
CMSC 451: Local Search & Randomized

Algorithms

Slides By: Carl Kingsford

Department of Computer Science

University of Maryland, College Park

Based on §12.1,12.2,13.2 of Algorithm Design by Kleinberg & Tardos.

Local Search

What if we have a hard problem but we can’t find an
approximation algorithm for it?

Local search is a general class of algorithms that is often useful in
practice.

Unfortunately, we can almost never prove that they will return a
good solution.

Optimization Problems

Optimization problems

• A set C of possible solutions

• A cost cost(c) for each c 2 C.

• We’re looking for a minimum/maximal cost c 2 C .

Energy Landscapes

B
e

tt
e

r

Energy landscapes

Gradient Descent

B
e
tt
e
r

Take a series of "steps," improving

the solution a little bit each time.

No guarantee you'll end up at the

best solution...

A Little More Formal

Local Search:

• A set of “feasible solutions”: C.

• A neighbor relation between some of these solutions: S ⇠ S 0

for some pairs S ,S 0
2 C.

•

N (S) = {S 0 : S ⇠ S 0
}: the neighbors of solution S .

Local Search

Local Search Algorithm Schema:

1 Define a set of feasible solutions C.

2 Define a neighbor relation ⇠ on these sets.

3 Let S0 be some feasible solution.

4 Let S = S0.

5 Repeatedly choose some S 0
2 N (S), and let S = S 0.

Example: Vertex Cover

Vertex Cover

Find the minimum size vertex cover for graph G .

Define a state S as a set of vertices that is a vertex cover.

Two states are neighbors if they di↵er by adding or deleting a
vertex.

Algorithm:

While there is a neighbor S 0 of S with lower cost, let the
new S be the lowest cost neighbor.

Gradient Descent: Vertex Cover

Empty Graph:

Gradient Descent: Vertex Cover

Empty Graph:

Gradient Descent: Vertex Cover

Empty Graph:

Gradient Descent: Vertex Cover

Empty Graph:

Gradient Descent: Vertex Cover 2

Gradient Descent: Vertex Cover 2

If the center node is

removed, then we

have to stop.

Metropolis Algorithm

Physical systems also typically have an “energy.”

The Gibbs-Boltzmann function says the probability of a system of
being in a state of energy E is:

e�E/(kT)

where T > 0 is the temperature of the system.

Gibbs-Boltzmann

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0.25

0.5

0.75

1

Metropolis Algorithm, 2

Metropolis Algorithm:

S = an initial solution

While not done:

Choose S’ 2 N (S)
If cost(S’)  cost(S):

Set S = S’

Else:

Delta = cost(S’) - cost(S)

With probability exp(-delta / (kT)):

Let S = S’

EndIf

EndWhile

Simulated Annealing

High values of T means you jump around a lot.

Low values of T mean you never increase the cost.

Simulated Annealing: Idea: Start with high T and reduce it as
time progresses.

Some cooling schedule determines how to change T .

Lot of work into finding cooling schedules that work in practice...

Simulated Annealing, 2

• Simulated annealing used all the time in practice

• No guarantees, but often gets good solutions

• (Often does not, too, though.)

Randomized Algorithms

Randomized Algorithms

Randomized Algorithms

• Allow our algorithms to flip some random coins to make their
choices.

• May require that the optimum solution is found with expected
good runtime.

• Or may require that we always run in polynomial time, and we
find the optimum solution with high probability.

• Often run in expectation faster than

Quicksort

You’ve probably seen probablistic algorithms of the first type:
quicksort.

When the list of numbers is already sorted, a naive deterministic
algorithm performs very bad (O(n2)).

A solution to this: randomly permute the input numbers.

Then the chance that you are in a “bad” case is small.

Global Minimum Cut

Global Minimum Cut

Given an undirected graph G find a partition of the nodes of G
into two non-empty sets A and B such that the number of edges
that have 1 endpoint in A and 1 endpoint in B is minimized.

Like minimum cut, but in an undirected graph, and we don’t
specify s and t.

Using Network Flow

• Let s be some node in G .

• In the global minimum cut, s must be separated from
something.

• Try all n � 1 choices for that something as t, and use network
flow to compute the minimum s � t cut.

• (Replace each undirected edge by two, anti-parallel, directed
edges.)

• Cost is n � 1 network flow computations.

Contraction

u

v

w

Contraction step: choose a edge and merge its endpoints.

Contraction Algorithm

Contraction Algorithm:

While G contains more than 2 nodes:

Choose an edge e uniformly at random

Contract e, replacing its endpoints

with a new node w

Each new node is really a supernode that “contains” a number of
original nodes.

Once we have a graph with only 2 supernodes, the supernodes
define the cut.

Proving Correctness

Let F be a global minimum cut.

Suppose |F | = k.

Every node in G must have degree � k. Why?

Therefore, |E | �

1
2kn.

The chance that we contract an edge in F in the first step is at
most:

k
1
2kn

=
2

n

After j contractions

After j contractions there are n � j supernodes.

Each super node has degree � k. Why?

There are at least 1
2k(n � j) edges, and the probability that we

choose one from F to contract is:

k
1
2k(n � j)

=
2

n � j
.

Proof, cont.

The contraction algorithm stops after n � 2 iterations.

It will return the global minimum cut if none of the n � 2
contractions picked one of the edges in F .

Def. Ei = even that an edge of F was not contracted in step i .

• Pr[E1] � 1� 2
n

• Pr[Ej+1 | E1 \ E2 \ · · · \ Ej] � 1� 2
n�j

Probability of Success: Pr[E1 \ · · · \ En�2]

Unravel Conditional Expectations

Theorem

The probability that the contraction algorithm returns the
minimum cut is � 1/

�n
2

�
.

Pr[E1 \ · · · \ En�2]

= Pr[E1] · Pr[E2 | E1] · · ·Pr[Ej+1 | E1 \ · · · \ Ej] · · ·

�

✓
1�

2

n

◆✓
1�

2

n � 1

◆
· · ·

✓
1�

2

n � j

◆
· · ·

✓
1�

2

3

◆

=

✓
n � 2

n

◆
· · ·

✓
n � 3

n � 1

◆
· · ·

✓
1

3

◆

=
2

n(n � 1)
=

✓
n

2

◆�1

⇤

Repeating the contraction algorithm

Repeat the algorithm
�n
2

�
ln n times.

The probability that we fail to find the global minimum cut every
time is:

1�
1�n
2

�
!(n

2) ln n



1

n
.

Summary

• Local Search often simple and works well in practice, despite
it being hard to prove anything about.

• Randomization often yields simpler, faster algorithms.

	Local Search & Randomized Algorithms
	Local Search
	Randomized Algorithms

