Space-Efficient
Alignment:
Hirschberg's Algorithm

02-713
Slides by Carl Kingsford

Space Usage

e O(n?) is pretty low space usage, but for a 10 Gb
genome, you'd need a huge amount of memory.

 (Can we use less space!

* Hirschberg’s algorithm

Remember the meaning of a cell

Best alignment
between prefix x[1..5]
and prefix y:\1 5]

¢ o [0 \
A 8 |0 \
G 7|0 /
T 6 |0

5|0

4 10
3|10
2 10
1 0

ojojfojofjojofojrofjfolrojoflroj]poq]o

6 7 8 9 10 11 12
A T G A A T C

X

Linear Space for Alignment Scores

* If you are only interested in the cost or score of an alignhment,
you need to use only O(n) space.

e How!

Linear Space for Alignment Scores

* If you are only interested in the cost or score of an alignhment,

you need to use only O(n) space.

e How!

O|lO0|lO0O|OC|]OCO|]OC|lOC|O]|O| O

o

When filling in an entry (gray
box) we only look at the
current and previous rows.

Only need to keep those two
rows in memory.

We can do more...

* Given 2 strings X and Y, we can, in linear space and
O(nm) time, compute the cost of aligning...

 every prefix of X withY
e X with every prefix of Y
* a particular prefix of X with every prefix of Y

* a particular suffix of X with every suffix of Y

e How can we do that!?

> > O O 4 4 O » O

Best Alighment Between

Prefix of X andY

Score of an optimal alignment

between Y and a prefix of X

o

99

89

9

69

Sle

49

Y| Tr——T—T—T"T"T"T""T""T""T"r

9| r~T—TTT"T"T"T""—»

gl —r—t—TT""T"T"T"T"T"T""

O 119129 |39 |49 |59 |6g |79 |8g]|9g |10g|11g]|12g

o 1 2 3 4 5 6 7 8 9 10 11 12
A A G G T A T G A A T C

X

- O » O

> >» O O -

Fill in the matrix by columns...

89

99

10g

11g

12g

>N

8

9

10

G A A

7

11
T

12
C

X

- O » O

> >» O O -

Fill in the matrix by columns...

89

99

10g

11g

12g

>N

8

9

10

G A A

7

11
T

12
C

X

Best scores
between X and
all prefixes of Y

- O » O

> >» O O -

Fill in the matrix by columns...

Best scores between a prefix of

X and all prefixes of Y

89

99

10g

11g

12g

8

9

10 11 12

T G A A

7

T

C

X

Best scores
between X and
all prefixes of Y

10

A 8

G 7

T 6

T 5

G 4

Cc 3

A 2

A 1

Cost of Alignment Between
X and All Suffixes of Y

129 1119|109 99 | 8g | 79 | 69 | 59 | 49 | 39

29

19

0

19

29

39

49

59

69

79

;

/

_+

89

99

1 2 3 4 5 6 7 8 9 /10 11 12

AAGGTATGA/ATC

Best alignment

between suffix x[10..]

and suffix y[6..]

Bli, 7] = min

13

X

cost(z;,y;) + Bli + 1,7 + 1]

gaP

- B
- B

SaP

Z?] T 1

7+

L, J.

10

A 8

G 7

T 6

T 5

G 4

Cc 3

A 2

A 1

Cost of Alignment Between
X and All Suffixes of Y

1291119109199 | 8g | 79 | 69 | 59 | 49 | 39 | 29

19

0

19

29

39

49

59

69

79

89

v

_+

99

1 2 3 4 5 6 7 8 9 /10 M
A A G G T A T G A/ A T

Best alignment
between suffix x[10..]
and suffix y[6..]

Bli, 7] = min

12
C

13

X

Exactly the same
reasoning as doing the
“forward” dynamic
programming.

cost(z;,y;) + Bli + 1,7 + 1]
gap __B:i7j Ll 1

10

A 8

G 7

T 6

T 5

G 4

Cc 3

A 2

A 1

Cost of Alignment Between
X and All Suffixes of Y

1291119109199 | 8g | 79 | 69 | 59 | 49 | 39 | 29

19

0

19

29

39

49

59

69

79

89

v

_+

99

1 2 3 4 5 6 7 8 9 /10 M
A A G G T A T G A/ A T

Best alignment
between suffix x[10..]
and suffix y[6..]

Bli, 7] = min

12
C

13

X

“Backward” dynamic
programming.

Exactly the same
reasoning as doing the
“forward” dynamic
programming.

cost(z;,y;) + Bli + 1,7 + 1]
gap __B:i7j Ll 1

Can We Find the Alignment in
O(n) Space?

Surprisingly, yes, we can output the optimal alighment
in linear space.

This will cost us some extra computation but only a
constant factor

For such a dramatic reduction in space, it’s often
worth it.

Idea: a divide-and-conquer algorithm to compute half
alighments.

Divide & Conquer

* General algorithmic design technique:
e Split large problem into a few subproblems.
* Recursively solve each subproblem.

* Merge the resulting answers.

The Best Path Uses Some Cell in the
Middle Column

- O >» O
2

bestq =5

> >» O O H
W

0

Ol O 10710

o 1 2 3 4 5 6 7 8 9 10 11 12
A A G G T A T G A A T C

n/2 X

The Best Path Uses Some Cell in the
Middle Column

- O >» O
2

> >» O O H
W

0 0 0 010

o 1 2 3 4 5 6 7 8 9 10 11 12
A A G G T A T G A A T C

X

Notation

AlignValue(x, y) := compute the cost of the best
alignment between x and y in O(min |x|, ly|) space.

Finding the actual alignment is equivalent to finding all
the cells that the optimal backtrace passes through.

Call the optimal backtrace the ArrowPath.

First Attempt At Space Efficient Alignment

In the optimal alignment, the first n/2 characters of x are alighed with the first g
characters of y for some q.
12345678
X ACGTACTG
y = A-GT-CTG

qg=3
We don’t know g, so we have to try all possible g.

ArrowPath := []
def Align(x, Vy):
no:= [x|; m:=|y|
if n or m = 2: use standard alignment C)OO<DFC)OH)Space

for g := 0..m:

vl := Alignvalue(x[l..n/2], y[l..q9]) O(n+m) space
v2 := AlignValue(x[n/2+1l..n], y[gtl..m]) O(n+m) space
if vl + v2 < best: bestg = g; best = vl + v2
| .
Add (n/2, bestg) to ArrowPath ~“fh“jthe<qthatrnv“n“2es
Align(x[l..n/2], y[l..bestq]) the cost of the alighment

Align(x[n/2+1..n], y[bestg+l..m])

|4

Problem

Problem

 This works in linear space.

Problem

 This works in linear space.

e BUT:not in O(nm) time.Why!

Problem

This works in linear space.
BUT: not in O(nm) time.Why?

It's too expensive to solve all those AlignValue
problems in the for loop.

Problem

This works in linear space.
BUT: not in O(nm) time.Why?

It's too expensive to solve all those AlignValue
problems in the for loop.

Define;

AllYPrefixCosts(x, i, y) = returns an array of the scores of optimal
alignments between x[|..i] and all prefixes of Y.

AllYSuffixCosts(x, i, y) = returns an array of the scores of optimal
alignments between x[i..n] and all suffixes of y.

These are implemented as described in previous slides by returning
the last row or last column of the DP matrix.

|5

12345678

Space Efficient Alignment x - accracre
y = A-GT-CTG
WVe still try all possible g, but we use the fact that g = 3

we can compute the cost between a given prefix
and all suffixes in linear space.

ArrowPath := []
def Align(x, Vy):

n := |x[; m := [y|
if n or m = 2: use standard alignment O(n) or O(m) Space

YPrefix := AllYPrefixCosts(x, n/2, y)
YSuffix := AllYSuffixCosts(x, n/2+1, y) O(n+m) space
for g := 0..m: 4-=-"""""77TTTIITTTe~L

cost = YPrefix[q] + YSuffix[n-q] ----find the q that ml.mmlzes
if cost < best: bestqg = g; best = cost the cost of the alighment,
using the costs of aligning X

Add (n/2, bestq) to ArrowPath to prefixes and suffixes of Y
Align(x[l..n/2], y[l..bestq])

Align(x[n/2+1..n], y[bestg+l..m])

|6

Running Time Recurrence, |

Full recurrence:

Cr(n 2) <: CT Align(x[n/2+1..n], y[bestg+l..m])
T(2,m) < cm —
T(n,m) <cmn+T(n/2, q)+T(n/2 m — q)

N— —

—

Align(x[l..n/2], y[l..bestq])

Too complicated because we don’t know what q is.

Simplify: assume both sequences have length n, and that we get a perfect split in
half every time, g=n/2:

T(n) < 2T(n/2) + cn’
Solves as:

T(n) — O(n2) = guess O(nm)

Running Time Recurrence, 2

T(n,2) <cn
T(2,m) < cm
Tn,m)<cmn+T(n/2,q)+T(n/2,m—q)

Guess:

Proof, by induction:
Base cases: If k = c then T(n,2) < cn < ¢2n < k2n = kmn

Induction step: Assume T(n’, m’) < km’n’ for pairs (n’,m’) with a product smaller
than nm:

T(n,m)

cm+T(n/2,q) +T(n/2,m—q)

cmn + kqn/2 + k(m — q)n/2 « apply induction hypothesis
cmn + kqn/2 + kmn /2 — kqn /2

(c+ k/2)mn

k=2c — T(n,m) < 2cmn = kmn

|18

VARRVA

Recap

Can compute the cost of an alignment easily in linear
space.

Can compute the cost of a string with all suffixes of a
second string in linear space.

Divide and conquer algorithm for computing the actual
alignment (traceback path in the DP matrix) in linear
space.

Still uses O(nm) time!

