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Dynamic Programming

Extremely general algorithm design technique

Similar to divide & conquer:

I Build up the answer from smaller subproblems

I More general than “simple” divide & conquer

I Also more powerful

Generally applies to algorithms where the brute force algorithm
would be exponential.
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Subset Sum

Problem (Subset Sum). Given:

I an integer bound W , and

I a collection of n items, each with a positive, integer weight wi ,

find a subset S of items that:

maximizes
∑

i∈S wi while keeping
∑

i∈S wi ≤W .

Motivation: you have a CPU with W free cycles, and want to
choose the set of jobs (each taking wi time) that minimizes the
number of idle cycles.
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Assumption

We assume W and each wi is an integer.
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Just look for the value of the OPT

Suppose for now we’re not interested in the actual set of items.

Only interested in the value of a solution
(aka its cost, score, objective value).

This is typical of DP algorithms:

I You want to find a solution that optimizes some value.

I You first focus on just computing what that optimal value
would be. E.g. what’s the highest weight of a set of items?

I You then post-process your answer (and some tables you’ve
created along the way) to get the actual solution.
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Optimal Notation

Notation:

I Let S∗ be an optimal choice of items (e.g. a set {1,4,8}).

I Let OPT (n,W ) be the value of the optimal solution.

I We design an dynamic programming algorithm to compute
OPT (n,W ).

Subproblems:

I To compute OPT (n,W ): We need the optimal value for
subproblems consisting of the first j items for every knapsack
size 0 ≤ w ≤W .

I Denote the optimal value of these subproblems by OPT (j ,w).
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Recurrence

Recurrence: How do we compute OPT (j ,w) in terms of solutions
to smaller subproblems?

OPT (j ,W ) = max

{
OPT (j − 1,W ) if j 6∈ S∗

wj + OPT (j − 1,W − wj) if j ∈ S∗

OPT (0,W ) = 0 If no items, 0

OPT (j , 0) = 0 If no space, 0

Special case: if wj > W then OPT (j ,W ) = OPT (j − 1,W ).
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Another way to write it. . .

OPT (j ,W ) =


0 if j = 0 or W = 0

OPT (j − 1,W ) if wj > W

max

{
OPT (j − 1,W ) if j 6∈ S∗

wj + OPT (j − 1,W − wj) if j ∈ S∗

The blue questions are different than the black questions: we don’t
know the answer to the black questions at the start.

So: we have to try both (that’s what the max does).
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The table of solutions
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Filling in a box using smaller problems
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Filling in the Matrix

Fill matrix from bottom to top, left to right.
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When you are filling in box, you only need to look at boxes you’ve
already filled in.
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Pseudocode

SubsetSum(n, W):

Initialize M[0,r] = 0 for each r = 0,...,W

Initialize M[j,0] = 0 for each j = 1,...,n

For j = 1,...,n: for every row

For r = 0,...,W: for every column

If w[j] > r: case where item can’t fit

M[j,r] = M[j-1,r]

M[j,r] = max( which is best?

M[j-1,r],

w[j] + M[j-1, W-w[j]]

)

Return M[n,W]
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Remembering Which Subproblem Was Used

When we fill in the gray box, we also record which subproblem was
chosen in the maximum:
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Finding the Choice of Items

Follow the arrows backward starting at the top right:
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Which items does this path imply?

8, 5, 4, 2
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Runtime

I O(nW ) cells in the matrix.

I Each cell takes O(1) time to fill.

I O(n) time to follow the path backwards.

I Total running time is O(nW + n) = O(nW ).

Technical Note: This is pseudo-polynomial because it depends on
the size of the input numbers.
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General DP Principles

1. Optimal value of the original problem can be computed easily
from some subproblems.

OPT (j ,w) = max of two
subproblems

2. There are only a polynomial # of subproblems.

{(j ,w)} for
j = 1, . . . , n and w = 0, . . . ,W

3. There is a “natural” ordering of the subproblems from
smallest to largest such that you can obtain the solution for a
subproblem by only looking at smaller subproblems.

Considering items {1, 2, 3} is a smaller problem than
considering items {1, 2, 3, 4}
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Knapsack

Problem (Knapsack). Given:

I a bound W , and

I a collection of n items, each with a weight wi ,

I a value vi for each weight

Find a subset S of items that:

maximizes
∑

i∈S vi while keeping
∑

i∈S wi ≤W .

Difference from Subset Sum: want to maximize value instead of
weight.
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Why Greedy Doesn’t work for Knapsack Example

Idea: Sort the items by pi = vi/wi

Larger vi is better, smaller wi is better.
If you were allowed to chose fractions of items, this would work:

1

2

3

4

knapsack size = 6

$30

$40

$45

$100

p1 = 30

p2 = 20

p3 = 15

p4 = 25

1 4 1/2

$30       +             $100     +         (1/2)*$40              = $150
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0-1 Knapsack

This greedy algorithm doesn’t work for knapsack where we can’t
take part of an item:

1

2

3

4

knapsack size = 6
Greedy Choice:

$30

$40

$45

$100

p1 = 30

p2 = 20

p3 = 15

p4 = 25

1 4

$30       +             $100                                   = $130

4 2A better choice:
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How can we solve Knapsack?
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0-1 Knapsack

Subset Sum:

OPT (j ,W ) = max

{
OPT (j − 1,W ) if j 6∈ S∗

wj + OPT (j − 1,W − wj) if j ∈ S∗

0-1 Knapsack:

OPT (j ,W ) = max

{
OPT (j − 1,W ) if j 6∈ S∗

vj + OPT (j − 1,W − wj) if j ∈ S∗
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