
Divide and Conquer

Slides by Carl Kingsford

Feb. 17, 2014

Based on AD Sections 5.1–5.3

1

Divide and Conquer

Divide and Conquer is general algorithmic design framework.

Related to induction:

I Suppose you have a “box” that can solve problems of size
≤ k < n

I You use this box on some subset of the input items to get
partial answers

I You combine these partial answers to get the full answer.

But: you construct the “box” by recursively applying the same idea
until the problem is small enough to be solved by brute force.

2

Merge Sort

MergeSort(L):

if |L| = 2:

return [min(L), max(L)]

else:

L1 = MergeSort(L[0, |L|/2])

L2 = MergeSort(L[|L|/2+1, |L|-1])

return Combine(L1, L2)

I In practice, you sort in-place rather than making new lists.

I Combine(L1,L2) walks down the sorted lists putting the
smaller number onto a new list. Takes O(n) time

I Total time: T (n) ≤ 2T (n/2) + cn.

3

Runtime via a Recurrence

Given a recurrence such as T (n) ≤ 2T (n/2) + cn, we want a
simple upper bound on the total running time.

Two common ways to “solve” such a recurrence:

1. Unroll the recurrence and see what the pattern is.
Typically, you’ll draw the recursion tree.

2. Guess an answer and prove that it’s right.

4

Solving Recurrences

Draw the first few levels of
the tree.

Write the amount of work
done at each level in terms
of the level.

Figure out the height of
the tree.

Sum over all levels of the
tree.

n

n/2 n/2

n/4 n/4 n/4 n/4

T (n) ≤ 2T (n/2) + cn. Each level is cn. There are log n levels, so
T (n) is O(n log n).

5

Substitution Method

Substitution method is based on induction. We:

1. Show T (k) ≤ f (k) for some small k .

2. Assume T (k) ≤ f (k) for all k < n.

3. Show T (n) ≤ f (n).

T (n) ≤ 2T (n/2) + cn Base Case: 2c log 2 = 2c ≥ T (2)
Induction Step:

T (n) ≤ 2T (n/2) + cn

≤ 2c(n/2) log(n/2) + cn

= cn[(log n)− 1] + cn

= cn log n

6

Counting Inversions

7

Comparing Rankings

Suppose two customers rank a list of movies.

1

2

3

4

5

1

2

3

4

5

1

2

3

4

5

1

2

3

4

5

similar more different

8

A measure of distance

What’s a good measure of how dissimilar two rankings are?

We can count the number of inversions:

I Assume one of the rankings is 1, 2, 3, . . . , n.

I Denote the other ranking by a1, a2, . . . , an.

I An inversion is a pair (i , j) such that i < j but aj < ai .

Two identical rankings have no inversions.

How many inversions do opposite rankings have?

(n
2

)

9

A measure of distance

What’s a good measure of how dissimilar two rankings are?

We can count the number of inversions:

I Assume one of the rankings is 1, 2, 3, . . . , n.

I Denote the other ranking by a1, a2, . . . , an.

I An inversion is a pair (i , j) such that i < j but aj < ai .

Two identical rankings have no inversions.

How many inversions do opposite rankings have?

(n
2

)

9

A measure of distance

What’s a good measure of how dissimilar two rankings are?

We can count the number of inversions:

I Assume one of the rankings is 1, 2, 3, . . . , n.

I Denote the other ranking by a1, a2, . . . , an.

I An inversion is a pair (i , j) such that i < j but aj < ai .

Two identical rankings have no inversions.

How many inversions do opposite rankings have?
(n
2

)

9

How can we count inversions quickly?

How can we count inversions quickly?

I Brute Force: check every pair: O(n2).

I Some sequences might have O(n2) inversions, so you might
think that it might take as much as O(n2) time to count
them.

I In fact, with divide and conquer, you can count them in
O(n log n) time.

10

Basic Divide and Conquer

Count the number of inversions in the sequence a1, . . . , an.

Suppose I told you the number of inversions in the first half of the
list and in the second half of the list:

a1, ..., an/2 an/2+1, ..., an

Inv1 Inv2

of inversions in each half

What kinds of inversions are not accounted for in Inv1 + Inv2?

11

SortAndCount

SortAndCount(List L):

If |L| == 1: Return 0

A, B = first & second halves of L

invA, SortedA = SortAndCount(A)

invB, SortedB = SortAndCount(B)

crossInv, SortedL = MergeAndSort(SortedA, SortedB)

Return invA + invB + crossInv and SortedL

12

Half-Crossing Inversions

The inversions we have to count during the merge step:

a1, ..., an/2 an/2+1, ..., an

ai aj>

The crux is that we have to count these kinds of inversion in O(n)
time.

13

What if each of the half lists were sorted?

Suppose each of the half lists were sorted.

If we find a pair ai > bj , then we can infer many other inversions:

first half second half

bjai

Suppose ai > bj:
then all these are

bigger than bj

min

Each of the green items is an inversion with bj .

14

Merge-and-Count

MergeAndCount(SortedList A, SortedList B):

a = b = CrossInvCount = 0

OutList = empty list

While a < |A| and b < |B|: // not at end of a list

next = min(A[a], B[b])

OutList.append(next)

If B[b] == next:

b = b + 1

CrossInvCount += |A| - a //inc by # left in A

Else

a = a + 1

EndWhile

Append the non-empty list to OutList

Return CrossInvCount and OutList

15

Sorted!

Note that MergeAndCount will produce a sorted list as well as the
number of cross inversions.

16

Algorithm Schematic

a1, ..., an/2 an/2+1, ..., an

Recursive
Box

Recursive
Box

Divide it into 2 parts

Compute the answer (and
maybe some additional info)

on each part separately

sorted
an/2+1, ..., an

sorted
a1, ..., an/2

Inv1 Inv2

Inv1 +
Inv2

+ inversions that cross
between the first half
and the second half

Merge

sorted
a1, ..., an

17

Running time?

What’s the running time of SortAndCount?

Break the problem into two halves.

Merge takes O(n) time.

T (n) ≤ 2T (n/2) + cn

=⇒ Total running time is O(n log n).

18

Running time?

What’s the running time of SortAndCount?

Break the problem into two halves.

Merge takes O(n) time.

T (n) ≤ 2T (n/2) + cn

=⇒ Total running time is O(n log n).

18

	Divide and Conquer
	Counting Inversions

