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Computational Complexity

I We’ve seen algorithms for lots of problems, and the goal was
always to design an algorithm that ran in polynomial time.

I Sometimes we’ve claimed a problem is NP-hard as evidence
that no such algorithm exists.

I Now, we’ll formally say what that means.
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Decision Problems

Decision Problems:

I Usually, we’ve considered optimization problems: given some
input instance, output some answer that maximizes or
minimizes a particular objective function.

I Most of computational complexity deals with a seemingly
simpler type of problem: the decision problem.

I A decision problem just asks for a yes or a no.

I We phrased Circulation with Demands as a decision
problem.
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Decision is no harder than Optimization

The decision version of a problem is easier than (or the same as)
the optimization version.

Why, for example, is this true of, say, Max Flow: “Is there a flow
of value at least C?”

I If you could solve the optimization version and got a solution
of value F for the flow, then you could just check to see if
F > C .

I If you can solve the optimization problem, you can solve the
decision problem.

I If the decision problem is hard, then so is the optimization
version.
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Encoding an Instance

We can encode an instance of a decision problem as a string.

Example. The encoding of a Network Flow might be:

u1, v1, c1; u2, v2, c2; u3, v3, c3; ; s, t

More explicitly,

1,10,5;3,7,20;12,15,1;;10

How do we “know” intuitively that all of the problems we’ve
considered so far can be encoded as a single string?

Because we can represent them in RAM as a string of bits!
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Decision Problems and Languages

A decision problem X is really just sets of strings:

String ∈ X?

1,10,5;3,7,20;12,15,1;;1;12 Yes
1,10,5;3,7,20;12,15,1;;1;200 No
...

...

Def. A language is a set of strings.
(Analogy: English is the set of valid English words.)

Hence, any decision problem is equivalent to deciding membership
in some language.

We talk about “decision problems” and “languages” pretty much
interchangeably.
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Recap

Computational complexity primarily deals with decision problems.

A decision problem is no harder than the corresponding
optimization problem.

A decision problem can be thought of as a set of the strings that
encode “yes” instances.

Such sets are called languages.

How can we say a decision problem is hard?
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A Model of Computation

Ultimately, we want to say that “a computer can’t recognize some
language efficiently.”

To do that, we have to decide what we mean by a computer.

We will mean a Turing Machine.

Church-Turing Thesis Everything that is efficiently computable is
efficiently computable on a Turing Machine.
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Turing Machine
Infinitely long tape

Turing Machine 
Logic

Read/write
head

Can move left 
and right

At each time step, the TM:
• reads the symbol at the current
      position
• Depending on that symbol, and the 
      current state of the TM, it:

         - Writes a new symbol x
         - Moves Left or Right 
         - Changes to a new state s
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The class P

P is the set of languages whose memberships are decidable by a
Turing Machine that makes a polynomial number of steps.

By the Church-Turing thesis, this is the “same” as:

P is the set of decision problems that can be decided by a computer
in a polynomial time.

From now on, you can just think of your normal computer as a
Turing Machine — and we won’t worry too much about that
formalism.
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The Class NP

Now that we have a different (more formal) view of P, we will
define another class of problems called NP.

We need some new ideas.
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Certificates

Recall the independent set problem (decision version):

Problem (Independent Set). Given a graph G, is there set S of
size ≥ k such that no two nodes in S are connected by an edge?

Finding the set S is hard (we will see).

But if I give you a set S∗, checking whether S∗ is the answer is
easy: check that |S | ≥ k and no edges go between 2 nodes in S∗.

S∗ acts as a certificate that 〈G , k〉 is a yes instance of
Independent Set.
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Efficient Certification

Def. An algorithm B is an efficient certifier for problem X if:

1. B is a polynomial time algorithm that takes two input strings
I (instance of X ) and C (a certificate).

2. B outputs either yes or no.

3. There is a polynomial p(n) such that for every string I :

I ∈ X if and only if there exists string C of length
≤ p(|I |) such that B(I ,C ) = yes.

B is an algorithm that can decide whether an instance I is a yes

instance if it is given some “help” in the form of a polynomially
long certificate.
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The class NP

NP is the set of languages for which there exists an efficient certifier.

P is the set of languages for which there exists an efficient certifier
that ignores the certificate.

That’s the difference:

A problem is in P if we can decided it in polynomial time. It is in
NP if we can decide them in polynomial time, if we are given the
right certificate.
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Do we have to find the certificates?

B

Instance I

Certificate C 

User provides 
instance as usual

Certificate is 
magically guessed
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P ⊆ NP

Theorem. P ⊆ NP

Proof. Suppose X ∈ P. Then there is a polynomial-time algorithm
A for X .

To show that X ∈ NP, we need to design an efficient certifier
B(I ,C ).

Just take B(I ,C ) = A(I ). �

Every problem with a polynomial time algorithm is in NP.
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P 6= NP?

The big question:

P= NP?

We know P ⊆ NP. So the question is:

Is there some problem in NP that is not in P?

Seems like the power of the certificate would help a lot.
But no one knows. . . .
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How do we prove a problem is probably hard?
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Reductions as tool for hardness

We want prove some problems are computationally difficult.

As a first step, we settle for relative judgements:

Problem X is at least as hard as problem Y

To prove such a statement, we reduce problem Y to problem X :

If you had a black box that can solve instances of
problem X, how can you solve any instance of Y using
polynomial number of steps, plus a polynomial number of
calls to the black box that solves X?
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We’ve Seen Reductions Before

Examples of Reductions:

I Max Bipartite Matching ≤P Max Network Flow.

I Image Segmentation ≤P Min-Cut.

I Airplane Scheduling ≤P Max Network Flow.

I Disjoint Paths ≤P Circulation with Demands &
Lower Bounds.

I Circulation with Demands & Lower Bounds ≤P

Circulation with Demands.

I Circulation with Demands ≤P Max Network Flow.
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Polynomial Reductions

I If problem Y can be reduced to problem X , we denote this by
Y ≤P X .

I This means “Y is polynomal-time reducible to X .”

I It also means that X is at least as hard as Y because if you
can solve X , you can solve Y .

I Note: We reduce to the problem we want to show is the
harder problem.
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Polynomial Problems
Suppose:
I Y ≤P X , and

I there is an polynomial time
algorithm for X .

Then, there is a polynomial time
algorithm for Y .

Why?

Because polynomials
compose.

Call X

Call X
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Reductions for Hardness

Theorem. If Y ≤P X and Y cannot be solved in polynomial time,
then X cannot be solved in polynomial time.

Why? If we could solve X in polynomial time, then we’d be able to
solve Y in polynomial time using the reduction, contradicting the
assumption.

So: If we could find one hard problem Y , we could prove that
another problem X is hard by reducing Y to X .
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Vertex Cover

Def. A vertex cover of a graph is a set S of nodes such that every
edge has at least one endpoint in S .

In other words, we try to “cover” each of the edges by choosing at
least one of its vertices.

Problem (Vertex Cover). Given a graph G and a number k,
does G contain a vertex cover of size at most k.
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Independent Set to Vertex Cover

Problem (Independent Set). Given graph G and a number k,
does G contain a set of at least k independent vertices?

Can we reduce independent set to vertex cover?

Problem (Vertex Cover). Given a graph G and a number k,
does G contain a vertex cover of size at most k.
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Relation btwn Vertex Cover and Indep. Set

Theorem. If G = (V ,E ) is a graph, then S is an independent set
⇐⇒ V − S is a vertex cover.

Proof. =⇒ Suppose S is an independent set, and let e = (u, v)
be some edge. Only one of u, v can be in S . Hence, at least one of
u, v is in V − S . So, V − S is a vertex cover.

⇐= Suppose V − S is a vertex cover, and let u, v ∈ S . There
can’t be an edge between u and v (otherwise, that edge wouldn’t
be covered in V − S). So, S is an independent set. �

26



Independent Set ≤P Vertex Cover

Independent Set ≤P Vertex Cover

To show this, we change any instance of Independent Set into an
instance of Vertex Cover:

I Given an instance of Independent Set 〈G , k〉,
I We ask our Vertex Cover black box if there is a vertex cover

V − S of size ≤ |V | − k .

By our previous theorem, S is an independent set iff V − S is a
vertex cover. If the Vertex Cover black box said:

yes: then S must be an independent set of size ≥ k.
no: then there is no vertex cover V − S of size
≤ |V | − k, hence there is no independent set of size ≥ k.
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Vertex Cover ≤P Independent Set

Actually, we also have:

Vertex Cover ≤P Independent Set

Proof. To decide if G has an vertex cover of size k, we ask if it has
an independent set of size n − k . �

So: Vertex Cover and Independent Set are equivalently
difficult.
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NP-completeness

Def. We say X is NP-complete if:

I X ∈ NP

I for all Y ∈ NP, Y ≤P X .

If these hold, then X can be used to
solve every problem in NP.

Therefore, X is definitely at least as
hard as every problem in NP.

NP

X

Y1
Y2

Y3

Y4P
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NP-completeness and P=NP

Theorem. If X is NP-complete, then X is solvable in polynomial
time if and only if P = NP.

Proof. If P = NP, then X can be solved in polytime.

Suppose X is solvable in polytime, and let Y be any problem in
NP. We can solve Y in polynomial time: reduce it to X .

Therefore, every problem in NP has a polytime algorithm and
P = NP.
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Reductions and NP-completeness

Theorem. If Y is NP-complete, and

1. X is in NP

2. Y ≤P X

then X is NP-complete.

In other words, we can prove a new problem is NP-complete by
reducing some other NP-complete problem to it.

Proof. Let Z be any problem in NP. Since Y is NP-complete,
Z ≤P Y . By assumption, Y ≤P X . Therefore: Z ≤P Y ≤P X . �
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Some First NP-complete problem

We need to find some first NP-complete problem.

Finding the first NP-complete problem was the result of the
Cook-Levin theorem.

We’ll deal with this later. For now, trust me that:

I Independent Set is a packing problem and is NP-complete.

I Vertex Cover is a covering problem and is NP-complete.

32



Set Cover

Another very general and useful covering problem:

Problem (Set Cover). Given a set U of elements and a
collection S1, . . . ,Sm of subsets of U, is there a collection of at
most k of these sets whose union equals U?

We will show that

Set Cover ∈ NP
Vertex Cover ≤P Set Cover

And therefore that Set Cover is NP-complete.
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Set Cover, Figure
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Set Cover, Figure
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Vertex Cover ≤P Set Cover

Thm. Vertex Cover ≤P Set Cover

Proof. Let G = (V ,E ) and k be an instance of Vertex Cover.
Create an instance of Set Cover:

I U = E

I Create a Su for for each u ∈ V , where Su contains the edges
adjacent to u.

U can be covered by ≤ k sets iff G has a vertex cover of size ≤ k .

Why? If k sets Su1 , . . . ,Suk cover U then every edge is adjacent to
at least one of the vertices u1, . . . , uk , yielding a vertex cover of
size k.

If u1, . . . , uk is a vertex cover, then sets Su1 , . . . ,Suk cover U. �
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Last Step:

We still have to show that Set Cover is in NP!

The certificate is a list of k sets from the given collection.

We can check in polytime whether they cover all of U.

Since we have a certificate that can be checked in polynomial time,
Set Cover is in NP.
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Summary

You can prove a problem is NP-complete by reducing a known
NP-complete problem to it.

We know the following problems are NP-complete:

I Vertex Cover

I Independent Set

I Set Cover

Warning: You should reduce the known NP-complete problem to
the problem you are interested in. (You will mistakenly do this
backwards sometimes.)
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