Probability distribution D over all true v.

VALIANT'S LEARNING
PROTOCOL

t boolean variables p,, .., p,:

Vectors assign variables to one of {0,1, *}.
Concept F mapping vectors to {0,1}.

Probability distribution D over all true v.

2

t boolean variables p,, .., p,:

+ Vectors assign variables to one of {0,1, *}.
¢+ Concept F mapping vectors to {0,1}.

+ Probability distribution D over all true v.

+ Learner has access to two routines (or
teachers):

2

t boolean variables p,, .., p,:

+ Vectors assign variables to one of {0,1, *}.
¢+ Concept F mapping vectors to {0,1}.

+ Probability distribution D over all true v.

+ Learner has access to two routines (or
teachers):

1 .EXAMPLE: takes no input, returns a vector v
such that F(v) = 1.

+ Probability that EXAMPLE returns any
particular v is D(v).

2

t boolean variables p,, .., p,:

+ Vectors assign variables to one of {0,1, *}.
¢+ Concept F mapping vectors to {0,1}.

+ Probability distribution D over all true v.

+ Learner has access to two routines (or
teachers):

1 .EXAMPLE: takes no input, returns a vector v
such that F(v) = 1.

+ Probability that EXAMPLE returns any
particular v is D(v).

2.ORACLE: takes as input a vector v, returns

Fv).

J(v) = is a duck(v)

J(v) = is a duck(v)

EXAMPLE()

J(v) = is a duck(v)

EXAMPLE()

J(v) = is a duck(v)

EXAMPLE()

ORACLE(™ '

J(v) = is a duck(v)

EXAMPLE()

ORACLE(i TRUE

J(v) = is a duck(v)

EXAMPLE()

ORACLE(

TRUE

ORACLE(

J(v) = is a duck(v)

EXAMPLE()

ORACLE(

TRUE

ORACLE(

FALSE

T= (al v a2) A (a4 Vv al)

T= (al v a2) A (a4 Vv al)

EXAMPLE()

JF= (al v a2) A (a4 Vv al)

EXAMPLE() {al=1, a2=0, a3=*}

JF= (al v a2) A (a4 Vv al)

EXAMPLE() {al=1, a2=0, a3=*}

EXAMPLE()

J= (al v a2) A (a4 v al)

EXAMPLE() {al=1, a2=0, a3=*}

EXAMPLE() {al=0, a2=1, a3=*, ad=1l}

f:

(al v a2) A (a4 Vv al)

EXAMPLE()

{al=1l, a2=0, a3=*}

EXAMPLE()

{al=0, a2=1,

a3=*, ad=l}

ORACLE({al=0,a2=0,a3=*,a4=1})

T= (al v a2) A (a4 Vv al)

EXAMPLE() {al=1, a2=0, a3=*}

EXAMPLE() {al=0, a2=1, a3=*, ad=1l}

ORACLE({al=0,a2=0,a3=*,a4=1}) FALSE

+ A class of problems is Probably Approximately
Learnable if instances of the problem can be learned by
a deduction algorithm that:

+ A class of problems is Probably Approximately
Learnable if instances of the problem can be learned by
a deduction algorithm that:

e Uses this protocol.

+ A class of problems is Probably Approximately
Learnable if instances of the problem can be learned by
a deduction algorithm that:

e Uses this protocol.

« Runs in reasonable time: polynomial by adjustable
parameter h, size of learned program, and number of
variables determined in the learned formula.

+ A class of problems is Probably Approximately
Learnable if instances of the problem can be learned by
a deduction algorithm that:

e Uses this protocol.

« Runs in reasonable time: polynomial by adjustable
parameter h, size of learned program, and number of
variables determined in the learned formula.

« Produces a program that says something is false when
it’s true with probability no greater than (1-h-1);
never says that something is true when it’s false.

We are trying to make a program (learning machine)
that can learn, in polynomial time, another program
(the learned program) that recognizes whether a

boolean formula (concept) is true for any set of
boolean data.

+ We are trying to make a program (learning machine)
that can learn, in polynomial time, another program
(the learned program) that recognizes whether a
boolean formula (concept) is true for any set of
boolean data.

+ The learning program has access to a function that
will give it a bunch of examples, as well as a function
that will check its work.

+ We are trying to make a program (learning machine)
that can learn, in polynomial time, another program
(the learned program) that recognizes whether a
boolean formula (concept) is true for any set of
boolean data.

+ The learning program has access to a function that
will give it a bunch of examples, as well as a function
that will check its work.

+ The learning machine can learn a program that is
sometimes wrong, so long as the probability that the
learned program is ever wrong is adjustable.

4. Definition/proofs of reasonably-learnable program
classes.

4. Definition/proofs of reasonably-learnable program
classes.

+ The paper proves three different program classes
probably-approximately-learnable.

+ The paper proves three different program classes
probably-approximately-learnable.

+ I am not going to walk through the proofs; they are
by construction of deduction algorithms that can learn
the given programs and proofs of their bounds.

+ The paper proves three different program classes
probably-approximately-learnable.

+ I am not going to walk through the proofs; they are
by construction of deduction algorithms that can learn
the given programs and proofs of their bounds.

2 1|+ I am going to give the upper bounds of the
algorithms. This requires a definition of a function.

+ The paper proves three different program classes
probably-approximately-learnable.

+ I am not going to walk through the proofs; they are
by construction of deduction algorithms that can learn
the given programs and proofs of their bounds.

2 1|+ I am going to give the upper bounds of the
algorithms. This requires a definition of a function.

S, The proof of that function’s upper bound is the major
lemma in all three proofs, so I will outline it.

+ The paper proves three different program classes
probably-approximately-learnable.

+ I am not going to walk through the proofs; they are
by construction of deduction algorithms that can learn
the given programs and proofs of their bounds.

2 1|+ I am going to give the upper bounds of the
algorithms. This requires a definition of a function.

S, The proof of that function’s upper bound is the major
lemma in all three proofs, so I will outline it.

4. [1+ This means the next 3 slides are mathy. |

+ L(h,S) is a function defined for all real numbers h >
1 and integers s > 1.

+ L(h,S) is a function defined for all real numbers h >
1 and integers s > 1.

+ Returns smallest integer n such that in n independent
Bernoulli trials, each with probability at least A1 of
success, P(< S successes) < h-!

 Bernoulli trial: an experiment whose outcomes
are either “success” or “failure”; randomly

distributed by some probability function.

L(h,S) £ 2h(S + log_h)

L(h,S) £ 2h(S + log_h)

Proof by algebraic substitution of well-known inequalities:

L(h,S) £ 2h(S + log_h)

Proof by algebraic substitution of well-known inequalities:
1.vx > 0, (1 + x1H)x < e

L(h,S) £ 2h(S + log_h)

Proof by algebraic substitution of well-known inequalities:
1.vx > 0, (1 + x1H)x < e
2.Vx > 0, (1 - x1)yx < g1

L(h,S) £ 2h(S + log,h)

Proof by algebraic substitution of well-known inequalities:
1.vx > 0, (1 + x1H)x < e
2.Vx > 0, (1 - x1)yx < g1

3.In m independent trials, each with success
probability > p:

m-mp Y'~X /mp\X

P(successes at most k) < () (_)

m—k k

+ L(h,S) is basically linear in both h and s.

+ L(h,S) is basically linear in both h and s.

+ Applies to using EXAMPLEs and ORACLE to
determine vectors.

+ L(h,S) is basically linear in both h and s.

+ Applies to using EXAMPLEs and ORACLE to
determine vectors.

+ An algorithm can approximate the set of
determined variables in natural EXAMPLEs
of Fin runtime independent of total
number of variables in the world.

+ L(h,S) is basically linear in both h and s.

+ Applies to using EXAMPLEs and ORACLE to
determine vectors.

+ An algorithm can approximate the set of
determined variables in natural EXAMPLEs
of Fin runtime independent of total
number of variables in the world.

« Dependent only the number of variables
that are determined in F.

Given that learning
protocol, what classes of
tasks are learnable In
polynomial time?

1. k-CNF expressions

1. k-CNF expressions
2. Monotone DNF expressions

1. k-CNF expressions
2. Monotone DNF expressions
3. U-expressions

+ Conjunctive Normal form (CNF):
(a;, V.a, VvV a;) AN (a, V a;) ..

+ Conjunctive Normal form (CNF):
(a;, V.a, VvV a;) AN (a, V a;) ..

+ k-CNF expression: a CNF expression where
each internal clause is composed of < k
literals.

+ Conjunctive Normal form (CNF):
(a;, V.a, VvV a;) AN (a, V a;) ..

+ k-CNF expression: a CNF expression where

each internal clause is composed of < k
literals.

+ Learnable with an algorithm that does not call
ORACLE, and calls EXAMPLE < L (h, 2tktl)

times. (t is the number of variables)

+ Disjunctive Normal Form (DNF):
(a; A a, A a3) V (a; A a;) ..

+ Disjunctive Normal Form (DNF):
(a;, AN a, A a;) V (a; A a))

+ An expression is monotone if it contains no
negated literals.

+ Disjunctive Normal Form (DNF):
(a; A a, A a3) V (a; A a;) ..

+ An expression is monotone if it contains no
negated literals.

+ Learnable with an algorithm that calls
EXAMPLEs . = L (h,d) times and ORACLEs
d*t times, where d is the degree of the
expression and t is the number of variables.

+ General expression over {p,,..,p.} defined
recursively (1 £ i < t):
£f := p,| ~p, I£, AN £, | £, V £,

+ General expression over {p,,..,p.} defined
recursively (1 £ i < t):
£f := p,| ~p, I£, AN £, | £, V £,
+ A U-expression is an expression in which each
p appears at most once.

+ General expression over {p,,..,p.} defined
recursively (1 £ i < t):
£f := p,| ~p, I£, AN £, | £, V £,
+ A U-expression is an expression in which each
p appears at most once.

+ Learnable with an exactly correct algorithm
that calls two slightly more powerful ORACLE
functions o (t3) times total.

+ Learnability theory is concerned with what programs can
be learned automatically.

Learnability theory is concerned with what programs can
be learned automatically.

We should reason about what is programmatically
learnable in the same way we reason about what is
computable.

+ Learnability theory is concerned with what programs can
be learned automatically.

+ We should reason about what is programmatically
learnable in the same way we reason about what is

computable.

+ A class of programs is Probably Approximately Learnable
when, using a particular type of teacher, a given
algorithm can learn a program that can recognize
instances of that class with a certain probability.

Learnability theory is concerned with what programs can
be learned automatically.

We should reason about what is programmatically
learnable in the same way we reason about what is
computable.

A class of programs is Probably Approximately Learnable
when, using a particular type of teacher, a given
algorithm can learn a program that can recognize
instances of that class with a certain probability.

3 examples of such learnable program types are k-CNF
expressions, monotone DNF expressions, and [-
expressions.

+ What else is learnable by these
definitions?

+ Is the definition of “learnable”
reasonable?

How powerful should the teachers be?

- What about if we use negative in addition
to positive examples?

+ How do humans learn?

+ Assume we have urn that contains many marbles of s
different types. We want to “learn” the different types of
marbles by taking a small random sample X, of size
sufficient that, with high probability, it contains at least
99% of s marble type representatives.

+ Assume we have urn that contains many marbles of s
different types. We want to “learn” the different types of
marbles by taking a small random sample X, of size
sufficient that, with high probability, it contains at least
99% of s marble type representatives.

+ Definition of L (h,S) implies:
|X| = L(100,S) = P(succeeded overall) > 99%

+ Assume we have urn that contains many marbles of s
different types. We want to “learn” the different types of
marbles by taking a small random sample X, of size
sufficient that, with high probability, it contains at least
99% of s marble type representatives.

+ Definition of L (h,S) implies:
|X| = L(100,S) = P(succeeded overall) > 99%

+ "“Success” for each trial is defined as picking a marble we
haven’t picked before. Success clearly depends on
previous choices, but the probability of each success will
always be at least 1%, independent of previous choices.

