Strassen's Algorithm

Slides by Carl Kingsford

Feb. 21, 2014

Matrix Multiplication

If $r_{1}=c_{1}=r_{2}=c_{2}=N$, this standard approach takes $\Theta\left(N^{3}\right)$:

- For every row \vec{r} (N of them)
- For every column \vec{c} (N of them)
- Take their inner product: $r \cdot c$ using N multiplications

Can we multiply faster than $\Theta\left(N^{3}\right)$?

For simplicity, assume $N=2^{n}$ for some n. The multiplication is:

Uses 8 multiplications

Strassen's Algorithm

A_{11}	A_{12}			
A_{21}	A_{22}	\times	B_{11}	B_{12}
:---	:---			
B_{21}	B_{22}	$=$	C_{11}	C_{12}
:---	:---			
C_{21}	C_{22}			

$$
\begin{aligned}
& P_{1}=\left(A_{11}+A_{22}\right)\left(B_{11}+B_{22}\right) \\
& P_{2}=\left(A_{21}+A_{22}\right) B_{11} \\
& P_{3}=A_{11}\left(B_{12}-B_{22}\right) \\
& P_{4}=A_{22}\left(B_{21}-B_{11}\right) \\
& P_{5}=\left(A_{11}+A_{12}\right) B_{22} \\
& P_{6}=\left(A_{21}-A_{11}\right)\left(B_{11}+B_{12}\right) \\
& P_{7}=\left(A_{12}-A_{22}\right)\left(B_{21}+B_{22}\right)
\end{aligned}
$$

$$
C_{11}=P_{1}+P_{4}-P_{5}+P_{7}
$$

$$
C_{12}=P_{3}+P_{5}
$$

$$
C_{21}=P_{2}+P_{4}
$$

$$
C_{22}=P_{1}-P_{2}+P_{3}+P_{6}
$$

Since the submatrix multiplications are the expensive operations, we save a lot by eliminating one of them.

Apply the above idea recursively to perform the 7 matrix multiplications contained in P_{1}, \ldots, P_{7}.

Need to show how much savings this results in overall.

Recurrence

$$
T(N)=T\left(2^{n}\right)=\underbrace{7 T\left(2^{n} / 2\right)}_{\text {recursive } \times}+\underbrace{c 4^{n}}_{\text {additions }}
$$

Solving the recurrence:

$$
\frac{T\left(2^{n}\right)}{7^{n}}=\frac{7 T\left(2^{n-1}\right)}{7^{n}}+\frac{c 4^{n}}{7^{n}}=\frac{T\left(2^{n-1}\right)}{7^{n-1}}+\frac{c 4^{n}}{7^{n}}
$$

The red term is same as the left-hand side but with $n-1$, so we can recursively expand:
$\frac{T\left(2^{n}\right)}{7^{n}}=\gamma+\sum_{i=1}^{n} \frac{c 4^{i}}{7^{i}}=\gamma+c \sum_{i=1}^{n}\left(\frac{4}{7}\right)^{i} \leq \alpha \quad$ for some constants α, γ
So:

$$
T\left(2^{n}\right) \leq 7^{n} \alpha=\alpha 2^{n \log _{2}(7)}=\alpha N^{2.807 \ldots}=O\left(N^{2.807 \ldots}\right)
$$

Summary

- Strassen first to show matrix multiplication can be done faster than $O\left(N^{3}\right)$ time.
- Strassen's algorithm gives a performance improvement for large-ish N, depending on the architecture, e.g. $N>100$ or $N>1000$.
- Strassen's algorithm isn't optimal though! Over the years it's been improved:

Authors	Year	Runtime
Strassen	1969	$O\left(N^{2.807}\right)$
$\quad \vdots$		
Coppersmith \& Winograd	1990	$O\left(N^{2.3754}\right)$
Stothers	2010	$O\left(N^{2.3736}\right)$
Williams	2011	$O\left(N^{2.3727}\right)$

- Conjecture: an $O\left(N^{2}\right)$ algorithm exists.

Karatsuba's Algorithm for Integer Multiplication

Integer Multiplication

Start similar to Strassen's algorithm, breaking the items into blocks ($m=n / 2$):

- $x=x_{1} 2^{m}+x_{0}$
- $y=y_{1} 2^{m}+y_{0}$

Then:

$$
x y=\left(x_{1} 2^{m}+x_{0}\right)\left(y_{1} 2^{m}+y_{0}\right)=x_{1} y_{1} 2^{2 m}+\left(x_{1} y_{0}+x_{0} y_{1}\right) 2^{m}+x_{0} y_{0}
$$

Breaking x and y into blocks

$x_{1} 2^{m}$ can be computed via "shift right by m "
So this multiplication only costs $O(n)$ operations.

4 Multiplications $\rightarrow 3$ Multiplications

$$
x y=x_{1} y_{1} 2^{2 m}+\left(x_{1} y_{0}+x_{0} y_{1}\right) 2^{m}+x_{0} y_{0}
$$

We can write two multiplications as one, plus some subtractions:

$$
x_{1} y_{0}+x_{0} y_{1}=\left(x_{1}+x_{0}\right)\left(y_{1}+y_{0}\right)-x_{1} y_{1}-x_{0} y_{0}
$$

But what we need to subtract is exactly what we need for the original multiplication!

- $p_{0}=x_{0} y_{0}$
- $p_{1}=x_{1} y_{1}$
- $p_{2}=\left(x_{1}+x_{0}\right)\left(y_{1}+y_{0}\right)-p_{1}-p_{0}$

$$
x y=p_{1} 2^{2 m}+p_{2} 2^{m}+p_{0}
$$

Analysis

Assume $n=2^{k}$ for some k (this is the common case when the integers are stored in computer words):

$$
\begin{aligned}
T\left(2^{k}\right) & =3 T\left(2^{k-1}\right)+c 2^{k} \\
\frac{T\left(2^{k}\right)}{3^{k}} & =\frac{T\left(2^{k-1}\right)}{3^{k-1}}+\frac{c 2^{k}}{3^{k}} \\
& =\gamma+c \sum_{i=1}^{k} \frac{2^{i}}{3^{i}} \\
& \leq \beta \quad \text { for some constants } \gamma, \beta
\end{aligned}
$$

(γ handles the constant work for the base case.) So:

$$
T\left(2^{k}\right) \leq \beta 3^{k}=\beta\left(2^{k}\right)^{\log _{2}(3)}=\beta n^{\log _{2}(3)}=O\left(n^{1.58 \ldots}\right)
$$

