Strassen's Algorithm

Slides by Carl Kingsford

Feb. 21, 2014

Matrix Multiplication

Ci=rp Co

8| X — |:|

I’1 X02

) (r1 X 02) x ¢4 = multiplications

If n =c1 = r = c = N, this standard approach takes ©O(N?3):
» For every row ¥ (N of them)
» For every column ¢ (N of them)

> Take their inner product: r - ¢ using N multiplications

Can we multiply faster than ©(N?3)?

For simplicity, assume N = 2" for some n. The multiplication is:

A11 A12 B11 B12 C11 C12
N=2" X

A21 A22 B21 B22 C21 C22

T

» Ci1 = A11B11 + A12Bx
» Co1 = A21Bi1 + A2 By

Uses 8 multiplications

» Cio = A11Bi2 + A12B»
> Coo = A21Bio + A2 By

Strassen's Algorithm

11 12

11

12

C11 C12

21 22

21

22

C21 C22

P1 = (A11 + A22)(B11 + B22)
P> = (A2 + A2)B11
P3 = A11(Bi12 — B22)
Py = A2(B21 — Bu1)
Ps = (A11 + A12) B2
Ps = (A21 — A11)(B11 + Bi2)
P7 = (A12 — A22)(Bo1 + Bx)

Ci=P1+Py—Ps+P;
Cio="P3+ Ps
C1=Pa+ Py
Co=P1—P,+P3+Ps

Uses only 7 multiplications!

Since the submatrix multiplications are the expensive operations,
we save a lot by eliminating one of them.

Apply the above idea recursively to perform the 7 matrix
multiplications contained in Py,..., P7.

Need to show how much savings this results in overall.

Recurrence

T(N)=TE")=7T(2"2) + &

recursive X additions

Solving the recurrence:

T(2") 7T(2" 1) 4" T2 4"
7n o 7n ? - 7n—1 + 7n

The red term is same as the left-hand side but with n — 1, so we
can recursively expand:

n H n

- 5 7
i=1 i=1

T(2n) <70 = a2n|og2(7) — 04/V2'807"' — O(N2.807...)

T(2" 4 4\’
():7+Zc7i:7+cz<> < o for some constants o, y

Summary
» Strassen first to show matrix multiplication can be done faster than
O(N3) time.

» Strassen’s algorithm gives a performance improvement for large-ish
N, depending on the architecture, e.g. N > 100 or N > 1000.

> Strassen’s algorithm isn't optimal though! Over the years it's been
improved:

Authors Year Runtime

Strassen 1969 O(N?2807)

Coppersmith & Winograd 1990 O(N?2-37%4)
Stothers 2010 O(N?23730)
Williams 2011 O(N?23727)

» Conjecture: an O(N?) algorithm exists.

Karatsuba's Algorithm for Integer Multiplication

Integer Multiplication

10101110
X 01011101

10101110
10101110
10101110
10101110
10101110

11111100110110

n numbers of n bits each
O(rA)-time

Start similar to Strassen’s algorithm, breaking the items into
blocks (m = n/2):

> x = x12™ + xg

>y =x2"+yo
Then:

xy = (x12™ + x0) (y12™ + y0) = x1y122™ + (x1y0 + x0y1)2" + X0¥0

Breaking x and y into blocks

k

n=2" bits

Xo

N—

A

n/2 = m bits

x12™ can be computed via “shift right by m”

n/2 = m bits

So this multiplication only costs O(n) operations.

10

4 Multiplications — 3 Multiplications

xy = x1y12°™ + (x1y0 + x0y1)2™ + X0)0

We can write two multiplications as one, plus some subtractions:

x1yo + xoy1 = (x1 +x0)(y1 + Yo) — x1y1 — X0)0

But what we need to subtract is exactly what we need for the
original multiplication!

> po = XoYo
> p1 =X
> p2 = (x1+x0)(y1 + ¥0) — P1 — Po

xy = p12°™ + p22™ + po

11

Analysis

Assume n = 2K for some k (this is the common case when the
integers are stored in computer words):

T(25) =3T(2%1) + c2k

T(2F) T(2k1) ok
3k = 3k—1 +3T

k oi
=7+ed 5
i=1
< B for some constants ~, 3

(7 handles the constant work for the base case.) So:

T(Qk) < /33/(_ 5(2k)|og2(3) _ ﬂn|°g2(3) _ O(n1'58“')

12

