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Abstract. Research in Search-Based Automated Program Repair has
demonstrated promising results, but has nevertheless been largely con-
fined to small, single-edit patches using a limited set of mutation opera-
tors. Tackling a broader spectrum of bugs will require multiple edits and a
larger set of operators, leading to a combinatorial explosion of the search
space. This motivates the need for more efficient search techniques. We
propose to use the test case results of candidate patches to localise suit-
able fix locations. We analysed the test suite results of single-edit patches,
generated from a random walk across 28 bugs in 6 programs. Based on
the findings of this analysis, we propose a number of mutation-based
fault localisation techniques, which we subsequently evaluate by measur-
ing how accurately they locate the statements at which the search was
able to generate a solution. After demonstrating that these techniques
fail to result in a significant improvement, we discuss why this may be
the case, despite the successes of mutation-based fault localisation in
previous studies.

Keywords: automated program repair, mutation analysis, fault locali-
sation

1 Introduction

The worldwide cost of debugging and repairing software bugs is estimated to be
$312 billion per year; on average, programmers spend roughly 50% of their time
finding and fixing bugs [1]. Research in automated program repair (APR) seeks
to tackle this problem. Generate-and-validate (G&V) is one approach to APR,
also known as search-based program repair, which uses meta-heuristics—such as
random search [18] or genetic programming [2,8]—to discover patches that lead
a program to pass a given set of test cases. At a high level, G&V begins with
fault localisation, followed by continual processes of generation and validation.
Fault localisation is typically performed using spectra-based fault localisation
techniques (SBFL) [25]. SBFL assigns suspiciousness values to statements in
the program, based on their dynamic association with the failing tests. Patches
are generated by selecting statements according to their suspiciousness, and sam-
pling edits at those statements from the repair space. This repair space is defined
by a set of transformation schemas, describing transformation shapes (e.g., in-
sert statement, tighten if condition, replace call argument), and transformation



ingredients, supplying the parameters necessary to complete shapes (e.g. a par-
ticular statement). Candidate patches are evaluated for correctness by running
the patched program on the original test suite; repair is indicated by passing all
of the tests.

Different G&V approaches vary in their mutation operators and traversal
techniques. For example, GenProg [8] constructs patches that may append, re-
place or delete statements within the program, reusing existing statements within
the program as fix ingredients. Other transformation schemas have been pro-
posed based on human-produced patches [6] or a value search to reduce the cost
of patch evaluation [10]. Search space traversal schemes employed include genetic
programming [8], random search [18], and a deterministic walk [23].

Despite promising early results, most G&V techniques are currently limited
to generating patches for a relatively small sub-set of single-line bugs [23,18,11].
To repair a wider variety of bugs, techniques will need to use richer, more gran-
ular transformation schemas, and to construct multiple-line patches. However,
this produces a combinatorial explosion in the size of the search space. This
motivates a need for methods to prune the exploded search space.

Inspired by recent work in mutation testing [16,14], we propose to use can-
didate test suite evaluations to identify suitable fix locations online. Mutation-
based fault localisation show promising results when ranking statements as can-
didates for human modification; We explicitly evaluate their utility in assigning
suspiciousness scores to candidate repair locations, the key concern in localisa-
tion for repair. To determine whether the results of candidate patch evaluations
may be used to localise the fault, we first perform a mutation analysis on a sam-
ple of a particular G&V repair search space across 28 bugs in six real-world C
programs. We use the same ground truth as previous studies on fault localisation,
assuming the location(s) of the human-written repair or the injected fault to be
a suitable fix location [14,16,25]. For the sake of convenience, we refer to these
locations as “faulty”; non-modified statements are considered to be “correct”.

We find that faulty locations exhibit a different average rate of passing-to-
failing tests across their mutants than statements assumed to be correct. We
also observe that an average of 30.07% of (compiling) mutants have no impact
on the outcomes of the test suite, mirroring earlier findings by Schulte et al. [20].
Similarly, we find that, on average, 26.44% of mutants covered by at least one
previously passing test fail all of their covering tests. These results suggest a
largely all-or-nothing search space, in which most mutants either pass all of
their (covering) tests, or none at all.

Based on the findings of our analysis, we evaluate a number of alternative
fault localisation techniques in terms of their ability to localise statements at
which a fix was found during the search (as opposed to assessing how well they
localise the location of the human repair). We show that little benefit is gained
by incorporating the results of candidate patch evaluations into the fault locali-
sation, and that any gains are not particularly consistent. The best localisation
approach using this information outperformed GenProg’s default approach on
just over half of the cases. To benefit from the knowledge of candidate eval-



uations, a more granular repair model is needed—to allow subtle faults to be
detected—as well as a more effective means of aggregating different sources of
fault localisation information. Overall, our primary contributions are:

– A detailed mutation analysis sampled from GenProg’s search space, covering
28 bugs across six real-world C programs. Our results show that statement-
level mutation operators used in many search-based program repair tech-
niques can identify the code that humans modify to fix bugs.

– An evaluation of several alternative fault localisation techniques which use
the test case outcomes of mutants produced during the search. Our results
show that, although informative in terms of human-modified bug-fixing code,
online mutation-based fault localisation does not definitively outperform ex-
isting offline SBFL approaches.

– An informed discussion of the limitations of GenProg’s statement-level mu-
tation operators in identifying faulty locations, and how these limitations
might be addressed by alternative mutation operators.

2 Fault Localisation in Search-Based Program Repair

In this study, we examine the search space of GenProg, an established generate-
and-validate APR technique, with a publicly-available implementation, based on
genetic programming. We focus this discussion primarily on GenProg’s approach
to fault localisation, for illustration, but the principles generalise to most existing
techniques in APR.

GenProg assigns suspiciousness values to each program statement based on
their coverage by the failing and passing test cases. In the initial formulation,
statements executed exclusively by the failing test cases are assigned a weight of
1.0; those executed by both failing and passing tests, 0.1; those not executed by
a failing test, 0.0. Alternative weighting schemes have been explored since [9],
including those that draw directly on advances in spectrum-based fault localisa-
tion [19]. Statements are sampled in proportion to their weight.

We now address Mutation-Based Fault Localisation (MBFL), a relatively
new approach based on mutation analysis [14,16]. This analysis generates and
evaluates a large number of mutants on the test cases. Each mutant is a variant
of the original program, obtained by applying a traditional mutation testing op-
erator (e.g., flip comparison operator) at a single location [16]. Two seminal ap-
proaches to MBFL are MUSE [14] and Metallaxis [16]. Both of these approaches
share a common intuition: mutants generated at the fault location should ex-
hibit different test suite outcomes to those generated at non-faulty locations.
Despite sharing this intuition, each technique generates its suspiciousness values
according to contradictory set of assumptions.

Prior to computing suspiciousness values for each statement s ∈ S, Metal-
laxis first computes explicit suspiciousness values for each mutant m ∈ M . The
suspiciousness of a mutant is given by the similarity of its behaviour to that of
the original, faulty program, measured using a variant of the Ochiai suspicious-
ness metric [25], given below, where #K is the number of tests that “kill” the



mutant (i.e., the tests which the mutant fails), #Kn is the number of previously
failing tests that kill the mutant, and #Kp is the number of previously passing
tests that kill the mutant:

µMetallaxis(m) =
#Kn√

#K · (#Kp + #Kn)
=

#Kn

#K
(1)

To determine the suspicious of a statement, the set of mutants at that state-
ment Ms is aggregated as follows:

µMetallaxis(s;M) =

{
maxm∈Ms µMetallaxis(m) Ms 6= ∅
1.0 otherwise

(2)

MUSE, on the other hand, computes statement suspiciousness directly, based
on the average passing-to-failing rate p2f and failing-to-passing f2p rate of mu-
tants at that statement. p2f describes the fraction of previously passing tests
that are failed by the mutant; f2p describes the fraction of previously failing
tests that are passed by the mutant. MUSE discards all of neutral mutants (i.e.,
mutants whose test outcomes are the same as the original program), and com-
putes suspiciousness as:

µMUSE(s) =
1

#Ms
·
∑

m∈Ms

(f2p(m)− α · p2f(m)) (3)

where α compensates for the greater likelihood that a previously passing test
will fail than a previously failing test will pass:

α =
f2pall

#M · |TPass|
· #M · |TFail|

p2fall
(4)

where f2pall and p2fall give the number of tests, across all mutants, whose
outcomes change, and TFail and TPass denote the set of initially failing and
passing test cases, respectively.

One can treat the inner term of µMUSE as the suspiciousness of a particular
mutant. From this perspective, we notice differing behaviours, and underlying
assumptions, in the way that MUSE and Metallaxis aggregate mutant results,
and how they treat failing-to-passing test outcomes:

– According to Metallaxis, a statement is suspicious as its most suspicious mu-
tant. This behaviour assumes that the search landscape is mostly composed
of non-neutral mutants. If the search space contains a large number of neu-
tral mutants [20], Metallaxis assigns the maximum suspiciousness value to
most statements. In contrast, MUSE actively discards its neutral mutants,
and computes the suspiciousness of a statement as the average suspiciousness
of its mutants, indicating a robustness to sampling noise.

– Whereas MUSE significantly increases the suspiciousness of statements con-
taining mutants which pass previously failing test cases, Metallaxis implicitly
decreases the suspiciousness of such statements. These behaviours highlight
a contradiction between the techniques’ underlying assumptions: MUSE sees



partial solutions as signs of a repair, whilst Metallaxis views them as either
irrelevant, or the result of overfitting.

Both techniques have demonstrated significant improvement over previous
fault localisation approaches. However, evaluations have been limited to manually-
seeded faults in small-to-medium sized programs, and use metrics that have been
shown to be inappropriate for automated program repair [19], where the degree
of difference in suspiciousness is more important than rank.

3 Analysis

The mutation-based fault localisation approaches described in the previous sec-
tion suggest a natural overlap with search-based program repair, which effec-
tively produces a large number of candidate mutants throughout the generate-
and-validate process. This suggests a mechanism for online fault localisation
that leverages the existing mutation approach presented by the underlying repair
process. However, the raw suspiciousness scores produced by a fault localisation
technique are more important than the ranks. Thus, the utility of this approach
depends more on the discriminatory power of the p2f and f2p scores than on
their raw accuracy (evaluated in the traditional way).

Thus, to determine whether such mutation analysis may be used to improve
fault localisation in this context, we first analyse whether mutants at (assumed)
faulty and correct statements exhibit different test suite outcomes to one an-
other. Given the experimental parameters enumerated in Section 3.1, we begin
by answering the following research questions (Section 3.2):

– RQ1: Can statements that were modified by the human fix be discriminated
from those that were not, on the basis of the p2f rates of their mutants?

– RQ2: Can human-modified statements be distinguished from non-modified
statements, based on the fail-to-passing rates f2p of their mutants?

As a potential means of improving offline fault localisation, we also ask:

– RQ3: Are statements covered by the fewest number of previously passing
tests the most likely to contain the fault?

Based on the results of this analysis, we propose and evaluate two new fault
localisation strategies for search-based program repair (Section 3.3). However, we
find that these new strategies do not offer significant improvement over previous
SBFL strategies. We provide insight as to why not, as well as implications,
supported by additional findings; these are detailed in Section 3.4.

3.1 Experimental Setup

We analyse test case results for a sample of single-edit mutants taken from 28
bugs across 6 real-world C programs. Some of these defects have been previously
studied in the context of automated program repair; all are provided by the
the RepairBox platform.3 15 of these bugs are artificial, injected into 3 small-
to-medium sized programs sourced from the Software Infrastructure Repository

3 https://github.com/squaresLab/RepairBox

https://github.com/squaresLab/RepairBox


[3]—the same source used to evaluate MUSE and Metallaxis. We include these
bugs to determine whether GenProg’s repair operators may be used to perform
MBFL, rather than traditional mutation testing operators, used by existing ap-
proaches [16,14]. To determine whether MBFL remains effective when applied in
the wild, we supplement this dataset with 13 real-world bugs across 3 large-scale,
real-world programs. Table 1 summarises the studied programs.

Source Program Scenarios kLOC Tests Artificial?

SIR
gzip 6 6 104 3

grep 2 10 146 3

sed 7 14 255 3

RBX
OpenSSL 5 248 77 7

Python 4 446 344 7

PHP 4 789 8597 7

Table 1: Subjects under study. “Source” indicates the benchmark source (SIR
the Software Infrastructure Repository; RBX, RepairBox); “Scenarios” refers to
the number of independent defective versions considered per program; “kLOC”
measures the number of thousands of lines of C code in the program; “Tests”
indicates the average number of tests over all scenarios for a program.

We use GenProg, a search-based program repair technique with well-established
and commonly-used mutation operators, to focus this evaluation. However, we
anticipate the results can generalise to any G&V technique following a similar
paradigm. To collect the necessary data for the analysis, we first generated a list
of all the single-edit patches within GenProg’s search space, before randomly
shuffling that list and evaluating as many patches as possible within a 12-hour
window. This 12-hour random walk was repeated for each of the bugs within
the dataset.4 We restrict the generation of mutants to the sub-set of statements
covered by at least one of the failing test cases. For historical reasons, and given
its similarity to traditional mutation testing operators, we also ensured that a
deletion was attempted at each statement. For the purposes of balancing repli-
cation with performance, we performed each run using a minimal, purpose-built
Docker container, provided by RepairBox. We used a C4.Large instance on Ama-
zon EC2 for the artificial bugs, and a DS1 V2 instance on Microsoft Azure for
the real-world bugs.

3.2 Analysis

A brief summary of the results of the mutation analysis is given in Table 2. We
observe that most mutants exhibit an all-or-nothing behaviour: either their test

4 Source code and a Docker image for the version of GenProg used by this study is
publicly available at: https://bitbucket.org/ChrisTimperley/gp3

https://bitbucket.org/ChrisTimperley/gp3


Sample
Program ID Mutants Rate Compiling Neutral Lethal

OpenSSL

0a2dcb6 377 2.48 100.00 14.06 50.66
4880672 1971 4.82 90.72 22.27 35.51
6979583 1097 13.06 99.18 26.62 51.23
8e3854a 3028 4.69 93.66 38.14 25.59
eddef30 2898 80.50 100.00 55.97 16.84

PHP

01c028a 28 0.06 96.43 7.14 0.00
11bdb85 32 0.07 96.88 25.00 0.00
1d6b3f1 741 8.72 88.66 14.57 25.78
9fb92ee 217 0.51 100.00 28.11 37.33

Python

6c3d527 378 0.46 84.66 64.29 13.76
a93342b 146 0.37 81.51 53.42 0.68
b2f3c23 600 3.03 81.83 45.67 14.33
f584aba 733 0.71 32.74 10.50 5.05

grep
v2-DG 1 628 1.00 98.73 39.17 35.99
v3-DG 3 2353 10.14 67.06 31.92 31.19

gzip

v1-KL 2 1898 10.20 91.41 23.60 48.79
v1-KP 1 2301 11.22 92.09 41.11 36.77
v1-TW 3 2068 13.34 91.34 27.85 40.57
v4-KL 1 2886 13.49 91.27 43.17 28.83
v5-KL 1 6437 16.98 90.26 66.75 16.96
v5-KL 8 1062 1.05 98.68 24.01 31.26

sed

v2-AG 17 1630 1.52 85.77 23.68 30.67
v2-AG 19 3011 22.47 53.50 8.73 19.93
v3-AG 11 2579 7.39 78.79 24.74 33.81
v3-AG 15 1545 2.95 80.71 24.92 26.02
v3-AG 17 1332 3.95 67.57 16.14 27.40
v3-AG 18 1235 3.48 67.85 16.92 24.13
v3-AG 6 2615 5.56 77.06 23.40 31.17

1637 8.72 84.94 30.07 26.44

Table 2: Mutation analysis results for each bug scenario. “Mutants” shows num-
ber of mutants generated within the 12-hour random walk. “Sample Rate” is
the average number of mutants per suspicious statement. “Compiling” shows
the percentage of mutants that successfully compiled. “Neutral” shows the per-
centage of mutants with no effect on test outcomes, whereas “Lethal” shows the
percentage of mutants that fail all covering tests.



outcomes remain wholly unchanged, or all of their covering tests are failed. We
also observe low sample rates (< 1 mutant per suspicious statement) for most
Python and PHP scenarios, because of substantial compilation overhead and, for
statements covered by many tests, the cost of evaluating hundreds or thousands
of test cases per mutant.

RQ1: Can statements that were modified by the human fix be
discriminated from those that were not, on the basis of the p2f
rates of their mutants?

Faulty Correct
0.0

0.2

0.4

0.6

0.8

1.0

p2
f

Mean p2f of all mutants at a given statement

Fig. 1: We observe different mean p2f distributions for faulty and correct state-
ments (KS2 = 0.301; p = 0.003, Â = 0.679 [medium effect]).

To avoid misleading results, we omit mutants that do not compile, and those
that are not covered by any of the passing tests. In line with our expectations
and previous findings, we observe different mean p2f rates between (assumed)
faulty and correct statements, Figure 1.

Using a two-way Kolmogorov-Smirnov test, we reject the null hypothesis
(p < 0.05) that the samples for the faulty and correct statements are drawn
from the same distribution. Between the p2f distributions for correct and faulty
statements, we find an effect size of 0.679 (measured by the Vargha-Delaney Â
measure [22]), indicating that correct statements tend to have a higher mean p2f
than faulty statements. This finding supports the intuition that modifications to
correct statements are likely to result in a greater degree of functionality loss.

RQ2: Can human-modified statements be distinguished from non-
modified statements, based on the fail-to-passing rates f2p of their
mutants?

To answer this question, we first removed all non-compiling mutants from
consideration. We then removed all mutants corresponding to acceptable solu-
tions, giving us the most complete information possible without knowledge of a
solution. Figure 2 compares the mean f2p for faulty and correct statements.
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(without outliers)

Fig. 2: We observe similar distributions of mean f2p values for faulty and correct
statements (KS2 = 0.185; p = 0.177). In both cases, more than half of the
mutants at each statement did not pass any of the previously failing tests.

We find that the mean f2p is zero for the majority of statements, regardless
of whether or not they are assumed to be correct. On closer inspection we find
that only 2.09% of mutants have any impact on the outcomes of the previously
failing tests. This suggests that f2p information may not be particularly effective
at distinguishing faulty and correct statements.

RQ3: Are statements covered by the fewest number of previously
passing tests the most likely to contain the fault?

When the search is restricted to the sub-set of statements covered by all of
the failing tests, most SBFL techniques become partly redundant, as the number
of (non-)executed failing tests is no longer relevant. Instead, it may be preferable
to measure statement suspiciousness as a function of the number of executed and
non-executed passing test cases.

Using the results of the analysis, we measure the passing test coverage at
each statement where a repair was found, and investigate whether (assumed)
faulty statements are covered by fewer passing tests. Accounting for the varying
sizes of the test suites, we measure the fraction of passing tests that cover each
each statement, rather than the number. To determine coverage relative to other
statements in the program, we compute the adjusted coverage as:

AdjustedCoverage(s) =
#TPass(s)−MinCoverage

#TPass
(5)

where TPass(s) is the set of passing tests covered by statement s, and MinCoverage
is the number of passing tests that cover that least covered statement.

Measuring the adjusted coverage of each scenario, we find that 90% are cov-
ered by fewer than 2% of the previously passing tests, supporting our intuition
and the intuition of the original suspiciousness metric used in GenProg.



3.3 Fault Localisation

Using the knowledge gained from our mutation analysis, we propose and evaluate
two fault localisation strategies for G&V program repair, which may be aggre-
gated. We aggregate localisations by computing their product. To use these layers
in a noisy, online context, we ensure that each is numerically stable and that
none assigns a suspiciousness of zero to any statement covered by a previously
failing test. We consider:

– Coverage, µCov: produces a 90% probability that a statement with less
than 2% adjusted coverage will be selected, and a 10% probability that a
statement with a greater level of coverage will be chosen.

– Pass-to-Fail: This layer assigns values between zero and one to each state-
ment, based on the pass-to-fail rates p2f of its mutants:

µp2f (s) =
1

#Ms + 1
·

[
1 +

∑
m∈Ms

(1− p2fm)

]
(6)

To assess the effectiveness of the fault localisation approaches that combine
these layers, we use the mutants of the analysis—excluding any solutions, to
avoid potential biases—to generate a set of suspiciousness values µ for each of
the bug scenarios. We then measure the accuracy of a fault localisation technique
as the probability of selecting a statement that contains a fix found during the
random walk.5

Table 3 compares the effectiveness of our proposed fault localisation strategies
against a selection of existing strategies, across the 11 bugs for which solutions
were found during the random walk. We find that no strategy, whether mutation-
or spectrum-based, is dominant: Jaccard, the previously reported [19] best SBFL
strategy for APR, is outperformed by GenProg’s default strategy in 6/11 cases;
our Adjusted Coverage strategy beats GenProg in 6/11 cases, but is also beaten
by Jaccard in 6/11 cases. Neither Metallaxis nor MUSE dominate GenProg’s
default strategy: GP beats MUSE in 7 cases (and draws in 2) and Metallaxis in
8 cases.

Our p2f strategy is beaten by GenProg in 8/11 cases, indicating that passing-
to-information, when used alone, is not particularly effective at identifying suit-
able fix locations. When the Adjusted Coverage and p2f strategies are aggre-
gated by computing their product, the resulting hybrid beats GenProg and Jac-
card in 6 and 8 cases, respectively. If the online modifications to µp2f are removed
and 1− p2f(s) is used to compute suspiciousness instead, the resulting localisa-
tion outperforms GenProg’s fault localisation in all cases.

We experimented with ways of using f2p information, but found the approach
either attained near-perfect accuracy (since the only mutants to pass any of
the previously failing tests were at statements where a solution was found), or

5 Note, we do not measure how well these techniques localise the statement modified
in the human repair, since the patterns observed in this data were used to design
these techniques.



Program ID Cov p2f Cov × p2f GP Jac. MUSE MXS

OpenSSL

0a2dcb6 0.14 0.91 0.05 1.23 1.82 1.38 0.53
6979583 75.26 15.96 79.75 37.68 25.00 8.33 8.46
8e3854a 0.11 1.01 0.10 0.71 0.61 0.95 0.73
eddef30 76.04 45.92 77.58 66.67 54.55 41.67 41.67

gzip

v1-KP 1 4.46 4.67 6.49 6.63 4.63 2.44 2.60
v1-TW 3 14.21 4.69 15.32 9.20 6.60 1.94 2.10
v4-KL 1 2.73 1.72 3.08 2.69 3.03 0.94 0.99
v5-KL 1 0.33 0.36 0.39 0.40 0.34 0.26 0.27
v5-KL 8 6.59 0.34 4.67 2.17 4.08 0.30 0.89

sed
v2-AG 17 0.02 0.21 0.02 0.19 0.15 0.19 0.53
v3-AG 11 6.95 0.61 3.09 0.57 1.92 0.57 0.81

Table 3: Comparison of fault localisation accuracies achieved by different ap-
proaches, where accuracy is measured by the probability of sampling a statement
containing a fix from the resulting distribution. “Cov”, “Jac.”, “GP” and “MXS”
refer to Adjusted Coverage, Jaccard, GenProg and Metallaxis, respectively.

substantially worse accuracy (since all mutants, other than the solutions at the
faulty statements, failed all of the previously failing tests).

3.4 Discussion

From the results of our evaluation, we observe relatively little benefit in incor-
porating information learned from the evaluation of candidate patches into the
fault localisation, in contrast to previous attempts to use mutation analysis to
locate faults. We believe there may be a number of reasons for this result:

– Lack of mutants: for a number of bug scenarios, we find that excessively
long test suite evaluation and compilation times prevent the search from
producing an adequate sample of mutants at each statement. In previous
research, Moon et al. [15] show that the performance of MUSE is sensitive
to the number of samples—at low sample rates (i.e., the average number of
samples per statement), MUSE is outperformed by offline SBFL techniques.

– Lack of passing test coverage: in cases where most statements are not
covered by any passing tests, these statements will be assigned a suspicious-
ness score of 1.0 by µP2F (s); Metallaxis will also assign maximal suspicious-
ness to such statements. As a result, if the faulty statements are covered by
any passing tests, they will be suppressed; if not, the fault localisation will
fail to identify the faulty statements amongst the many statements that are
not covered by the passing tests.

– All-or-nothing f2p response: within GenProg’s search space, we observe
erratic negative test suite behaviour. In some cases, the only statements with
mutants that passed a previously failing test were those where a repair was



found. In other cases, previously failing tests were frequently passed, except
at the statements where a repair was found. If one knew which type of f2p
response one was dealing with, a more accurate fault localisation might be
possible. In the future, we plan to explore whether the rarity of passing
previously failing tests might be used to determine whether a given failing-
to-passing event is a coincidence or indicative of a potential repair at that
statement.

– Machine-generated repairs: Across the random walk for each of the 28
bugs, we found fixes at a total of 48 different statements. Only 5 of these
48 statements were also modified by the original patch. This finding sug-
gests that GenProg is crafting repairs unlike those that a human would
make, supporting arguments made by Monperrus [13] that automated re-
pair should consider alien-looking repairs, rather than restricting itself to
producing human-like repairs. The disparity between the findings of RQ1,
that faulty statements exhibit a different mean p2f to correct statements,
and the lack of improvement when mutant information is added to the fault
localisation may suggest that locations patched by GenProg are less distin-
guishable by their mutants’ behaviours.

– Coarse-grained mutation operators: one explanation for the relative
lack of success from incorporating the results of the mutation analysis into
the fault localisation may be due to the coarse-grained nature of the repair
operators within GenProg’s search space. With such actions, it may be dif-
ficult to expose subtle bugs within the statement, that might otherwise be
identified using finer-grained mutation testing operators. In our analysis, we
find that most repairs tend to either have no effect on the outcomes of the
test suite, or to cause all of their covering tests to fail; this all-or-nothing
behaviour may be a consequence of the granularity of the search operators.

– Combining information: to combine each of the proposed layers of fault
localisation from our evaluation, we computed the product of each of the
layers—a necessarily arbitrary decision. A meaningful and effective way of
combining information from multiple sources, which may corroborate or con-
flict, is not immediately clear.

These results suggest a number of possibly fruitful directions to translate the
potential of mutation analysis approaches such as MUSE into efficiency gains
in automated program repair. Richer repair models, with lower-level repair op-
erators (such as those traditionally used in mutation testing), may mitigate
the all-or-nothing behaviour exhibited by mutants generated using GenProg’s
coarse-grained operators. Test outcomes for particular types of mutants may be
informative in refining suspiciousness beyond the statement-level, and may even
serve to predict the type of repair that might be needed. Finally, simple weighted
averages or products, as we explored in Section 3.3, may be inadequate; it is pos-
sible that ensemble learning techniques could more effectively combine sources
of information.



4 Related Work

In this section, we discuss previous research related to fault localisation within
automated program repair, and other approaches to addressing the difficulties
of scaling to larger repairs and search spaces.

Instead of tackling the problem of a growing search space by exploiting knowl-
edge learnt online, several techniques have been proposed to learn the likelihood
of candidate repairs based on their features by mining large collections of source
code repositories [21,7,11]. A complementary approach to tackle the problem
of the expanding search space is to reduce the cost of evaluating candidate
patches, whether through test case prioritisation [17,18], test case sampling [4]
or removal of redundant tests and (known) semantically equivalent mutants [23].
These approaches complement improved fault localisation for repair. In contrast
to syntactic- or heuristic-based G&V repair, semantic repair techniques [12,5]
infer partial specifications of desired behavior using test suites and then use
synthesis to construct replacement code that satisfies them. These techniques
also use test suites to localise faults and to validate patches, and thus could also
benefit from improved fault localisation.

A large number of methods for automated debugging and fault localisation
exist, including program slicing [24], delta-debugging [26] and various forms of
spectra-based fault localisation [25]. To date, most automated repair techniques
exclusively use SBFL; it is general and low-cost. SBFL approaches, to which
GenProg’s default fault localisation method belongs, use the test case cover-
age information for the program to assign suspiciousness values to each of its
locations. Qi et al. [19] conduct a study of the effectiveness of various SBFL tech-
niques when used with GenProg, finding that the Jaccard suspiciousness metric
produced the best fault localisation information, as measured by the number of
candidate repairs required to find a solution. In contrast to our study, we find
no one approach to fault localisation is dominant.

Schulte et al. [20] conduct an empirical study of the robustness of 22 programs
to mutation using GenProg’s operators, finding that over 30% of generated mu-
tants exhibit no change to the outcomes of their test suites. This behaviour may
hinder the effectiveness of MBFL techniques. For instance, Metallaxis will assign
maximal suspiciousness to statements with neutral mutants, causing the faulty
statements to be suppressed.

5 Conclusions

Although mutation analysis can distinguish between human-modified and human-
unmodified statements in a bug-fixing context, these results do not translate
directly into clear gains as a fault localisation technique for the purposes of pro-
gram repair. However, our results provide insight into why this may be the case,
and suggest several possibly fruitful future directions for fault localisation for
search-based repair. Given the previous successes of Metallaxis and MUSE with
mutation testing operators, we believe GenProg’s all-or-nothing search space,



in which most edits are either neutral or fail all of their covering tests, may be
partly responsible for the lack of clear gains. Low levels of passing test coverage
may also preclude the use of mutation-based fault localisation techniques.

To benefit from the knowledge of test suite outcomes for candidate patches,
we believe a set of more finely grained mutation operators are required—a re-
quirement that will most likely allow a larger number of bugs to be solved at the
same time.

To encourage further investigation, all results from this study, together with
the files used to conduct it, are available at:

https://bitbucket.org/ChrisTimperley/ssbse-2017-data.
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