RNA Folding

CMSC 423
Lecture by Darya Filippova

RNA is single stranded and folds up:

RNA Folding

G and C stick together
A and U stick together

G

--Qu
QU
- OA

O A

A
A C
®
:
uc G G

UA

Q
o QA
U ' '.

RNA Folding Rules

RNA folding rules:

W

If two bases are closer than 4 bases apart, they cannot
pair
Each base is matched to at most one other base

The allowable pairs are {U,A} and {C, G}
Pairs cannot “cross.”

3

A U

AQO---OuU

UO---0OA

C@ --@©G

S A A
UO-~OA U &0 U A aAca cCcvuU A

No Crossings

1 k J m
If (i,j) and (k,m) are paired, we must have i < k <m <.

Paired bases have to be nested.

RNA Folding

Given: a string r = bibzbs,...,bn with b; € {A,C,U,G}
Find: the largest set of pairs S = {(i,))}, where ij € {1,2,...,n}
that satisfies the RNA folding rules.

Goal: match as many bases as possible.

A " —
@O
" YO
O<
OD>
O-
W Q@O
m @O
Q S T
2 rE
— ?° W
a 0> ©
O
= Q<
Vp)
OD
@O
Q@O
OD v
32
S S Y
3 s W
M.Mua mm
2% A+
@o o

X&)
" X0,

OD

OPT(t+1, j-1)

, t-1)

1

OPT(

Recurrence

Ifj-i < 4:
OPT(i,j) =0
Ifj-i>4:

OPT(i,j —1)

OPT(1,5) =
= oPT 151

In the 2nd case above, we try all possible t with which to pair j.
That is, t runs from i to j-4.

Order to solve the subproblems

* In what order should we solve the subproblems?

Order to solve the subproblems

* In what order should we solve the subproblems?

* What problems do we need to solve OPT(i,j)?

OPT(it-1) and OPT(t+1,j-1)
for every t between iand j

* |n what sense are these problems “smaller?”

Order to solve the subproblems

* In what order should we solve the subproblems?

* What problems do we need to solve OPT(i,j)?

OPT(i,t-1) and OPT(t+1,j-1)
for every t between i and j

* |n what sense are these problems “smaller?”

* They involve smaller intervals of the string:

‘ We solve OPT(i,) in order of increase value of j - 1. '

Filling in the matrix

only use half:i <j

n

OPT(i,j)/\‘

)

Filling in the matrix

in order of increasing j-i

n

Filling in the matrix

in order of increasing j-i

n

Filling in the matrix

in order of increasing j-i

n

Filling in the matrix

in order of increasing j-i

n

Filling in the matrix

in order of increasing j-i

n

Case 1

OPT(i,j) = max {OPT(Z’] -1

OPT(i,j)/\k

OPT(ij-1)

Case 1

OPT(i,j) = max {OPT(Z’] -1

OPT(i,j)/\

A 4

OPT(ij-1)

Case 2
OPT(i,j) = max {

max {1+ OPT(i,t — 1)+ OPT(t+ 1,5 — 1)}

OPT(i,j)/\
| OPT(t+1,-1)
OPT(i,t-1)
1

Case 2
OPT(i,j) = max {

max {1+ OPT(i,t — 1)+ OPT(t+ 1,5 — 1)}

OPT(i,j)

J OPT(t+1,j-1)

OPT(it-1)

Case 2
OPT(i,j) = max { .

maxri{1+ OPT(i,t — 1)+ OPT(t+1,57—1)}

OPT(i,j)

J OPT(t+1,j-1)

OPT(it-1)

Code

def rnafold(rna):

n = len(rna)

OPT = make matrix(n, n)

Arrows = make matrix(n, n)

for kK in xrange(5, n): # interval length

for i in xrange(n-k): # interval start

j =i+ Kk # interval end
best t = OPT[1][]J-1]
arrow = -1

for t in xrange(i, Jj):
if is complement(rna[t], rna[]]):
val = 1 + \\
(OPT[i][t-1] if t > i else 0) + OPT[t+1][F-1]

if val >= best t: best t, arrow = val, t
OPT[1][]J] = best t
Arrows[1][]J] = arrow

return OPT, Arrows

Backtrace code

def rna backtrace(Arrows):
Pairs = [] # holds the pairs in the optimal solution
Stack = [(0, len(Arrows) - 1)] # tracks cells we have to visit
while len(Stack) > 0:
i, J = Stack.pop()
if j - i <= 4: continue # 1f cell is base case, skip it
Arrow = -1 means we didn’t match j
if Arrows[i][]] == -
Stack.append((1i, J - 1))
else:
t Arrows[1i][]]
Pairs.append((t, J)) # save that j matched with t
add the two daughter problems
if t > i: Stack.append((i, t - 1))
Stack.append((t + 1, J - 1))
return Pairs

Subproblems, 2

* We have a subproblem for every interval (i)

* How many subproblems are there?

Subproblems, 2

* We have a subproblem for every interval (i)

* How many subproblems are there?

()

Running Time

O(n?) subproblems

Each takes O(n) time to solve
(have to search over all possible choices of t)

Total running time is O(n?).

Summary

This is essentially “Nussinov’s algorithm,” which was
proposed for finding RNA structures in 1978.

Same dynamic programming idea: write the answer to
the full problem in terms of the answer to smaller
problems.

Still have an O(n?) matrix to fill.

Main differences from sequence alignment:
WVe fill in the matrix in a different order: entries (i,j) in order
of increasing j - i.
We have to try O(n) possible subproblems inside the max.
This leads to an O(n?) algorithm.

Pseudoknots

B
S
S

JACOACUGAAAMGUCGOGV
Q 8 -~

Y - e

~ - =il

U™ ey

C

DA-R

>

-] CUCGOCC oo~
L . L . ONS " *» 2 »
- GAGCAAU QLo
o
~ ~

HDV
2

b o —
"oueoves <<OV

PelvLLeLULD w
CG (v'd
\. 3% <
Pm -
"
Jouvooud cc ch\#
/éGGccco o LW
4lc el
P - o

SRV-1

PEMV-1

MMTV

a 5°c‘4
o L 4
pred < J %
hedea0)
v%ccocA.
-2 oouuDagCe
= B

OS000LUDODKOLOOL
POCLOLUO0 VLU @
B |
L\ w

L

(Staple & Butcher, PLoS Biol, 2005)

