
Reductions & NP-completeness

Slides by Carl Kingsford

Apr. 16, 2014

Section 8.1

1

Computational Complexity

I We’ve seen algorithms for lots of problems, and the goal was
always to design an algorithm that ran in polynomial time.

I Sometimes we’ve claimed a problem is NP-hard as evidence
that no such algorithm exists.

I Now, we’ll formally say what that means.

2

Decision Problems

Decision Problems:

I Usually, we’ve considered optimization problems: given some
input instance, output some answer that maximizes or
minimizes a particular objective function.

I Most of computational complexity deals with a seemingly
simpler type of problem: the decision problem.

I A decision problem just asks for a yes or a no.

I We phrased Circulation with Demands as a decision
problem.

3

Decision is no harder than Optimization

The decision version of a problem is easier than (or the same as)
the optimization version.

Why, for example, is this true of, say, Max Flow: “Is there a flow
of value at least C?”

I If you could solve the optimization version and got a solution
of value F for the flow, then you could just check to see if
F > C .

I If you can solve the optimization problem, you can solve the
decision problem.

I If the decision problem is hard, then so is the optimization
version.

4

Decision is no harder than Optimization

The decision version of a problem is easier than (or the same as)
the optimization version.

Why, for example, is this true of, say, Max Flow: “Is there a flow
of value at least C?”

I If you could solve the optimization version and got a solution
of value F for the flow, then you could just check to see if
F > C .

I If you can solve the optimization problem, you can solve the
decision problem.

I If the decision problem is hard, then so is the optimization
version.

4

Encoding an Instance

We can encode an instance of a decision problem as a string.

Example. The encoding of a Network Flow might be:

u1, v1, c1; u2, v2, c2; u3, v3, c3; ; s, t

More explicitly,

1,10,5;3,7,20;12,15,1;;10

How do we “know” intuitively that all of the problems we’ve
considered so far can be encoded as a single string?

Because we can represent them in RAM as a string of bits!

5

Encoding an Instance

We can encode an instance of a decision problem as a string.

Example. The encoding of a Network Flow might be:

u1, v1, c1; u2, v2, c2; u3, v3, c3; ; s, t

More explicitly,

1,10,5;3,7,20;12,15,1;;10

How do we “know” intuitively that all of the problems we’ve
considered so far can be encoded as a single string?

Because we can represent them in RAM as a string of bits!

5

Decision Problems and Languages

A decision problem X is really just sets of strings:

String ∈ X?

1,10,5;3,7,20;12,15,1;;1;12 Yes
1,10,5;3,7,20;12,15,1;;1;200 No
...

...

Def. A language is a set of strings.
(Analogy: English is the set of valid English words.)

Hence, any decision problem is equivalent to deciding membership
in some language.

We talk about “decision problems” and “languages” pretty much
interchangeably.

6

Recap

Computational complexity primarily deals with decision problems.

A decision problem is no harder than the corresponding
optimization problem.

A decision problem can be thought of as a set of the strings that
encode “yes” instances.

Such sets are called languages.

How can we say a decision problem is hard?

7

A Model of Computation

Ultimately, we want to say that “a computer can’t recognize some
language efficiently.”

To do that, we have to decide what we mean by a computer.

We will mean a Turing Machine.

Church-Turing Thesis Everything that is efficiently computable is
efficiently computable on a Turing Machine.

8

Turing Machine
Infinitely long tape

Turing Machine
Logic

Read/write
head

Can move left
and right

At each time step, the TM:
• reads the symbol at the current
 position
• Depending on that symbol, and the
 current state of the TM, it:

 - Writes a new symbol x
 - Moves Left or Right
 - Changes to a new state s

9

The class P

P is the set of languages whose memberships are decidable by a
Turing Machine that makes a polynomial number of steps.

By the Church-Turing thesis, this is the “same” as:

P is the set of decision problems that can be decided by a computer
in a polynomial time.

From now on, you can just think of your normal computer as a
Turing Machine — and we won’t worry too much about that
formalism.

10

The Class NP

Now that we have a different (more formal) view of P, we will
define another class of problems called NP.

We need some new ideas.

11

Certificates

Recall the independent set problem (decision version):

Problem (Independent Set). Given a graph G, is there set S of
size ≥ k such that no two nodes in S are connected by an edge?

Finding the set S is hard (we will see).

But if I give you a set S∗, checking whether S∗ is the answer is
easy: check that |S | ≥ k and no edges go between 2 nodes in S∗.

S∗ acts as a certificate that 〈G , k〉 is a yes instance of
Independent Set.

12

Efficient Certification

Def. An algorithm B is an efficient certifier for problem X if:

1. B is a polynomial time algorithm that takes two input strings
I (instance of X) and C (a certificate).

2. B outputs either yes or no.

3. There is a polynomial p(n) such that for every string I :

I ∈ X if and only if there exists string C of length
≤ p(|I |) such that B(I ,C) = yes.

B is an algorithm that can decide whether an instance I is a yes

instance if it is given some “help” in the form of a polynomially
long certificate.

13

The class NP

NP is the set of languages for which there exists an efficient certifier.

P is the set of languages for which there exists an efficient certifier
that ignores the certificate.

That’s the difference:

A problem is in P if we can decided it in polynomial time. It is in
NP if we can decide them in polynomial time, if we are given the
right certificate.

14

The class NP

NP is the set of languages for which there exists an efficient certifier.

P is the set of languages for which there exists an efficient certifier
that ignores the certificate.

That’s the difference:

A problem is in P if we can decided it in polynomial time. It is in
NP if we can decide them in polynomial time, if we are given the
right certificate.

14

Do we have to find the certificates?

B

Instance I

Certificate C

User provides
instance as usual

Certificate is
magically guessed

15

P ⊆ NP

Theorem. P ⊆ NP

Proof. Suppose X ∈ P. Then there is a polynomial-time algorithm
A for X .

To show that X ∈ NP, we need to design an efficient certifier
B(I ,C).

Just take B(I ,C) = A(I). �

Every problem with a polynomial time algorithm is in NP.

16

P 6= NP?

The big question:

P= NP?

We know P ⊆ NP. So the question is:

Is there some problem in NP that is not in P?

Seems like the power of the certificate would help a lot.
But no one knows. . . .

17

How do we prove a problem is probably hard?

18

Reductions as tool for hardness

We want prove some problems are computationally difficult.

As a first step, we settle for relative judgements:

Problem X is at least as hard as problem Y

To prove such a statement, we reduce problem Y to problem X :

If you had a black box that can solve instances of
problem X, how can you solve any instance of Y using
polynomial number of steps, plus a polynomial number of
calls to the black box that solves X?

19

We’ve Seen Reductions Before

Examples of Reductions:

I Max Bipartite Matching ≤P Max Network Flow.

I Image Segmentation ≤P Min-Cut.

I Airplane Scheduling ≤P Max Network Flow.

I Disjoint Paths ≤P Circulation with Demands &
Lower Bounds.

I Circulation with Demands & Lower Bounds ≤P

Circulation with Demands.

I Circulation with Demands ≤P Max Network Flow.

20

Polynomial Reductions

I If problem Y can be reduced to problem X , we denote this by
Y ≤P X .

I This means “Y is polynomal-time reducible to X .”

I It also means that X is at least as hard as Y because if you
can solve X , you can solve Y .

I Note: We reduce to the problem we want to show is the
harder problem.

21

Polynomial Problems
Suppose:
I Y ≤P X , and

I there is an polynomial time
algorithm for X .

Then, there is a polynomial time
algorithm for Y .

Why?

Because polynomials
compose.

Call X

Call X

22

Polynomial Problems
Suppose:
I Y ≤P X , and

I there is an polynomial time
algorithm for X .

Then, there is a polynomial time
algorithm for Y .

Why? Because polynomials
compose.

Call X

Call X

22

Reductions for Hardness

Theorem. If Y ≤P X and Y cannot be solved in polynomial time,
then X cannot be solved in polynomial time.

Why? If we could solve X in polynomial time, then we’d be able to
solve Y in polynomial time using the reduction, contradicting the
assumption.

So: If we could find one hard problem Y , we could prove that
another problem X is hard by reducing Y to X .

23

Vertex Cover

Def. A vertex cover of a graph is a set S of nodes such that every
edge has at least one endpoint in S .

In other words, we try to “cover” each of the edges by choosing at
least one of its vertices.

Problem (Vertex Cover). Given a graph G and a number k,
does G contain a vertex cover of size at most k.

24

Independent Set to Vertex Cover

Problem (Independent Set). Given graph G and a number k,
does G contain a set of at least k independent vertices?

Can we reduce independent set to vertex cover?

Problem (Vertex Cover). Given a graph G and a number k,
does G contain a vertex cover of size at most k.

25

Relation btwn Vertex Cover and Indep. Set

Theorem. If G = (V ,E) is a graph, then S is an independent set
⇐⇒ V − S is a vertex cover.

Proof. =⇒ Suppose S is an independent set, and let e = (u, v)
be some edge. Only one of u, v can be in S . Hence, at least one of
u, v is in V − S . So, V − S is a vertex cover.

⇐= Suppose V − S is a vertex cover, and let u, v ∈ S . There
can’t be an edge between u and v (otherwise, that edge wouldn’t
be covered in V − S). So, S is an independent set. �

26

Independent Set ≤P Vertex Cover

Independent Set ≤P Vertex Cover

To show this, we change any instance of Independent Set into an
instance of Vertex Cover:

I Given an instance of Independent Set 〈G , k〉,
I We ask our Vertex Cover black box if there is a vertex cover

V − S of size ≤ |V | − k .

By our previous theorem, S is an independent set iff V − S is a
vertex cover. If the Vertex Cover black box said:

yes: then S must be an independent set of size ≥ k.
no: then there is no vertex cover V − S of size
≤ |V | − k, hence there is no independent set of size ≥ k.

27

Vertex Cover ≤P Independent Set

Actually, we also have:

Vertex Cover ≤P Independent Set

Proof. To decide if G has an vertex cover of size k, we ask if it has
an independent set of size n − k . �

So: Vertex Cover and Independent Set are equivalently
difficult.

28

NP-completeness

Def. We say X is NP-complete if:

I X ∈ NP

I for all Y ∈ NP, Y ≤P X .

If these hold, then X can be used to
solve every problem in NP.

Therefore, X is definitely at least as
hard as every problem in NP.

NP

X

Y1
Y2

Y3

Y4P

29

NP-completeness and P=NP

Theorem. If X is NP-complete, then X is solvable in polynomial
time if and only if P = NP.

Proof. If P = NP, then X can be solved in polytime.

Suppose X is solvable in polytime, and let Y be any problem in
NP. We can solve Y in polynomial time: reduce it to X .

Therefore, every problem in NP has a polytime algorithm and
P = NP.

30

Reductions and NP-completeness

Theorem. If Y is NP-complete, and

1. X is in NP

2. Y ≤P X

then X is NP-complete.

In other words, we can prove a new problem is NP-complete by
reducing some other NP-complete problem to it.

Proof. Let Z be any problem in NP. Since Y is NP-complete,
Z ≤P Y . By assumption, Y ≤P X . Therefore: Z ≤P Y ≤P X . �

31

Some First NP-complete problem

We need to find some first NP-complete problem.

Finding the first NP-complete problem was the result of the
Cook-Levin theorem.

We’ll deal with this later. For now, trust me that:

I Independent Set is a packing problem and is NP-complete.

I Vertex Cover is a covering problem and is NP-complete.

32

Set Cover

Another very general and useful covering problem:

Problem (Set Cover). Given a set U of elements and a
collection S1, . . . ,Sm of subsets of U, is there a collection of at
most k of these sets whose union equals U?

We will show that

Set Cover ∈ NP
Vertex Cover ≤P Set Cover

And therefore that Set Cover is NP-complete.

33

Set Cover, Figure

34

Set Cover, Figure

35

Vertex Cover ≤P Set Cover

Thm. Vertex Cover ≤P Set Cover

Proof. Let G = (V ,E) and k be an instance of Vertex Cover.
Create an instance of Set Cover:

I U = E

I Create a Su for for each u ∈ V , where Su contains the edges
adjacent to u.

U can be covered by ≤ k sets iff G has a vertex cover of size ≤ k .

Why? If k sets Su1 , . . . ,Suk cover U then every edge is adjacent to
at least one of the vertices u1, . . . , uk , yielding a vertex cover of
size k.

If u1, . . . , uk is a vertex cover, then sets Su1 , . . . ,Suk cover U. �

36

Last Step:

We still have to show that Set Cover is in NP!

The certificate is a list of k sets from the given collection.

We can check in polytime whether they cover all of U.

Since we have a certificate that can be checked in polynomial time,
Set Cover is in NP.

37

Summary

You can prove a problem is NP-complete by reducing a known
NP-complete problem to it.

We know the following problems are NP-complete:

I Vertex Cover

I Independent Set

I Set Cover

Warning: You should reduce the known NP-complete problem to
the problem you are interested in. (You will mistakenly do this
backwards sometimes.)

38

	Reductions
	NP-completeness

