# Dynamic Programming: Subset Sum & Knapsack

Slides by Carl Kingsford

Feb. 28, 2014

Based on AD Section 6.4

## **Dynamic Programming**

Extremely general algorithm design technique

Similar to divide & conquer:

- Build up the answer from smaller subproblems
- ► More general than "simple" divide & conquer
- Also more powerful

Generally applies to algorithms where the brute force algorithm would be exponential.

### Subset Sum

### Problem (Subset Sum). Given:

- an integer bound W, and
- $\triangleright$  a collection of n items, each with a positive, integer weight  $w_i$ ,

find a subset S of items that:

maximizes 
$$\sum_{i \in S} w_i$$
 while keeping  $\sum_{i \in S} w_i \leq W$ .

**Motivation:** you have a CPU with W free cycles, and want to choose the set of jobs (each taking  $w_i$  time) that minimizes the number of idle cycles.

## Assumption

We assume W and each  $w_i$  is an integer.

### Just look for the value of the OPT

Suppose for now we're not interested in the actual set of items.

Only interested in the *value* of a solution (aka its cost, score, objective value).

### This is typical of DP algorithms:

- ▶ You want to find a solution that optimizes some value.
- You first focus on just computing what that optimal value would be. E.g. what's the highest weight of a set of items?
- ➤ You then post-process your answer (and some tables you've created along the way) to get the actual solution.

## **Optimal Notation**

#### Notation:

- ▶ Let  $S^*$  be an optimal choice of items (e.g. a set  $\{1,4,8\}$ ).
- Let OPT(n, W) be the value of the optimal solution.
- ▶ We design an dynamic programming algorithm to compute OPT(n, W).

### Subproblems:

- ▶ To compute OPT(n, W): We need the optimal value for subproblems consisting of the first j items for every knapsack size  $0 \le w \le W$ .
- ▶ Denote the optimal value of these subproblems by OPT(j, w).

#### Recurrence

Recurrence: How do we compute OPT(j, w) in terms of solutions to smaller subproblems?

$$OPT(j, W) = \max \begin{cases} OPT(j-1, W) & \text{if } j \notin S^* \\ w_j + OPT(j-1, W - w_j) & \text{if } j \in S^* \end{cases}$$

$$OPT(0, W) = 0$$
 If no items, 0  
 $OPT(j, 0) = 0$  If no space, 0

Special case: if  $w_j > W$  then OPT(j, W) = OPT(j - 1, W).

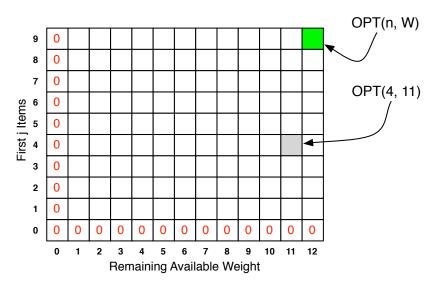
### Another way to write it...

$$OPT(j, W) = \begin{cases} 0 & \text{if } j = 0 \text{ or } W = 0 \\ OPT(j-1, W) & \text{if } w_j > W \\ \max \begin{cases} OPT(j-1, W) & \text{if } j \notin S^* \\ w_j + OPT(j-1, W - w_j) & \text{if } j \in S^* \end{cases}$$

The blue questions are different than the black questions: we don't know the answer to the black questions at the start.

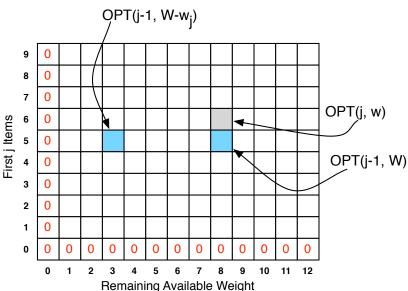
So: we have to try both (that's what the max does).

#### The table of solutions



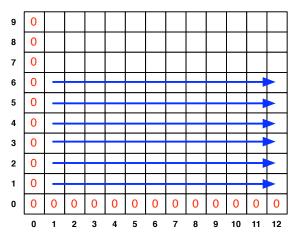
.

# Filling in a box using smaller problems



# Filling in the Matrix

Fill matrix from bottom to top, left to right.



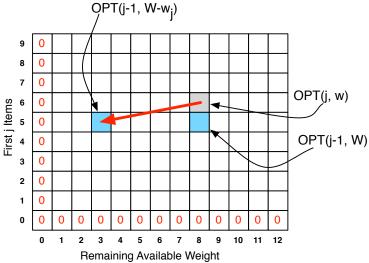
When you are filling in box, you only need to look at boxes you've already filled in.

#### Pseudocode

```
SubsetSum(n, W):
   Initialize M[0,r] = 0 for each r = 0,...,W
   Initialize M[j,0] = 0 for each j = 1,...,n
   For j = 1, ..., n:
                                  for every row
      For r = 0, \ldots, W:
                                  for every column
         If w[i] > r:
                                case where item can't fit
            M[i,r] = M[i-1,r]
         M[j,r] = max(
                                 which is best?
            M[j-1,r],
            w[j] + M[j-1, W-w[j]]
   Return M[n,W]
```

## Remembering Which Subproblem Was Used

When we fill in the gray box, we also record which subproblem was chosen in the maximum:



# Finding the Choice of Items

Follow the arrows backward starting at the top right:



Which items does this path imply?

## Finding the Choice of Items

Follow the arrows backward starting at the top right:



Which items does this path imply? 8, 5, 4, 2

#### Runtime

- O(nW) cells in the matrix.
- ▶ Each cell takes *O*(1) time to fill.
- $\triangleright$  O(n) time to follow the path backwards.
- ▶ Total running time is O(nW + n) = O(nW).

Technical Note: This is pseudo-polynomial because it depends on the size of the input numbers.

### General DP Principles

1. Optimal value of the original problem can be computed easily from some subproblems.

2. There are only a polynomial # of subproblems.

 There is a "natural" ordering of the subproblems from smallest to largest such that you can obtain the solution for a subproblem by only looking at smaller subproblems.

### General DP Principles

- 1. Optimal value of the original problem can be computed easily from some subproblems.  $OPT(j, w) = \max of two$  subproblems
- 2. There are only a polynomial # of subproblems.  $\{(j, w)\}$  for j = 1, ..., n and w = 0, ..., W
- 3. There is a "natural" ordering of the subproblems from smallest to largest such that you can obtain the solution for a subproblem by only looking at smaller subproblems. Considering items {1,2,3} is a smaller problem than considering items {1,2,3,4}

## Knapsack

### Problem (Knapsack). Given:

- a bound W, and
- ▶ a collection of n items, each with a weight wi,
- a value v<sub>i</sub> for each weight

Find a subset S of items that:

maximizes 
$$\sum_{i \in S} v_i$$
 while keeping  $\sum_{i \in S} w_i \leq W$ .

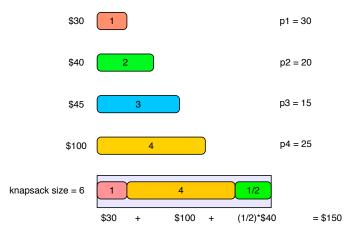
**Difference from Subset Sum**: want to maximize value instead of weight.

## Why Greedy Doesn't work for Knapsack Example

**Idea:** Sort the items by  $p_i = v_i/w_i$ 

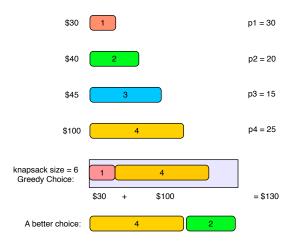
Larger  $v_i$  is better, smaller  $w_i$  is better.

If you were allowed to chose fractions of items, this would work:



## 0-1 Knapsack

This greedy algorithm doesn't work for knapsack where we can't take part of an item:



How can we solve Knapsack?

### 0-1 Knapsack

#### Subset Sum:

$$OPT(j, W) = \max \begin{cases} OPT(j-1, W) & \text{if } j \notin S^* \\ w_j + OPT(j-1, W - w_j) & \text{if } j \in S^* \end{cases}$$

## 0-1 Knapsack

#### Subset Sum:

$$OPT(j, W) = \max \begin{cases} OPT(j-1, W) & \text{if } j \notin S^* \\ w_j + OPT(j-1, W - w_j) & \text{if } j \in S^* \end{cases}$$

#### 0-1 Knapsack:

$$OPT(j, W) = \max \begin{cases} OPT(j-1, W) & \text{if } j \notin S^* \\ \frac{\mathbf{v}_j}{\mathbf{v}_j} + OPT(j-1, W - \mathbf{w}_j) & \text{if } j \in S^* \end{cases}$$