CMSC 451: More NP-completeness Results

Slides By: Carl Kingsford

JERSIF
8 »
> e)

o) ES

18 }ia

R
Department of Computer Science
University of Maryland, College Park

Based on Sect. 8.5,8.7,8.9 of Algorithm Design by Kleinberg & Tardos.




Three-Dimensional Matching

Three-Dimensional Matching



Two-Dimensional Matching

Recall ‘2-d matching':

Given sets X and Y/, each with n
elements, and a set E of pairs {x, y},

Question: is there a choice of pairs
such that every element in X U Y is
paired with some other element?

Usually, we thought of edges instead of
pairs: {x,y}, but they are really the
same thing.




Three-Dimensional Matching

Given: Sets X, Y, Z, each
of size n, and a set

T C X xY xZof order
triplets.

Question: is there a set of
n triplets in T such that
each element is contained
in exactly one triplet?



3DM Is NP-Complete

Theorem
Three-dimensional matching (aka 3DM) is NP-complete

Proof. 3DM is in NP: a collection of n sets that cover every
element exactly once is a certificate that can be checked in
polynomial time.

Reduction from 3-SAT. We show that:
3-SAT <p 3DM

In other words, if we could solve 3DM, we could solve 3-SAT.



3-SAT <p 3DM

3SAT instance: xi,...,x, be n
boolean variables, and (i, ..., Cx
clauses.

We create a gadget for each variable x;:

Ai ={aj1,...,aipk} core
Bi = {ai1,...,ai2k} tips
ti = (ajj, aij+1, bjj) TF triples




Gadget Encodes True and False




Gadget Encodes True and False




Gadget Encodes True and False




How “choice” is encoded

e We can only either use the even or
odd “wings” of the gadget.

e In other words, if we use the even
wings, we leave the odd tips
uncovered (and vice versa).

e Leaving the odd tips free for
gadget / means setting x; to false.

e Leaving the odd tips free for
gadget i means setting x; to true.



Clause Gadgets

Need to encode constraints between the tips that ensure we satisfy
all the clauses.

We create a gadget for each clause C; = {t1, to, t3}

— fe
Pj ={cj,c;} Clause core

We will hook up these two clause core nodes with some tip nodes
depending on whether the clause asks for a variable to be true or
false.

See the next slide.



Clause Gadget Hookup

Add tuple (01,c'1, bi 2) if X in clause

Add tuple (c4, ¢y, b; 1) if x;in clause



Clause Gadgets

Since only clause tuples (brown) cover ¢j, ¢/, we have to choose
exactly one of them for every clause.

We can only choose a clause tuple (c;, ch, bjj) if we haven't chosen
a TF tuple that already covers b;.

Hence, we can satisfy (cover) the clause (cj, ¢/) with the term
represented by b;; only if we “set” x; to the appropriate value.

That's the basic idea. Two technical points left...



Details

Need to cover all the tips:

Even if we satisfy all the clauses, we might have extra tips left
over. We add a clean up gadget (gj, g/, b) for every tip b.

Can we partition the sets?

X ={ajj:jeven} U{c}U{qi}
Y ={aj :jodd} U {le} U{qi}
Z = {bj}

Every set we defined uses 1 element from each of X, Y, Z.



Proof

If there is a satisfying assignment,

We choose the odd / even wings depending on whether we set a
variable to true or false. At least 1 free tip for a term will be
available to use to cover each clause gadget. We then use the
clean up gadgets to cover all the rest of the tips.

If there is a 3D matching,

We can set variable x; to true or false depending on whether it's
even or odd wings were chosen. Because {c;, cj’} were covered, we
must have correctly chosen one even/odd wing that will satisfy this
clause.



	More NP-completeness Results
	Three-Dimensional Matching
	Subset Sum
	Other Complexity Classes
	Co-NP


