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Rush Hour Puzzle

Puzzle game by ThinkFun. Object: drive the red car out of the
exit with as few moves as possible.

























Let's make it more interesting

» Real game has cost 1 for every move, no matter which car or
how far the car moves.

» Extension: Cost c(car) for moving a particular car 1 space.
E.g. c(yellow) = 3.

» Find lowest cost solution.

How can we find a low cost solution?



Shortest Paths in the Rush Hour Graph




More efficient shortest paths
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When looking for the shortest path from Pittsburgh to
Philadelphia, it would be strange to start out going west.

Can we use this to find the path faster?



Using a heuristic for shortest paths

Dijkstra’s algorithm assumes it knows nothing about nodes it
hasn't reached during the algorithm.

Suppose instead we have h(u) which is an estimate of the distance
from node u to t.

What's a plausible choice for h(u) if we were implementing a
driving direction application?
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Using a heuristic for shortest paths

Dijkstra’s algorithm assumes it knows nothing about nodes it
hasn't reached during the algorithm.

Suppose instead we have h(u) which is an estimate of the distance
from node u to t.

What's a plausible choice for h(u) if we were implementing a
driving direction application?

h(u) = the distance from u to t “as the crow flies.”

How can we use h(u) to speed up our search for a
shortest path to some destination t?



A* algorithm
Maintain two values for every visited node:

» g(u) = best distance from s to u found so far.

» f(u) = g(u) + h(u) = estimate of the length of the best path
from s to t through u.

Idea: Run a Dijkstra-like algorithm using f(u) as the key



A*

1: g[S] 0

2: f[s] < g[s] + h][s]

3: Heap <+~ MAKEHEAP((s,f[s])) # heap key is f[s]

4: repeat

5: u <— DELETEMIN(Heap) # Expand node with minimum f[u]
6: if u = goal then return

7: for v € NEIGHBORS(u) do

8: if glu] + d(u,v) < g[v] then

0: parent[v] < u

10: g[v] < glu] + d(u,v)

11: flv] < g[v] + h(v)

12 if v & Heap then

13: INSERT(Heap, v, f[v])

14: else

15: REDUCEKEY (Heap, v, f[v]) # Sift up for new key

16: until Heap is empty



Choice of h(u)

Definition (Admissible). Let h*(u) be the real shortest distance

from u to t. A heuristic h(u) is admissible if h(u) < h*(u) for all u.

» When h(u) = 0 for all u: A* is equivalent to Dijkstra’s
algorithm.

» This choice of h(u) is obviously admissible.

Theorem. If h(u) is admissible, then A* is guaranteed to find an
optimal route to the destination t.

» Want h(u) to be admissible.
» Want it to be as close to h*(u) as possible.

» (Price-is-right criteria)
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Admissible = Optimal

Theorem. If h(u) is admissible, then A* is guaranteed to find an optimal route
to the destination t.

Proof. Suppose not, and let P* be an optimal path. Consider the state of the
nodes on P* just before node t is removed from the heap (line 6):

@ current paths from s
EOSON OROR R R ORI

nodes on P* that are on the heap

At least one node on P* must be on the heap (since t € P*).
Let w be the first such node on P*.

Claim: The current distance g(w) must equal the optimal distance g*(w):

» s must have been expanded, adding the optimal path to wy and adding
wi to the heap.

> Since w; is no longer on the heap, it must have been expanded, adding
ws to the heap and assigning g(w2) to the length of the optimum path
S — wy; — Ws, and so on.
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Then, since f(t) := g(t) + h(t), we have:

(*)

(**)
(***)

Hence, the distance g(t) we compute for t is optimal. (J
(*) b/c f(t) is the minimum of all things on the frontier.
(**) b/c P* is optimal.

(***) by admissibility.
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Example run of A* on grid graph

(See full run in gridastar.pdf)

» top number = h(u), which is the straight-line Euclidean
distance

» bottom number = g(u), best distance to u so far computed
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Example run of Dijkstra on the same grid graph

(See full run in griddijk.pdf)

» top number = h(u) =

» bottom number = g(u

0
).

best distance to u so far computed
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Another application of A*
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Traveling Salesman Problem

Traveling Salesman Problem. Given n cities, and distances d(i, )
between each pair of cities, find the shortest route that visits each
city exactly once.

Notes:

» We have a distance between every pair of cities.
» In this version, d(i,j) doesn't have to equal d(j, /).

» And the distances don't have to obey the triangle inequality
(d(i,j) < d(i,k)+ d(k,j) for all i,j, k).
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TSP large instance

TSP visiting 24,978 (all) cities in
Sweden.

Solved by David Applegate, Robert
Bixby, Vasek Chvatal, William Cook,
and Keld Helsgaun

http://wuw.tsp.gatech.edu/
sweden/index.html

Lots more cool TSP at
http://www.tsp.gatech.edu/
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Traveling Salesman State Graph

All the extensions of that prefix by 1 node
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Admissible heuristics for TSP

What's a good admissible h(a; — -+ — ax)?

» 0
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Admissible heuristics for TSP

What's a good admissible h(a; — -+ — ax)?

> length of the smallest unused edge leaving ay.

> length of smallest unused edge leaving a, + length of smallest
unused edge entering a;.

> length of the shortest path from a, to a; that doesn’t use any
nodes in ap,...,ax_1.

> length of the minimum spanning tree on all nodes except
az, ..., dk—1
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Admissible heuristics for TSP
What's a good admissible h(a; — -+ — ax)?
> 0
> length of the smallest unused edge leaving ay.

> length of smallest unused edge leaving a, + length of smallest
unused edge entering a;.

> length of the shortest path from a, to a; that doesn’t use any
nodes in ap,...,ax_1.

> length of the minimum spanning tree on all nodes except
a,...,ak—1 : a path from a, to a; is a MST, so MST must
be of less cost than the TSP completion.
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Conclusion

» Shortest path can be used to solve a lot of combinatorial
problems.

» A* is a slight extension that let's us incorporate heuristic
information.

» With admissible heuristics, we can still guarantee finding the
optimal solution.
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Summary of Shortest Paths

For a graph G = (V, E):

Algorithm Runtime Application
BFS O(|V]|+ |E|) edge weights all the same
Dijkstra's O(|E|log |V]) positive edge weights
A* possibly large have heuristic h(u)

Bellman-Ford O(|E||IV]) arbitrary edge weights
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Algorithmic design techniques

Based on BFS or DFS (bipartite testing, topological sort)
Greedy tree growing (Prim’s, Dijkstra’s)
A* (design an admissible heuristic: TSP)

Next: A preview of dynamic programming (Bellman-Ford)

24



