
More Dynamic Programming Examples

Slides by Carl Kingsford

Mar. 17, 2014

AD 6.3, CLR 16.1

1

Segmented Least Squares

2

Segmented Least Squares

2

Segmented Least Squares Problem

Problem. Given a sequence of points p1, . . . , pn sorted by their
x-coordinate, find a partition S1, . . . ,Sk of the points to minimize:

C × k +
∑
i

fit(Si),

where C is a given constant, and fit(S) is the best least-squares fit
of a line ` to the set of points S.

I C is the penalty of introducing a new line.

I Note: k is not an input!

I fit(S , `) can be computed analytically (next slide).

3

Least Squares Fit

The least squares fit is:

fit(S) =
∑
p∈S

(yp − axp − b)2

where the line yp = axp + b is given by:

a =
|S |
∑

p xpyp −
(∑

p xp
)(∑

p yp
)

|S |
∑

p x2
p −

(∑
p xp
)2

b =

∑
p yp − a

∑
p xp

|S |

So once you choose S1, . . . ,Sk , the best lines can be computed
directly. So, how do we choose this partition?

4

Subproblems

Suppose you knew the last segment was from pi , . . . , pn:

i

C + fit(pi,…,pn)

OPT(i – 1)

5

Recurrence

OPT (j) = min
1≤i≤j

{C + fit(pi , . . . , pj) + OPT (i − 1)}

OPT “matrix”:

1 2 3 4 5 6 7 8 9 10 11
i

6

Matrix-Chain Multiplication

7

Matrix-Chain Multiplication

A series of matrices A1, . . . ,An need to be multiplied:

r1 × c1
r2 × c2 r3 × c3

r4 × c4

r5 × c5

c2= r3c1= r2 c3= r4 c4= r5

A1
A2 A3

A4

A5

8

Recall pairwise multiplication

c2c1= r2

A1
A2

r1
r2 =×

r1 × c2

(r1 × c2) × c1 = multiplications

Let mul(A1,A2) be the number of matrix multiplications you need
to multiply matrices A1 and A2.

9

Associativity of matrix multiplication

Matrix multiplication is associative, so we can add parentheses any
way we want:

A1A2A3A4A5A6

For example, all of these give the same final matrix:

I (A1A2)((A3A4)(A5A6))

I (A1(A2A3))((A4A5)A6)

I ((A1A2)(A3A4))(A5A6)

The parentheses give the order to do the multiplications.

But different orders can give very different numbers of scalar
multiplications.

10

Examples of different costs

100 × 100,000

100,000 × 500,000
A1

A2 A3

500,000 × 50,000

100 × 50,000

=

Possible solutions:

I ((A1A2) A3) = 100× 100, 000× 500, 000 + 100× 500, 000×
50, 000 = 7, 500, 000, 000, 000

I (A1 (A2A3)) = 100, 000× 500, 000× 50, 000 + 100×
100, 000× 50, 000 = 2, 500, 500, 000, 000, 000

11

Subproblems

A1 A2 A3 A4 A5 A6 A7 A8 A9)(
t = 5

OPT(i, t+1) OPT(t, j)

j = 9i = 1

OPT(i, j) = +

Leads to the recurrence:

OPT (i , j) = min
1≤t≤j

{OPT (i , t − 1) + OPT (t, j) + r1ct−1cj}

Base cases: OPT (i , i + 1) = mul(Ai ,Ai+1) = ricici+1

12

Optimal Binary Search Trees

13

Designing an optimal binary search tree

Often, you have a large data set that is fixed at the start of your
computation.

You’ll make many lookups into this data to find items associated
with keys, but the keys will never change.

Some data you know will be accessed frequently, some rarely.

Problem (Optimal Binary Search Trees). We are given sorted
keys k1, . . . , kn and the probabilities p1, . . . , pn that key i will be
accessed at any point in time. Construct a binary search tree T
that minimizes:

C (T) =
n∑

i=1

pi (Depth(T , ki) + 1)

14

Expected Search Cost

The expression:

C (T) =
n∑

i=1

pi (Depth(T , ki) + 1)

is the expected cost of a “find” operation in the tree.

Depth(T , k) is the distance from the root of key k . For example, if
k is the root, then Depth(T , k) = 0.

15

Subtrees of the optimal are optimal

Let D(T , k) = Depth(T , k) for brevity.

Let T be an optimal tree that has root kr .

C (T) = pr +
r−1∑
a=1

pa (D(Tr , ka) + 1) +
n∑

a=r+1

pa (D(Tr , ka) + 1)

=
r−1∑
a=1

pa +
r−1∑
a=1

paD(Tleft, ka) +
n∑

a=r+1

pa +
n∑

a=r+1

paD(Tright, ka)

=
n∑

a=1

pa + C (Tleft) + C (Tright)

16

kr

Tleft

Trightki

D(ki) = d

D(ki) = d - 1

17

Recurrence

C [i , j] := “cost of an optimal binary search tree on keys ki , . . . , kj .”

C [i , j] =


0 if j < i (tree is empty)

pi if i = j (tree is single node)(∑j
a=i pa

)
+ minr {C [i , r − 1] + C [r + 1, j]}

We’re looking for C [1, n].

Can fill in C [i , j] matrix in order of increasing j − i .

18

Summary

Three dynamic programming algorithms for three very different
problems:

I Segmented least squares

I Matrix-chain multiplication

I Constructing optimal binary search trees

The dynamic programming algorithms are all different, but share a
very similar framework.

Illustrates the power of the dynamic programming technique.

19

