Space-Efficient Alignment: Hirschberg's Algorithm

02-713
Slides by Carl Kingsford

Space Usage

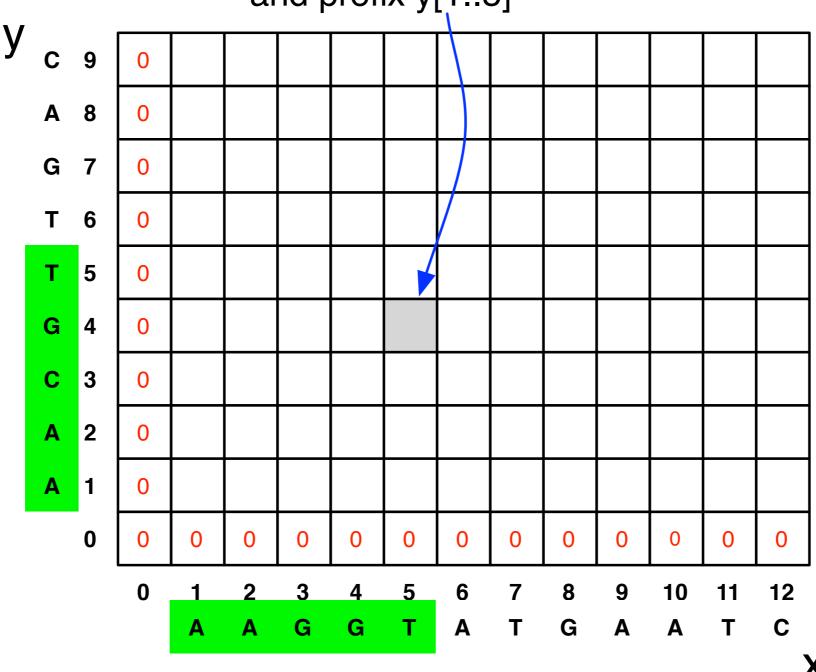
• O(n²) is pretty low space usage, but for a 10 Gb genome, you'd need a huge amount of memory.

Can we use less space?

Hirschberg's algorithm

Remember the meaning of a cell

Best alignment between prefix x[1..5] and prefix y[1..5]

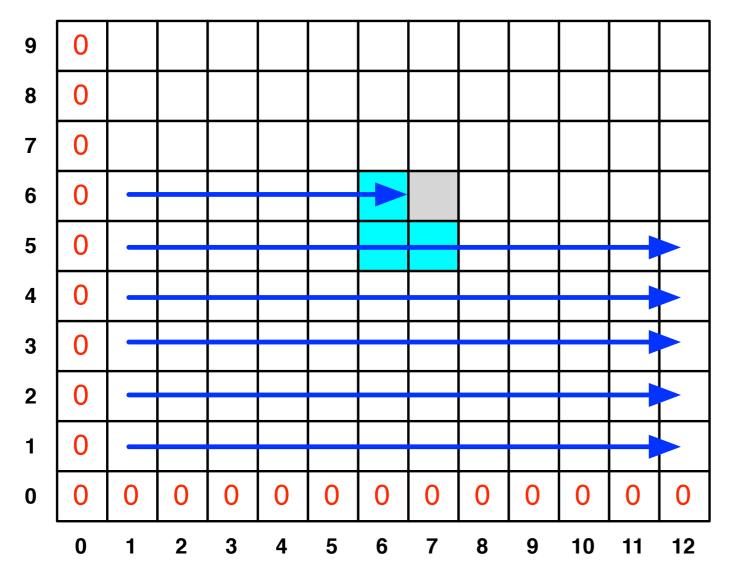


Linear Space for Alignment Scores

- If you are only interested in the cost or score of an alignment, you need to use only O(n) space.
- How?

Linear Space for Alignment Scores

- If you are only interested in the cost or score of an alignment, you need to use only O(n) space.
- How?



When filling in an entry (gray box) we only look at the current and previous rows.

Only need to keep those two rows in memory.

We can do more...

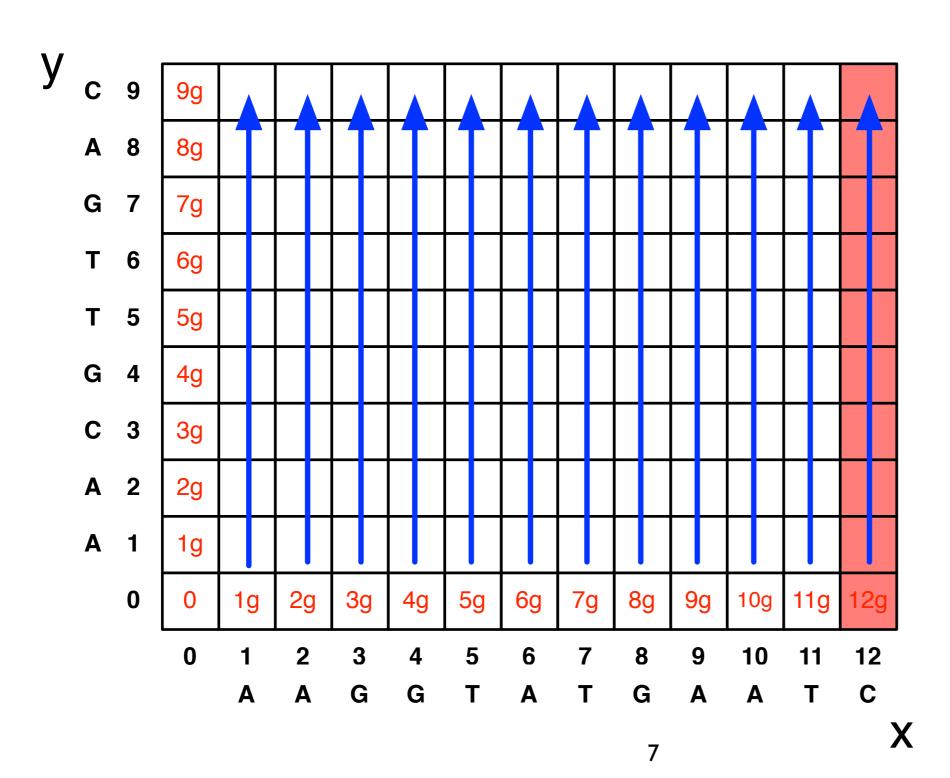
- Given 2 strings X and Y, we can, in linear space and O(nm) time, compute the <u>cost</u> of aligning...
 - every prefix of X with Y
 - X with every prefix of Y
 - a particular prefix of X with every prefix of Y
 - a particular suffix of X with every suffix of Y

How can we do that?

Best Alignment Between Prefix of X and Y

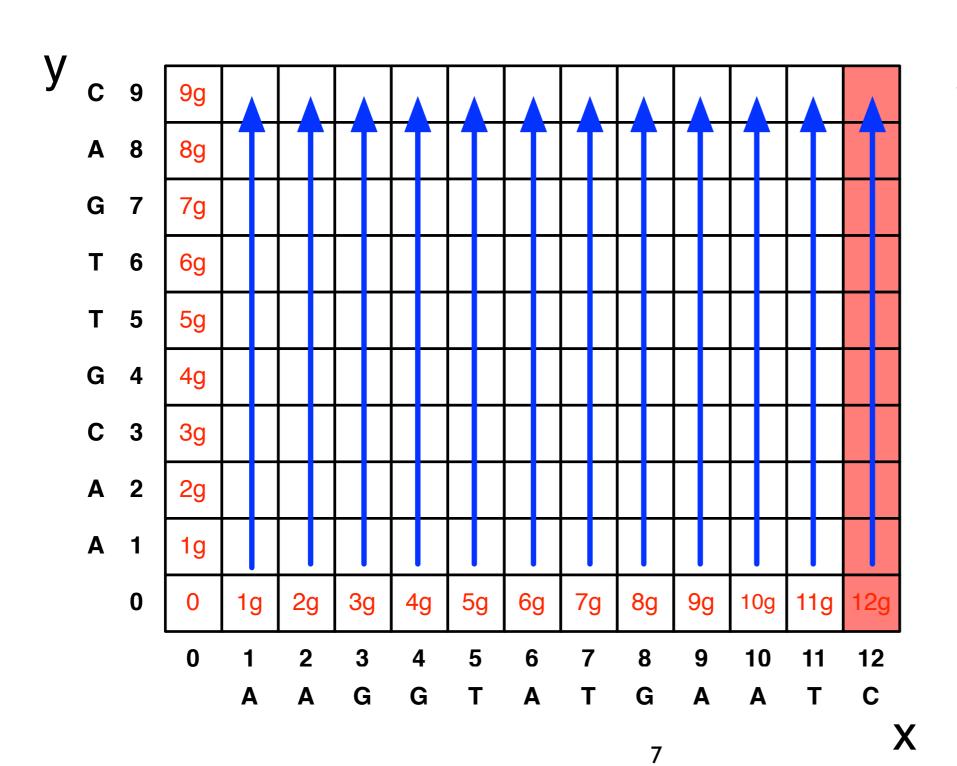
Score of an optimal alignment between Y and a prefix of X G 7 6g 5g **4**g **3**g A 2 **2**g 0 **3**g 4g **7**g 9g 10g | 11g | 12g 12 X

Fill in the matrix by columns...



What is this column?

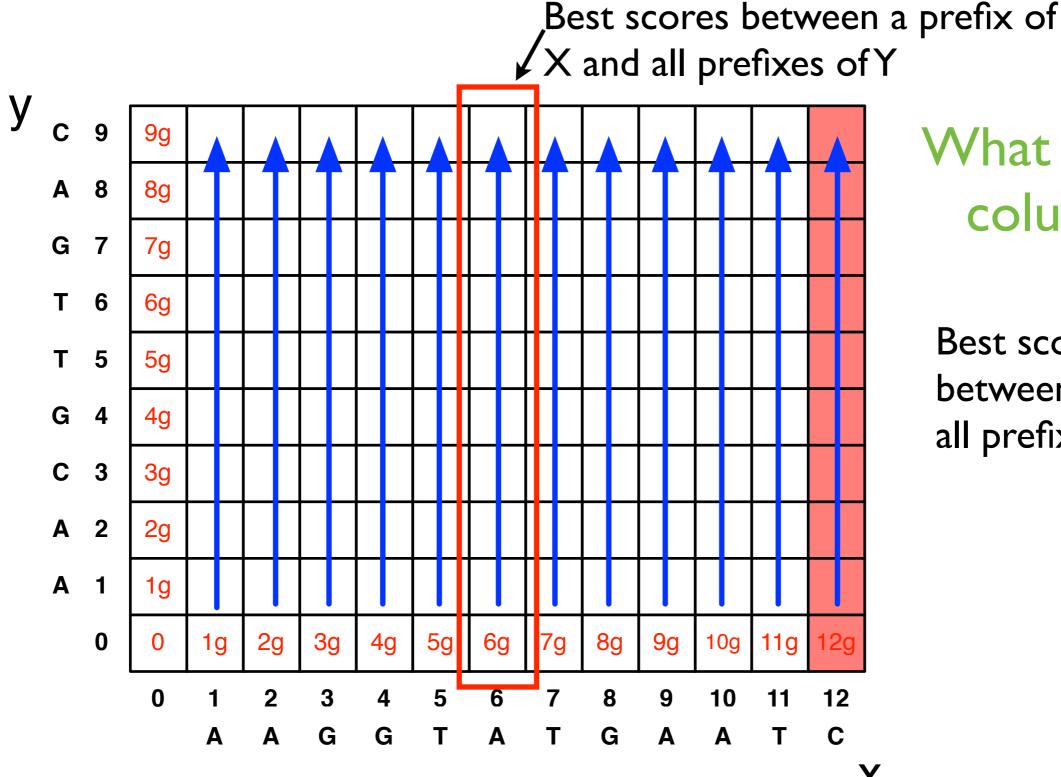
Fill in the matrix by columns...



What is this column?

Best scores between X and all prefixes of Y

Fill in the matrix by columns...

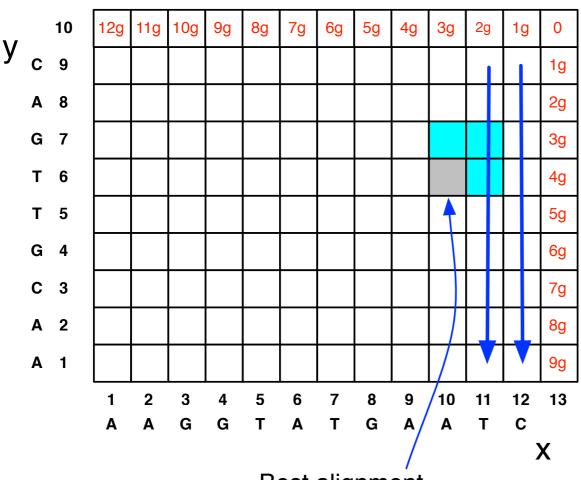


What is this column?

Best scores between X and all prefixes of Y

7

Cost of Alignment Between X and All Suffixes of Y

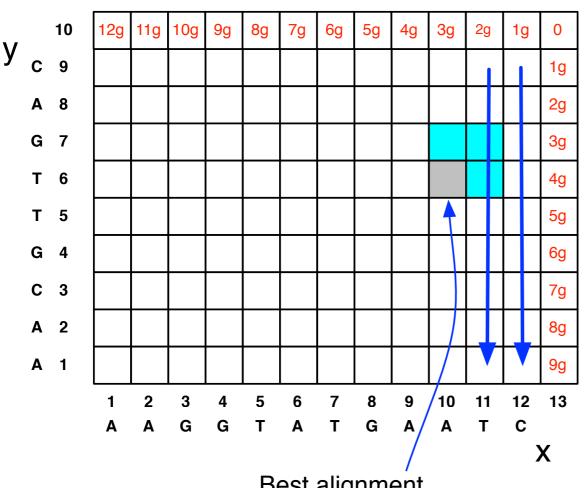


Best alignment between suffix x[10..] and suffix y[6..]

$$B[i,j] = \min$$

$$B[i,j] = \min \begin{cases} \cos(x_i, y_j) + B[i+1, j+1] \\ \exp(B[i,j]) + B[i+1, j+1] \\ \exp(B[i,j]) + B[i+1, j] \end{cases}$$

Cost of Alignment Between X and All Suffixes of Y



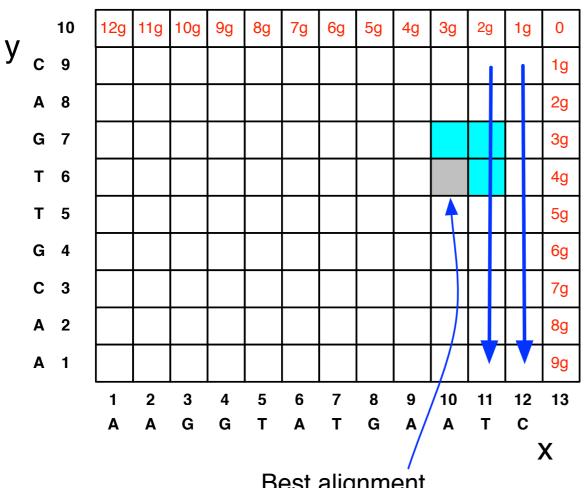
Exactly the same reasoning as doing the "forward" dynamic programming.

Best alignment between suffix x[10..] and suffix y[6..]

$$B[i,j] = \min$$

$$B[i,j] = \min \begin{cases} \cos(x_i, y_j) + B[i+1, j+1] \\ \exp + B[i, j+1] \\ \exp + B[i+1, j] \end{cases}$$

Cost of Alignment Between X and All Suffixes of Y



"Backward" dynamic programming.

Exactly the same reasoning as doing the "forward" dynamic programming.

Best alignment between suffix x[10..] and suffix y[6..]

$$B[i,j] = \min$$

$$B[i,j] = \min \begin{cases} \cos t(x_i, y_j) + B[i+1, j+1] \\ \exp + B[i, j+1] \\ \exp + B[i+1, j] \end{cases}$$

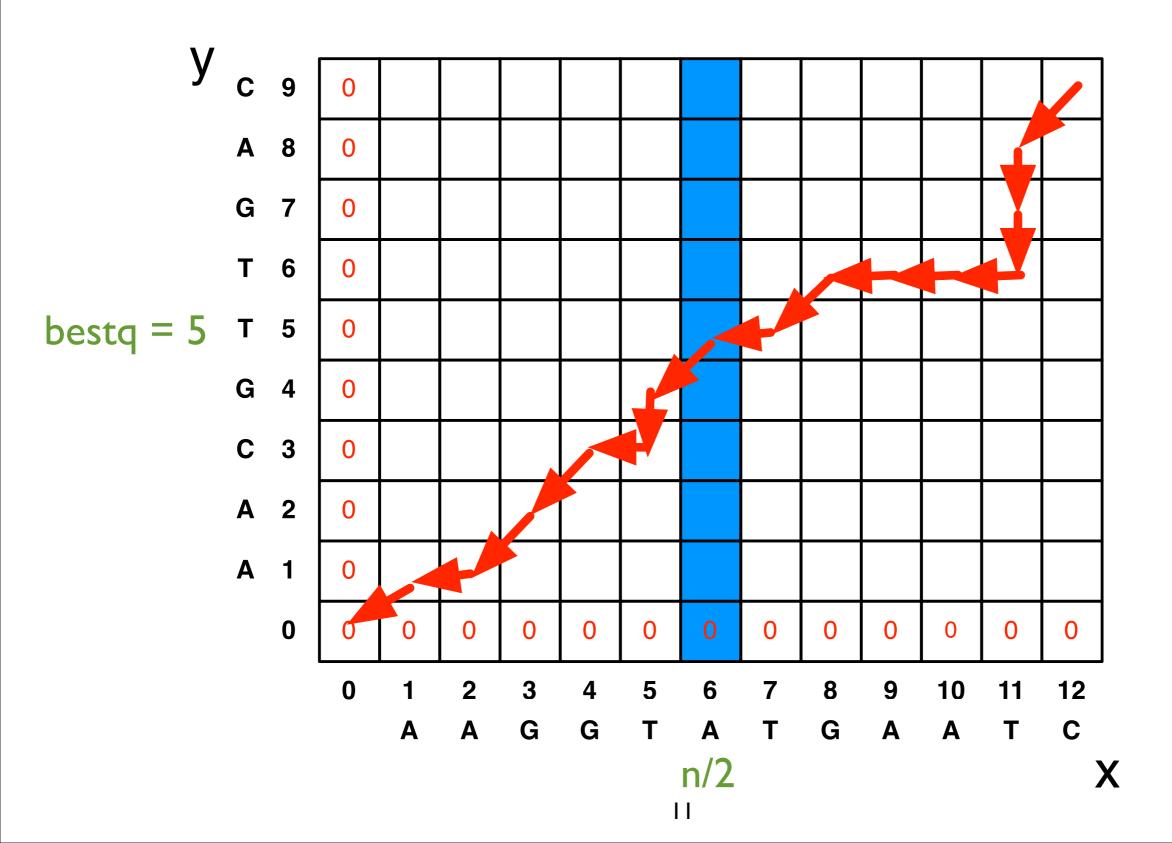
Can We Find the Alignment in O(n) Space?

- Surprisingly, yes, we can output the optimal alignment in linear space.
- This will cost us some extra computation but only a constant factor
- For such a dramatic reduction in space, it's often worth it.
- Idea: a divide-and-conquer algorithm to compute half alignments.

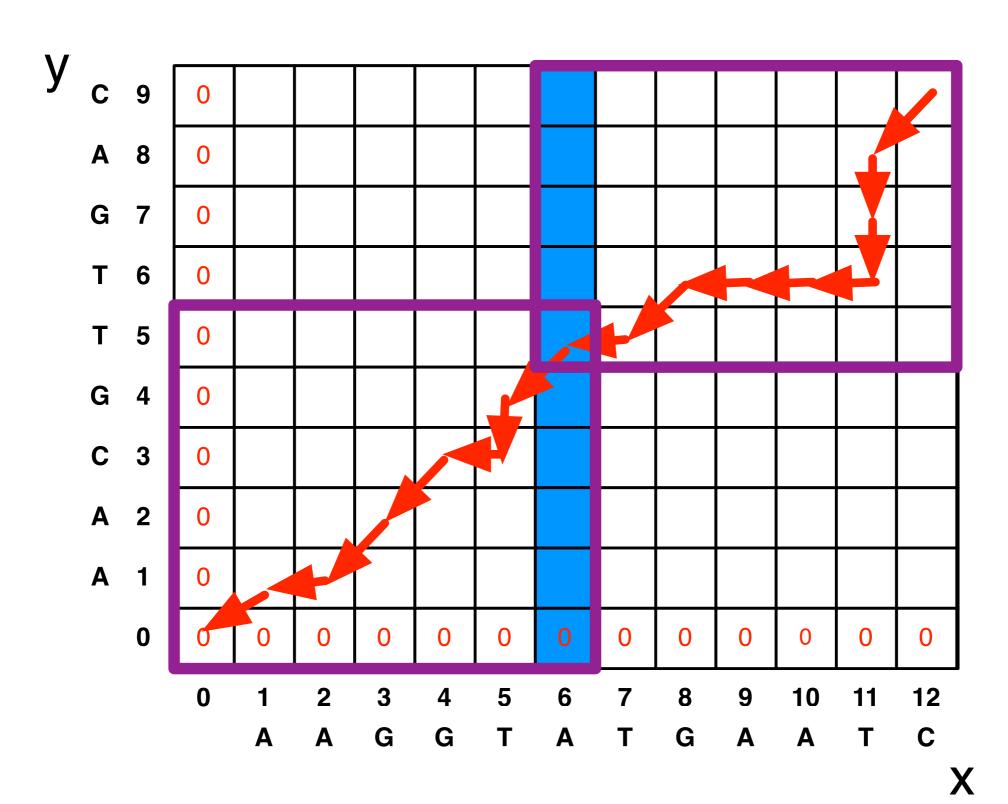
Divide & Conquer

- General algorithmic design technique:
 - Split large problem into a few subproblems.
 - Recursively solve each subproblem.
 - Merge the resulting answers.

The Best Path Uses Some Cell in the Middle Column



The Best Path Uses Some Cell in the Middle Column



Notation

• AlignValue(x, y) := compute the cost of the best alignment between x and y in $O(\min |x|, |y|)$ space.

• Finding the actual alignment is equivalent to finding all the cells that the optimal backtrace passes through.

Call the optimal backtrace the ArrowPath.

First Attempt At Space Efficient Alignment

In the optimal alignment, the first n/2 characters of x are aligned with the first q characters of y for some q.

$$12345678$$

$$x = ACGTACTG$$

$$y = A-GT-CTG$$

$$q = 3$$

We don't know q, so we have to try all possible q.

```
ArrowPath := []
def Align(x, y):
  n := |x|; m := |y|
                                           O(n) or O(m) space
  if n or m ≤ 2: use standard alignment
  for q := 0..m:
                                                O(n+m) space
    v1 := AlignValue(x[1..n/2], y[1..q])
    v2 := AlignValue(x[n/2+1..n], y[q+1..m])
                                                O(n+m) space
    if v1 + v2 < best: bestq = q; best = v1 + v2
                             find the q that minimizes
  Add (n/2, bestq) to ArrowPath
                                           the cost of the alignment
  Align(x[1..n/2], y[1..bestq])
  Align(x[n/2+1..n], y[bestq+1..m])
```

• This works in linear space.

- This works in linear space.
- BUT: not in O(nm) time. Why?

- This works in linear space.
- BUT: not in O(nm) time. Why?
- It's too expensive to solve all those AlignValue problems in the for loop.

- This works in linear space.
- BUT: not in O(nm) time. Why?
- It's too expensive to solve all those AlignValue problems in the for loop.
- Define:
 - AllYPrefixCosts(x, i, y) = returns an array of the scores of optimal alignments between x[1..i] and all prefixes of Y.
 - AllYSuffixCosts(x, i, y) = returns an array of the scores of optimal alignments between x[i..n] and all suffixes of y.
 - These are implemented as described in previous slides by returning the last row or last column of the DP matrix.

Space Efficient Alignment x = ACGTACTG

12345678 x = ACGTACTG y = A-GT-CTG q = 3

We still try all possible q, but we use the fact that we can compute the cost between a given prefix and *all* suffixes in linear space.

```
ArrowPath := []
def Align(x, y):
  n := |x|; m := |y|
  if n or m \leq 2: use standard alignment O(n) or O(m) space
  YPrefix := AllYPrefixCosts(x, n/2, y)
YSuffix := AllYSuffixCosts(x, n/2+1, y)
O(n+m) space
  for q := 0..m: <----
                                                    -find the q that minimizes
    cost = YPrefix[q] + YSuffix[n-q]
                                                     the cost of the alignment,
    if cost < best: bestq = q; best = cost</pre>
                                                     using the costs of aligning X
  Add (n/2, bestq) to ArrowPath
                                                     to prefixes and suffixes of Y
  Align(x[1..n/2], y[1..bestq])
  Align(x[n/2+1..n], y[bestq+1..m])
```

Running Time Recurrence, I

Full recurrence:

$$T(n,2) \leq cn$$

$$T(2,m) \leq cm$$

$$T(n,m) \leq cmn + T(n/2,q) + T(n/2,m-q)$$
Align(x[1..n/2], y[1..bestq])

Too complicated because we don't know what q is.

Simplify: assume both sequences have length n, and that we get a perfect split in half every time, q=n/2:

$$T(n) \le 2T(n/2) + cn^2$$

Solves as:

$$T(n) = O(n^2)$$
 \Rightarrow guess $O(nm)$

Running Time Recurrence, 2

$$T(n,2) \le cn$$

 $T(2,m) \le cm$
 $T(n,m) \le cmn + T(n/2,q) + T(n/2,m-q)$

Guess: $T(n,m) \le kmn$, for some k.

Proof, by induction:

Base cases: If $k \ge c$ then $T(n,2) \le cn \le c2n \le k2n = kmn$

Induction step: Assume $T(n', m') \le km'n'$ for pairs (n', m') with a product smaller than nm:

$$\begin{array}{ll} T(n,m) & \leq & cmn + T(n/2,q) + T(n/2,m-q) \\ & \leq & cmn + kqn/2 + k(m-q)n/2 \leftarrow \text{apply induction hypothesis} \\ & = & cmn + kqn/2 + kmn/2 - kqn/2 \\ & = & (c+k/2)mn \end{array}$$

$$k = 2c \implies T(n,m) \le 2cmn = kmn$$

Recap

- Can compute the cost of an alignment easily in linear space.
- Can compute the cost of a string with all suffixes of a second string in linear space.
- Divide and conquer algorithm for computing the actual alignment (traceback path in the DP matrix) in linear space.
- Still uses O(nm) time!