String Comparison

02-713

Slides by Carl Kingsford

Why compare DNA or protein

Ssequences?

Partial CTCF protein sequence in 8 organisms:

WO NIl @ WVl

sapiens
troglodytes
lupus
taurus
musculus
norvegicus
gallus
rerio

—EDSSDS-ENAEPDLDDNEDEEEPAVEIEPEPE-——-—-—-—————— POPVTPA
—EDSSDS-ENAEPDLDDNEDEEEPAVEIEPEPE-——-—-—-—————— POPVTPA
—-EDSSDS-ENAEPDLDDNEDEEEPAVEIEPEPE-——-—-—-—————— POPVTPA
—-EDSSDS-ENAEPDLDDNEDEEEPAVEIEPEPE-——-—-—-—————— POPVTPA

—EDSSDSEENAEPDLDDNEEEEEPAVEIEPEPE--POQPOPPPPPQOPVAPA
—EDSSDS-ENAEPDLDDNEEEEEPAVEIEPEPEPQPOPOPOPOPQOPVAPA
—-EDSSDSEENAEPDLDDNEDEEETAVEIEAEPE-——--—-—————— VSAEAPA
DDDDDDSDEHGEPDLDDIDEEDEDDL-LDEDQMGLLDQAPPSVPIP-APA

® |dentify important sequences by finding conserved regions.

® Find genes similar to known genes.

® Understand evolutionary relationships and distances (D. rerio aka zebrafish
is farther from humans than G. gallus aka chicken).

® |Interface to databases of genetic sequences.

® Asa step in genome assembly, and other sequence analysis tasks.

® Provide hints about protein structure and function (next slide).

Sequence can reveal structure

(a) 1dtk (b) 5pti

1ldtk XAKYCKLPLRIGPCKRKIPSEFYYKWKAKQCLPFDYSGCGGNANRFKTIEECRRTCVG-
S5pti RPDFCLEPPYTGPCKARIIRYFYNAKAGLCQTFVYGGCRAKRNNFKSAEDCMRTCGGA

The Simplest String Comparison Problem

Given: Two strings

a = ad=asa4...dm

b — b1b2b3b4...bn

where a;, b; are letters from some alphabet like {A,C,G,T}.

Compute how similar the two strings are.

What do we mean by “similar”?

Edit distance between strings a and b = the smallest number of the
following operations that are needed to transform a into b:

e mutate (replace) a character

e delete a character
delete

: . tat rt
e insert a character l‘lddle —> rldle M rlple mse trlple

Representing edits as alignments

prin-ciple
T T XX
prinncipal
(1 gap, 2 mm)

misspell

mis-pell
(1 gap)

aa-bb-ccaabb

X [[]

ababbbc-a-b-
(5 gaps, 1 mm)

prin-cip-le
IR
prinncipal-

(3 gaps, 0 mm)

prehistoric

——-historic
(3 gaps)

al-go-rithm-
[xx []x |
alKhwariz-mi
(4 gaps, 3 mm)

Query
Sbjct
Query
Sbjct
Query
Sbjct
Query
Sbjct
Query
Sbjct
Query
Sbjct
Query
Sbjct
Query

Sbjct

NCBI BLAST DNA Alignment

>gb|AC115706

1650

56838

1710

56896

1769

56948

1829

57008

1889

57056

1943

57115

2003

57169

2063

57225

gtgtgtgtgggtgeacatttgtgtgtgtgtgegectgtgtgtgtgggtgectgtgtggt
NRRRRNNNN . e rerrrrrrr Eorrrrrrr LEE T T
GTGTGTGTGGAAGTGAGTTCATCTGTGTGTGCACATGTGTGTGCA--TGCATGCATGTGT

gtg-gggeacattigtgtgtgtgtgtgtgectggtgtgggtgcacatttgigtgtgtge
AR RN O 1 N
GTCCGGGCA-—--—~ TGCATGTCTGTGTGCATGTGTGTGTGTGTGCAT--GTGTGAGTAC

ctgtgtgtgtgtgectgtgtgtgggggtgeacatttgtgtgtgigtgtgectgtgtgtegg
L L B
CTGTGTGTGTATGCTTGTATGTGTGTGTGTGCATGTGTGTAGGTGTGTATATGTGTAAGT

gggtgeacattigtgtgtgtgtgtgeetgtgtgtgtgggtgeacatttgtgigtgtgtgt
U A B NARRRRRR RN

T e evem—en CATCTGTGTGTATGTGTG--TGTGAGAGTGCATGCA----TGTGTGTGTGAGT

gectgtgtgt-—gtgggtgeacatttgtgtgtgtgtgectgtg--tgtgt--gggrgeac
U I L B I B I O B
TCATCTGTGTCAGTGTATGCTTATGGGTATAACT-TAACTGTGCATGTGTAAGTGTGTTC

atttgtgtgtgtgtgtgectgtgtgtgtgggtgecacatitgtgtgtgtgectgtgtgtgg
I I O Frrereerr rereend
ATCTGTGTATGTGTGTG--TGTGTGAGTTAGTTCA----TCTGTGTGTGAGAGTGTGTGA

gtgcacatttgtgtgtgtgtgectgtgtgtgtgtgectgtgtgtgtgggtgeacatttgt
U U
G--CTCATCTGTGTGTGAGTTCATCTGTATGAGTG--TGTGTATGTGTGTGTACAAATGA

T LT T T
GTTCATCTGTGCATGTGTGTGTG-—-—=--~ TTTAAGTGTGTTCATCTG--TGTGCGTGT

.7| Mus musculus chromosome 8, clone RP23-382B3, complete sequence

1709

56895

1768

56947

1828

57007

1888

57055

1942

57114

2002

57168

2062

57224

2122

57274

Comparing Bird Songs

<

. —
. —

- —

. —

. -

WLF R E ww
%mm%
At Al

O
5%:

«Mm_‘ﬁ_
i
it
et ALY
AN B
lpARE 28D

IR X
T
! 0.2..& - bM\

oy

d qum ‘ f 9.

dhage 2

QQ.

R < B R

OF .:S::_
E ﬁ::z:
Az

< .

[0 sist@dierss

A e ._
MV G ?ﬁ

244t

.
.V ﬁ

O :3, ::
3:;

< i
| e
< mea:“
T LAl LY
A

R <(S{LE

ndnd €9

:;t.
ﬂqﬁmﬁ %
2 ate 4L
i
S
RIER

.3 ,m \m

~.&.&u%.mﬂw.

:.E@S:
g
%% ; .m

Aé.ﬁw “+

AR
S
O
& :ﬁ: w
$% .
e
152 ﬁ,.m\@.&. J*v
gAY mm.«
B ZLE IS

Q-A.A...h - P

,.tmu R

dhege' o

v el

._\2\:::
at|

t 4t

m»ﬂ*\wd 1t arA

.rJ('.ﬂ

S 4-5 ..
FG 4 n

T R R

L ({0 ,“ ..

3/.32“ w

nmnmi iu

:B.ﬁm_
RNl

s.. A*—‘«..N\

nw%mﬁﬁl £
», w rw %wm

S9S < C{ et |

Florian et al. Hidden Markov Models in the Neurosciences

Tracing Textual Influences

Example from
Horton, Olsen, Roe,
Digital Studies / Le
champ

numeérique, Vol 2,
No 1 (2010)

This later play
by Markham
references
Shakespeare’s
poem.

Common
passages
identified by
sequence
alignment
algorithms.

She locks her lily fingers one in one. "Fondling," she saith, "since I have

| | thee here Within the circuit of this i e Tl | | I

thou shalt be my deer; Feed where thou wilt, on mountain or in dale:

Graze on my lips; and if those hills be dry, Stray lower, where the pleasant
fountains lie." Within this limit is relief enough.... (Shakespeare, Venus and

Adonis [1593])

Pre. Fondling, said he, since I haue hem'd thee heere,

VVithin the circuit of this Iuory pale.

Dra. I pray you sir help vs to the speech of your master.

Pre. Ile be a parke, and thou shalt be my Deere: He is very
busie in his study. Feed where thou wilt, in mountaine or

on dale. Stay a while he will come out anon. Graze on my

lips, and when those mounts are drie, Stray lower where

the pleasant fountaines lie . Go thy way thou best booke in

the world.
Ve. I pray you sir, what booke doe you read? (Markham,
The dumbe knight. A historicall comedy... [1608])

The String Alignment Problem

Parameters:

€ »

e “gap” isthe cost of inserting a “-” character, representing an insertion
or deletion

e cost(x,y) is the cost of aligning character x with character y.
In the simplest case, cost(x,x) = 0 and cost(x,y) = mismatch penalty.

Goal:

e Can compute the edit distance by finding the lowest cost
alignment.

e Cost of an alignment is: sum of the cost(x,y) for the pairs of characters
that are aligned + gap x number of - characters inserted.

Dynamic Programming

The sequence alignment / edit distance algorithm is an example of dynamic
programming.

Main idea of dynamic programming: solve the
subproblems in an order so that when you need an answer,
it’s ready.

Requirements for DP to apply:

1. Optimal value of the original problem can be computed from some
similar subproblems.

2. There are only a polynomial # of subproblems

3. There is a “natural” ordering of subproblems, so that you can solve a
subproblem by only looking at smaller subproblems.

Dynamic Programming Design Strategy

. Write definitions for subproblems that generalize the problem you are
trying to solve in some way

e Only worry about computing the value of the optimal solution.
e Don’t worry too much in this step about how you would solve the subproblem.

. Write the solution to every subproblem in terms of the solutions to
smaller problems.

. Give an ordering to solve the subproblems so that when trying to solve a
subproblem, you have already solved the subproblems it depends on.

. Show that there are are only a polynomial number of subproblems and
that solving each takes a small amount of time.

. Describe how following traceback arrows will give the actual solution.

Another View: Alignment as a Matching

Each string is a set of nodes, one for each character.
Looking for a low-cost matching (pairing) between the sequences.

1

Cost of a matching is:

gap X #unmatched + Z cost(aj, bj)
(aiabj)

<

Edges are not allowed to cross!

Algorithm for Computing Edit Distance

Consider the last characters of each string:

a = ai1d=Aasa4...Adm

b — b1b2b3b4...bn

One of these possibilities must hold:
1. (am, bn) are matched to each other
2. am is not matched at all

3. bn 1s not matched at all

4. am is matched to some b; (j # n) and b, is matched to some ax (k = m).

Algorithm for Computing Edit Distance

Consider the last characters of each string:

a = ai1d=Aasa4...Adm

b — b1b2b3b4...bn

One of these possibilities must hold:
1. (am, bn) are matched to each other
2. am is not matched at all

3. bn is not matched at all

4. am is matched to some b; (j # n) and b, is matched to some ax (k = m).

!
#4 can’t happen! Why?

No Crossing Rule Forbids #4

4. am 1s matched to some b; (j # n) and b, is matched to some ax (k # m).

g

So, the only possibilities for what happens to the last characters are:

1. (am, bn) are matched to each other
2. am 1S not matched at all

3. bn 1s not matched at all

Recursive Solution

Turn the 3 possibilities into 3 cases of a recurrence:

cost(a;, bj) + OPT(i —1,j — 1) match a;, b

OPT(i,j) = min ¢ gap + OPT (i — 1,)) a; is not matched
I gap + OPT(i,j — 1) b; is not matched
Cost of the optimal f
alignment between Written in terms of
ai...ai and b....b; the costs of smaller
problems

Key: we don’t know which of the 3 possibilities is the right one, so we try
them all.

Base case: OPT (i,0) =i x gap and OPT(0,j) =/ x gap.

(Aligning 1 characters to 0 characters must use i gaps.)

Computing OPT(i,j) Efficiently

We're ultimately interested in OPT(n,m), but we will compute all other
OPT(iy) (i < n,j < m) on the way to computing OPT(n,m).

Store those values in a 2D array:

OPT(i-\1,\j)
9 |99 \\
8 | 8¢ \
7 |79 ‘
s (o - OPT(i, j)
\\J
J 5 | 59
e AN OPT(i, j-1)
2|2 B OPT(i-1, j-1)
1 |19
0 | O [19]29 |39 |49 59 |69 |79 |8g |99 | 109 | g [129
o 1 2 3 4 5 6 7 8 9 10 11 12

Filling in the 2D Array

109

119

129

10

11

12

Edit Distance Computation

EditDistance(X,Y):
For 1 = 1,...,m: A[1,0] 1*gap
For Jj =1,...,n: A[0,]J] = J*gap

For 1 = 1,...,m:
For j =1,...,n:
A[i,j] = ming
cost(a[i],b[jj) + A[i_llj_l]l
gap + A[1-1,]],
gap + A[1,]J-1]

)
EndFor

EndFor
Return A[m,n]

Wheres the answer?

OPT(n,m) contains the edit distance between the two strings.

Why? By induction: EVERY cell contains the optimal edit distance between
some prefix of string 1 with some prefix of string 2.

Running Time

Number of entries in array = O(m x n), where m and n are the lengths of the
2 strings.

Filling in each entry takes constant O(1) time.

Total running time is O(mn).

Finding the actual alignment

OPT(i-1,))
9g \\
89)
/9
oo ‘ - OPT(, j)
— ! /
29 / o
4 AN OPT(i, j-1)
- N N
\
20 ~OPT(i-1, j-1)
19
O |1g 129 |39 |49 |59 |69 |79 |8g | 9g | 109 | 119 | 129
0 1 2 3 4 5 6 7 8 9 10 11 12

> > O O 4 4 o P> O

Trace the arrows all the way back

o 1 2 3 4 5 6 7 8 9 10 11 12
A A G G T A T G A A T C

X

Outputting the Alignment

Build the alignment from right to left.

ACGT
A-GA

Follow the backtrack pointers starting from entry (n,m).
e Ifyou follow a diagonal pointer, add both characters to the alignment,

o Ifyou follow a left pointer, add a gap to the y-axis string and add the x-
axis character

e Ifyou follow a down pointer, add the y-axis character and add a gap to
the x-axis string.

Another View: Recasting as a Graph

%%%

has welght
cost(ai,bj)

\

Traceback path =
shortest path from (0,0)
to (m,n)

