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Dictionary Abstract Data Type (ADT)

e Most basic and most useful ADT:

e insert(key, value)
e delete(key)
e value = find(key)

e Many languages have it built in:

awk: D[“AAPL”] =130 # associative array

perl: my %D; SD[“AAPL”] = 130; # hash

python: D = {}; D[“AAPL”] = 130 # dictionary

C++: map<string,string> D = new map<string, string>();
D[“AAPL"”] = 130; / | map

e Insert, delete, find each either O(log n) [C++] or expected constant
[perl, python]

e How can such dictionaries are implemented?



Binary Search Trees

e BST Property: If a node has key
k then keys in the left subtree
are < k and keys in the right
subtree are > k.

e For convenience, we disallow
duplicate keys.

e Good for implementing the
dictionary ADT we’ve already
seen: insert, delete, find.




BST Find

Find k = 6:
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Isk<5?



BST Find

Find k = 6:
[sk<5? No, go right




BST Find

Find k = 6:
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Is k < 8?




BST Find

Find k = 6:
[sk<5? No, go right
Isk<8? Yes, goleft




BST Find

Find k = 9:
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BST Find

Find k=9:
[sk<5? No, go right
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BST Find

Find k = 9:
[sk<5? No, go right
Isk<8? No, go right

Isk<11? Yes, go left




BST Find

Find k = 13:
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BST Find

Find k = 13:
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BST Find

Find k = 13:
[sk<5? No, go right
Isk<8? No, go right

Is k<11? No, go right




BST Insert

insert (T, K): / Same idea as BST Find

q = NULL
p =T
while p != NULL and p.key != K:
qa=0"p
if p.key < K:
p = p.right
else if p.key > K:
p = p.left

if p != NULL: error DUPLICATE

N = new Node(K)
if g.key > K:
g.left = N
else:
g.right = N



BST Insert
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BST Insert

insert (T, K): / Same idea as BST Find

q = NULL
p =T
while p != NULL and p.key != K:
qa=0"p
if p.key < K:
p = p.right
else if p.key > K:
p = p.left

if p != NULL: error DUPLICATE

N = new Node(K)
if g.key > K:
g.left = N
else:
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BST FindMin




BST FindMin

Walk left until you can’t go left any more



BST FindMin

Walk left until you can’t go left any more



BST FindMin

Walk left until you can’t go left any more

Can you express inorder_successor using find_min?



BST Delete

Node is leaf: Node has 1 child:

- o

Node has 2
children:




BST Delete

Node is leaf:

(3)

Node has 1 child:

Node has 2
children:




BST Delete

Node is leaf:

(3)

Node has 1 child:

Node has 2
children:




Partitioning

e Ordering implicitly gives a partitioning based on the “<” relation.

e Partitioning usually combined with linking to point to the two halves.

Find 18

All keys in the left subtree are < the root
All keys in the right subtree are > the root
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Why is the DC partitioning bad?

e Everything interesting is in the northwest quadrant.

e Want a balanced partition!

e Another example: an unbalanced binary search tree:
(becomes sequential search)

e How can we force a BST tree to be balanced

if items are constantly being inserted and
deleted?




Splay Trees (Sleator & Tarjan, 1985)

® no extra storage requirement
® simple to implement

® Main idea: move frequently accessed
items up in tree

e amortized O(log 1) performance

® worst case single operation is ()(1)



Splay Trees

splay(T, k): if k € T, then move k to the root using a particular set
of transformations of the tree. Otherwise, move either the
inorder successor or predecessor of k to the root.

Without knowing how splay is implemented, we can implement the dictionary ADT
as follows:

o find(T, k): splay(T, k). If root(T) = k, return k, otherwise
return not found.

o insert(T, k): splay(T, k). If root(T) = k, return duplicate!;
otherwise, make k the root and add children as in figure: 7
o concat(T1, T2): Assumes all keys in T; are < all keys in Tb. (1

has no right child. Make T> right child of Tj.

Splay(T1, ). Now root T1 contains the largest item, and 0 ‘

o delete(T, k): splay(T, k). If root r contains k, concat(LEFT(r),
RIGHT(r)).



Dictionary Operations, in pictures

() A

Ty
find(T, k): splay delete(T, k): splay
& check root & concat left &
right subtrees

insert(T, k): splay and
insert just below root



Implementing the Splay operation



Right rotation (at n)

Right rotation
(aka clockwise rotation)

(1)
Too

short! A O
Too
tall! / A A




Left Rotation (at n)

) A

Left rotation
(aka counterclockwise rotation)

<=

Only a constant # of pointers need to be updated for a rotation: O(1) time



Right & Left Rotations are Inverses

right rotation
—

<

left rotation

i moves toward the root 1 moves toward the root



Double Rotation

o
(%

(o

2\ A

k moves toward the root




Splay Operation Case 1

® Splay(T, k): find k, walk back A
up root. Let x be the current
node.

e (Cases:

1. x has no grandparent

2. xis left child of parent(x), Case 2

which is the right child of
parent?(x).

3. xis left child of parent(x),
which is the left child of Case 3
parent(parent(x)) = parent?(x)

Rotations with goal:

move x toward the root



Case 1: no grandparent:

Single rotation
around p(x)




Case 2: zigzag (right,left):

’(x)
p?(x)

Rotation
around p(x)

>

(x)
o p(x)

A A

)/otation
around p(x)

pz(x P( X)

AL A




Case 3: zigzig (left, left):

p?(x)
p( X ) Rotation

i around p?(x) ) pz (x)

p(x)

Rotation
around p(x)

p?(x)

A

p(x)



Splay Idea

® The find/insert/delete operations can be written in terms
of the “splay” operation.

e Splay is implemented by doing a standard BST “find”
and then applying particular rotations walking back up
toward the root.

e This is somewhat like the idea of “path compression” for
the tree-based union-find data structure: during a find,
you flatten out the tree.

e Here: splay may actually make the tree worse, but over a
series of operations the tree always gets better (e.g. a slow
find results in a long splay, but this long splay tends to
flatten the tree a lot).



Splay Notes

o Might make tree less balanced
¢ Might make tree taller

® So, how can they be good?



Amortized Analysis — Concept

Time

Series of operations

e Some operations will be costly, some will be cheap

e Total area of m bars bounded by some function f(rm,n).

- m =number of operations, n = number of elements

e E.g. if area = O(m log n), each operation takes O(log n) amortized
time



Analysis of the Splay operation



Node Ranks & Money Invariant

w(u) := weight of u
.= #f nodes in the subtree rooted at u

rank(u) := [log w(u)]

[x] means floor(x)

Money Invariant: we will always keep rank(u)
dollars stored at every node.

Each rotation /double rotation costs $1.
O(1) amount of work

Also have to spend $ to maintain invariant.



Idea:

Thm. It costs at most 3[log n] + 1 new
dollars to splay, keeping the money
Invariant

® So, for every splay, we're going to spend O(log n)
new dollars; we might do more work than that if we
use some of the $ already in the tree.

e [f we start with an empty tree, after m splay
operations, we’ll have spent < m(3[log n] +1) dollars.

e The dollars pay for both:
~ the money invariant

- cost of all the rotations (time)

® So, total time for m splay operations is O(m log n).



Thm. It costs 3[log n] + 1 new dollars to splay, keeping
the money invariant.

Suppose zig/zigzig/zigzag at x costs the following:

zig: 3(rank(x) - rank(x)) + 1
zigzag: 3(rank'(x) - rank(x))
zigzig: 3(rank'(x) - rank(x))

Then cost of a whole splay =
3(rankl(x) - rank(x))

+ 3(rank2(x) - rank(x))
+ 3(rank3(x) - rank?(x))

+ 3(rankk(x) - rank®*D(x)) + 1

Then cost of a whole splay
= 3(rank*(x) - rank(x)) + 1
< 3(rank*(x)) + 1
< 3llogn] +1



Thm. It costs 3[log n] + 1 new dollars to splay, keeping
the money invariant.

Suppose zig/zigzig/zigzag at x costs the following:

zig: 3(rank(x) - rank(x)) + 1
zigzag: 3(rank'(x) - rank(x))
zigzig: 3(rank'(x) - rank(x))

Then cost of a whole splay =

3(ramhx) - rank(x))
+ 3(rank2(x) - 1))

+ 3(rank3(x) - rank?(x))

+ 3(rankk(x) - rank®*D(x)) + 1

Then cost of a whole splay
= 3(rank*(x) - rank(x)) + 1
< 3(rank*(x)) + 1
< 3llogn] +1



Thm. It costs 3[log n] + 1 new dollars to splay, keeping
the money invariant.

Suppose zig/zigzig/zigzag at x costs the following:

zig: 3(rank(x) - rank(x)) + 1
zigzag: 3(rank'(x) - rank(x))
zigzig: 3(rank'(x) - rank(x))

Then cost of a whole splay =

3(ramx) - rank(x))
+ 3(raTTRY) - FITTRN)
+ 3(rank3(x) - 7))

+ 3(rankk(x) - rank®*D(x)) + 1

Then cost of a whole splay
= 3(rank*(x) - rank(x)) + 1
< 3(rank*(x)) + 1
< 3llogn] +1



Thm. It costs 3[log n] + 1 new dollars to splay, keeping
the money invariant.

Suppose zig/zigzig/zigzag at x costs the following:

zig: 3(rank(x) - rank(x)) + 1
zigzag: 3(rank'(x) - rank(x))
zigzig: 3(rank'(x) - rank(x))

Then cost of a whole splay =

3T, - rank(x))
+ 3(raTTRY) - FITTRN)
+ 3 - TR

+ 3(rankk(x) - ramkdl)(x)) + 1

Then cost of a whole splay
= 3(rank*(x) - rank(x)) + 1
< 3(rank*(x)) + 1
< 3llogn] +1



Thm. It costs 3[log n] + 1 new dollars to splay, keeping
the money invariant.

Suppose zig/zigzig/zigzag at x costs the following:

zig: 3(rank(x) - rank(x)) + 1
zigzag: 3(rank'(x) - rank(x))
zigzig: 3(rank'(x) - rank(x))

Then cost of a whole splay =

3(ramhix) - rank(x))

+ 3(ramhx) - ramhHx)) Telescoping
+ 3R - rThRx)) sum

+ 3(rankk(x) - ramkdl)(x)) + 1
Then cost of a whole splay
= 3(rank*(x) - rank(x)) + 1
< 3(rank*(x)) + 1
< 3llogn] +1



Thm. It costs 3[log n] + 1 new dollars to splay, keeping
the money invariant.

Suppose zig/zigzig/zigzag at x costs the following:

zig: 3(rank(x) - rank(x)) + 1
zigzag: 3(rank'(x) - rank(x))
zigzig: 3(rank'(x) - rank(x))

Then cost of a whole splay =

3(ramhix) - rank(x))

+ 3(ramhx) - ramhHx)) Telescoping
+ 3R - rThRx)) sum

+ 3(rankk(x) - ramkdl)(x)) + 1
Then cost of a whole splay
= 3(rank*(x) - rank(x)) + 1
< 3(rankk(x)) + 1  rank*(x) = after k steps, x is at the root
< 3llogn] +1



case 1: 3(rankl(x) - rank(x)) + 1

+1 pays for the rotation rank!(x) = rank(p(x))

Extra $ to keep the invariant is:
rank!(x) + rank!(p(x)) - (rank(x) + rank(p(x))



case 1: 3(rankl(x) - rank(x)) + 1

+1 pays for the rotation rank!(x) = rank(p(x))

Extra $ to keep the invariant is:
rank!(x) + rank!(p(x)) - (rank(x) + rank(p(x))
$ needed for x and p(x)




case 1: 3(rankl(x) - rank(x)) + 1

+1 pays for the rotation

rank!(x) = rank(p(x))

Extra $ to keep the invariant is:

rank!(x) + rank!(p(x))

(rank(x) + rank(p(x))

$ needed for x and p(x)

$ already on x and p(x)



case 1: 3(rankl(x) - rank(x)) + 1

+1 pays for the rotation

rank!(x) = rank(p(x))

Extra $ to keep the invariant is:

rank’(x) + rank!(p(x))

(rank(x) + ra/nk.ép(f))

$ needed for x and p(x)

$ already on x and p(x)

r(x) after =
r(p(x)) before.



case 1: 3(rankl(x) - rank(x)) + 1

+1 pays for the rotation

rank!(x) = rank(p(x))

Extra $ to keep the invariant is:

rank’(x) + rank!(p(x))

(rank(x) + ra/nk.ép(/))

$ needed for x and p(x)

$ already on x and p(x)

= rank!(p(x)) - rank(x)

< rank!(x) - rank(x) < 3(rank(x) - rank(x))

r(x) after =
r(p(x)) before.



case 2: 3(rankl(x) - rank(x))

$ needed to add < rank!(R) - rank(x)
< rank!(x) - rank(x)

But how do we pay for the rotations?

If rank!(x) - rank(x) > 0, then
we need to add < r}(x) - r(x) but we have 3(rl(x) - r(x)) > 1 Otherwise see next slide.
budgeted, so we have at least $1 to pay for the rotations.



case 2: 3(rankl(x) - rank(x))

$ needed to add < rank!(R) - rank(x)
< rank!(x) - rank(x)

But how do we pay for the rotations?

If rank!(x) - rank(x) > 0, then
we need to add < r}(x) - r(x) but we have 3(rl(x) - r(x)) > 1 Otherwise see next slide.
budgeted, so we have at least $1 to pay for the rotations.



case 2: 3(rankl(x) - rank(x))

$ needed to add < rank!(R) - rank(x)
< rank!(x) - rank(x)

But how do we pay for the rotations?

If rank!(x) - rank(x) > 0, then
we need to add < r}(x) - r(x) but we have 3(rl(x) - r(x)) > 1 Otherwise see next slide.
budgeted, so we have at least $1 to pay for the rotations.



case 2: 3(rankl(x) - rank(x))

R

D
S — R Ok
A AN A

$ needed to add < gankl(R) - rank(x)

< rank!(x) - rank(x)

But how do we pay for the rotations?

If rank!(x) - rank(x) > 0, then
we need to add < r}(x) - r(x) but we have 3(rl(x) - r(x)) > 1 Otherwise see next slide.
budgeted, so we have at least $1 to pay for the rotations.



case 2: 3(rankl(x) - rank(x))

R

D
S — R Ok
A AN A

$ needed to add < rank!(R) - rank(x)
< rank!(x) - rank(x)

But how do we pay for the rotations?

If rank!(x) - rank(x) > 0, then
we need to add < r}(x) - r(x) but we have 3(rl(x) - r(x)) > 1 Otherwise see next slide.
budgeted, so we have at least $1 to pay for the rotations.



case 2: What if (rank(x) - rank(x)) is 0?

Since rl(x) = r(x), and rl(x) = r(R), we
must have r(x) = r(R) = r(S):

(DR .
A S — R S
LA AAA

Also, r}(R) < rl(x) or r1(S) < rl(x)

Suppose both r(R) = r(S) = g.
Then R would have at least 279 nodes under it

and S would have at least 29 nodes under it.

Had 345 on tree before, now need  — So x would have at least 2(29) nodes under it
< 3g, so have 1 $ left to pay for

, and x would then have rank g+1 instead of .
rotations.



case 3: 3(rankl(x) - rank(x))

$ needed to add:
ri(x) + r}(S) + rY(R) -|{(r(x) + r(S) + r(R))

$ needed for moved nodes  $ already on moved nodes




case 3: 3(rankl(x) - rank(x))

$ needed to add:

TU<) + 11(S) + ri(R) -

$ needed for moved nodes  $ already on moved nodes

(r(x) + r(S) + r(R))

=11(S) + r}(R) - r(x) - 1(S)

S
R
rl(x) = r(R)



case 3: 3(rankl(x) - rank(x))

$ needed to add:
rUK) + r1(S) + r!(R) | (r(x) + r(S) + r(R))

$ needed for moved nodes  $ already on moved nodes

=11(S) + rI(R) - r(x) - 1(S) rl(x) = r(R)

< ri(x) + r1(x) - r(x) - r(x) rl(R) < r1(S) < ri(x)
< 2(rl(x) - r(x)) r(x) < 1(S)



case 3: What if rankl(x) - rank(x) = 0?

Why must R have rank < g?

Suppose not. Then x has at least 29 nodes under it, and R has at least 27
nodes under it.

So S has at least 2(27) = 291 nodes under it,
so it should have rank Q+1, but it has rank Q, which is a contradiction.

So before we had 39 $ on the nodes, now we need only <2 + g -1



Additional Cost of Insert & Concat

e Cost of insert & concat more than the cost of a splay
because may have to add $s to root to maintain
invariant:

~

To

T1

concat(T1, T>): root gets at most

insert(T, k): k has n n new descendants from T», so

descendants, so need need to put [log n] dollars on
to put [log n] $ on k root.



