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Shortest Path Problem

Shortest Path with Negative Weights. Given directed graph G with
weighted edges d(u, v) that may be positive or negative, find the
shortest path from s to t.
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Complication of Negative Weights

Negative cycles: If some cycle has a negative total cost, we can
make the s − t path as low cost as we want:

Go from s to some node on the cycle, and then travel around the
cycle many times, eventually leaving to go to t.

ws t

Assume, therefore, that G has no negative cycles.
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Let’s just add a big number!

I Adding a large number M to each edge doesn’t work!

I The cost of a path P will become M × length(P) + cost(P).

I If M is big, the number of hops (length) will dominate.
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Bellman-Ford

Let dists(v) be the current estimated distance from s to v .

At the start, dists(s) = 0 and dists(v) =∞ for all other v .

Ford step. Find an edge (u, v) such that

dists(u) + d(u, v) < dists(v)

and set dists(v) = dists(u) + d(u, v).
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Repeatedly Applying Ford Step

Theorem. After applying the Ford step until

dists(u) + d(u, v) ≥ dists(v)

for all edges, dists(u) will equal the shortest-path distance from s
to u for all u.

Proof. We show that, for every v :

I There is a path of length dists(v) (next two slide)

I No path is shorter (in three slides)

So dists(v) must be the length of the shortest path.
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A path of length dists(v) exists

Theorem. After any number i of applications of the Ford step,
either dists(v) =∞ or there is a s − v path of length dists(v).

Proof. Let v be a vertex such that dists(v) <∞. We proceed by
induction on i .

Base case: When i = 0, only dists(s) = 0 <∞ and there is a
path of length 0 from s to s.

Induction hypothesis: Assume true for all applications < i .
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A path of length dists(v) exists, II

Proof, continued.

Induction step: Let dists(v) be the distance updated during the
ith application. It is updated using some edge (u, v) using the rule:

dists(v) = dists(u) + d(u, v)

dists(u) must be ≤ ∞ and thus must have been updated by some
application of the Ford rule at a step before i .

Therefore, by the induction hypothesis, there is a path Psu of
length dists(u).

Now, on the ith application Psu + (u, v) is a path of length
dists(u) + d(u, v) = dists(v)
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No paths are shorter

Theorem. Let Psv be any path from s to v. When the Ford step
can no longer be applied, length(Psv ) ≥ dists(v).

Proof. By induction on # edges in Psv .

Base case: When |Psv | = 1, it consists of a single edge (s, v) and
because the Ford step can’t be applied d(s, v) ≥ dists(v).

Induction hypothesis: Assume true for all Psv of k or fewer edges.

Induction step: Let Psv be an s − v path of k + 1 edges.
Psv = Psu + (u, v) for some u.

length(Psv ) = length(Psu) +d(u, v) ≥ dists(u) +d(u, v) ≥ dists(v)

Otherwise, the Ford step could be applied.
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Which edges are candidates for the Ford rule?

Ford rule:
dists(u) + d(u, v) < dists(v)

This can only become true if dists(u) has gotten smaller since the
last time we checked.

I Whenever we change dists(u) we add u to a queue.

I To look for an edge to apply the Ford rule to we take a node
of the queue and look at all its edges.
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Implementation

ShortestPath(G, s, t):

Initialize dist[u] = ∞ for all u

dist[s] = 0

# queue tracks nodes that are candidates for Ford rule

queue = [s]

while queue is not empty:

v = front of queue (and remove v)

for u ∈ neighbors(v):

# Apply Ford rule if we can

if dist[v] + d(v,u) < dist[u]:

dist[u] = dist[v] + d(v,u)

parent[u] = v

if u 6∈ queue: put w at end of queue
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Running time

I n = number of nodes

I m = number of edges

After dists(v) has been updated k times, it corresponds to a simple
path of k edges.

A path can contain at most n − 1 edges (before nodes start to
repeat), so each dists(v) can be updated at most n − 1 times.

Updating all vertices once takes time O(m) since we look at each
edge twice.

Total running time = O(mn).

Note that this is slower than Dijkstra’s algorithm in general.
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A dynamic programming view of Bellman-Ford
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Another view

Definition. Let dists(v , i) be minimum cost of a path from s to v
that uses at most i edges.

Can recursively define dists(v , i):

1. If best s − v path uses at most i − 1 edges, then
dists(v , i) = dists(v , i − 1).

2. If best s − v uses i edges, and the last edge is (w , v), then
dists(v , i) = d(w , v) + dists(w , i − 1).
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Subproblems, picture
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w2

dists(w1,i-1)

dists(w2,i-1)
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Recurrence

Let N(w) be the neighbors of w .

dists(v , i) = cost of best path from s to v using at most i edges.

Recurrence:

dists(v , i) = min

{
dists(v , i − 1)

minw∈N(v) dists(w , i − 1) + d(w , v)

Base case: dists(v , 1) = d(s, v) or ∞ if (s, v) does not exist

Goal: Compute dists(t, n − 1).
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Important Facts About This Recurrence

Recurrence:

dists(v , i) = min

{
dists(v , i − 1)

minw∈N(v) dists(w , i − 1) + d(w , v)

I dists(v , x) depends only on dists(w , y) for which y is smaller than x .

I There are only |V | × (|V | − 1) possible arguments for dists(·, ·).
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Code

BellmanFord(G=(V,E), s, t):

Initialize dist_s[x, 1] to d(s,x) for all x

For i = 1,...,|V|-1:

For v in V:

// find the best w on which to apply the Ford rule

best_w = None

for w in N(v): // N(v) are neighbors of v

best_w = min(best_w, dist_s[w, i-1] + d[w,v])

dist_s[v,i] = min(best_w, dist_s[v, i-1])

EndFor

EndFor

Return dist_s[t, n-1]
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Running Time

Simple Analysis:

I O(n2) subproblems

I O(n) time to compute each entry in the table
(have to search over all possible neighbors w).

I Therefore, runs in O(n3) time.

A better analysis:

I Let nv be the number of edges entering v .

I Filling in each entry actually only takes O(nv ) time.

I Total time = O
(
n
∑

v∈V nv
)

= O(nm).
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