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Dictionary Abstract Data Type (ADT)

• Most basic and most useful ADT:!
• insert(key, value)!
• delete(key)!
• value = find(key)!

• Many languages have it built in:!

• Insert, delete, find each either O(log n) [C++] or expected constant 
[perl, python]!

• How can such dictionaries are implemented?

awk:! D[“AAPL”] = 130! # associative array!                                                 
perl:! my %D; $D[“AAPL”] = 130;! # hash!              
python:! D = {}; D[“AAPL”] = 130! # dictionary!          
C++:! map<string,string> D = new map<string, string>(); !        
! D[“AAPL”] = 130;! // map                     



Binary Search Trees

• BST Property: If a node has key 
k then keys in the left subtree 
are < k and keys in the right 
subtree are > k.!

• For convenience, we disallow 
duplicate keys.!

• Good for implementing the 
dictionary ADT we’ve already 
seen: insert, delete, find.
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insert(T, K):!
   q = NULL!
   p = T!
   while p != NULL and p.key != K:!
      q = p!
      if p.key < K:!
        p = p.right!
      else if p.key > K:!
        p = p.left!
!
   if p != NULL: error DUPLICATE!
!
   N = new Node(K)!
   if q.key > K:!
     q.left = N!
   else:!
     q.right = N
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Can you express inorder_successor using find_min?
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Partitioning

• Ordering implicitly gives a partitioning based on the “<“ relation.!

• Partitioning usually combined with linking to point to the two halves.

9 18

35 98

31

19 58

16

Find 18

All keys in the left subtree are < the root!
All keys in the right subtree are ≥ the root



Where’s the FBI?
J. Edgar Hoover Building!
935 Pennsylvania Avenue, NW!
Washington, DC, 20535-0001

NW

NE

SESW



Why is the DC partitioning bad?

• Everything interesting is in the northwest quadrant.!

• Want a balanced partition!!

• Another example: an unbalanced binary search tree:  
(becomes sequential search)!
!

• How can we force a BST tree to be balanced  
if items are constantly being inserted and  
deleted?
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Splay Trees (Sleator & Tarjan, 1985)

• no extra storage requirement!

• simple to implement !

• Main idea: move frequently accessed 
items up in tree!

• amortized O(log n) performance!

• worst case single operation is Ω(n)



Splay Trees

• find(T, k): splay(T, k). If root(T) = k, return k, otherwise 
return not found.!

• insert(T, k): splay(T, k). If root(T) = k, return duplicate!; 
otherwise, make k the root and add children as in figure:!

• concat(T1, T2): Assumes all keys in T1 are < all keys in T2. 
Splay(T1, ∞). Now root T1 contains the largest item, and 
has no right child. Make T2 right child of T1.!

• delete(T, k): splay(T, k). If root r contains k, concat(LEFT(r), 
RIGHT(r)).

splay(T, k): if k ∈ T, then move k to the root using a particular set 
of transformations of the tree. Otherwise, move either the 
inorder successor or predecessor of k to the root.

Without knowing how splay is implemented, we can implement the dictionary ADT!
as follows:

j

j

k



Dictionary Operations, in pictures

?

find(T, k): splay 
& check root

j

j

k

insert(T, k): splay and 
insert just below root

k

delete(T, k): splay 
& concat left & 
right subtrees

T1

T2



Implementing the Splay operation



Right rotation (at n)
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Too 
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Right rotation!
(aka clockwise rotation)



Left Rotation (at n)

n

i
n

i

Left rotation!
(aka counterclockwise rotation)

Only a constant # of pointers need to be updated for a rotation: O(1) time



Right & Left Rotations are Inverses

n

i n
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right rotation

left rotation

i moves toward the root n moves toward the root



Double Rotation
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A B C D

k moves toward the root



Splay Operation

• Splay(T, k): find k, walk back 
up root. Let x be the current 
node. !

• Cases:!
1. x has no grandparent!

2. x is left child of parent(x), 
which is the right child of 
parent2(x).!

3. x is left child of parent(x), 
which is the left child of 
parent(parent(x)) = parent2(x)

x

x

x

Case 1

Case 2

Case 3

Rotations with goal: 
move x toward the root



x

Case 1: no grandparent:

x

A B

C

p(x)

A

B C

p(x)
Single rotation 

around p(x)



Case 2: zigzag (right,left):

x

p(x)

p2(x)
x

p(x)

p2(x)

x

p(x)p2(x)

Rotation 
around p(x)

Rotation 
around p(x)



Case 3: zigzig (left, left):

x

p(x)
p2(x)

x

p(x)

p2(x)

x
p(x)

p2(x)

Rotation 
around p2(x)

Rotation 
around p(x)



Splay Idea

• The find/insert/delete operations can be written in terms 
of the “splay” operation.!

• Splay is implemented by doing a standard BST “find” 
and then applying particular rotations walking back up 
toward the root.!

• This is somewhat like the idea of “path compression” for 
the tree-based union-find data structure: during a find, 
you flatten out the tree.!

• Here: splay may actually make the tree worse, but over a 
series of operations the tree always gets better (e.g. a slow 
find results in a long splay, but this long splay tends to 
flatten the tree a lot).



Splay Notes

• Might make tree less balanced!

• Might make tree taller!

• So, how can they be good?



Amortized Analysis – Concept

• Some operations will be costly, some will be cheap!

• Total area of m bars bounded by some function f(m,n).!

- m = number of operations, n = number of elements!

• E.g. if area = O(m log n), each operation takes O(log n) amortized 
time

Ti
m

e

Series of operations



Analysis of the Splay operation



Node Ranks & Money Invariant

w(u)!:= weight of u! 
! := # nodes in the subtree rooted at u         

rank(u) := [log w(u)]

Money Invariant: we will always keep rank(u) 
dollars stored at every node.

Each rotation/double rotation costs $1.
O(1) amount of work

[x] means floor(x)

Also have to spend $ to maintain invariant.



Idea:

• So, for every splay, we’re going to spend O(log n) 
new dollars; we might do more work than that if we 
use some of the $ already in the tree.!

• If we start with an empty tree, after m splay 
operations, we’ll have spent ≤ m(3[log n] +1) dollars.!

• The dollars pay for both:!

- the money invariant!

- cost of all the rotations (time)!

• So, total time for m splay operations is O(m log n).

Thm. It costs at most 3[log n] + 1 new 
dollars to splay, keeping the money 
invariant 



Thm. It costs 3[log n] + 1 new dollars to splay, keeping 
the money invariant.

zig: 
zigzag:
zigzig:

3(rank1(x) - rank(x)) + 1
3(rank1(x) - rank(x))
3(rank1(x) - rank(x))

Suppose zig/zigzig/zigzag at x costs the following:

Then cost of a whole splay = 

Then cost of a whole splay  
! = 3(rankk(x) - rank(x)) + 1 !
! ≤ 3(rankk(x)) + 1 !
! ≤ 3[log n] + 1

3(rank1(x) - rank(x))
+ 3(rank2(x) - rank1(x))
+ 3(rank3(x) - rank2(x))

+ 3(rankk(x) - rank(k-1)(x)) + 1
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Thm. It costs 3[log n] + 1 new dollars to splay, keeping 
the money invariant.

zig: 
zigzag:
zigzig:

3(rank1(x) - rank(x)) + 1
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Telescoping 
sum

rankk(x) = after k steps, x is at the root



case 1: 3(rank1(x) - rank(x)) + 1

x

A B

C

p(x) x

A

B C

p(x)

+1 pays for the rotation

Extra $ to keep the invariant is:!
! rank1(x) + rank1(p(x)) - (rank(x) + rank(p(x))

rank1(x) = rank(p(x))
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case 1: 3(rank1(x) - rank(x)) + 1

x
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A
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+1 pays for the rotation

Extra $ to keep the invariant is:!
! rank1(x) + rank1(p(x)) - (rank(x) + rank(p(x))

$ needed for x and p(x) $ already on x and p(x)

rank1(x) = rank(p(x))

= rank1(p(x)) - rank(x)!
≤ rank1(x) - rank(x) ≤ 3(rank1(x) - rank(x))

r(x) after = 
r(p(x)) before.
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$

$

     rank1(R) - rank(x)!
≤   rank1(x) - rank(x)

$

case 2: 3(rank1(x) - rank(x))

If rank1(x) - rank(x) > 0, then !
we need to add ≤ r1(x) - r(x) but we have 3(r1(x) - r(x)) > 1 
budgeted, so we have at least $1 to pay for the rotations.

Otherwise see next slide.

$ needed to add ≤

But how do we pay for the rotations?
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x

S

R
x

SR

case 2: What if (rank1(x) - rank(x)) is 0?

Since r1(x) = r(x), and r1(x) = r(R), we 
must have r(x) = r(R) = r(S):

Also, r1(R) < r1(x) or r1(S) < r1(x)

Suppose both r(R) = r(S) = q.!
Then R would have at least 2q nodes under it 
and S would have at least 2q nodes under it.!
So x would have at least 2(2q) nodes under it 
and x would then have rank q+1 instead of q.

q

q

q
q

Had 3q $ on tree before, now need 
< 3q, so have 1 $ left to pay for 
rotations.



case 3: 3(rank1(x) - rank(x))

x

S
R x

S

R

r1(x) + r1(S) + r1(R) - (r(x) + r(S) + r(R))
$ needed to add:

$ needed for moved nodes $ already on moved nodes



case 3: 3(rank1(x) - rank(x))

x

S
R x

S

R

r1(x) + r1(S) + r1(R) - (r(x) + r(S) + r(R))
$ needed to add:

$ needed for moved nodes $ already on moved nodes

= r1(S) + r1(R) - r(x) - r(S) r1(x) = r(R)



case 3: 3(rank1(x) - rank(x))

x

S
R x

S

R

r1(x) + r1(S) + r1(R) - (r(x) + r(S) + r(R))
$ needed to add:

$ needed for moved nodes $ already on moved nodes

≤ r1(x) + r1(x) - r(x) - r(x)!
≤ 2(r1(x) - r(x))

r1(R) ≤ r1(S) ≤ r1(x)
r(x) ≤ r(S)

= r1(S) + r1(R) - r(x) - r(S) r1(x) = r(R)



case 3: What if rank1(x) - rank(x) = 0?

x
S

R x

S

Rq
q

q
x
q

q

<q R

S

Why must R have rank < q?

Why must R have rank < r?

Suppose not.  Then x has at least 2q nodes under it, and R has at least 2q 
nodes under it.!
!
So S has at least 2(2q) = 2q+1 nodes under it, !
so it should have rank Q+1, but it has rank Q, which is a contradiction.

q

<q

≤q

So before we had 3q $ on the nodes, now we need only ≤ 2q + q - 1



Additional Cost of Insert & Concat

• Cost of insert & concat more than the cost of a splay 
because may have to add $s to root to maintain 
invariant:

j

j

k

insert(T, k): k has n 
descendants, so need 
to put [log n] $ on k

concat(T1, T2): root gets at most 
n new descendants from T2, so 
need to put [log n] dollars on 

root. 

T2
T1


