CMSC 451: More NP-completeness Results

Slides By: Carl Kingsford

Department of Computer Science University of Maryland, College Park

Based on Sect. 8.5,8.7,8.9 of Algorithm Design by Kleinberg & Tardos.

Three-Dimensional Matching

Three-Dimensional Matching

Two-Dimensional Matching

Recall '2-d matching':

Given sets X and Y, each with n elements, and a set E of pairs $\{x, y\}$,

Question: is there a choice of pairs such that every element in $X \cup Y$ is paired with some other element?

Usually, we thought of edges instead of pairs: $\{x, y\}$, but they are really the same thing.

Three-Dimensional Matching

Given: Sets X, Y, Z, each of size n, and a set $T \subset X \times Y \times Z$ of order triplets.

Question: is there a set of *n* triplets in *T* such that each element is contained in exactly one triplet?

3DM Is NP-Complete

Theorem

Three-dimensional matching (aka 3DM) is NP-complete

Proof. 3DM is in NP: a collection of n sets that cover every element exactly once is a certificate that can be checked in polynomial time.

Reduction from 3-SAT. We show that:

$$3-SAT \leq_P 3DM$$

In other words, if we could solve 3DM, we could solve 3-SAT.

3-SAT $\leq_P 3$ DM

3SAT instance: x_1, \ldots, x_n be n boolean variables, and C_1, \ldots, C_k clauses.

We create a gadget for each variable x_i :

$$A_i = \{a_{i1}, \dots, a_{i,2k}\}$$
 core $B_i = \{a_{i1}, \dots, a_{i,2k}\}$ tips $t_{ij} = (a_{ij}, a_{i,j+1}, b_{ij})$ TF triples

Gadget Encodes True and False

Gadget Encodes True and False

Gadget Encodes True and False

How "choice" is encoded

- We can only either use the even or odd "wings" of the gadget.
- In other words, if we use the even wings, we leave the odd tips uncovered (and vice versa).
- Leaving the odd tips free for gadget i means setting x_i to false.
- Leaving the odd tips free for gadget i means setting x_i to true.

Clause Gadgets

Need to encode constraints between the tips that ensure we satisfy all the clauses.

We create a gadget for each clause $C_j = \{t_1, t_2, t_3\}$

$$P_j = \{c_j, c_j'\}$$
 Clause core

We will hook up these two clause core nodes with some tip nodes depending on whether the clause asks for a variable to be true or false.

See the next slide.

Clause Gadget Hookup

Clause Gadgets

Since only clause tuples (brown) cover c_j, c_j' , we have to choose exactly one of them for every clause.

We can only choose a clause tuple (c_j, c'_j, b_{ij}) if we haven't chosen a TF tuple that already covers b_{ij} .

Hence, we can satisfy (cover) the clause (c_j, c'_j) with the term represented by b_{ij} only if we "set" x_i to the appropriate value.

That's the basic idea. Two technical points left...

Details

Need to cover all the tips:

Even if we satisfy all the clauses, we might have extra tips left over. We add a clean up gadget (q_i, q'_i, b) for every tip b.

Can we partition the sets?

$$X = \{a_{ij} : j \text{ even}\} \cup \{c_j\} \cup \{q_i\}$$

 $Y = \{a_{ij} : j \text{ odd}\} \cup \{c'_j\} \cup \{q'_i\}$
 $Z = \{b_{ij}\}$

Every set we defined uses 1 element from each of X, Y, Z.

Proof

If there is a satisfying assignment,

We choose the odd / even wings depending on whether we set a variable to **true** or **false**. At least 1 free tip for a term will be available to use to cover each clause gadget. We then use the clean up gadgets to cover all the rest of the tips.

If there is a 3D matching,

We can set variable x_i to **true** or **false** depending on whether it's even or odd wings were chosen. Because $\{c_j, c_j'\}$ were covered, we must have correctly chosen one even/odd wing that will satisfy this clause.