
Strassen’s Algorithm

Slides by Carl Kingsford

Feb. 21, 2014

1



Matrix Multiplication

c2c1= r2

A1
A2

r1
r2 =×

r1 × c2

(r1 × c2) × c1 = multiplications

If r1 = c1 = r2 = c2 = N, this standard approach takes Θ(N3):

I For every row ~r (N of them)

I For every column ~c (N of them)

I Take their inner product: r · c using N multiplications

2



Can we multiply faster than Θ(N3)?

For simplicity, assume N = 2n for some n. The multiplication is:

N = 2n

N = 2n

A11 A12

A22A21

B11 B12

B22B21
⨉

C11 C12

C22C21
=

I C11 = A11B11 + A12B21

I C21 = A21B11 + A22B21

I C12 = A11B12 + A12B22

I C22 = A21B12 + A22B22

Uses 8 multiplications

3



Strassen’s Algorithm

A11 A12

A22A21

B11 B12

B22B21
⨉

C11 C12

C22C21
=

P1 = (A11 + A22)(B11 + B22)

P2 = (A21 + A22)B11

P3 = A11(B12 − B22)

P4 = A22(B21 − B11)

P5 = (A11 + A12)B22

P6 = (A21 − A11)(B11 + B12)

P7 = (A12 − A22)(B21 + B22)

C11 = P1 + P4 − P5 + P7

C12 = P3 + P5

C21 = P2 + P4

C22 = P1 − P2 + P3 + P6

Uses only 7 multiplications!

4



Since the submatrix multiplications are the expensive operations,
we save a lot by eliminating one of them.

Apply the above idea recursively to perform the 7 matrix
multiplications contained in P1, . . . ,P7.

Need to show how much savings this results in overall.

5



Recurrence

T (N) = T (2n) = 7T (2n/2)︸ ︷︷ ︸
recursive ×

+ c4n︸︷︷︸
additions

Solving the recurrence:

T (2n)

7n
=

7T (2n−1)

7n
+

c4n

7n
=

T (2n−1)

7n−1
+

c4n

7n

The red term is same as the left-hand side but with n − 1, so we
can recursively expand:

T (2n)

7n
= γ +

n∑
i=1

c4i

7i
= γ + c

n∑
i=1

(
4

7

)i

≤ α for some constants α, γ

So:

T (2n) ≤ 7nα = α2n log2(7) = αN2.807... = O(N2.807...)

6



Summary

I Strassen first to show matrix multiplication can be done faster than
O(N3) time.

I Strassen’s algorithm gives a performance improvement for large-ish
N, depending on the architecture, e.g. N > 100 or N > 1000.

I Strassen’s algorithm isn’t optimal though! Over the years it’s been
improved:

Authors Year Runtime

Strassen 1969 O(N2.807)
...

Coppersmith & Winograd 1990 O(N2.3754)
Stothers 2010 O(N2.3736)
Williams 2011 O(N2.3727)

I Conjecture: an O(N2) algorithm exists.

7



Karatsuba’s Algorithm for Integer Multiplication

8



Integer Multiplication

10101110
01011101
10101110

10101110
10101110
10101110

10101110

⨉

11111100110110

n numbers of n bits each
O(n2)-time

Start similar to Strassen’s algorithm, breaking the items into
blocks (m = n/2):

I x = x12m + x0
I y = y12m + y0

Then:

xy = (x12m + x0) (y12m + y0) = x1y122m + (x1y0 + x0y1)2m + x0y0

9



Breaking x and y into blocks

x1x = x0

n/2 = m bits n/2 = m bits

n = 2k bits

x12m can be computed via “shift right by m”

So this multiplication only costs O(n) operations.

10



4 Multiplications → 3 Multiplications

xy = x1y122m + (x1y0 + x0y1)2m + x0y0

We can write two multiplications as one, plus some subtractions:

x1y0 + x0y1 = (x1 + x0)(y1 + y0)− x1y1 − x0y0

But what we need to subtract is exactly what we need for the
original multiplication!

I p0 = x0y0
I p1 = x1y1
I p2 = (x1 + x0)(y1 + y0)− p1 − p0

xy = p122m + p22m + p0

11



Analysis

Assume n = 2k for some k (this is the common case when the
integers are stored in computer words):

T (2k) = 3T (2k−1) + c2k

T (2k)

3k
=

T (2k−1)

3k−1
+

c2k

3k

= γ + c
k∑

i=1

2i

3i

≤ β for some constants γ, β

(γ handles the constant work for the base case.) So:

T (2k) ≤ β3k = β(2k)log2(3) = βnlog2(3) = O(n1.58...)

12


